= LATTICE I2C Slave Controller

February 2015 Reference Design RD1140

Introduction

I*C, or Inter-Integrated Circuit, is a popular serial interface protocol that is widely used in many electronic systems.
The I2C interface is a two-wire interface capable of half-duplex serial communication at moderate to high speeds of
up to a few megabits per second. The I°C system incorporates an addressing system to identify the multiple I2C
‘slaves’ on the I°C bus. An I°C system can have single or multiple masters. The two bidirectional lines of the I°C
system are SDA (Serial Data) and SCL (Serial Clock). An important electrical feature of the I°C lines are that they
are both made up of open drain ports and are pulled high by resistors.

This reference design illustrates the implementation of an I2C slave using an iCE40™ ultra low density FPGA. The
[2C slave implements functions as a port expander via an I2C bus.

Features

e 7/10-bit slave address support

e Supports repeated start operations

* Interrupt generation logic

» Standard and High-speed modes of operation
Verilog RTL, test bench

Functional Description
Figure 1. Functional Block Diagram

/ \ i_sys_clk -

i_rst
i_data

A A 4

— v 1 NV ¥

o_data

o_data_request

0_data_valid

A A

i_sclk_stretch_en

v

0_i2cs_busy
i_slave_addr

A

\
I
I
I
|
I
I
I
|

i_addr_10bit_en
i_hs_mode

i_sda/ o_sda

i_timeout_en
Generic Host i_timeout_val
Register Interface

i_scl/ o_scl

> V. V.V =/

I12C Slave

2,
Controller I2C Master

N/

<

o_timeout_err
i_ack_busy
o_tx_status

A

o_scl_tri_en

\4

o_rx_status

A A

i_init_intr_en

o_sda_tri_en

i_rw_done_intr_en
i_timeout_intr_en

YVYVY

o_intr
o_init_done
o_rd_done
o_wr_done
o_init_intr

o_rw_intr

o_timeout_intr

A A A AAAA

~ N~ ____ /

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 RD1140_1.1

= LATTICE

I>C Slave Controller

Pin Descriptions

Table 1. Pin Descriptions

Signal Width Type Description
i_sys_clk 1 Input |System clock
i_rst 1 Input | Active high asynchronous reset
i_data [7:0] 8 Input |Input data from register interface
o_data [7:0] 8 Output |Output data to register interface
o_data_request 1 Output |When high, requests input i_data. Can be used as read enable.
o_data_valid 1 Output [When high, indicates valid data on the o_data output bus.
i_sclk_stretch_en 1 Input |When high, SCL will be stretched by the slave during address or R/W phase.

Goes high when slave is in a non-idle state (when in the address, data read and

o_i2cs_busy 1 Output write phases).
. . 10-bit slave address. If 7-bit addressing mode is enabled (i_addr_10bit_en is
I_slave_addr [9:0] 10 Input low) then the controller will take only slave_addr[6:0].
i_addr_10bit_en 1 Input [When high, 10-bit addressing mode is enabled.
i_hs_mode Input |When high, high-speed mode is enabled.
s When high, the timeout feature helps to come out from SCL unstable conditions.
I_timeout_en 1 Input This can be used to issue a software reset from the processor.
. . When i_timeout_en is high, the slave checks whether SCL is still low for the
i_timeout_val [15:0] 16 Input value specified in i_timeout_val, then issues a reset condition to the slave FSM.
. When high, the slave will generate NACK to the master during the address or
I_ack_busy 1 Input data read phase.
o_tx_status 1 Output |Goes high when the slave Receive-Master Transmit mode is in progress.
o_rx_status 1 Output |Goes high when the slave Transmit-Master Receive mode is in progress.

When high, an interrupt will be generated when the slave acknowledges the
i_init_intr_en 1 Input |address and R/W bits, indicating that the slave is entering the data read or write

states.

When high, an interrupt will be generated when there is a STOP condition or a
i_rw_done_intr_en 1 Input |change of direction (read-to-write or write-to read) in the data transaction using
a repeated START.

