s LATTICE XGA to WVGA Nearest Neighbor
Image Scaler

April 2013 Reference Designh RD1160

Introduction

Image scaling is the process of resizing a digital image. Scaling is a non-trivial process that involves a trade-off
between efficiency, smoothness and sharpness. As the size of the image is increased, the pixels which comprise
the image become increasingly visible, making the image appear “soft”. Conversely, reducing an image will tend to
enhance its smoothness and sharpness.

This design document illustrates the implementation of a video image downscaler. The downscaling algorithm used
is the nearest neighbor algorithm.

In computing the value of the downscaled or destination pixel, the nearest neighbor algorithm applied in this design
either adopts the value of the nearest point or the average of two points in the source pixels grid for its value.

The design is implemented in VHDL. The Lattice iCEcube2™ Place and Route tool integrated with the Synopsys
Synplify Pro® synthesis tool is used for the implementation of the design. The design can be targeted to other
iCE40™ FPGA product family devices.

Figure 1 shows the System Block Diagram for the Image Scaler.

Features

* Nearest neighbor XGA (1024x768) to WVGA (800x480) downscaling

* Uses iCE40 RAM Blocks as image line buffers

* No external frame buffers required

* Supports color component average input instead of RGB565 pixel average input

e Supports RGB565 output

IP-XACT version 1.2 compliant

System Block Diagram
Figure 1. System Block Diagram

- mm mm mm mm mm mm mm Em mm = Em = —
) /7 N (\
l y_ O_lcd_dclk o
i_clk_64mhz . 1 o_lcd_wga_h_sync -
> | >
i_rst_n : = . a 1 o_lcd_wga_v_sync N
> o [0} I >
Host i_proc_xga_den ! 8 [% < % o (_-,) o |y 0_lcd_wga_de | WVGA
>l (&) 1 = = |K >
: > O > O LCD
Processor | 1-Proc_xga_h_sync J § & n g 2 5 § < £ | ©-'od_wga red _
i_proc_xga_v_sync 1 o ..GC_’. QC) I 8 S D (O] g L > Display
>l = 5 S 0} = O |l o_lcd_wga_green
i_proc_xga_rgb 1 - o =
_proc_xga_ i >
]
>| ' o_lcd_wga_blue
\ L >
__ N e e e - - -7 -

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 rd1160_01.0

= LATTICE

XGA to WVGA Nearest Neighbor Image Scaler

Functional Block Diagram

Figure 2. Functional Block Diagram

o

’ iCE CMD as XGA2WVGA Image Scaler \

[!

(R v I
I ! o_led_dclk _
i clk_64mhz =: WVGA ; o_lcd_wga_h_sync .
i_rst_n Processor Rectangular olcd wga v_sync
Cprocrgaden 1 | Interface Scaler LCD I otcd wga de S
i_proc_xga_h_sync =| Controller I o_lcd_wga_red -
i_proc_xga_v_sync j i o_lcd_wga_green >
i_proc_xga_rgb VI = >

. o_lcd_wga_blue

U l |

| |

| |

| |

| Line Image Line |

| Scaler Buffer |

| |

| 1

\ /

T .

Processor Interface Module

A parallel Processor Interface is implemented between the processor and the Image Scaler. This module bridges
the host device and the Image Scaler module. The host device provides the XGA video/image data to the Proces-
sor Interface. This interface also passes on the three data and timing control signals such as Data Enable (de),
Horizontal Sync (h_sync), and Vertical Sync (v_sync) signals to the scaler. The h_sync signal determines the start
and the end of a horizontal pixel line and the v_sync signal determines the end of a frame. The Processor Interface
extracts incoming active pixels from the RGB data channels and transfers them to the Image Scaler.

Line Scaler Module

The valid XGA image data received by the processor interface is unconditionally passed through the Line Scaler
module. The output of the Line Scaler module is subsequently loaded into the image buffers. The function of the
Line Scaler is to downscale the pixel line horizontally to the targeted WVGA resolution before storing it in the Image
Line Buffer.

