LatticeMico32 Tutorial

s=LATTICE

September 2012

Copyright

Copyright © 2012 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Movile Device,
DiePlus, EZCMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexXiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman,
iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD,
iISpGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA,
PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD,
TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in
the United States and/or other countries. ISP, Bringing the Best Together, and More of
the Best are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico32 Tutorial

Type Conventions Used in This Document

Convention Meaning or Use

Bold

<Italic>
Ctrl+L

Courier

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

LatticeMico32 Tutorial

LatticeMico32 Tutorial

= LATTICE

Contents

LatticeMico32 Tutorial 1

Introduction 1
Learning Objectives 2
Time to Complete This Tutorial 2
System Requirements 2
Accessing Online Help 3
About the Tutorial Design 4
Tutorial Data Flow 5

LatticeMico32/DSP Development Board 8
Task 1: Create a New Lattice Diamond Project 9

Task 2: Create the Development Microprocessor Platform 13
Create a New MSB Platform 13
Add the Microprocessor Core 17
Add the Off-Chip Memory 22
Add the Peripheral Components 24
Specify the Connections Between Master and Slave Ports 27
Assign Component Addresses 30
Assign Interrupt Request Priorities 32
Perform a Design Rule Check 32
Generate the Microprocessor Platform 32

Task 3: Create the Software Application Code 35
Create a New C/C++ SPE Project 38
Linker Configuration 40
Build the Project 42

Task 4: Generate the Microprocessor Bitstream 45
Import the MSB Output File 46
Connect the Microprocessor to the FPGA Pins 47
Perform Functional Simulation 48
Perform Timing Simulation 48
Generate the Bitstream 48

Task 5: Download the Hardware Bitstream to the FPGA 49

LatticeMico32 Tutorial

CONTENTS

Task 6: Debug and Execute the Software Application Code on the
Development Board 51
Software Application Code Execution Flow 52
Debug the Software Application Code on the Board 53
Insert Breakpoints 60
Execute the Software Application Code 61
Modify and Re-execute the Software Application Code 63

Task 7: Deploy the Software Code to Parallel Flash Memory 64
Parallel Flash Memory Deployment Flow 65
Create a CFI Flash Programmer Application 66
Prepare LEDTest for Flash Deployment 68

Task 8: Deploy the Production Microprocessor Bitstream to SPI Flash
Memory 78

Summary 81
Glossary 83
Recommended References 85

Vi

LatticeMico32 Tutorial

= LATTICE

Introduction

LatticeMico3e2 Tutorial

This tutorial steps you through the basic process involved in using the
LatticeMico System software to implement a LatticeMico32 32-bit soft
microprocessor and attached components in a Lattice Semiconductor device
for the LatticeMico32/DSP development board. LatticeMico System
encompasses three tools: the Mico System Builder (MSB), the C/C++
Software Project Environment (C/C++ SPE), and the Debugger. Together,
they enable you to build an embedded microprocessor system on a single
FPGA device and to write and debug the software that drives it. Such a
microprocessor lowers cost by saving board space and increases
performance by reducing the number of external wires.

The LatticeMico System interface is based on the Eclipse environment, which
is an open-source development and application framework for building
software.

Although you can install LatticeMico System as a stand-alone tool, this tutorial
assumes that you have installed Lattice Diamond before installing LatticeMico
System. After you have created a project in Lattice Diamond, the tutorial
shows you how to use MSB to choose a Lattice Semiconductor 32-bit
microprocessor, attach components to it, and generate a top-level design,
including the microprocessor and the chosen components. Next you will use
Lattice Diamond to synthesize, map, place, and route the design and
generate a bitstream for it. You will then download this bitstream to the FPGA
on the board. The tutorial then changes to the Lattice Software Project
Environment (C/C++ SPE) and shows how to use C/C++ SPE to write and
compile the software application code that exercises the microprocessor and
components. Finally, it shows how to download and debug the code on the
board and deploy it in the parallel flash chips on the LatticeMico32/DSP
development board.

This tutorial is intended for a new or infrequent user of the LatticeMico System
software and covers only the basic aspects of it. The tutorial assumes that

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Introduction

you have reviewed the LatticeMico32 Development Kit User’s Guide for
LatticeECP2 to familiarize yourself with the product and to set up your board
correctly.

For more detailed information on the LatticeMico System software, see the
sources listed in “Recommended References” on page 85.

Learning Objectives

When you have completed this tutorial, you should be able to do the following:

Use MSB to configure a Lattice Semiconductor 32-bit microprocessor for
your design, select the desired components, and connect the selected
components to the microprocessor with a shared-bus arbitration scheme,
which is the default.

