
www.latticesemi.com 1 rd1191_01.1

October 2013 Reference Design RD1191

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

General Description
The iCE40LM Barcode Emulation Reference Design allows any device with an LED to be able to transmit bar
codes to laser based bar code readers. Laser based bar code readers can not detect a bar code that is displayed
on a smart phone screen for example. The laser bounces off the screen and is not readable, but with the Barcode
Emulation reference design, one can use a LED to transmit the barcode so a laser can read it. This reference
design is ideal for mobile devices but it can be incorporated into any product with an LED. The Barcode Emulation
Reference Design allows one to easily transfer the bar code data from the application processor to the Barcode
LED. This reference design acts as data control and buffer between the Barcode LED and the application proces-
sor. The Barcode Emulation Reference Design is a configurable solution, available as either standalone off the
shelf or fully customizable solution.

Figure 1. System Block Diagram

As a standalone solution, the iCE40LM Barcode Emulation Reference Design connects to the application proces-
sor’s Serial Peripheral Interface Bus (SPI) with clock frequency set to 10.8MHz. This enables a fast communication
speed to/from the processor. The iCE40LM Barcode Emulation standalone solution prepares and sends the data
from the application processor to a Barcode LED. The data is sent to the Barcode LED with the correct frequency,
duration, and interval as required by Code 39 type of barcode encoding. Correct frequency is achieved by using the
Dynamic Clock Generator, which sweeps the frequency at which the Barcode LED emits the signal, making the
solution a barcode reader agnostic solution.

The Barcode Emulation standalone solution has a system operating frequency of 27MHz and SPI bus frequency to
application processor of 10.8MHz. The SPI bus is configured to have a voltage of 1.8V, and the Barcode LED is
driven by a 3.3V I/O.

iCE40LM Barcode Emulation Solution

SPI
Control

Registers
and

Data Buffer

Barcode State
Machine and

LED Driver
Barcode

LED

S
P

I M
as

te
r

A
pp

lic
at

io
n

Pr
oc

es
so

r

SPI
Slave

Power-On Reset Module Dynamic Clock Generator

 iCE40LM Barcode Emulation
Reference Design

2

iCE40LM Barcode Emulation Reference Design

The iCE40 FPGA based architecture allows this solution to be fully customizable. This capability is ideal, but not
limited to users who would like to include additional Barcode Emulation standards, change the data acquisition
FIFO depth, create an I/O bridge between Barcode LEDs and processor, or create additional custom logic.

The iCE40LM Barcode Emulation reference design consumes only 356 LUTs. This allows it to fit in a device as
small as a iCE40LM1K.

Regardless of the solution type, when the iCE40LM is used to implement the Barcode Emulation solution, it has a
core voltage of 1.2V. It is available in a very small form-factor 25-pin WLCSP package. The package has 0.35mm
ball pitch, making the overall package size to be 1.71mm x 1.71mm that easily fit into a number of mobile devices
such as smart phones. Other packages include .4mm ball pitch with 36 balls (2.5x2.5mm) or 49 balls (3x3mm). The
solution operates at industrial temperature range of -40C to 100C.

As a standalone solution, user simply obtains the solution which includes the device, Diamond Programmer soft-
ware, and ready-for-download bitstream. As a fully customizable solution, user will obtain the device, the iCEcube2
design software, the programming software, and the source code of the Barcode Emulation solution.

Figure 2. Package Diagram (Balls Up)

Features
• Configurable Barcode Emulation for Mobile Devices

– Configured to Code 39 type of barcode encoding
– Barcode frequency sweep capability
– Default System frequency of 27MHz
– Power-On Reset capability

• Serial Peripheral Interface (SPI) Bus connection to Application Processor with the following Default settings:
– Interface frequency of 10.8MHz
– Interface voltage of 1.8V
– Solution is a “slave” of the Application Processor
– SPI slave mode CPOL = 1 and CPHA = 1 (mode “3”)
– SPI slave features MSB first

• General
– Core voltage of 1.2V
– I/O voltages of 1.8V and 3.3V
– 25-pin WLCS at 1.69mm x 1.69mm with 0.35mm pitch
– Industrial (-40C to 100C) Grade

A5

B5

C5

D5

E5

A4

B4

C4

D4

E4

A3

B3

C3

D3

E3

A2

B2

C2

D2

E2

A1

B1

C1

D1

E1

3

iCE40LM Barcode Emulation Reference Design

Applications
• Notebook PCs

• Smart Phones

• Tablets

Functional Block Diagram
Figure 3. Functional Block Diagram

Specifications
Recommended Operating Conditions
Table 1. Recommended Operating Conditions

Power Supply Ramp Rates
See DS1045, iCE40LM Family Data Sheet.

