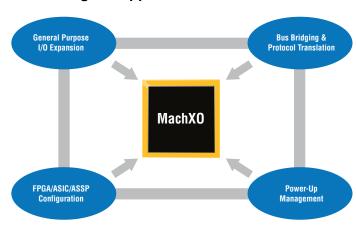
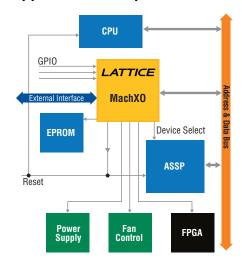


MachXO Family


Optimized for Low Density Applications

The MachXO™ family of non-volatile infinitely reconfigurable Programmable Logic Devices (PLDs) is designed for applications traditionally implemented using CPLDs or low-density FPGAs. Combining an optimized look-up table (LUT) architecture with low-cost embedded Flash process technology, the instant-on, easy-to-use MachXO devices are the most versatile, non-volatile PLDs for low-density applications.


The MachXO PLD family offers the benefits of increased system integration by providing embedded memory, built-in PLLs, flexible multi-voltage high-performance LVDS I/Os, remote field upgrade (TransFR™ technology) and low-power sleep mode, all in a single device.

Designed for a broad range of low-density applications that include general purpose I/O expansion, control, bus bridging and power-up management functions, the MachXO PLD family is used in a variety of end markets such as consumer, automotive, communications, computing, industrial and medical.

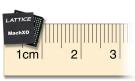
Broad Range of Applications

MachXO Application Example

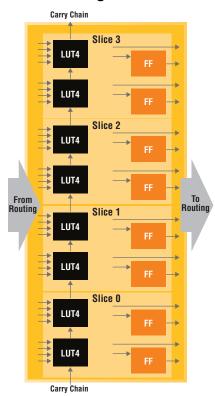
Key Features and Benefits

- Non-Volatile, Infinitely Reconfigurable
 - · Instant-on, powers up in less than 1mS
 - Single-chip, no external configuration memory
 - · Excellent design security, no bitstream to intercept
- Performance to 3.5ns Pin-to-Pin
- TransFR Technology Allows Simple Field Upgrades
- Flexible LUT Architecture
 - 256 to 2280 LUT4s
 - 73 to 271 I/Os with extensive package options
 - · Density migration supported
- Embedded and Distributed Memory
 - Up to 27.6 Kbits sysMEM™ Embedded Block RAM
 - · Includes dedicated FIFO control logic
 - Up to 7.7 Kbits distributed RAM
- Flexible I/O Buffer
 - Programmable sysIO $^{\mbox{\tiny TM}}$ buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI*
 - LVDS*, Bus-LVDS*, LVPECL*, RSDS*
- sysCLOCK[™] PLLs
 - · Up to two analog PLLs per device
 - · Clock multiply, divide and phase shifting
- Sleep Mode Reduces Standby Power to <100µA
- System-Level Support
 - IEEE Standard 1149.1 Boundary Scan
 - On-board 20MHz oscillator for configuration and user logic
 - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- Broad Device Offering
 - Commercial: 0 to 85°C (TJCOM)
 - Industrial: -40 to 100°C (TJIND)
 - AEC-Q100 qualified: -40 to 125°C (TJAUTO)

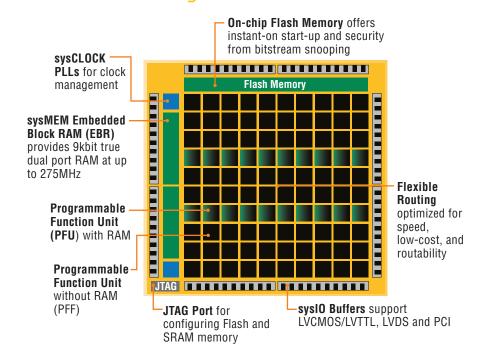
^{*} MachXO1200 and 2280 devices only.



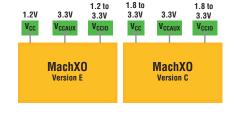
MachXO Architecture


Architecture Overview

MachXO PLDs are designed to offer a low-cost, flexible alternative for applications traditionally served by CPLDs or low-density FPGAs. Built with an extremely efficient architecture, MachXO PLDs deliver excellent pin-to-pin performance, support for high-speed I/Os, embedded block RAM, and sysCLOCK PLLs.

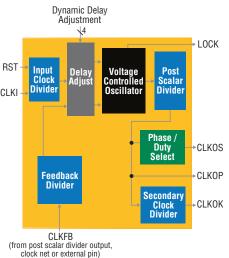

Available in space saving, RoHS compliant package options, MachXO PLDs can be used in a broad range of space constrained applications.

PFU Block Diagram


MachXO Block Diagram

sysMEM Configuration Options

Single Port	Dual Port	Pseudo- Dual Port	FIF0
8192 x 1	8192 x 1	8192 x 1	8192 x 1
4096 x 2	4096 x 2	4096 x 2	4096 x 2
2048 x 4	2048 x 4	2048 x 4	2048 x 4
1024 x 9	1024 x 9	1024 x 9	1024 x 9
512 x 18	512 x 18	512 x 18	512 x 18
256 x 36	-	256 x 36	256 x 36

