
www.latticesemi.com 1 RD1173_1.1

February 2015 Reference Design RD1173

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
I2C and SPI are the two widely used bus protocols in today’s embedded systems. The I2C bus has a minimum pin
count requirement and therefore a smaller footprint on the board. The SPI bus provides a synchronized serial link
with performance in MHz range. As embedded systems are required to support an increasing number of protocols
and interfaces, bridge designs targeting popular protocols provide solutions to reduce development time and cost.
The SPI to Dual I2C Master Controllers Bridge extends the available I2C ports for the Applications processor.

The design is implemented in VHDL. The Lattice iCEcube2™ Place and Route tool integrated with the Synopsys
Synplify Pro® synthesis tool is used for the implementation of the design. The design can be targeted to other
iCE40™ FPGA product family devices.

Features
• Supports SPI interface up to 25 MHz

• Two compliant I2C masters supports 100 kHz and 400 kHz (Fast Mode)

• Each I2C master operates independently

• Each I2C master supports clock stretching and repeated start operations

• Each I2C master has 8-deep transmit and receive FIFOs for efficient data handling

• Supports interrupt-driven or polling software interfaces

• Single chip, low power, aggressive packaging options

System Block Diagram
Figure 1. System Block Diagram

SPI Host

I2C Slave

I2C Slave

I2C_INT_N

I2C
Master
#0

I2C
Master
#1

 Registers SPI Intf

SPI to Dual I2C Masters

SPI to I2C Bridge

2

SPI to I2C Bridge

Signal Description
Table 1. Signal Description

Signal Name Pin Type Pull Up/Down Required Signal Description

SPI_SS_N Input Optional External Pull-
low for CPU Configura-
tion

SPI Interface: Chip Select
This signal is generated by the SPI Host to indicate
that the bridge is selected for access

SPI_MISO Output No SPI Interface: Master In Slave Out (MISO)
This signal allows data transfer from SPI Slave to
SPI Host

SPI_MOSI Input No SPI Interface: Master Out Slave In (MOSI)
This allows data transfer from SPI host to SPI Slave

SPI_SCK Input No SPI Interface: Clock
This clock is generated by the SPI Host to SPI slave.
Need to be on a clock pin

SCL0 Bidir, Open Drain External
See I2C spec for value

I2C Master #0 Serial Clock
This bidirectional signal is generated by
the I2C Master #0. Clock rates up to 400
kHz are supported (“Fast Mode”). The
slave may stretch the clock if necessary

SDA0 Bidir, Open Drain External
See I2C spec for value

I2C Master #0: I2C Serial Data
This bidirectional signal allows data
transfer over the I2C bus.

SCL1 Bidir, Open Drain External
See I2C spec for value

I2C Master #1 Serial Clock
This bidirectional signal is generated by
the I2C Master #1. Clock rates up to 400
kHz are supported (“Fast Mode”). The
slave may stretch the clock if necessary.

SDA1 Bidir, Open Drain External
See I2C spec for value

I2C Master #1: I2C Serial Data
This bidirectional signal allows data
transfer over the I2C bus.

I2C_INT_N Output No I2C Master: Interrupt Request
This active low output is the mechanism
for the I2C Master#0 and #1 to inform the
application processor that service is
required. If necessary, interrupt pins can
be separate into I2C0_INT_N and
I2C1_INT_N

RST_N Input No Host Interface: Asynchronous Reset
This active low input is an asynchronous
reset for the application processor to reset
the bridge. The bridge must be reset as
part of the system initialization sequence,
and may be optionally reset at other times
during system operation.

CLK Input No Host Interface: Clock Input
This clock input is used to operate the I2C
side of the bridge. Prefer 19.2 MHz or frequency that
is easier to be divided
down to 400 kHz for I2C clock speed
requirement. Need to be on a Clock Pin

3

SPI to I2C Bridge

Functional Overview
SPI Interface
SPI stands for Serial Peripheral Interface. This is a full duplex synchronous bus that allows a SPI host to transmit or
receive from several slaves serially via the common MISO and MOSI signals of the bus. In this application exam-
ple, the SPI interface (intf) only works as a slave device. This SPI Slave Interface requires a SPI host located on the
Applications Processor (AP) to arbitrate the bus. The Application processor performs interrupt (INT) servicing if the
SPI Slave requires attention.

Registers
Each register is 8 bit in length. These register functions are described in the “Register Description” section in more
details and can be useful for firmware engineers when implementing device driver.