Power-On-Reset Voltage Levels
See DS1045, iCE40LM Family Data Sheet.

ESD Performance
See DS1045, iCE40LM Family Data Sheet.

Symbol Parameter Min. Typ. Max. Units

VCC Core Supply Voltage See DS1045,
iCE40LM Family

Data Sheet.
1.2

See DS1045,
iCE40LM Family

Data Sheet.
V

VCCIOVB1
1 Bank 1 I/O Driver Supply Voltage 1.71 1.8 1.89 V

VCCIOVB2
1 Bank 2 I/O Driver Supply Voltage 3.14 3.3 3.46 V

tJUND Junction Temperature Operation See DS1045,
iCE40LM Family

Data Sheet.
-

See DS1045,
iCE40LM Family

Data Sheet.

oC

1. Assumes operating under “off-the-shelf standalone1 solution”.

C
on

tro
l R

eg
is

te
rs

an

d
D

at
a

B
uf

fe
r

B
ar

co
de

 L
ED

 D
riv

er
(3

.3
V

I/O
)

Power-On Reset
Module

B
uf

fe
r

C
on

tro
lle

r
D

at
a

B
uf

fe
r

Barcode Logic

B
ar

co
de

 C
on

tro
l

an
d

S
ta

te
 M

ac
hi

ne
Lo

gi
c

SP
I I

nt
er

fa
ce

 M
od

ul
e

SPI Slave
Module

E4 o_ledA5

A4

A3

i_mosi

i_sclk

i_ssn

E3
i_sys_clk

C
on

tro
l L

og
ic

 a
nd

 R
eg

is
te

rs

iCE40LM Barcode Emulation Solution

C2o_miso

Dynamic Clock
Generator

4

iCE40LM Barcode Emulation Reference Design

DC Electrical Characteristics
See DS1045, iCE40LM Family Data Sheet. Set the VCCIO values to the values stated in the Recommended Operat-
ing Conditions table.

Power Supply Current
See DS1045, iCE40LM Family Data Sheet.

Absolute Maximum Ratings
See DS1045, iCE40LM Family Data Sheet.

Performance Characteristics
Table 2. Performance Characteristics1, 3

FPGA Characteristics
See DS1045, iCE40LM Family Data Sheet. Note that once customization is performed, the values in “Performance
Characteristics” may not be the same.

Pin Configuration and Function Descriptions
Figure 4. Bottom View of iCE40LM4K-SWG25TR (Balls Up)

Symbol Parameter Min. Typ. Max. Units

Fcoremax System Frequency 27 MHz

Tcoremaxdcd Maximum duty cycle distortion for System
Clock %

Fspimax SPI Bus Frequency 10.8 MHz

Tsuspi SPI setup time ns

Thdspi SPI hold time ns

Tcospi SPI clock to out time ns

Tscsn SPI chip-select setup time ns

Thdcsn SPI chip-select hold time ns

Tcooled o_led clock to out time ns

Tpor Power-On Reset duration2 192 Cycles

1. Assumes operating under “off-the-shelf standalone1 solution”
2. Relative to System Frequency
3. All values are based on iCEcube2’s Timing Analyzer’s results. The design is not validated by test engineering.