The algorithm of the Line Scaler is explained below:

The general equation of a line is y=aex+b. If (x0,y0) is fixed at some arbitrary location and such that xi +1=xi+1, in
other words, the algorithm dictates that it steps one pixel horizontally at each computation iteration then yi+1=yi+a.
The value of ‘a’ typically has a fractional part, so another symbol is introduced to keep the accumulation of these
fractional parts as illustrated below:

yi +l=yi+int(a)

Di +1=Di+frac(a)

| 1 |
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

The use of floating point arithmetic can be avoided by using a scaled integer for frac(a). For example, if a= Dy/ Dx,
where Dx and Dy are integers (and assuming Dx>Dy), you can replace D by E=DxeD and state Ei +1=Ei+Dy. The
"overflow rule" must be scaled accordingly.

These reformulations of polynomials are widely used to draw lines, circles and ellipses. Here, the same algorithm is
used in resampling (scaling an image down). The algorithm sets each destination pixel to either adopt the value of
the closest pixel or the unweighted average of the two neighboring pixels. The criterion to either select the repli-
cated or the average pixel value is based on the position of the destination pixel relative to the grid of the source
pixels. If the destination pixel is on top of a source pixel, or close to one, that source pixel is replicated. If, on the
other hand, the destination pixel is closer to the midpoint between two source pixels, those two source pixels are
averaged.

Below is the code snippet of the line scaling algorithm. There are two criteria for the accumulated error: when it
exceeds the midpoint, it must start calculating the average between two neighboring pixels; when it exceeds unity,
the source position must be adjusted.

ScalelineAvqg (PIXEL *Target, PIXEL *Source, int SrcWidth, int TgtWidth, float thresh-
old)
{

int NumPixels = TgtWidth;

int IntPart = SrcWidth / TgtWidth;

int FractPart = SrcWidth % TgtWidth;

int Mid = TgtWidth * threshold;

int E = 0;

int skip;

PIXEL p;

skip = (TgtWidth < SrcWidth) ? 0 : TgtWidth / (2*SrcWidth) + 1;
NumPixels -= skip;

//go through the entire line
while (NumPixels—-- > 0) {

p = *Source;
if (E >= Mid)
p = average(p, *(Source+l));

*Target++ = p;
Source += IntPart;
E += FractPart;
if (E >= Tgtwidth) {
E -= TgtWidth;
Source++;

}
}
while (skip-- > 0)
*Target++ = *Source;

}

The flow chart of the line scaling algorithm is shown in the Figure 3.

am
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

Figure 3. Line Scaling Flow Chart

NumPixels=TgtWidth
IntPart=SrcWidth/TgtWidth
FractPart=SrcWidth % TgtWidth
Mid=TgtWidth * threshold

Is
NumPixels - 0

NO

v

P =* Source

P = average (p, *(Source+1))
la
1
* Target++=p
Source += IntPart n
E+=FractPart

YES

E- = TgtWidth
Source++;

L

END

YES

P = average (p, *(Source+1))
T

am
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

Image Line Buffer Module

The image buffers are used to temporarily store the downscaled pixel line data for the rectangular scaling later.
When the three line buffers are completely filled with three downscaled lines, the rectangular scaler starts access-
ing the data from these line buffers for rectangular scaling. At any time, at least two lines are available in these buf-
fers. Figure 4 and Figure 5 illustrate the read and write state diagram of the image line buffers.

Figure 4. WRITE to Image Line Buffers FSM

i_ram_we = ‘1" and

Next_valid_write_line_i = ‘1’

|_ram_we =1’

|_ram_we = ‘0’

next_valid_write_line_i = ‘0’
(or)i_ram_we = ‘0’
(or)i_vsync_wvga="1

|_vsync_xga = ‘0’

next_valid_write_line_i = ‘0’
(or)i_ram_we = ‘0’
(or)i_vsync_wvga="1

|_vsync_xga = ‘0’

I_vsyne_xga = ‘0' WRITE_1_state

WRITE_4_state

Next_valid_write_line_i =1
d
i_ram_we = ‘1’

|_vsync_xga = ‘0’

Next_valid_write_line_i = ‘1
and
i_ram_we =1’

WRITE_2_state

WRITE_3_state

next_valid_write_line_i = ‘0’

(or)i_ram_we = ‘0’ Next_valid_write_line_i = ‘1 next_valid_write_line_i = ‘0’
(or)i_vsync_wvga=‘1 and (or)i_ram_we = ‘0’
i_ram_we =1’ (or)i_vsync_wvga="1

