
www.latticesemi.com 1 rd1161_01.0

April 2013 Reference Design RD1161

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
Image scaling is the process of resizing a digital image. Scaling is a non-trivial process that involves a trade-off
between efficiency, smoothness and sharpness. As the size of the image is increased, the pixels which comprise
the image become increasingly visible, making the image appear “soft”. Conversely, reducing an image will tend to
enhance its smoothness and sharpness.

This design document illustrates the implementation of a video image downscaler. The downscaling algorithm used
is the Lanczos2 algorithm.

The design is implemented in VHDL. The Lattice iCEcube2™ Place and Route tool integrated with the Synopsys
Synplify Pro® synthesis tool is used for the implementation of the design. The design can be targeted to other
iCE40™ FPGA product family devices.

Figure 1 shows the System Block Diagram for the Image Scaler.

Features
• Downscales video images from XGA (1024x768) to WVGA (800x480)

• Supports 64MHz input pixel clock and 32MHz output pixel clock

• Supports RGB565 input and output video data format

• No external frame buffers required

• Built-in WVGA timing and data controller

• Internal image line buffer using iCE40 RAM block

System Block Diagram
Figure 1. System Block Diagram

WVGA

LCD

Display

P
ro

ce
ss

or

In
te

rf
ac

e

Li

ne
 S

ca
la

r

Im
ag

e
Li

ne

B
uf

fe
r

V
er

tic
al

S

ca
le

r

W
V

G
A

LC

D

C
on

tr
ol

le
r

Host

Processor

i_clk_64mhz

i_rst_n

i_proc_xga_den

i_proc_xga_h_sync

i_proc_xga_v_sync

i_proc_xga_rgb

o_lcd_dclk

o_lcd_wga_h_sync

o_lcd_wga_v_sync

o_lcd_wga_de

o_lcd_wga_red

o_lcd_wga_green

o_lcd_wga_blue

XGA to WVGA Lanczos
Image Scaler

2

XGA to WVGA Lanczos Image Scaler

Functional Block Diagram
Figure 2. Functional Block Diagram

Processor Interface Module
A parallel Processor Interface is implemented between the processor and the Image Scaler. This module bridges
the host device and the Image Scaler module. The host device provides the XGA video/image data to the Proces-
sor Interface in three data channels namely Red, Green and Blue (RGB). This interface also passes on the three
data and timing control signals such as Data Enable (de), Horizontal Sync (h_sync), and Vertical Sync (v_sync)
signals to the scaler. The h_sync signal determines the start and the end of a horizontal pixel line and the v_sync
signal determines the end of a frame. The Processor Interface extracts incoming active pixels from the RGB Data
channels and transfers them to the Image Scaler.

iCE CMD as XGA to WVGA Image Scaler

Processor
Interface

Vertical
Scaler

WVGA
LCD

Controller

Image Line
Buffer

Horizontal

i_clk_64mhz

i_rst_n

i_proc_xga_den

i_proc_xga_h_sync

i_proc_xga_v_sync

i_proc_xga_rgb

Scaler

o_lcd_dclk

o_lcd_wga_h_sync

o_lcd_wga_v_sync

o_lcd_wga_de

o_lcd_wga_red

o_lcd_wga_green

o_lcd_wga_blue

3

XGA to WVGA Lanczos Image Scaler

Image Scaler
In this design the Image Scaler is implemented in two modules – the Horizontal Scaler and the Vertical Scaler.

Horizontal Scaler Module
The Horizontal Scaler downscales the incoming horizontal line of 1024 active pixels to 800 active pixels using the
Lanczos2 scaling algorithm as illustrated below. The downscaled 800-pixel lines are stored in the line buffer first
and then shifted into Vertical Scaler for downscaling from 768-line to 480-line.

Figure 3 below shows the pixel position and the computed Lanczos2 coefficients for the filter or scale

Figure 3. Lanczos Coefficients for the Filter

The Lanczos2 mathematical formula is as shown below:

Lanczos2 = {sin(x*pi)*sin(x*pi/2)}/(x*pi*x*pi/2)

0 24/32

0

0 1 2 3 4 6 5

7/32 18/32

1

13/32 12/32

2

21/32 29/32

3

28/32 22/32

4

4/32

3/32

Input Pixel

4

XGA to WVGA Lanczos Image Scaler

Vertical Scaler Module
The Vertical Scaler takes in pixels from two different lines shifted out of the line buffer and vertically scale them to
the targeted 480 lines. The algorithm involves averaging the two pixels from the two lines.

Below is the code snippet of the vertical scaling algorithm.

ScaleRectAvg(PIXEL *Target, PIXEL *Source, int SrcWidth, int SrcHeight, int Tgt-
Width, int TgtHeight, float threshold)
{