A5

B5

C5

D5

E5

A4

B4

C4

D4

E4

A3

B3

C3

D3

E3

A2

B2

C2

D2

E2

A1

B1

C1

D1

E1

5

iCE40LM Barcode Emulation Reference Design

Table 3. Pin Function Description1

Pad Name Port Name Port Direction Description

A1 General Purpose I/O Input/Output 1.8V I/O for user interface

A2 VCCIOVB1 Input I/O Power Supply

A3 i_ssn Input SPI bus slave select (Active Low)

A4 i_sclk Input SPI bus serial clock

A5 i_mosi Input SPI bus serial data in to slave

B1 General Purpose I/O Input/Output 1.8V I/O for user interface

B2 GND Input Ground

B3 CRESET Input Configuration Reset (Active Low). See Datasheet

B4 VCC Input Core Power Supply

B5 General Purpose I/O Input/Output 1.8V I/O for user interface

C1 ice_SI Output Configuration Output to external SPI Memory

C2 o_miso Output SPI bus serial data out from slave

C3 CDONE Output Configuration Done. See Datasheet

C4 General Purpose I/O Input/Output 3.3V I/O for user interface

C5 General Purpose I/O Input/Output 3.3V I/O for user interface

D1 flsh_sclk Input Configuration Clock

D2 ice_SO Input Configuration Input from external SPI Memory

D3 General Purpose I/O Input/Output 3.3V I/O for user interface

D4 GND Input Ground

D5 General Purpose I/O Input/Output 3.3V I/O for user interface

E1 flsh_cs Input Configuration Chip Select (Active Low)

E2 VCCIOVB2 Input I/O Power Supply

E3 i_sys_clk Input System Clock

E4 o_led Output Barcode LED Output Driver (3.3V)

E5 General Purpose I/O Input/Output 3.3V I/O for user interface

1. Assumes operating under “off-the-shelf standalone1 solution”.

6

iCE40LM Barcode Emulation Reference Design

Theory of Operations
The Barcode Emulation solution interfaces between an application processor and a Barcode LED. It receives Code
39 type of barcode encoding data and control from the processor through the SPI bus. The received data is then
formatted and stored into a data buffer. When the control commands (with START asserted) are received and pro-
cessed, the barcode logic reads the buffer content and converts the data into serial signals that drives the Barcode
LED. The Barcode LED data rate frequency is swept through the use of the Dynamic Clock Generator so as to
account for different frequencies of different barcode readers. It continues to drive the barcode LED until control
commands (with STOP asserted) are received. The whole process begins again when the next set of received data
and control are received.

Functional Descriptions
This sub-section describes the function of each sub-block in inside the Barcode Emulation solution. Many of these
blocks have HDL module associated with them.

Barcode Emulation Top Level
The Barcode Emulation Top Level is found in barcode_fsm_top. This module contains the SPI Slave to Application
Processor, the Control Registers and Data Buffer, and the Barcode Logic. It also contains a Power-On Reset
(POR) module. The POR module initiates a system reset upon power up for Tpor number of cycles. The iCE40LM
Barcode Emulation Solution operates after system reset has been completed. There is also the
FIRMWARE_VERSION register and a counter that creates different clock frequencies as required by the Barcode
Logic. The purpose of this counter is to sweep the frequency at which the Barcode LED emits signal, making the
solution a barcode reader agnostic solution.

SPI Interface to Application Processor
This module is used to interface between the Barcode Emulation solution and the application processor. It is found
in spi_slave module. This module waits until an interrupt is received from the processor. When a read command is
received from the application processor, this module sends commands to the desired read registers. This module
then receives the read data and sends them to the application processor. When a write command is received from
the application processor, this module decodes the commands and sends the appropriate data to the desired reg-
ister locations.

Control Registers and Data Buffer
This module stores the data for the barcode LED (from the application processor) in a buffer, and it decodes the
control signals (also from processor) to initiate/stop data transmission to the barcode LED. The control signals pro-
cessed are Code Delay Rate (CDR), Code Bit Rate (CBR), number of cycles, start, and stop. It also contains addi-
tional control logic for writing and reading to the data buffer. This module is found in SPI_Slave_Registers.

Barcode Logic
The Barcode Logic contains the state machine to transmit data to the barcode LED. It is controlled by CDR, CBR,
number of cycles, start, and stop signals generated by the Control Registers and Data Buffer module. Upon receiv-
ing the control signals, this module reads the data buffer starting from address 0 and sends the read data serially to
the barcode LED. The module also controls the duration of each serial data. This module uses the clock from the
Dynamic Clock Generator so as to sweep the frequency of the Barcode LED signal emitting rate.