When high, an interrupt will be generated when a timeout reset condition is

i_timeout_intr_ en 1 Input encountered.
. Goes high when any interrupt generated by making i_init_intr_en,
o_intr 1 Output i_rw_done_intr_en or i_timeout_intr_en high.
o_init_done 1 Output |Goes high when a slave receives address and R/W bits.
o_rd_done 1 Output Goes hlgh when a slave completes reading of data in slave receive-master
transmit mode.
o_wr_done 1 Output Goes high when a slave completes writing of data in slave Transmit-Master

Receive mode.

o_timeout_err 1 Output |Goes high when a timeout reset condition is encountered.
i_scl 1 Input |SCL input to the slave from the master

i_sda 1 Input | SDA input to the slave from the master

o_sda 1 Output |SDA output from the slave to the master

o_scl 1 Output |SCL output form the slave to the master

o_scl_tri_en 1 Output |Tristate enable for SCL

o_sda_tri_en 1 Output |Tristate enable for SDA

o_rw_intr 1 Output |Interrupt signal for i_init_intr_en

o_timeout_intr 1 Output |Interrupt signal for i_timeout_intr_en

o_init_intr 1 Output |Interrupt signal for i_init_intr_en

= LATTICE

I>C Slave Controller

Design Module Description

The slave controller has a slave FSM (state machine) that continually monitors the state of the SCL and SDA lines
and generates the appropriate signals on the I°C bus. To begin a data transfer, the state machine looks for a start
command which is defined by a stable SCL high signal with a falling SDA line. On receipt of a start command, the
slave will latch the slave address and the R/W flag over the next eight consecutive bits. If the slave address on the
bus corresponds to the slave address, then the controller will generate an acknowledge signal and data transfer
may commence. If the slave address mismatches, then the controller reverts back to its idle state waiting for the
next start condition. Once the controller has been addressed correctly, the master may continue to send a
sequence of writes or reads as required.

Figure 2. Slave FSM

start_detect_i=0 or

stop_detect_i=1 stop_detect_i=0

start_detect_i=0

start_detect_i=1

(not_write_ack_i)=1
REPEAT_SR_DETECT_HS

(mastercode_

stop_detect_i=1
not_ack_i)=1

start_detect_i=1

READ_ADDRESS_ (addr_ack_1_i=1) &&

BYTE1

WRITE_DATA

|

(count_i=0) &&
(stop_detect_i=0)

(rw_mode_i=0) &&
i_slave_10bit_addr=0

(start_detect_i=1) &&

i_slave_10bit_addr=0 (addr_ack_1_i=1) 8&

(rw_mode_i=0) &&
i_slave _10bit_addr=0
(addr_ack_1_i=1) &&

(rw_mode_i=0) && \
i_slave_10bit_addr=0

(count_i /=1)

(count_i=0) &&
(stop_detect_i=0)

READ_ADDRESS_BYTE2
READ_DATA

(count_i/=1)

(addr_ack_2_i=1) &&
i_slave_10bit_addr=1

(addr_ack_3_i=1) &&
(rw_mode_i=1) &&
(i_slave_10bit_addr=1)

start_detect_i=0

REPEAT_SR__DETECT_10BIT

(start_detect_i=1) &&
(addr_ack_3_i=1) && (i_slave_10bit_addr=1)
(rw_mode_i=0) &&

(i_slave_10bit_addr=1)

start_detect_i=1

READ_ADDRESS_BYTE3

= LATTICE I°C Slave Controller

Operation Sequence

7-Bit Addressing Mode

Single/Multiple Byte Write Operation

Figure 3 shows a Master Write operation in 7-bit addressing mode. The master generates the START bit and sends
the 7-bit slave address, followed by the eighth bit which is a data direction read/write bit (R/W). ‘0’ is sent for this
WRITE operation. The master sends the data followed by an acknowledgment (A) from the slave. The slave gener-
ates an acknowledgment for every byte of data from the master. The processor can either STOP the transaction by
sending a STOP bit, or the slave can respond with a NACK (A') so that the master stops the data write by generat-
ing a STOP condition to terminate the data transfer.

If i_ack_busy is high during the address phase, the slave will report a NACK to the master which will detach itself
from the data transaction. If it is high during the data read phase, the slave will report a NACK to the master, indi-
cating that it can no longer accept data and hence the master can issue a STOP condition.