Use The Lattice Software Project Environment to create the C/C++
software application code that drives the microprocessor and
components.

Import the Verilog files, Verilog/VHDL files, or an EDIF file generated by a
synthesis tool.

Import an .Ipf file containing the pinout.
Synthesize, map, place, and route the design.

Generate a bitstream of the microprocessor and download it to an FPGA
on the board.

Compile, download, and debug the software application code on the
LatticeMico32/DSP development board.

Program the Common Flash Interface (CFI) parallel flash memory with the
software application code.

Debug the hardware and software on the board.

Time to Complete This Tutorial

The time to complete this tutorial is about two hours.

System Requirements

You can run this tutorial on Windows or Linux.

Windows

If you will be running this tutorial on Windows on a PC, your system must
meet the following minimum system requirements:

Pentium Il PC running at 400 MHz or faster

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Introduction

Microsoft Windows 2000®, Windows XP® Professional, Windows 7, or
Windows Vista®

USB port for use with the LatticeMico32/DSP development board
The following software is required to complete the tutorial:

Lattice Diamond 1.3 software or later with device support for the device
used with your build of the LatticeMico32/DSP development board

LatticeMico System version 1.3 or later

See the Lattice Diamond Installation Notice for the current release for
information on installing software on the Windows platform.

Linux

If you will be running this tutorial on Linux on a PC, your system must meet
the following minimum system requirements:

Red Hat Enterprise Linux operating system Version 4.0 or 5.0
Lattice Diamond version 1.0

For mixed Verilog/VHDL support: Synopsys® Synplify Pro® 8.9 or Synplify
Pro 8.9.1 for Linux

Linux system with USB port

See the Lattice Diamond Installation Guide for the current release for
information on installing software on the Linux platform.

Hardware
This tutorial requires the following hardware:

A LatticeMico32/DSP development board for LatticeECP2
USB cable
AC adapter cord

Note

If you want to perform functional simulation for the mixed Verilog/VHDL flow, you must
have access to a simulator that supports mixed-mode Verilog and VHDL simulation.

Accessing Online Help

You can access the online Help for MSB, C/C++ SPE, the Debugger, or
Eclipse Workbench by choosing Help > Help Contents in the LatticeMico
System graphical user interface.

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Introduction

About the Tutorial Design

This tutorial uses a LatticeECP2 device, and all references are based on the
LatticeECP2 device. The tutorial design consists of the LatticeMico32
embedded microprocessor, an asynchronous SRAM controller, a GPIO, a
parallel flash memory, and a UART. After you add these components, you will
specify the connections between the master and slave ports on these
components, as shown in Figure 1.

Figure 1: Desired Connections Between Master and Slave Ports

SRAM slave
device (memory

I for code and
data)

GPIO slave
device (for
controlling LEDs)

Instruction

——
LM32 cpy Pport
(master ports) Parallel flash
Data port memory (for
deploying the

’ application code)

UART slave
device (for host
communication)

In this design, the instruction port and the data port of the CPU are the master
ports. All other ports are slave ports. The instruction port will access the
LatticeMico asynchronous SRAM controller and the LatticeMico parallel flash
memory. The data port will access the LatticeMico asynchronous SRAM
controller, the LatticeMico GPIO, the LatticeMico parallel flash memory, and
the LatticeMico UART.

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Introduction

Tutorial Data Flow

You will perform the following major steps to create an embedded
microprocessor system:

1. Create a new project in Lattice Diamond.

2. Create a microprocessor platform for the LatticeMico32 microprocessor in
MSB with a shared-bus arbitration scheme, which is the default.

3. Write the software application code for the microprocessor platform in
C/C++ SPE.

4. Synthesize the platform in a synthesis tool, such as Synopsys® Synplify
Pro® or Mentor Graphics® Precision RTL Synthesis, to generate an EDIF
file.

5. Generate a bitstream of the microprocessor platform in Diamond.

6. Download the hardware bitstream to the FPGA using Diamond
Programmer.

7. Debug and execute the software application code on the board.
8. Deploy the software application code into the parallel flash memory.

9. Deploy the microprocessor hitstream.

Note

This tutorial does not show you how to debug your software application code on the
instruction set simulator, but it does show you how to debug the design by
downloading the bitstream and the application code to the board.