Block Descriptions
The purpose of this section is to provide detailed descriptions of each block of the iCE40LM Barcode Emulation
Solution so as to assist users who want to use this solution using alternative sensors. Codes in this section are
taken directly from the HDL file. Note that in most cases, the topics in each paragraph below are presented in the
order in which they appear in the HDL code.

Barcode Emulation Top Level (barcode_fsm_top)
This module contains the SPI Slave to Application Processor, the Control Registers and Data Buffer, and the Bar-
code Logic. The code starts with the Power On Reset (POR) Module, which initiates a system reset upon power up
for Tpor number of cycles.

7

iCE40LM Barcode Emulation Reference Design

The code then continues to a set of registers and a frequency counter (Dynamic Clock Generator) controlled by
cycles_elapsed, which is generated by the Barcode Logic. The frequency counter is then used to generate various
divided clock which is used by the Barcode Logic for sweeping the data transmission. There is also a
FIRMWARE_VERSION register that can be read by the application processor.

The SPI Slave to Application Processor (spi_slave) provides communication to/from the processor. The Control
Registers and Data Buffer (SPI_Slave_Registers) stores the data for the barcode LED (from the application pro-
cessor) in a buffer, and it decodes the control signals (also from processor) to initiate data transmission to the bar-
code LED. The Barcode Logic (barcode_fsm) contains the state machine to transmit data to the barcode LED.

SPI Slave to Application Processor (spi_slave)
The SPI Slave to Application Processor Module is found in the spi_slave file. It is used to provide connection
between the Barcode Emulation Solution to the application processor via SPI interface (spi_slave). This module
contains the hard SPI module called “SB_SPI”. It contains logic that determines whether the command is write or
read, and state machine to process the SPI master commands so as to prepare data for the backend interface.

Table 4 summarizes the ports to/from the SPI Slave to Application Processor Module

Table 4. Ports To/From the SPI Slave to Application Processor Module

Port Name Direction Description

i_sys_clk Input System Clock

i_sys_rst Input System Reset - Connected to POR

i_miso_byte[7:0] Input Data to send to Application Processor

i_miso_byte_valid Input Determines if data to send is valid

o_miso_byte_req Output Determines whether the received command is write (Active HIGH)
or read (Active LOW)

o_mosi_byte[7:0] Output Data received from Application Processor

o_mosi_byte_valid Output Determines if received data is valid (Active HIGH)

o_cmd_byte Output Determines if received data is a command byte (Active HIGH)

o_miso Output SPI interface (connected to o_miso pin)

i_mosi Input SPI interface (connected to o_mosi pin)

i_csn Input SPI interface (connected to i_csn pin)

i_sclk Input SPI interface (connected to i_sclk pin)

8

iCE40LM Barcode Emulation Reference Design

Control Registers and Data Buffer (SPI_Slave_Registers)
This module stores the data for the barcode LED (from the application processor) in a buffer, and it decodes the
control signals (also from processor) to initiate data transmission to the barcode LED.

Table 5 summarizes the ports to/from the Control Registers and Data Buffer Module.

Table 5. Ports To/From the Control Registers and Data Buffer Module

The code starts with a set of registers to store delayed values of various control signals: i_FsmRdEn, i_txn_busy,
and the i_spi_busy. The purpose of these delayed registers is to synchronize the Barcode Logic state machine to
the Control Register and Data Buffer logic. Note the conditions of the data buffer read logic (FsmRdEn_pulse_i)
and the SPI busy signal (d#_spi_cs_n).

Next a read_byte_count counter is implemented to keep track the number of bytes of data received from the appli-
cation processor. The number of bytes of data received and the content of the data received is then used to deter-
mine whether the incoming data is read instruction (RegRdEn_i logic), and write instruction (i_RegAddr logic). Note
reg_wr_data_i logic is not used.