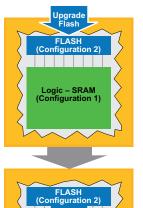

MachXO Voltage Options

sysIO Buffer Supports High-Bandwidth I/O Standards

- LVCMOS / LVTTL
 - Hotsocketing capable
 - Programmable slew rate
 - Programmable drive strength
 - Programmable pull-up, pull-down, bus friendly
 - Programmable open drain
 - Programmable Schmitt element
- PCI, LVDS, LVPECL, Bus-LVDS, RSDS

sysCLOCK PLL Block Diagram

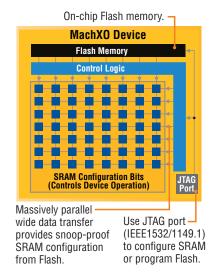




Easy Field Updates

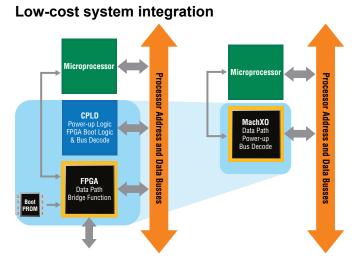
MachXO PLDs include Lattice's exclusive Transparent Field Reconfiguration (TransFR) technology. TransFR technology allows logic to be updated in the field without interrupting system operation.

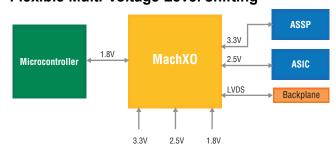
Step 1 Program Flash in background while logic functions



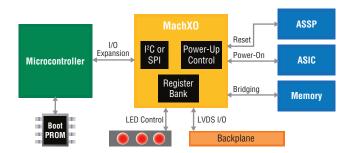
SRAM

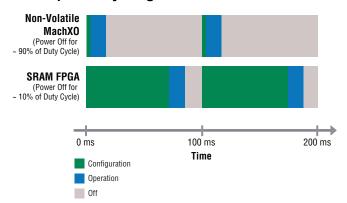
MachXO Configuration


MachXO PLDs include both Flash and SRAM technology to provide "instant-on" capabilities in a single low-cost device. At power-up, configuration data is transferred from Flash to SRAM cells in less than 1mS. Both SRAM and Flash memory can be programmed from a JTAG port. This combination of SRAM and Flash enables easy field updates via Lattice's unique TransFR technology. MachXO PLDs have a security scheme that prevents readback and, by using Flash internally, Lattice eliminates bit stream snooping.


MachXO Sleep Mode Reduces Power by a Factor of 100X!

Characteristic	Normal Mode	Off	Sleep Mode	
SLEEPN Pin	High	Х	Low	
Static I _{cc}	Typically <10mA	0	Typically <100μA	
Power Supplies	Normal Range	0	Normal Range	
Logic Operation	User Defined	Non Operational	Non Operational	
I/O Operation	User Defined	Tri-State (<1mA leakage)	Tri-State (<10µA leakage)	


MachXO Application Examples


Flexible Multi-Voltage Level shifting

Power Up and Control

Low power cycling

Free, Easy-to-Use Lattice Software

Lattice Diamond® design tools offer a comprehensive design environment for the MachXO architecture and other device families. Featuring design exploration, ease of use, improved design flow, and numerous other features, Diamond allows you to complete designs faster, easier, and with better results than ever before.

Evaluation and Development Boards

Lattice offers a number of evaluation and development boards that provide a complete and easy-to-use platform to evaluate the performance of the MachXO, or aid in the development of custom designs.

Reference Design Portfolio

Lattice offers an expanding portfolio of IP cores and reference designs targeted for low-density applications. Optimized for the MachXO architecture these include popular protocol and connectivity standards such as I2C, SPI, UART and PCI. The reference designs, source codes and documentation can be downloaded for free from the Lattice website. For more information, go to www.latticesemi.com/ip.

MachXO Mini development kit

Use the MachXO Mini Development Kit to test I2C, SPI, UART, SRAM interfaces as well as the 8-bit LatticeMico8™ microcontroller within minutes. Build your own design in less than an hour using free reference designs from Lattice.

Learn more at www.latticesemi.

com/machxo-mini.

MachXO Control **Development Kit**

Use the MachXO Control Development Kit to test board diagnostic functions including fan speed control based on temperature monitoring, complete power supply monitoring and reset distribution in conjunction with the Power Manager II POWR1014A

and 8-bit LatticeMico8 microcontroller. Test these functions within minutes and build your own designs in less than an hour using the free reference designs from Lattice. Learn more at www.latticesemi.com/machxo-control-kit.

Device Selection Guide

Parameter	LCMXO256	LCMX0640	LCMX01200	LCMX02280
LUTs	256	640	1200	2280
Distributed RAM (Kbits)	2	6.1	6.4	7.7
Embedded Block RAM – EBR (Kbits)	-	_	9.2	27.6
Number of EBR Blocks	-	_	1	3
V _{cc} Voltage (V) Options	1.2V or 1.8/2.5/3.3V	1.2V or 1.8/2.5/3.3V	1.2V or 1.8/2.5/3.3V	1.2V or 1.8/2.5/3.3V
Number of PLLs	-	_	1	2
Number of I/O Banks	2	4	8	8
Maximum Number of I/Os	78	159	211	271
Maximum Number of LVDS Pairs*	-	_	27	33
Packages & I/O Combinations				
100-pin TQFP (14 x 14 mm)**	78	74	73	73
144-pin TQFP (20 x 20 mm)		113	113	113
100-ball csBGA (8 x 8 mm)	78	74		
132-ball csBGA (8 x 8 mm)		101	101	101
256-ball caBGA (14 x 14 mm)		159	211	211
256-ball ftBGA (17 x 17 mm)		159	211	211
324-ball ftBGA (19 x 19 mm)				271

^{*} Number of LVDS outputs can be increased by emulating with external resistors

Applications Support

1-800-LATTICE (528-8423) (503) 268-8001 techsupport@latticesemi.com

^{**} In the 100-pin TQFP package, designs can not migrate from LCMXO640 to 1200.