This tutorial supports both Verilog and mixed Verilog/VHDL design flows in
Diamond for Windows and Linux users. The Windows Verilog design flow for
using LatticeMico System to create an embedded microprocessor and the
software code for it is shown in Figure 2 on page 6. The Windows mixed
Verilog/VHDL design flow is shown in Figure 3 on page 7. The difference
between the two methods is that mixed verilog/VHDL designs have a VHDL
wrapper as an output from MSB. The VHDL wrapper is an input to Synthesis
and Functional Simulation in the Diamond flow.

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Introduction

Figure 2: Design Flow for Windows Verilog Users

Mico System Builder Software Project Environment
- »| Createledit application
Create platfol i -
reate pl T msh file Hh CIC++

place & route
Perform
'''''' = fiming
v simulation
Generate
bitstream f~————————

Deploy
elf to
on-chip
memory
! =
I 1
] 1
| 1
—t—=- Runidebug
application with
SPE Debugger

Debug application
with Instruction Set
Simulator (I55)

L 4

Download .elf flash
to parallel flash
memory or PROM

Y
Download bitstream
- . JTAG port
- -+

with isp\/M or UART
Reveal (for _ | | Runfdebug hardware
hardware) - ~ | and software on board

Improve hardware Improve software

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Introduction

Figure 3: Design Flow for Windows VHDL Users, Using Mixed Verilog/VHDL Design Entry

Mico System Builder

Software Project Environment

Create platform

WHDL

wrapper
{_vhd.vhd

Create/edit application
with CIC++

Diamond

Y

Incorporate
platform

Perform functional
simulation

¥

Perform timing
simulation

Generate
bitstream

Y

P ———

Y

Rewveal (for
hardware)

Download bitstream
with ispWM

L | Deploy
.elf to
on-chip
memory
T _ Debug application
' . with Instruction Set
] 1 Simulator (I55)
1 1
r—t—- Runfdebug
: application with
1 SPE Debugger
1
]
1
i
1 A
1
1 Download .elf flash
: to parallel flash
1 memory or PROM
=~

Y

lg— JTAG port o |
or UJART

v

Run/debug hardware
and software on board

oo

Improve hardware

‘ Improve software

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : LatticeMico32/DSP Development Board

LatticeMico32/DSP Development Board

Figure 4 shows where some of the components mentioned in this tutorial

reside on the LatticeMico32/DSP development board.

Figure 4: The LatticeMico32/DSP Development Board

Power Plug

25v
Tesipaint

3.3V
Testpaint

GMD
Tesipaint

1.2V
Taslpaint

CLK
Tasipaint

Flywena
Cannactor

High-Spoed
USE for
Configuration

AS232 puse Ethemet VGA Mini USE
Conmecion Li]'!‘:"-'::.'rt 10400M Connector OTG Connectar

o el
e’ le el
§. eIl

LCD Sigma Deita
Connactor DAC Connector

In Version 2 of this board, the on-board LISE cable circuit has bean updated.

1. A USB RESET# pushbution has LIS Fosct
bean added. The Version 1 board - = I?'ushbul:t-:n
includes a single Reset pushbution = T {v.2 boand)
that resets both the LatticsECP2 SEE MachX0-640
FPGEA and the USE cabls. The | = 2 {w.A board),
addition of the USB RESET# bution il MachX0-2280
allows the FPGA to be resst {v.2 board)

indepsndent from the USE cabls
cincuit.

2. In the Version 2 board, the MachXD device has been changed from a
MachX¥0640 to a Mach¥ 02280 device.

ISB Host
Connector

DOR SDRAM
Sockal

SATA LVDS
Connactars

Expansion
Connactor

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 1: Create a New Lattice Diamond Project

Task 1: Create a New Lattice Diamond Project

As a first step, you will create a new project in Diamond.

Note

In this tutorial, the directory paths follow the Windows nomenclature. For Linux,
replace the “\" character with the “/” character.

To create a new Lattice Diamond project:

1. Create a folder called Im32_tutor in the following directory:
For Windows, <Diamond_install_path>\examples
For Linux, ~/LatticeMico32

2. Start Lattice Diamond:

On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

On the Linux command line, run the following script:
<Diamond_install_path>/bin/lin/diamond

3. Choose File > New > Project, and then click Next in the New Project
wizard.

4. Inthe New Project wizard dialog box, shown in Figure 5 on page 10,
select or specify the following:

a. Inthe Project Name box, enter platform1.

b. Inthe Location box, enter the path for the Im32_tutor directory:
For Windows, <Diamond_install_path>\examples\Im32_tutor
For Linux, ~/LatticeMico32/Im32_tutor

By default, Diamond uses the Project name and location for the
implementation and fills in this information. Although you can change
to a different name and directory for the first implementation, you will
use the default settings for this tutorial.

