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Introduction 
Image scaling is the process of resizing a digital image. Scaling is a non-trivial process that involves a trade-off 
between efficiency, smoothness and sharpness. As the size of the image is increased, the pixels which comprise 
the image become increasingly visible, making the image appear “soft”. Conversely, reducing an image will tend to 
enhance its smoothness and sharpness. 

This design document illustrates the implementation of a video image downscaler. The downscaling algorithm used 
is the Lanczos2 algorithm. 

The design is implemented in VHDL. The Lattice iCEcube2™ Place and Route tool integrated with the Synopsys 
Synplify Pro® synthesis tool is used for the implementation of the design. The design can be targeted to other 
iCE40™ FPGA product family devices.

Figure 1 shows the System Block Diagram for the Image Scaler.

Features 
• Downscales video images from XGA (1024x768) to WVGA (800x480) 

• Supports 64MHz input pixel clock and 32MHz output pixel clock 

• Supports RGB565 input and output video data format

• No external frame buffers required 

• Built-in WVGA timing and data controller 

• Internal image line buffer using iCE40 RAM block

System Block Diagram
Figure 1. System Block Diagram
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Functional Block Diagram
Figure 2. Functional Block Diagram

Processor Interface Module
A parallel Processor Interface is implemented between the processor and the Image Scaler. This module bridges 
the host device and the Image Scaler module. The host device provides the XGA video/image data to the Proces-
sor Interface in three data channels namely Red, Green and Blue (RGB). This interface also passes on the three 
data and timing control signals such as Data Enable (de), Horizontal Sync (h_sync), and Vertical Sync (v_sync) 
signals to the scaler. The h_sync signal determines the start and the end of a horizontal pixel line and the v_sync 
signal determines the end of a frame. The Processor Interface extracts incoming active pixels from the RGB Data 
channels and transfers them to the Image Scaler.
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Image Scaler 
In this design the Image Scaler is implemented in two modules – the Horizontal Scaler and the Vertical Scaler. 

Horizontal Scaler Module 
The Horizontal Scaler downscales the incoming horizontal line of 1024 active pixels to 800 active pixels using the 
Lanczos2 scaling algorithm as illustrated below. The downscaled 800-pixel lines are stored in the line buffer first 
and then shifted into Vertical Scaler for downscaling from 768-line to 480-line. 

Figure 3 below shows the pixel position and the computed Lanczos2 coefficients for the filter or scale

Figure 3. Lanczos Coefficients for the Filter

The Lanczos2 mathematical formula is as shown below:

Lanczos2 = {sin(x*pi)*sin(x*pi/2)}/(x*pi*x*pi/2) 
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Vertical Scaler Module 
The Vertical Scaler takes in pixels from two different lines shifted out of the line buffer and vertically scale them to 
the targeted 480 lines. The algorithm involves averaging the two pixels from the two lines. 

Below is the code snippet of the vertical scaling algorithm.

ScaleRectAvg(PIXEL *Target, PIXEL *Source, int SrcWidth, int SrcHeight, int Tgt-
Width, int TgtHeight, float threshold)
{