= LATTICE

XGA to WVGA Nearest Neighbor Image Scaler

Figure 5. READ to Image Line Buffers FSM

Next_valid_read_line_i = ‘1’
and
I_ram_re =1’

IDLE_state

next_valid_write_line_i = ‘0’
(or)i_ram_re =0’
(or)i_vsync_wvga="‘1

next_valid_write_line_i = ‘0’
(or)i_ram_re =0’
(or)i_vsync_wvga="1

READ_1_state .

|_vsync\wvga = ‘0’

|_vsync_wvga = ‘0’

READ_5_ state

|I_vsync_wvga = ‘0

|_vsync_wvga = ‘0’

Next_valid_read_line_i = ‘1

and
I_ram_re =1

*

Next_valid_read_line_i = ‘1’
and
I_ram_re =1

I_vsync_wvga = ‘0’

next_valid_write_line_i = ‘0’
(or)i_ram_re =0’
(or)i_vsync_wvga=1

. READ_4_state

Next_valid_read_line_i = ‘1
and
I_ram_re =1

next_valid_write_line_i = ‘0’
(or)i_ram_e =0’
(or)i_vsync_wvga="1

READ_2_ state ‘

Next_valid_read_line_i = ‘1’
and
I_ram_re =1

READ_3_state

next_valid_write_line_i = ‘0’
(or)i_ram_re =‘0’
(or) i_vsync_wvga="‘1

| 1 |
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

Rectangular Scaler Module

The Rectangular Scaler is a combination of horizontal and vertical scaling in one single pass. The downscaled
pixel lines accessed from the image line buffers are vertically scaled to the targeted height. Below is the code snip-
pet of rectangular scaling algorithm.

ScaleRectAvg (PIXEL *Target, PIXEL *Source, int SrcWidth, int SrcHeight, int Tgt-
Width, int TgtHeight, float threshold)
{
int NumPixels = TgtHeight;
int IntPart = (SrcHeight / TgtHeight) * SrcWidth;
int FractPart = SrcHeight % TgtHeight;
int Mid = TgtHeight * threshold;
int E = 0;
int skip;
PIXEL *ScanLine, *ScanLineAhead;
PIXEL *PrevSource = NULL;
PIXEL *PrevSourceAhead = NULL;
skip = (TgtHeight < SrcHeight) ? 0 : TgtHeight / (2*SrcHeight) + 1;
NumPixels -= skip;
ScanLine = (PIXEL *)malloc (TgtWidth*sizeof (PIXEL)) ;
ScanLineAhead = (PIXEL *)malloc (TgtWidth*sizeof (PIXEL))
while (NumPixels-- > 0) {
if (Source != PrevSource) {
if (Source == PrevSourcelhead) {
PIXEL *tmp = ScanLine;
ScanLine = ScanLineAhead;
ScanLineAhead = tmp;
} else {
ScalelineAvg (ScanLine, Source, SrcWidth, TgtWidth, threshold);
}

PrevSource = Source;

}

if (E >= Mid && PrevSourceAhead != Source+SrcWidth) {
int x;

ScalelineAvg (ScanLineAhead, Source+SrcWidth, SrcWidth, TgtWidth, threshold);
for (x = 0; x < TgtWidth; x++)

ScanLine[x] = average (ScanLine[x], ScanLineAhead[x]);
PrevSourceAhead = Source + SrcWidth;

}

memcpy (Target, ScanLine, TgtWidth*sizeof (PIXEL));
Target += TgtWidth;

Source += IntPart;

E += FractPart;

if (E >= TgtHeight) {

E -= TgtHeight;

Source += SrcWidth;

}

}

if (skip > 0 && Source != PrevSource)

ScalelLineAvg (ScanLine, Source, SrcWidth, TgtWidth, threshold);
while (skip-- > 0) {

memcpy (Target, ScanLine, TgtWidth*sizeof (PIXEL));
Target += TgtWidth;

}

free (ScanLine);

free (ScanLineAhead) ;

am
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

LCD Controller Module

The LCD Controller module generates the necessary timing and data control signals to drive a WVGA LCD display.
During operation, the Processor Interface module provides a synchronizing signal to the LCD Controller module to
lock the start of frame. Essentially, this module uses the required back porch and front porch timing of WVGA frame
to generate the h_sync, v_sync and de signals to the WVGA LCD display.

The timing and data control signals and data with respect to the pixel clock are shown in Figure 6.