iint NumPixels = TgtHeight;
int IntPart = (SrcHeight / TgtHeight) * SrcWidth;
int FractPart = SrcHeight % TgtHeight;
int Mid = TgtHeight * threshold;
int E = 0;
int skip;
PIXEL *ScanLine, *ScanLineAhead;
PIXEL *PrevSource = NULL;
PIXEL *PrevSourceAhead = NULL;
skip = (TgtHeight < SrcHeight) ? 0 : TgtHeight / (2*SrcHeight) + 1;
NumPixels -= skip;
ScanLine = (PIXEL *)malloc(TgtWidth*sizeof(PIXEL));
ScanLineAhead = (PIXEL *)malloc(TgtWidth*sizeof(PIXEL));
while (NumPixels-- > 0) {
if (Source != PrevSource) {
if (Source == PrevSourceAhead) {
PIXEL *tmp = ScanLine;
ScanLine = ScanLineAhead;
ScanLineAhead = tmp;
} else {
ScaleLineAvg(ScanLine, Source, SrcWidth, TgtWidth, threshold);
}
PrevSource = Source;
}
if (E >= Mid && PrevSourceAhead != Source+SrcWidth) {
int x;
ScaleLineAvg(ScanLineAhead, Source+SrcWidth, SrcWidth, TgtWidth, threshold);
for (x = 0; x < TgtWidth; x++)
ScanLine[x] = average(ScanLine[x], ScanLineAhead[x]);
PrevSourceAhead = Source + SrcWidth;
}
memcpy(Target, ScanLine, TgtWidth*sizeof(PIXEL));
Target += TgtWidth;
Source += IntPart;
E += FractPart;
if (E >= TgtHeight) {
E -= TgtHeight;
Source += SrcWidth;
}
}
if (skip > 0 && Source != PrevSource)
ScaleLineAvg(ScanLine, Source, SrcWidth, TgtWidth, threshold);
while (skip-- > 0) {
memcpy(Target, ScanLine, TgtWidth*sizeof(PIXEL));
Target += TgtWidth;

5

XGA to WVGA Lanczos Image Scaler

}
free(ScanLine);
free(ScanLineAhead);

}

LCD Controller
The LCD Controller module generates the necessary timing and data control signals to drive a WVGA LCD display.
During operation, the Processor interface module provides a synchronizing signal to the LCD Controller module to
lock the start of frame. Essentially, this module uses the required back porch and front porch timing of WVGA frame
to generate the h_sync, v_sync and de signals to the WVGA LCD display.

The timing and data control signals and data with respect to the pixel clock are shown in Figure 4.

Signal Description
Table 1. Signal Description

Initialization Conditions
An active low reset signal assertion is required to initialize the scalers and LCD controller state machines to a
known operating state. No register configuration is necessary.

Signal Width Type Description

i_clk_64mhz 1 Input XGA clock signal from host device

i_rst_n 1 Input Active low asynchronous reset signal. This signal is
used to initialize the internal state machine to a known
state.

i_proc_xga_h_sync 1 Input XGA Horizontal sync signal from host device

i_proc_xga_v_sync 1 Input XGA Vertical sync signal from host device

i_proc_xga_de 1 Input XGA data enable signal from host device

i_proc_xga_rgb 1 Input XGA RGB active pixel data from host device

o_lcd_dclk 1 Output WVGA LCD clock. This signal is generated by WVGA
LCD controller

o_lcd_wvga_h_sync 1 Output WVGA horizontal timing control signal generated by
WVGA LCD controller

o_lcd_wvga_v_sync 1 Output WVGA vertical timing control signal generated by
WVGA LCD controller

o_lcd_wvga_de 1 Output WVGA pixel valid signal

o_lcd_wvga_red 5 Output WVGA red pixel data

o_lcd_wvga_green 6 Output WVGA green pixel data

o_lcd_wvga_blue 5 Output WVGA blue pixel data

6

XGA to WVGA Lanczos Image Scaler

Timing Diagram
Figure 4. Timing Diagram

VSync

HSync

Data_enable

Data(RGB)

HSync

Data_enable

Data(RGB)

Dot clock

TFT Panel’s Vertical Timing

TFT Panel’s Horizontal Timing

7

XGA to WVGA Lanczos Image Scaler

Simulation Waveforms
Figure 5. Simulation Waveforms

8

XGA to WVGA Lanczos Image Scaler

Operation Sequence
1. Test bench instantiates a wrapper which will in turn instantiate the design top level.

2. It will generate clock and reset signals to the design.

3. It has counters for counting pixels, lines, and pulse width period of HSync and VSync.

4. It generates XGA control signals like HSync, VSync and DE.

5. It feeds XGA data to the image scaler design during the active region of the XGA image.

6. The output red, green and blue data are fed to a .tiff image writer.

7. A module tiff.v will take the WVGA pixel data in and add a header to make it a .tiff image.

8. Current simulation directory provides the resulting WVGA image. This can be viewed by using any image
viewing software.

Implementation
This design is implemented in VHDL. When using this design in a different device, density, speed or grade, perfor-
mance and utilization may vary.

Table 2. Performance and Resource Utilization

References
• iCE40 Family Handbook

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History

April 2013 01.0

Family Language Utilization (LUTs) fMAX (MHz) I/Os

iCE401 VHDL 3184 >50 40

1. Performance and utilization characteristics are generated using iCE40HX8K-CM225 with iCEcube2 design software.

Date Version Change Summary

Initial release.

www.latticesemi.com/dynamic/view_document.cfm?document_id=45521
http://www.latticesemi.com/

	XGA to WVGA Lanczos Image Scaler
	Introduction
	Features
	System Block Diagram
	Functional Block Diagram
	Processor Interface Module

	Image Scaler
	Horizontal Scaler Module
	Vertical Scaler Module
	LCD Controller

	Signal Description
	Initialization Conditions
	Timing Diagram
	Simulation Waveforms
	Operation Sequence
	Implementation
	References
	Technical Support Assistance
	Revision History