When write instruction is received, the i_RegAddr is then checked whether it is between 0x10 and 0x4F. If it were
so, then the control signal data_buf_sel_i is asserted to indicate that incoming data will be written into the data buf-
fer. This logic is found under the following comments:

// Tx/Rx Buffer Enable, read and Write control signals from SPI

Along with the i_RegWrEn input to this module, data_bufsel_i and RegRdEn_i act as control signals for the data
buffer. These signals determines whether the data buffer operation is a multi read/write (multi_rw_op_i), prepares
the write data for the buffer, prepares the data buffer write address, and asserts the write enable for the data buffer.
These operations are found under the following comments:

//Buffer read and write address/enable for multi-byte operation

Under the comments “// Register set”, user can see the registers used to control the Barcode Logic. These regis-
ters are control_reg, o_cbr_reg, and o_cdr_reg. The control_reg contains the Transmit Start (bit 7), Transmit Stop
(bit 6), and Number of Cycles (bit 5 to 0). By default, it is set to 0x9F. On the other hand o_cbr_reg and o_cdr_reg
contain CBR and CDR respectively. By default, CBR is set to 0x20, and CDR is set to 0x50. These registers are

Port Name Direction Description

o_FsmRdData[7:0] Output Data Buffer Read Data

i_SPI_WrData[7:0] Input Data received from Application Processor

i_spi_busy Input Indicates whether SPI interface is busy (Assert HIGH) - connected
to NOT of i_ssn

i_txn_busy Input Barcode Transmit Busy (Active High)

o_txn_start Output Transmit Start (Active High)

o_txn_stop Output Transmit Stop (Active High)

o_cbr_reg[7:0] Output Code Bit Rate (CBR) value

o_cdr_reg[7:0] Output Code Delay Rate (CDR) value

o_txn_cycles[5:0] Output Number of Cycles

o_DataCount[5:0] Output Tracks the number of data received from the Application Processor

i_sys_clk Input System Clock

i_sys_rst Input System Reset - Connected to POR

i_FsmRdEn Input Data Buffer Read Enable (Active High)

i_FsmRdAddr[5:0] Input Data Buffer Read Address

i_RegWrEn Input Data Buffer Write Enable (Active High) - Connected to
o_mosi_byte_valid

9

iCE40LM Barcode Emulation Reference Design

written when i_RegAddr is set to their respective values. When these registers are set, the Barcode Logic begins
the transmission process. Note that user is responsible for initiating both the start by asserting Transmit Start and
the stop by asserting Transmit Stop. Do not assert both Transmit Start and Transmit Stop.

As part of the transmission process, the Barcode Logic reads the data buffer. The Barcode Logic will need to pro-
vide the data buffer read address and the data buffer read enable. The data buffer will then provide the read data
and the number of data in the buffer. Note that the data buffer is a 64x8.

Table 6 summarizes the ports summarizes the ports to/from the Data Buffer.

Table 6. Ports To/From the Data Buffer

Barcode Logic (barcode_fsm)
The Barcode Logic contains the state machine to transmit data to the barcode LED. It is controlled by CDR, CBR,
number of cycles, start, and stop signals generated by the Control Registers and Data Buffer module. Upon receiv-
ing the control signals, this module reads the data buffer starting from address 0 and sends the read data serially to
the barcode LED. This module also controls the duration of each serial data.

Table 7 summarizes the ports to/from the Barcode Logic module

Table 7. Ports To/From the Barcode Logic Module

Port Name Direction Description

i_clk Input System Clock

i_rst Input System Reset - Connected to POR

o_RdData[7:0] Output Data Read from buffer

o_DataCount[5:0] Output Number of data in the buffer

i_FsmRdEn Input Buffer read enable from barcode FSM (Active High)

i_RdEn Input Buffer read enable (Active High) - Not used and connected to 0

i_FsmRdAddr[5:0] Input Buffer read address from barcode FSM

i_RdAddr[5:0] Input Buffer read address - Not used and connected to 0

i_WrEn Input Buffer write enable for data from Application Processor (Active
High)

i_WrAddr[5:0] Input Buffer write address from Application Processor

i_WrData[5:0] Input Buffer write data from Application Processor

Port Name Direction Description

i_sys_clk Input System Clock

i_rst Input System Reset - Connected to POR

o_txn_busy Output Indicates if Barcode State Machine is busy (Active High)

o_buf_rd_en Output Data Buffer Read Enable (Active High)

o_led Output Barcode LED driver port

o_rd_addr[5:0] Output Data Buffer Read Address

o_cycles_elapsed Output Cycles elapsed (Active High) - used to control divided clock
frequency

i_txn_start Input Transmit Start (Active High)