LatticeMico32 Tutorial 9

LATTICEMICO32 TUTORIAL

Task 1: Create a New Lattice Diamond Project

5. Click Next to proceed to the Add Source dialog box, and then click Next.
You will add the source later.

Figure 5: New Project Wizard

6.

-

.
o New Project B |-
Project Name D
Enter a name for your project and specify a directory where the project data files 0
will be stored.

Project:

Name: platform1

Location: C:flscc/diamond;1.4/examples im32_tutor -

Implementation:
Name: platform1

Location: C:/flscc/diamond,1.4/examples,Im32_tutor fplatform1

< Back][MNext =][Cancel

In Select Device dialog box, shown in Figure 6 on page 11, make the
following selections:

a.
b.

In the Family box, select LatticeECP2.

In the Device box, select LFE2-50E.

In the Speed grade box, select 6.

In the Package Type box, select FPBGAG672.

In the Operating Conditions box, select Commercial.

10

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 1: Create a New Lattice Diamond Project

The dialog box should now resemble the illustration in Figure 6

Figure 6: New Project Wizard — Select a Device Dialog Box

r

+ New Project I-_I_J‘EP e S
Select Device)
x4

Specify a target device for the project.

Select Device: Device Information:
Family: Device: Voltage: 1.2V
LatticeEC + | | LFE2-6E LUT: 47352
LatticeECP LFE2-12E Registers: 35964
LatticeECP2 LFE2-20E EBR Bits: 387K
LatticeECP2M LFE2-35E EBR Elocks: 21
LatticeECP3 - | | LFE2-50E Dist RAM: 96K
¢ =it ' LEEZ70E DSP: 18
Speed grade: () Package type: PLL: 4
s ~ | [FreGasT2 v| b 2
Operating conditions: PCS: -
—— = PIO Cells: 604
Commercial hd
PIO Pins: 500
Part Names:
[LFE2-50E-6F672C -
Online Data Sheet for Device
< Back | [MNext >] | Cancel

7.

Click Next, and then click Finish.

In the File List, shown in Figure 7, the project name is shown at the top.
The implementation name, which has the same name as the project
name, is displayed in bold type, with the implementation icon E_B' The
project is assigned a default strategy, Strategyl, which is also displayed in
bold type with the strategy icon . A strategy is a collection of settings
for logic synthesis, place, and route. You can view these settings by

LatticeMico32 Tutorial

11

LATTICEMICO32 TUTORIAL : Task 1: Create a New Lattice Diamond Project

double-clicking the strategy name. The platform1 project is also assigned
a logical preference file, platform1.Ipf.

Figure 7: Diamond File List

File: List & X
4 {8 platform.
il LFE2-50E-6F672C
4 | Strategies
[;)’} Area
E® 1/0 Assistant
E¥ Quick
[;)’} Timing
Strategyl
4 EE platform1
J Input Files

. Synthesis Constraint Files
4 | LPF Constraint Files
[platformLlpf
. Debug Files
. Script Files
. Analysis Files
. Programming Files

File List Process

12 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

Task 2: Create the Development Microprocessor

Platform

In Task 1, you created a blank Diamond project. The Diamond project is a
placeholder for the LatticeMico32 microprocessor platform. You use
LatticeMico System Builder (MSB) to create the microprocessor platform.
MSB allows you to select components to attach to the microprocessor.
Additionally, MSB allows you to customize each of the attached components.
After all components are attached to the microprocessor, you use MSB to
generate Verilog or VHDL source code that describes a microprocessor-
based System-on-a-Chip (SOC). You then enter the HDL source code into the
Diamond project in order to create the bitstream used to configure the FPGA.

The steps in this section describe how to build a LatticeMico32
microprocessor SOC that is intended for developing and debugging
LatticeMico based systems. During system development, the FPGA
resources and the firmware are in a state of flux, undergoing many changes.
When you deploy a LatticeMico32 microprocessor, as described here, you
reduce the impact the of on-going changes in the development environment.

Create a New MSB Platform

Now you will create a new platform in MSB.

To create a new platform:

1. From the Start menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

The Workspace Launcher dialog box, shown in Figure 8, displays a
default workspace location for the platform.

Figure 8: Workspace Launcher Dialog Box

Select a workspace

Eclipse Platform stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | [SEUIRISNTERTN I - Browse...

[] Use this as the default and do not ask again

2. Accept the default location, or click the Browse button to select a different
location. To keep the same workspace for future sessions, select the “Use
this as the default and do not ask again” option.

3. Click OK.

LatticeMico32 Tutorial

13

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

The LatticeMico System interface now appears, as shown in Figure 9.