I2C Master #0 and #1
Each I2C Master Controller has an 8-byte deep transmit and receive FIFOs for efficient data transfers. The dual
I2C masters operate independently. For example, one master may be running Standard mode (100 kHz) while the
other operates in Fast mode (400 kHz).

Register Description

Note that the unused addresses are reserved for future use

SPI Command/Internal Register (SPI Host Write)
Table 2. SPI Command/Internal Register (SPI Host Write)

CMD[3:0] – SPI Command

0000 – Write to a Specific Internal Register [WR_REG]

0001 – Read from a Specific Internal Register [RD_REG]

0010 – Interrupt Check [INT_CHK]

0011 – Write N number of bytes to a I2C Slave where N = 8 is at maximum [WR_I2C]

Internal Registers I2C Master #0 I2C Master #1

FIFO Status Register 0x11 0x11

Revision ID Register 0x31 0x31

Configuration Register 0x4 0xA

Mode Register 0x5 0xB

Command Status Register 0x6 0xC

1. Registers are shared

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Write CMD[3]=0
CMD[3]=0

CMD[2]=0
CMD[2]=0

CMD[1]=0
CMD[1]=0

CMD[0]=0
CMD[0]=1

RADR[3] RADR[2] RADR[1] RADR[0]

CMD[3]=0
CMD[3]=0
CMD[3]=0
CMD[3]=0

CMD[2]=0
CMD[2]=0
CMD[2]=1
CMD[2]=1

CMD[1]=1
CMD[1]=1
CMD[1]=0
CMD[1]=0

CMD[0]=0
CMD[0]=1
CMD[0]=0
CMD[0]=1

I2CM[2] I2CM[1] I2CM[0] Reserved

CMD[3]=1
CMD[3]=1

CMD[2]=0
CMD[2]=0

CMD[1]=0
CMD[1]=0

CMD[0]=0
CMD[0]=1

1
1

1
1

0
1

1
1

Reset 0 0 0 0 0 0 0 0

4

SPI to I2C Bridge

0100 – Read N number of bytes from a I2C Slave where N = 8 is at maximum [RD_I2C]

0101 – Read Receive FIFO [RD_FIFO]

Others – Reserved

RADR[3:0] – 4-bit Internal Register Address

I2CM[2:0] – I2C Master Number (Identify which I2C master to write to)

0000 – I2C Master #0

0010 – I2C Master #1

Others – Reserved

FIFO Status Register (Read Only)
Offset: 0x1 – I2C Master #0 and I2C Master #1 share this register

RX0FULL – I2C Master #0 Receive FIFO Full

0 – Receive FIFO is Not Full yet

1 – Receive FIFO is Full

RX0EMPTY – I2C Master #0 Receive FIFO Empty

0 – Receive FIFO is Not Empty yet

1 – Receive FIFO is Empty

TX0FULL – I2C Master #0 Transmit FIFO Full

0 – Transmit FIFO is Not Full yet

1 – Transmit FIFO is Full

TX0EMPTY – I2C Master #0 Transmit FIFO Empty

0 – Transmit FIFO is Not Empty yet

1 – Transmit FIFO is Empty

RX1FULL – I2C Master #1 Receive FIFO Full

0 – Receive FIFO is Not Full yet

1 – Receive FIFO is Full

RX1EMPTY – I2C Master #1 Receive FIFO Empty

0 – Receive FIFO is Not Empty yet

1 – Receive FIFO is Empty

TX1FULL – I2C Master #1 Transmit FIFO Full

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Read RX0FULL RXOEMPTY TXOFULL TXOEMPTY RX1FULL RX1EMPTY TX1FULL TX1EMPTY

Reset 0 1 0 1 0 1 0 1

5

SPI to I2C Bridge

0 – Transmit FIFO is Not Full yet

1 – Transmit FIFO is Full

TX1EMPTY – I2C Master #1 Transmit FIFO Empty

0 – Transmit FIFO is Not Empty yet

1 – Transmit FIFO is Empty

Revision ID Register (Read only at initialization)
Offset: 0x3

Upon reset, this register is loaded with the revision ID of this design. Software can read this register after power-up
to determine the hardware revision.

Configuration Register (Read/Write)
Offset: 0x4 – I2C Master #0 and 0xA – I2C Master #1

RESET – Writing a “one” will reset this I2C Master Controller. This bit will always read as a “zero”. Note that assert-
ing RESET bit will not affect the other I2C Master Controllers.

RXFIFO_CLR – Writing a “one” will clear the receive FIFO. The user needs to write a “zero” afterward.