i_txn_stop Input Transmit Stop (Active High)

i_cdr_reg[7:0] Input Code Delay Rate (CDR) value

i_cbr_reg[7:0] Input Code Bit Rate (CBR) value

i_txn_cycles[5:0] Input Number of Cycles

i_byte_count[5:0] Input Number of data in the buffer

i_buf_rd_data[7:0] Input Data Buffer Read Data

10

iCE40LM Barcode Emulation Reference Design

The code starts with CBR register value correction and flags to indicate whether CDR and CBR registers have
value greater than 0 (cdr_gt0_i and cbr_gt0_i). CDR register value is multiplied by 38 to account for 10us (logic
found under “// CDR reg value multiplied by a factor(38) to account for 10us.”

The code then analyze whether i_txn_start, cdr_gt0_i, and cbr_gt0_i are true, and whether i_txn_cycles is greater
than 0. If all these conditions are met then the transmission process begins. As the state machine moves across
states, it controls counters for cycles_count, byte_count, bit_count, cbr_count, and cdr_count. The counters control
cycles_elapsed, byte_elapsed, bits_elapsed, and cdr_elapsed. Note that cycles_elapsed is used to control the
divided clock frequency to be used by Barcode Logic.

Logic to indicate that the Barcode Logic is in transmitting state is implemented under “// Txn FSM busy when not in
Idle State”. This logic generates o_txn_busy signal.

The Barcode Logic is also responsible to generate the read enable and read address signals for the data buffer in
the Control Registers and Data Buffer Module. Note that the start read address signal is 0. The logic for these func-
tions are implemented under: // Buffer read and address generator.

The read data are then serialized and sent to the barcode LED. The logic for these functions are under the follow-
ing comments:

• // Loading shift register value from buffer as well as shifting register

• // LED output also depends upon CBR register value. Other counters keep

Finally, the state machine code is implemented.

Note that this module uses the Dynamic Clock Generator as its clock input so that frequency sweeping of the Bar-
code LED transmission rate is performed.

11

iCE40LM Barcode Emulation Reference Design

Design Considerations
SPI Interface
This section describes the SPI interface between Barcode Emulation and the Application Processor

The Application Processor obtains sensor data over SPI lines through the spi_slave module. This module expects
SPI in mode “3” format, i.e. CPHA = 1 and CPOL = 1, and MSB first while transmitting a byte of data over the bus.

The following timing diagrams show various read/write access patterns. Multi byte transaction is supported only for
write operation.

Figure 5. Single Byte Read Operation (Read FIRMWARE_VERSION)

Figure 6. Single Byte Write Operation

Notes:

• In the above timing diagrams, Single Byte Read Operation is only available for FIRMWARE_VERSION register

• A6 to A0 in the Command byte indicate address of the register. See “SPI Register Descriptions” for more details.

• For a read operation from processor, MSB of command byte is always 1.

• For a write operation from processor, MSB of command byte is always 0.

• CS must not be asserted until all the bytes are read in case of multiple bytes read

• Multiple byte write operation is available only for DATA registers. Bits A6 to A0 must have a valid start address for
DATA registers. After sending the command byte, consecutive data can be sent via SPI bus.

0 0 0 1 0 0 0 0

X7 X6 X5 X4 X3 X2 X1 X01 0 0 0 0 0 0 0

Command byte 8'h80 Dummy byte

Version number 8’h10

SCLK

MOSI

MISO

CS

D7 D6 D5 D4 D3 D2 D1 D01 A 6 A 5 A 4 A 3 A 2 A 1 A 0

Command byte 8'h80 Dummy byte

SCLK

MOSI

MISO

CS

12

iCE40LM Barcode Emulation Reference Design

SPI Registers Description
The Barcode Emulation contains registers that can be accessed by SPI interface. These registers are accessed by
A6 to A0 bits of the Command byte. The following table describes registers accessed by the A6 to A0 bits.