Figure 3. Data Format for FC Master Write to a 7-bit Address Slave

S | Slave Address | R/~W | A | Data | A | Data | A/~A | P
|

Data transferred

0" (write) (n bytes + acknowledge)

|:| From Master to Slave ~A — Not-Acknowledge R/~W — Data Direction Bit

|:| From Slave to Master S — Start B_it ‘0’ — Ind?cates Write Operati_on
P — Stop Bit ‘1" — Indicates Read Operation
A — Acknowledge

Single/Multi-Byte Read Operation

Figure 4 shows a Master Read operation in 7-bit addressing mode. The master generates a START bit, transmits a
7-bit slave address, followed by an eighth bit which is a data direction bit (R/W). A ‘1’ is sent for this READ opera-
tion. The slave acknowledges this by a positive acknowledgment (A). The slave transmits a byte of data, which the
master should acknowledge (A) for further data transactions to continue. The master generates a Not Acknowledge
(A) before generating a STOP condition to terminate the data transfer.

Figure 4. Data Format for FC Master Read from a 7-Bit Address Slave

S | Slave Address | R/~W | A | Data | A | Data [~A| P
|

Data transferred
(n bytes + acknowledge)

‘1’ (read)
Read/Write with Repeated Start
Figure 5 shows a Read and Write with Repeated Start. The master generates a START bit and sends a 7-bit slave
address plus the eighth R/W bit as ‘0’ for the write transaction. The slave acknowledges this request. The master
then sends one or more data byte followed by an acknowledgment from the slave. Instead of generating a STOP
condition, the master generates another START (i.e. ‘Repeated START’) that changes the data transfer mode from
Write to Read. The master again sends the slave address and sets the R/W bit to ‘1’ for the read transaction. The
master continues to read from the slave. It can switch back to Write mode by re-issuing a repeat start and the slave
address plus the R/W bit. Otherwise, the master generates a STOP condition to terminate the data transfer. The
first data transaction need not be a write; it can be a read as well.

= LATTICE I°C Slave Controller

Figure 5. Read and Write with Repeated Start

S | Slave Address R/TW A | Data | A/~A | Sr | Slave Address R/~IW A IData A/~A | P

| Data transferred
read or write (n bytes + read or write

~ acknowledge)

Direction of transfer
Repeated start may change at this point

10-Bit Addressing Mode

10-bit addressing allows the use of up to 1,024 additional addresses to prevent problems with the allocation of
slave addresses as the number of I°C devices rapidly expands. It does not change the format for addresses defined
in the I2C Bus Specification, using addresses reserved in the existing specification. Using 10-bit addressing allows
devices with 7-bit and/or 10-bit addresses to be connected to the same I°C bus. Using 10 bits for addressing
exploits the reserved combination ‘1111XXX’ for the first seven bits of the first byte following a START (S) or
repeated START (Sr) condition. 10-bit addressing mode is enabled when i_addr_10bit_en is made high.

Single/Multi-byte Write Operation

Figure 6 shows a Master Write operation in 10-bit addressing mode. The master generates the START condition
and sends the first seven bits of the first byte. The first seven bits are ‘11110XX’, of which the last two bits (XX) are
the two Most-Significant Bits (MSBs) of the 10-bit address, followed by a ‘0’ R/W eighth bit. Slaves supporting 10-
bit mode and matching the two MSB address bits respond with an acknowledgment (A1). The master sends the
second byte of the slave address and which is acknowledged (A2) by the matching slave. Hereafter, the write data
transfer is similar to conventional 7-bit addressing mode.

Figure 6. Master Write Operation for 10-Bit Addressing
11110XX 0

Slave Address Slave Address
S | “First 7 Bits R/TW A1 “gecond Byte A2 guEll A EEEEN A~A

write

Single/Multi-byte Read Operation

Figure 7 shows the Master Read operation in 10-bit addressing mode. The master generates the START condition
and sends the first seven bits of the first byte. The first seven bits are ‘11110XX” of which the last two bits (XX) are
the two Most-Significant Bits (MSBs) of the 10-bit address, followed by a ‘0’ R/W eighth bit. Slaves supporting 10-
bit mode and matching the two MSB address bits respond with an acknowledgment (A1). The master sends the
second byte of the slave address which is acknowledged (A2) by the matching slave. The master generates a
‘Repeated START’ and sends the same first byte of the address followed by a ‘1’ on the R/W bit. The slave gener-
ates a positive acknowledgement (A3). Hereafter, the read data transaction is similar to conventional 7-bit address-
ing mode.