TXFIFO_CLR – Writing a “one” will clear the transmit FIFO. The user needs to write a “zero” afterward.

ABORT – Writing a “one” will stop the current I2C transaction in progress. This bit is cleared by the

ABORT_ACK status bit in the Command Status Register.

INT_CLR – Writing a “one” will clear all bits in the Command Status Register, except the I2C_BUSY bit. The user
needs to write a “zero” to clear this bit.

START – Write a “one” to start an I2C transaction. This bit is auto-cleared after the master has successfully
acquired the I2C bus.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Read ID[7] ID[6] ID[5] ID[4] ID[3] ID[2] ID[1] ID[0]

Reset ID[7] ID[6] ID[5] ID[4] ID[3] ID[2] ID[1] ID[0]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Read;
Write:

0
RESET RXFIFO_CLR TXFIFO_CLR ABORT Reserved Reserved INT_CLR START

Reset: 0 0 0 0 0 0 0 0

6

SPI to I2C Bridge

Mode Register (Read/Write)
Offset: 0x5 – I2C Master #0 and 0xB – I2C Master #1

BPS[1:0] – Selects the I2C speed mode (2’b00 = Standard, 2’b01 = Fast, other are reserved)

TX_IE – Set this bit high to enable interrupt generation on transmit completion and STOP issued, or on any error.

ACK_POL – Set the behavior of ACK during the last byte of a master read transaction. This bit should be “0” for
ACK and “1” for NACK. If repeat START (read followed by read/write) is not used, this bit should be set to “1”
(NACK) for I2C compliance.

RX_IE – Set this bit high to enable interrupt generation on receive completion and STOP issued, or any error.

Command Status Register (Read – only)
Offset: 0x6 – I2C Master #0 and 0xC – I2C Master #1

I2C_BUSY – This read only status bit indicates that the bridge is busy performing a data transaction and a STOP
has not been issued. This bit reflects the state of the I2C bus and cannot be cleared by the user.

N_ANS – This read only status bit goes high when I2C Slave does not response to address+R/W

N_ACK – This read only status bit goes high when I2C Slave does not acknowledge

TX_ERR – This read only status bit indicates that an error has occurred during the I2C write operation.

RX_ERR – This read only status bit indicates that an error has occurred during the I2C read operation.

ABORT_ACK – This read only status bit indicates that the ABORT command has been completed. The user should
clear the proper FIFO and status bits afterwards.

TS – This read only status bit changes to one to indicate that the TX FIFO has completed transmitting its data or
the RX FIFO has completed receiving its data.

Note that all status bits, except I2C_BUSY, are cleared by writing a “one” to the INTR_CLR bit in the Configuration
Register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Read:
Write:

1

BPS[1]

1

BPS[0]

1

TX_IE

1

ACK_POL

1

RX_IE

1

Reserved

1

Reserved

1

Reserved

Reset: 0 0 0 0 0 0 0 0

1. Unimplemented

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Read: I2C_BUSY NO_ANS NO_ACK TX_ERR RX_ERR ABORT_ACK TS Reserved

Reset: 0 0 0 0 0 0 0 0

7

SPI to I2C Bridge

Bridge Transmit Operations
The following diagram illustrates the basic transmit operation of the SPI to I2C bridge. Note that “S” is notation for
START and “P” is notation for “STOP”.

Figure 2. Transmit Operation of an active I2C transaction

1. Note that the START bit will clear itself after the I2C master has acquired the I2C and issued a START
command. The I2C_BUSY bit will go high before the START bit is cleared to indicate an active I2C trans-
action. The I2C_BUSY bit will clear itself after the entire I2C transaction is completed and the bus is idled.

2. The TX_EMPTY bit only monitors the TX_FIFO status. It is asserted after the last byte from the FIFO has
been passed to the I2C master controller, but the data has not yet been send by the controller.

3. The TS signal is asserted after the last byte of transmit data have been sent, but STOP condition may not
have completed yet.

4. I2C_BUSY is cleared after STOP condition has completed and bus is idled.

5. The interrupt is asserted if the transmit interrupt enable bit (TX_IE) is set.If the slave device did not assert
ACK during the address phase, then NO_ANS, TX_ERR and INT_N (if enabled) will all be asserted. If
the slave device did not assert ACK during the data phase, then NO_ACK,

TX_ERR, and INT_N (if enabled) will all be asserted. The TX_FIFO will need to be flushed before the next transac-
tion.