Table 8. Register Map for A6 to A0 Bits

Table 9. FIRMWARE_VERSION Register Bit Description

Table 10. CONTROL Register Bit Description

Table 11. CBR Register Bit Description

Table 12. CDR Register Bit Description

Table 13. DATA Registers Bit Description1

Address
(A6 to A0) as 7-bit hex) Register Name Access Type Description

0x00 FIRMWARE_VERSION R Indicates the firmware version

0x02 CONTROL W Control register

0x03 CBR W CBR register

0x04 CDR W CDR register

0x10 to 0x4F DATA W Data registers

7 6 5 4 3 2 1 0

Firmware Version

7 6 5 4 3 2 1 0

START STOP CYCLES

7 6 5 4 3 2 1 0

Code Bit Rate (bit rate x250ns)

7 6 5 4 3 2 1 0

Code Delay Rate (delay between transmission x10us)

7 6 5 4 3 2 1 0

Code 39 type of barcode encoding

1. DATA registers are part of Data Buffer.

13

iCE40LM Barcode Emulation Reference Design

Complete SPI Registers Location
Table 14 lists the first byte to be transmitted from SPI master (AP) to iCE40 on MOSI Line. This is combination of
register address listed in SPI Registers Description section and also the control signal values listed after the SPI
Timing diagram (under Notes).

Table 14. First Byte from SPI Master (AP) to iCE40 on MOSI Line

Pseudo Code Example for Application Processor
The following code illustrates how an Application Processor could process the interrupt received from the IR Rx
Solution to obtain the IR received data set.

Write Code 39 type of barcode encoding data to DATA Registers
Write data to CBR Register
Write data to CDR Register
Write commands to CONTROL Register (assert Transmit Start, deassert Transmit Stop)
// After some elapsed time
Write commands to CONTROL Register (deassert Transmit Start, assert Transmit Stop)

Design Customization Considerations
Since this is an FPGA based solution, user can customize this solution by changing the source code of the Bar-
code Emulation solution or add additional functions to this solution. Note that when customization is performed, the
“Performance Characteristics” values might change.

Programming Solutions
Due to the FPGA nature of this solution, the solution requires FPGA programming. The programming solutions
include, but not limited to programming via FTDI chip, programming via SPI Flash, or programming via application
processor. For more information on programming solutions, please refer to “iCE40 Configuration Solutions Guide”.

Power Supplies
Please refer to FPGA board design guide.

Layout Guidelines
Please refer to FPGA board design guide.

Heatsink Selection
Please refer to FPGA board design guide.

First Byte for SPI Read
(1, A6 to A0 as 8-bit hex)

First Byte for SPI Write
(0,A6 to A0 as 8-bit hex) Register Description

0x00 - Indicates the firmware version

- 0x02 Control register

- 0x03 CBR register

- 0x04 CDR register

- 0x10 to 0x4F Data registers

14

iCE40LM Barcode Emulation Reference Design

Software Requirement
For standalone solution, Diamond Programmer and “barcode_fsm_top_bitmap.hex” file. The following steps are
required to program the device:

1. Create a new project

2. Set to SPI Programming

For fully customizable solution, iCEcube2, Diamond Programmer, and IR Rx HDL source files are required. For
more information on iCEcube2, please refer to the iCEcube2 webpage.

Resource Utilization

Typical Application Circuits
Figure 7. Barcode Emulation Solution with Pre-programmed SPI Flash

LUTs Registers PLBs BRAMs I/Os I2Cs SPIs

356 244 70 2 6 0 1

A2

A5
A4
A3

VCCIOBV1

C1
10nF

C2
0.1uF

C3
1uF

i_mosi
i_sclk
i_ssn

VCCIOVB1

B4
B2
D4

GND
GND

VCC

VCC

C4
10nF

C5
0.1uF

C6
1uF

Application
Processor’s

SPI Ports

E2 VCCIOVB2

E3 i_sys_clk

B3CRESET

R1
2K2

Switch

C3 CDONE

R2
2K2

3.3V

LE
D

D2 ice_SO
C1 Ice_SI
D1 flsh_sclk
E1 flsh_cs

E4 o_ir_tx

SPI Flash
(Data)

iCE40LM Barcode Emulation Solution
C7

10nF
C8

0.1uF
C9
1uF

VCCIOBV2

System Clock
Source

R3
150

Bar LED
(640nm)