Signal Description
Table 1. Signal Description

Signal Width Type Description
i_clk_64mhz 1 Input Processor Clock
i_rst_n 1 Input System reset (active low)
i_proc_xga_h_sync 1 Input XGA horizontal synchronization signal
i_proc_xga_v_sync 1 Input XGA vertical synchronization signal
i_proc_xga_de 1 Input XGA de signal
i_proc_xga_rgb 16 Input XGA RGB data
o_lcd_dclk 1 Output WVGA LCD clock
o_lcd_wvga_h_sync 1 Output WVGA horizontal synchronization signal
o_lcd_wvga_v_sync 1 Output WVGA vertical synchronization signal
o_lcd_wvga_de 1 Output WVGA de signal
o_lcd_wvga_red 5 Output WVGA LCD red data
o_lcd_wvga_green 6 Output WVGA LCD green data
o_lcd_wvga_blue 5 Output WVGA LCD blue data

Initialization Conditions

An active low reset signal assertion is required to initialize the scalers and LCD controller state machines to a
known operating state. No register configuration is necessary.

am
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

Timing Diagram
Figure 6. Timing Diagram

VSync

J

HSync

Data(RGB)

HSync I

F-—---

Data_enabl

Data(RGB)

X X G XX O———

Dot clock

B Ty R

am
=LATTICE XGA to WVGA Nearest Neighbor Image Scaler

Simulation Waveforms

Figure 7. Simulation Waveforms

Signalrame Valie R AR TR SRS SRR TR TR R RN R ARRE EERE R TR TR AR AR IR TER AR SR TR A
wlh fdmhz f 1 1 RO R s 1
i |
HPOCIE S 07 |
G Iga fsinc b 1
P0G g8y sic f 1] U_
w0 g snc o I
upioc iga e f 0 \ \
B poc Jga i o 0E) o] [
e gk o 0
i g h s o ! I i Il Il
i wga v snc b 0] I
uld wiga_ o 1 \ \
Bl iga_red b o [T
Birled wiga_green U [
B wwga e o nir] 7
Sipalame Valug R R N DR A A R N AR TS D A AR A A R
ucl fim t I 19%990 u E /
w0 f 1 |
0
| i
1
! ||
0 T
I
L =]
mcdwvgavsmth 0
alof ge e 0] L !
Brled s red f 13 W | F | f f oy [il
By ¥ 7 D N L L B
Bl wga e I W | i [] [i [u

10

= LATTICE

XGA to WVGA Nearest Neighbor Image Scaler

Operation Sequence

1. Testbench will have a wrapper instantiated where the wrapper will in turn instantiate the design top level.

It will generate clock and reset signals to the design.

© N o 0o > 0 D

viewing software.

Implementation

It generates XGA control signals like HSync, VSync and DE.

It has counters for counting pixels, lines, and pulse width period of HSync and VSync.

It feeds XGA data to the image scaler design during the active region of the XGA image.
The output red, green and blue data are fed to a .tiff image writer.

A module tiff.v will take the WVGA pixel data in and add a header to make it a .tiff image.

Current simulation directory provides the resulting WVGA image. This can be viewed by using any image

This design is implemented in VHDL. When using this design in a different device, density, speed or grade, perfor-

mance and utilization may vary.

Table 2. Performance and Resource Utilization

Family Language Utilization (LUTs)

fmax (MHz)

1/0s

iCE40' VHDL 740

>50

40

1. Performance and utilization characteristics are generated using iCE40HX8K-CM225 with iCEcube?2 design software.

References
e i{CE40 Family Handbook

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@Ilatticesemi.com

Internet: www.latticesemi.com

Revision History

Date Version

Change Summary

April 2013 01.0 Initial release.

11

www.latticesemi.com/dynamic/view_document.cfm?document_id=45521
http://www.latticesemi.com/

	XGA to WVGA Nearest Neighbor Image Scaler
	Introduction
	Features
	System Block Diagram
	Functional Block Diagram
	Processor Interface Module
	Line Scaler Module
	Image Line Buffer Module
	Rectangular Scaler Module
	LCD Controller Module

	Signal Description
	Initialization Conditions
	Timing Diagram
	Simulation Waveforms
	Operation Sequence
	Implementation
	References
	Technical Support Assistance
	Revision History