ARB S ADDRESS ACK First Byte ACK …………… Last Byte ACK P

START

I2C_BUSY

TS

TX_EMPTY

I2C_INT_N

8

SPI to I2C Bridge

Bridge Receive Operations
The following diagram illustrates the basic receive operation of the SPI to I2C bridge:

Figure 3. Receive operation of an active I2C transmission

By writing a “one” to the START bit of the Configuration Register, the operation is started:

1. Note that the START bit will clear itself after the I2C master has acquired the bus and issued START com-
mand. The I2C_BUSY bit will go high before the START bit is cleared to indicate an active I2C transac-
tion. The I2C_BUSY bit will clear itself after the entire I2C transaction is completed and the bus is idled.

2. The RX_EMPTY bit will go low after successfully receiving the first byte.

3. The TS signal is asserted after the last byte of receive data have been latched, but STOP condition may
not have completed yet.

4. I2C_BUSY is cleared after STOP condition has completed and bus is idled.

5. The interrupt is asserted if the receiver interrupt enable bit (RX_IE) is set. If the slave device did not
assert ACK during the address phase, then NO_ANS, RX_ERR and I2C_ INT_N (if enabled) will all be
asserted. The RX_FIFO should be flushed before the next transaction.

ARB S ADDRESS ACK First Byte ACK …………… Last Byte NACK P

START

I2C_BUSY

TS

RX_EMPTY

I2C_INT_N

9

SPI to I2C Bridge

Repeated Start Transactions
To overcome the limited addresses provide by the I2C bus, some I2C slave uses “repeated Start” transactions to
allow indirect access of internal registers. The I2C master controller supports the generation of “Repeat Start”
transactions. Figure 4 below illustrates a typical write-write I2C transaction:

Note that “SR” is the I2C notation for a repeated Start.

Figure 4. Write followed by a repeated start and read I2C Transaction

By writing a “one” to the START bit of the Configuration Register, the operation is started:

1. The first parts of sequence are identical to the set up for a normal read or write transaction shown earlier.

2. To perform a repeated Start transaction, a second START command needs to be issued after the START
bit has cleared. This is done by polling the START bit until it has cleared. Next, the user needs to issue
the second I2C command (read or write). Finally, the Configuration Register is written with “1” for the
START bit. Note that the second START command needs to be issued before the TS is asserted from the
first transaction.

3. Do not change the slave address for the repeated Start transaction; otherwise, a STOP is generated and
another full transaction is executed.

4. I2C_BUSY is cleared after STOP condition has completed and bus is idled.

5. Note that chained repeated Start transactions are possible by continuing monitoring the START bit, mod-
ifying the Mode register, and then issuing another START before STOP is issued. 

Note that the interrupt is asserted at the end of the transaction after STOP.

Clocking Requirements
To generate accurate I2C timing, an external reference clock is required. The proper SCL timing is based on the
CLK input. CLK frequency should be easily divided down to 400 kHz. Example: 19.2 MHz.

ARB S ADDRESS ACK WR Byte ACK SR
Same

ADDRESS
ACK Read Byte NACK P

START

I2C_BUSY

TS

TX_EMPTY

RX_EMPTY

I2C_INT_N

10

SPI to I2C Bridge

Reset and Initialization
This example assumes that CLK is 19.2 MHz and the desired SCL is approximately 400 kHz for Fast Mode. The
desired master last byte acknowledge is NACK and interrupts are to be use. Appropriate configuration settings are:

• BPS[1:0] = “01” (to set Fast Mode – 400 kHz)

• ACK_POL =”1” (to set last byte acknowledge as NACK)

• TX_IE=”1” (to set transmit completion interrupt)

• RX_IE = “1” (to set receive completion interrupt)

Example Transactions
The SPI sequence for the initializing the I2C controller is illustrated in Figure 5 and Figure 6.

Figure 5. SPI Host to set I2C master#0 Configuration Register for Initialization

Figure 6. SPI Host to set I2C master#0 Mode Register for Initialization

SCK

SS_B

MOSI

MISO
SPI Command

 0000

SPI Command

 0100

Register Addr

 00001100

Configuration Register

 0 0 0 0 0 1 0 0

 R
E

S
E

T
R

X
F

IF
O

_C
LR

T
X

F
IF

O
_C

LR

 A
B

O
R

T

R
es

er
ve

d

R
es

er
ve

d

IN
T

_C
LR

S

T
A

R
T

Configuration Register

Send MSB of each byte first

iCE40 captures MOSI data on SCK

rising edge

SCK

SS_B

MOSI

MISO
SPI Command

 0000

SPI Command

 0101

Register Addr

 01010000

Configuration Register

 0 0 0 0 0 1 0 1

B
S

P
1

B
S

P
0

T
X

_I
E

A
C

K
_P

O
L

R
X

_I
E

D
IV

10

D
IV

9

D
IV

8

Configuration Register

Send MSB of each byte first

iCE40 captures MOSI data on SCK

rising edge

11

SPI to I2C Bridge

The SPI sequence for the issuing a write command to the I2C controller is illustrated in Figure 7 and Figure 8.