C2o_miso

15

iCE40LM Barcode Emulation Reference Design

Figure 8. Barcode Emulation Solution with Direct Programming through FTDI

A2

VCCIOBV1

C1
10nF

C2
0.1uF

C3
1uF

VCCIOVB1

B4
B2
D4

GND
GND

VCC

VCC

C4
10nF

C5
0.1uF

C6
1uF

Application
Processor’s
SPI Ports

E2

C7
10nF

C8
0.1uF

C9
1uF

VCCIOBV2

VCCIOVB2

System Clock
Source E3 i_sys_clk

D2 ice_SO
C1 Ice_SI
D1 flsh_sclk
E1 flsh_cs

C3 CDONE
B3 CRESET

FTDI
FT2232H

iCE40LM Barcode Emulation Solution

A5
A4
A3

C2
i_mosi
i_sclk
i_ssn

o_miso

R3
150

Bar LED
(640nm)

E4 o_led

16

iCE40LM Barcode Emulation Reference Design

Figure 9. Barcode Emulation Solution with Programming through Application Processor

A2

VCCIOBV1

C1
10nF

C2
0.1uF

C3
1uF

VCCIOVB1

B4
B2
D4

GND
GND

VCC

VCC

C4
10nF

C5
0.1uF

C6
1uF

Application
Processor’s

SPI Ports

E2 VCCIOVB2

E3 i_sys_clk

B3CRESET

R1
2K2

Switch

C3 CDONE

R2
2K2

3.3V

LE
D

D2 ice_SO
C1 Ice_SI
D1 flsh_sclk
E1 flsh_cs

Application
Processor

SPI Flash
(Data)

iCE40LM Barcode Emulation Solution
C7

10nF
C8

0.1uF
C9
1uF

VCCIOBV2

System Clock
Source

R3
150

Bar LED
(640nm)

E4 o_led

A5
A4
A3

C2
i_mosi
i_sclk
i_ssn

o_miso

17

iCE40LM Barcode Emulation Reference Design

Package Diagram

18

iCE40LM Barcode Emulation Reference Design

Disclosures
The Barcode Emulation solution is an FPGA based solution which requires IP to be downloaded to the device for
this solution. This solution includes the Diamond Programmer for IP download and iCEcube2 design software for
customization. The design files and ready-for-download .hex file are also included. Finally, SPI Flash might be
needed depending on whether one time or multi programmable scheme is used.

Ordering Information

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Solution Name Description Package BOM

Barcode Emulation
Reference Design
(Commercial Grade)

Commercial Grade 
Solution

25-pin WLCS at
1.71mm x 1.71mm

iCE40LM4K-SWG25TR Device,
iCEcube2 Design Software,
Diamond Programmer,
Barcode Emulation Design Files,
barcode_fsm_top_bitmap.hex

Barcode Emulation
Reference Design
(Industrial Grade)

Industrial Grade Solution 25-pin WLCS at
1.71mm x 1.71mm

iCE40LM4K-SWG25TR Device,
iCEcube2 Design Software,
Diamond Programmer,
Barcode Emulation Design Files,
barcode_fsm_top_bitmap.hex

Date Version Change Summary

October 2013 01.0 Initial release.

01.1 Updated the Single Byte Read Operation 
(Read FIRMWARE_VERSION) figure.

Updated the Single Byte Write Operation figure.

http://www.latticesemi.com
mailto: techsupport@latticesemi.com

	iCE40LM Barcode Emulation Reference Design
	General Description
	Features
	Applications
	Functional Block Diagram
	Specifications
	Recommended Operating Conditions
	Power Supply Ramp Rates
	Power-On-Reset Voltage Levels
	ESD Performance
	DC Electrical Characteristics
	Power Supply Current
	Absolute Maximum Ratings
	Performance Characteristics
	FPGA Characteristics

	Pin Configuration and Function Descriptions
	Theory of Operations
	Functional Descriptions
	Block Descriptions

	Design Considerations
	SPI Interface
	SPI Registers Description
	Complete SPI Registers Location
	Pseudo Code Example for Application Processor
	Design Customization Considerations
	Programming Solutions
	Power Supplies
	Layout Guidelines
	Heatsink Selection

	Software Requirement
	Resource Utilization
	Typical Application Circuits
	Package Diagram
	Disclosures
	Ordering Information
	Technical Support Assistance
	Revision History