Figure 7. Master Read Operation for 10-Bit Addressing

11110XX 0 11110XX 0
Slave Address Slave Address Slave Address
S | “First 7 Bits R/TW A1 "gecond Byte A2\ Sr | " Eirst 7 Bits R/TW A3| Data | A | Data |~A| P
write read

High-Speed Mode

High-speed mode (Hs-mode) devices offer a quantum leap in I°C-bus transfer speeds. Hs-mode devices can trans-
fer information at bit rates of up to 3.4 Mbps, yet they remain fully downward compatible with Fast-mode Plus, Fast-
or Standard-mode (F/S) devices for bidirectional communication in a mixed-speed bus system. To achieve data
transfer rate of up to 3.4 Mbps, the 12C protocol provides High-speed mode. Serial data transfer format in Hs-mode
meets the standard-mode 1°C Bus Specification. Hs-mode can only commence after the following conditions (all of

= LATTICE

I>C Slave Controller

which are in F/S-mode): START condition (S), followed by 8-bit master code (00001XXX) and a Not-acknowledge
bit (A) as shown in Figure 8.

The master then sends a ‘Repeated START’, followed by either a 7-bit or 10-bit address with a R/W bit. The slave
acknowledges this and the rest of the communication is similar to conventional 7-bit mode. The master switches
back to F/S mode after a STOP condition, otherwise it can continue in High-speed mode. High-speed mode also
supports interleave read and write using a repeat start, similar to conventional F/S modes.

The slave responds to high-speed mode master code and the address only when i_hs_mode is high. Otherwise,
the slave supports only F/S speed modes.

Figure 8. Data Transfer in High-Speed Mode

F/S Mode High-Speed Mode F/S Mode

S | Master Code |~A| Sr |Slave Address | R/~W A | Data | A/~A | P

=

Hs mode continues

Sr | Slave Address

Clock Stretching

Clock stretching pauses a transaction by holding the SCL line LOW. The transaction cannot continue until the line
is released HIGH again. On the byte level, a device may be able to receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare another byte to be transmitted. The slave can then hold the SCL line
LOW after reception and acknowledgment of a byte to force the master into a wait state until the slave is ready for
the next byte transfer in a handshake procedure.

When i_sclk_stretch_en is high, clock stretching feature is enabled. Processor interface logic can control clock
stretch during the address and data read/write phases by pulling this signal high.

Timeout Condition

The timeout condition is provided as an exit path for the slave if a bus error occurs, during unstable conditions or if
an I?C transmission is terminated. If the timeout enable i_time_out_en is high, then a counter will start counting the
SCL low period. When the counter reaches i_timeout_val and SCL is still low, a reset signal is triggered for the
FSM to switch to the IDLE state. If SCL goes high before the counter reaches the timeout value specified in
i_timeout_val, then the counter goes to the reset state without forcing the reset condition to FSM. Under such con-
ditions, FSM continues operating in normal read/write mode.

Interrupt Generation
There are three interrupt enables:

* i_init_intr_en — When high, an interrupt o_init_intr will be generated when a slave acknowledges address and
R/W bits, indicating that the slave is entering the data read or write states.

* i_rw_done_intr_en — When high, an interrupt o_rw_intr will be generated when there is a STOP condition or
there is a change of direction (read-to-write or write-to-read) in the data transaction using a Repeated Start.

 i_timeout_intr_en — When high, an interrupt o_timeout_intr will be generated when a timeout reset condition is
encountered.

An output interrupt will become active when any of these three interrupts are generated.
Status Signals Generation

* o_rx_status — Goes high while slave Transmit-Master Receive mode is in progress.

* o_tx_status — Goes high while slave Receive-Master Transmit mode is in progress.

e 0_i2cs_busy — Goes high when the slave is in the non-idle state (in address, data read and write phases)

= LATTICE

I>C Slave Controller

o_init_done — Goes high when the slave receives address and R/W bits
o_rd_done — Goes high when the slave completes reading of data in slave Receive-Master Transmit mode
o_wr_done — Goes high when the slave completes writing of data in slave Transmit-Master Receive mode

o_timeout_err — Goes high when a timeout reset condition is encountered

Simulation Waveforms
Figure 9. Simulation Waveforms

Signal name Value
arsys_clk_to 0
wrstto 0

B data_in_to 15 o

@ data_out_to 00 {HOm
r data_vaild_to z

B slave_addr_to 024 {78
 addr_106it_en_{o 0 [I rrrrorororrill
ar data_request_to 0
 0_data_valid_to 0
v scik_stretch_en_to 0
ari2es_busy_to 1
rsda_tri_en_to 0
rscl_tr_en_to 0
hs_mode_to 0
artimeout_en_to 0