Figure 7. SPI Host to write 2 bytes of data into I2C Master#0 TX FIFO

Figure 8. SPI Host to check or set START Bit in the Configuration Register

The SPI sequence for the checking the “i2c_busy” bit and clearing interrupt flags are illustrated in Figure 9 and
Figure 10.

W=0

SCK

SS_B

MOSI

MISO

 0 0 1 1 x 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

 0011

SPI Command

 x000 I2C

Master#0

 00000010

Number of bytes

 00001010

Slave Addr + W
 Byte1 Byte2

Send MSB of each byte first

iCE40 captures MOSI data on SCK rising edge

SPI Command/I2C

Master#

Number of bytes Slave Address Data bytes

SCK

SS_B

MOSI

MISO

 0000

SPI Command

 0100

Int Reg Addr
 Configuration Register

SPI Command/Int Reg

Configuration Register

iCE40 captures MOSI data on SCK

rising edge

 0 0 0 0 0 1 0 0

S
T

A
R

T

 0 0 0 0 0 0 0

12

SPI to I2C Bridge

Figure 9. SPI Host to check I2C Master #0 I2C_BUSY bit from Command Status Register

Figure 10. SPI Host to set INT_CLR to clear interrupt flags in Command Status Register

SCK

SS_B

MOSI

MISO

 0010

SPI Command
 xxxx Configuration Register

SPI Command/Int Reg

Configuration Register

iCE40 captures MOSI data on SCK

rising edge

 0 0 1 0 x x x x

T
IM

E
_O

U
T

 T
S

A
B

O
R

T
_A

C
K

 R

X
_E

R
R

 T

X
_E

R
R

 N

O
_A

C
K

 N

O
_A

N
S

 I2

C
_B

U
S

Y

SCK

SS_B

MOSI

MISO

 0000

SPI Command

 0100

Int Reg Addr
 Configuration Register

SPI Command/Int Reg

Configuration Register

iCE40 captures MOSI data on SCK

rising edge

 0 0 0 0 0 1 0 0

IN
T

_C
LR

 0 0 0 0 0 0 0

13

SPI to I2C Bridge

Simulation Waveforms
Figure 11. Simulation Waveforms

Implementation
This design is implemented in mixed VHDL and Verilog language. When using this design in a different device,
density, speed or grade, performance and utilization may vary.

Note: In the RTL, data_ms and data_bus signals have been taken as two separate input and output buses instead
of inout bus.

Table 3. Performance and Resource Utilization

Device Family Language Synthesis Tool
Utilization

(LUTs) fMAX (MHz) I/Os
Architecture
Resources

iCE401 Verilog
LSE 966 >50 11 (151/160) PLBs

Syn Pro 960 >50 11 (153/160) PLBs

1. Performance and utilization characteristics are generated using iCE40LP1K-CM121 with iCEcube2 2014.12 design software.

14

SPI to I2C Bridge

References
• DS1040, iCE40 LP/HX Family Data Sheet

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

April 2013 01.0

Date Version Change Summary

February 2015 1.1 Updated Implementation section. Updated Table 3, Performance and
Resource Utilization.

— Added LSE support.

— Implementation is carried out for iCEcube2014.12.

Updated References section.

Updated Technical Support Assistance information.

Initial release.

www.latticesemi.com/dynamic/view_document.cfm?document_id=49312
mailto: techsupport@latticesemi.com
http://www.latticesemi.com

	SPI to I2C Bridge
	Introduction
	Features
	System Block Diagram
	Signal Description
	Functional Overview
	SPI Interface
	Registers
	I2C Master #0 and #1

	Register Description
	SPI Command/Internal Register (SPI Host Write)
	FIFO Status Register (Read Only)
	Revision ID Register (Read only at initialization)
	Configuration Register (Read/Write)
	Mode Register (Read/Write)
	Command Status Register (Read – only)

	Bridge Transmit Operations
	Bridge Receive Operations
	Repeated Start Transactions

	Clocking Requirements
	Reset and Initialization
	Example Transactions
	Simulation Waveforms
	Implementation
	References
	Technical Support Assistance
	Revision History

