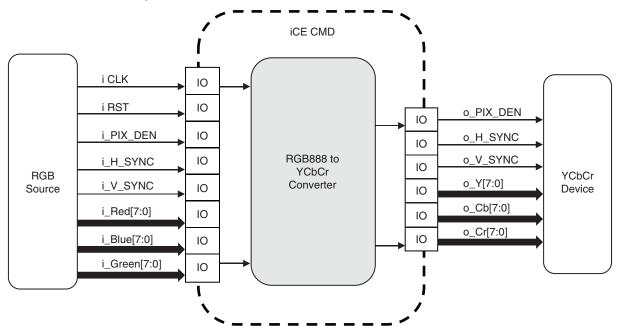


RGB888 to YCbCr 8-Bit Converter

April 2013 Reference Design RD1153

Introduction

RGB888 to 8-bit YCbCr converter converts RGB color space to YCbCr 4:2:2 color space. To facilitate easy insertion to practical video systems, this design example takes video stream control signals (H_SYNC, V_SYNC, and DEN) and delays them appropriately, so that control signals can be easily synchronized with the output video stream. This document provides a brief description of RGB888 to YcbCr 8-bit Converter and its implementation.


The design is implemented in VHDL. The Lattice iCEcube2™ Place and Route tool integrated with the Synopsys Synplify Pro® synthesis tool is used for the implementation of the design. The design can be targeted to other iCE FPGA family devices.

Features

- RGB88 mode input and 8-bit YCbCr 4:2:2 mode output
- · Pipelined implementation
- · Latency of 5 cycles
- H SYNC, V SYNC and DEN control signals for video synchronization

Functional Description

Figure 1. Functional Description

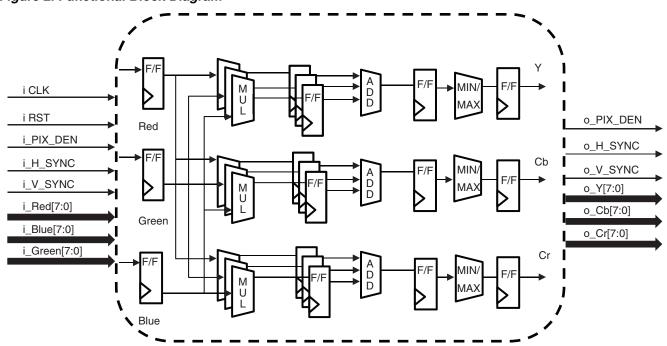

Signal Description

Table 1. Signal Description

Signal	Width	Туре	Description	
i_CLK	1	Input	Input Pixel Clock	
i_RST	1	Input	Asynchronous Active High System Reset	
i_PIX_DEN	1	Input	Data Enable (RGB valid) synchronized with pixel clock	
i_H_SYNC	1	Input	Horizontal Sync	
i_V_SYNC	1	Input	Vertical Sync	
i_RED	8	Input	Red component of pixel	
i_GREEN	8	Input	Green component of pixel	
i_BLUE	8	Input	Blue component of pixel	
o_PIX_DEN	1	Output	YCbCr valid data synchronized with pixel clock	
o_H_SYNC	1	Output	Pipelined Horizontal Sync	
o_V_SYNC	1	Output	Pipelined Vertical Sync	
o_Y	8	Output	Converted Y component	
o_Cb	8	Output	Converted Cb component	
o_Cr	8	Output	Converted Cr component	

Design Module Description

Figure 2. Functional Block Diagram

Configurable parameter

None

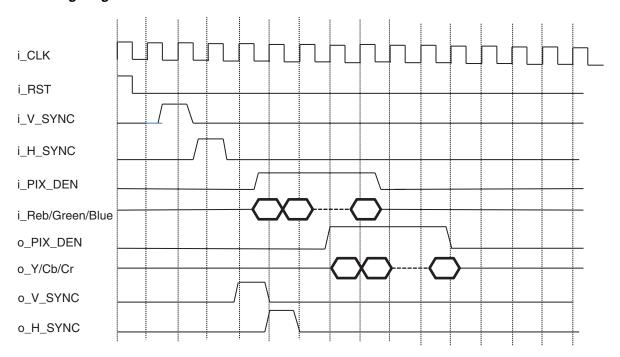
Register Map

This design does not have any user accessible registers or memory.

Design Details

This module converts RGB to YCbCr, consisting of one luma component(Y) representing brightness, and two chroma components (Cb and Cr) as per the following conversion expressions:

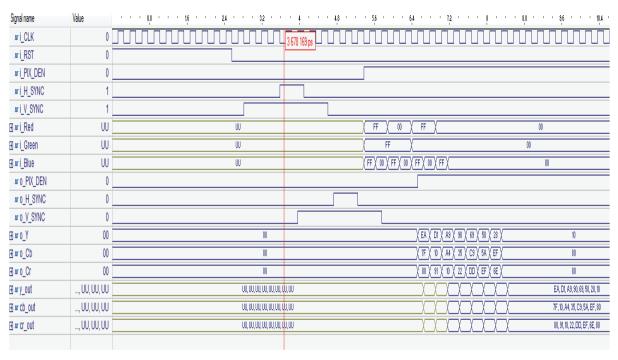
- Y = 16 + (0.2567890625 * Red) + (0.50412890625 * Green) + (0.09790625 * Blue)
- Cb = 128 + (0.14822265625 * Red) + (0.2909921875 * Green) + (0.43921484375 * Blue)
- Cr = 128 + (0.43921484375 * Red) + (0.3677890625 * Green) + (0.071442578125 * Blue)


The implementation comprises of a set of constant coefficient multipliers implemented as shift and add adders. This is a fully synchronous design and all the modules listed in the block diagram generate registered outputs, clocked by input pixel clock. Considering the large amount of data path involved here, a pipelined implementation is provided to improve the performance. Computed Y, Cb and Cr values are clipped and limited to maximum/minimum permissible range. To facilitate easy insertion to practical video systems, the design conveniently pipelines the video control signals H_SYNC, V_SYNC, and DEN by introducing a latency of 5 clock cycles.

Initialization Conditions

This design does not have any user specific initialization conditions.

Timing Diagram


Figure 3. Timing Diagram

Simulation Waveforms

Figure 4. Simulation Waveforms

Usage Examples

RGB to YCbCr converters are useful in applications like JPEG and MPEG image encoders, which is used in DVDs, digital TV and Video CDs, where images are coded in YCbCr format. YCbCr is also the most preferred format for hue and saturation control of images.

Simulation setup comprises of a testbench which provides input RGB666 values for various colors like red, blue, green, white etc... The DUT generated output YCbCr 8-bit values are compared against the corresponding known YCbCr values...

Implementation

This design is implemented in VHDL. When using this design in a different device, density, speed or grade, performance and utilization may vary.

Performance and Resource Utilization

Table 2. Performance and Resource Utilization

Family	Language	Utilization (LUTs)	f _{MAX} (MHz)	I/Os	Architecture Resources
iCE40 ¹	VHDL	419	>50	55	(92/160) PLBs

^{1.} Performance and utilization characteristics are generated using iCE40-LP1K-CM121 with iCEcube2 design software.

References

• iCE40 Family Handbook

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Date	Version	Change Summary
April 2013	01.0	Initial release.