iint NumPixels = TgtHeight; 
int IntPart = (SrcHeight / TgtHeight) * SrcWidth; 
int FractPart = SrcHeight % TgtHeight; 
int Mid = TgtHeight * threshold; 
int E = 0; 
int skip; 
PIXEL *ScanLine, *ScanLineAhead; 
PIXEL *PrevSource = NULL; 
PIXEL *PrevSourceAhead = NULL; 
skip = (TgtHeight < SrcHeight) ? 0 : TgtHeight / (2*SrcHeight) + 1; 
NumPixels -= skip;
ScanLine = (PIXEL *)malloc(TgtWidth*sizeof(PIXEL));
ScanLineAhead = (PIXEL *)malloc(TgtWidth*sizeof(PIXEL));
while (NumPixels-- > 0) {
if (Source != PrevSource) {
if (Source == PrevSourceAhead) {
PIXEL *tmp = ScanLine;
ScanLine = ScanLineAhead;
ScanLineAhead = tmp;
} else {
ScaleLineAvg(ScanLine, Source, SrcWidth, TgtWidth, threshold);
}
PrevSource = Source;
}
if (E >= Mid && PrevSourceAhead != Source+SrcWidth) {
int x;
ScaleLineAvg(ScanLineAhead, Source+SrcWidth, SrcWidth, TgtWidth, threshold);
for (x = 0; x < TgtWidth; x++)
ScanLine[x] = average(ScanLine[x], ScanLineAhead[x]);
PrevSourceAhead = Source + SrcWidth;
}
memcpy(Target, ScanLine, TgtWidth*sizeof(PIXEL));
Target += TgtWidth;
Source += IntPart;
E += FractPart;
if (E >= TgtHeight) {
E -= TgtHeight;
Source += SrcWidth;
}
}
if (skip > 0 && Source != PrevSource)
ScaleLineAvg(ScanLine, Source, SrcWidth, TgtWidth, threshold);
while (skip-- > 0) {
memcpy(Target, ScanLine, TgtWidth*sizeof(PIXEL));
Target += TgtWidth;
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}
free(ScanLine);
free(ScanLineAhead);

}

LCD Controller
The LCD Controller module generates the necessary timing and data control signals to drive a WVGA LCD display. 
During operation, the Processor interface module provides a synchronizing signal to the LCD Controller module to 
lock the start of frame. Essentially, this module uses the required back porch and front porch timing of WVGA frame 
to generate the h_sync, v_sync and de signals to the WVGA LCD display.

The timing and data control signals and data with respect to the pixel clock are shown in Figure 4.

Signal Description
Table 1. Signal Description

Initialization Conditions
An active low reset signal assertion is required to initialize the scalers and LCD controller state machines to a 
known operating state. No register configuration is necessary.

Signal Width Type Description

i_clk_64mhz 1 Input XGA clock signal from host device

i_rst_n 1 Input Active low asynchronous reset signal. This signal is 
used to initialize the internal state machine to a known 
state.

i_proc_xga_h_sync 1 Input XGA Horizontal sync signal from host device

i_proc_xga_v_sync 1 Input XGA Vertical sync signal from host device

i_proc_xga_de 1 Input XGA data enable signal from host device

i_proc_xga_rgb 1 Input XGA RGB active pixel data from host device 

o_lcd_dclk 1 Output WVGA LCD clock. This signal is generated by WVGA 
LCD controller

o_lcd_wvga_h_sync 1 Output WVGA horizontal timing control signal generated by 
WVGA LCD controller

o_lcd_wvga_v_sync 1 Output WVGA vertical timing control signal generated by 
WVGA LCD controller

o_lcd_wvga_de 1 Output WVGA pixel valid signal

o_lcd_wvga_red 5 Output WVGA red pixel data

o_lcd_wvga_green 6 Output WVGA green pixel data

o_lcd_wvga_blue 5 Output WVGA blue pixel data
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Timing Diagram
Figure 4. Timing Diagram
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Simulation Waveforms
Figure 5. Simulation Waveforms
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Operation Sequence 
1. Test bench instantiates a wrapper which will in turn instantiate the design top level. 

2. It will generate clock and reset signals to the design.

3. It has counters for counting pixels, lines, and pulse width period of HSync and VSync. 

4. It generates XGA control signals like HSync, VSync and DE. 

5. It feeds XGA data to the image scaler design during the active region of the XGA image. 

6. The output red, green and blue data are fed to a .tiff image writer.

7. A module tiff.v will take the WVGA pixel data in and add a header to make it a .tiff image. 

8. Current simulation directory provides the resulting WVGA image. This can be viewed by using any image 
viewing software.

Implementation
This design is implemented in VHDL. When using this design in a different device, density, speed or grade, perfor-
mance and utilization may vary.

Table 2. Performance and Resource Utilization

References 
• iCE40 Family Handbook
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