B timeout_val_to F
ar ack_busy_to 0
e init_intr_en_to 1
 rw_done_intr_en_to 1
rtimeout_intr_en_to 0

aintr_to 0

3
0
0
0
0
0
0
0
0
3
3
3
0
n

Ty o oo o W Wonim
LGN ST IS) ST | ST | ST IS €] TR | ST §

)
W

C80
o

W = W or = T Y wm Y o e m (e o W e N w Wmywmi(ov ey (o
YO0 000 Y Om{Omy_ 00 {0000 oaony_u Y07 Y o0 Youy Y w0 ey Y w0 Yunyeni(w i w0 {mi mi W § (W

)) A (S Y (2) €0 G D G D S]

[

I T W I 1 A 1 A T
1 n [1l 1 M I N fn

= n_status_to
b _status_to
arinit_done_to
r9_done_to
rwr_done_to
rtimeout_err_to

I Y Y O T A
1 10 il 00 il il il

1 il I 1
|

I Y
il | |

il 1 00 0 1 I 1 il I 0 0l

11
|

awinit_intr_to 1L 11 |
= rw_intr_to
rtimeout_intr_to
sclin_to
scl_out_to
xsda_in_to

L o O

|
T

T 7 O

|
B 0]
B 0]
]

== -
gogo
(o
o

Ooog
20000
Hom
(i
noooo

T
8] T
8] T
1) T

ood
Lo

rsda_out_to

B read_data_i 1

B err_count i 00000000
arscl_fs_to 1]
arscl_hs_to 1]
ahs_mode_clk 0 T nmnnnnnnrhrnrir
 negative_testing_i 0 L
rscl_in_to_en

ar generatet_scl_clock

0]
PO
[

5 e O
o
Lem |
o

0]
0] 0]
8] 0]
e or

T
T
o

BET IS N

]
Y e e v v v v
IO NN e 66000 o MK El
IS S sees sl nenss Q0000005 OO
x o N0 HROIESI0E NGOG RG TIE
IS SIS NSNS NGNS S S G S S S .

T

3
AL L L1
5 =

¢ i20m _wiite_data data

v i2em_wiite_oatai

v i2em_wiite_data_cl

v i20m_wiite_data_cl

ari20m_read_data
Cursor 1

"

A A

******** T

0000000
00000004 A O

mezes |

A

Implementation

This design is implemented in Verilog. When using this design in a different device, density, speed or grade, perfor-
mance and utilization may vary.

Table 2. Performance and Resource Utilization

Utilization Architecture

Device Family

Language

Synthesis Tool

(LUTSs)

fMAX (MHz) I/0s Resources

iCE40'

Verilog

LSE

371

95.59 69 N/A

Syn Pro

367

81.43 69 N/A

1. Performance utilization characteristics are generated using iCE40LP1K-CM121 with iCEcube2™ 2014.08 design software.

References

e DS1040, iCE40 LP/HX Family Data Sheet

Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

www.latticesemi.com/dynamic/view_document.cfm?document_id=49312
mailto: techsupport@latticesemi.com
http://www.latticesemi.com

= LATTICE

I>C Slave Controller

Revision History

Date Version Change Summary

February 2015 1.1 Updated Pin Descriptions section. Revised Table 1, Pin Descriptions.
Added signals.

Updated Simulation Waveforms section. Revised Figure 9, Simulation
Waveforms with the SCL clock not freely running.

Updated Implementation section. Revised Table 2, Performance and
Resource Utilization.

Updated References section.

Updated Technical Support Assistance information.

October 2012 01.0 Initial release.

	I2C Slave Controller
	Introduction
	Features
	Functional Description
	Pin Descriptions
	Design Module Description
	Operation Sequence
	7-Bit Addressing Mode
	10-Bit Addressing Mode

	Simulation Waveforms
	Implementation
	References
	Technical Support Assistance
	Revision History