Figure 9: LatticeMico System Interface

File Edit

il

Mavigate

| &

ra ™y
= MSB - platform1 - Eclipse Platfo [F=EES

Project Platform Tools
O &
3 [ETRBE) B /-~ 3 Dabug

(e =

Window Help

Py owc >

XD aDdD@

@ Available Components &2

G1®@HFELETE

=0

platforml &2

=-inF Memory (0/10)

----- ﬁ SDRAM Controller (3.5)
----- ﬁ On-Chip Memary (3.4)

----- & On-Chip Dual-Port Memory (3.1)
o DDR SDRAM Centroller (v6.9)
0 DDR3 SDRAM Controller (v1.3)
0 DDR2 SDRAM Controller (v7.2)

..... £ SPIFlash (3.4)
..... § Parallel Flash (3.1)

----- $t Async SRAM (3.1)
=4 10 (0/11)

S PClTarget 33 (v6.1)
..... ﬁ DMA (3.3)

..... §t UART (3.6)

----- & Timer (3.0)
..... R SPIGL)

----- $& memory_passthru (3.0)

0 Tri-5peed Ethernet MAC (v3.4)

- Mame Wishbone Connection

m

[Selected element name will be showr [Selected element version will be showr

4 m +

Console &2

Color Correction Matrix CCM |

s

%Componentﬁ\ttributes P =0

Attribute Value Software Constants

Type Component Message

In the upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

Choose File > New Platform.
In the New Platform Wizard dialog box, make the following selections:
a. Inthe Platform Name box, enter platform1.
b. In the Directory box, browse to the Im32_tutor directory and click OK:
For Windows, <Diamond_install_path>\examples\Im32_tutor
For Linux, ~/LatticeMico32/Im32_tutor
c. Do one of the following:

If you are generating a platform in Verilog, leave the Create VHDL
Wrapper unselected.

If you are generating a platform in mixed Verilog/VHDL, select only
Create VHDL Wrapper.

d. Inthe Arbitration scheme box, select Shared Bus (Default) from the
drop-down menu, if it is not already selected.

14

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

e. Inthe Device Family section, select LatticeECP2 from the Family
menu and LFE2-50E from the Device menu.

f. In the Platform Templates box, select blank.

Templates are pre-created platforms that facilitate rapid development.
They target the LatticeMico32/DSP Development Board for
LatticeECP2. Each platform also has an associated constraint file that
you can import into Diamond to avoid the effort of creating a
constraints file. MSB gives you the flexibility of creating and adding
your own custom templates and associated constraints files for the
LatticeMico32/DSP development board or a custom board, in addition
to using the templates provided as part of the installation package.

The New Platform Wizard dialog box should look like the illustration in
Figure 10.

Figure 10: New Platform Wizard Dialog Box

New Platform Wizard

This wizard creates a new platform.

Platform name: platforml Overwrite existing platform.
Directory: diamond\l 4\ examplesitutoriallm32_tutor
Clone Platform
[7]1 Clone Platform Browse...
VHDL Setting
[7] Create VHDL Wrapper Create VHDL NGO file,
Processor Frequency Setting Arbitration Scheme
Processor: ([LM32 - Board Frequency{MHz): 25.0 Scheme: | Shared Bus (Default) -
Part Selection

Family: [LatticeECPZ v] Device: [LFEZ-SUE ¥ | Performance: Package:

Platform Templates

blank # | A platform containing -
PlatformA [a)Lm3z - CPU
PlatformB b) GPIO - configured for 8 bit output only (LED)
PlatformC = c) TIMER =
PlatformD d) ASRAM - Asynchronous SRAM
L4 €) UART - serial port
PlatformF) On-Chip Memory
PlatformG g) Parallel Flash
PlatformH ™ L
@ Finish] [Cancel
7. Click Finish.

LatticeMico32 Tutorial 15

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

The MSB perspective now appears, as shown in Figure 11.

Figure 11: MSB Perspective

Available
Components
view

Console view
or Component
Help view

FEp———— e

File Edit Navigate Project Platform Toels Window Help
- B0 i~ if-F-&-a- |
= [0 mse | B c/c++ %5 Debug

() Available Compenents 5

= 0| @) platform1 52 =g
CI1@E A0 Name
& Async SRAM (3.1) -
@ 10 (0/11)
O PCITarget 33 (v6.1)
& DMAGS3)
$t UART 3.6)
0 Tri-Speed Ethernet MAC (v3.4) H
- Timer G.0)
& SPIRL)
~$% slave_passthru (31)
~$% master_passthru (3.2)
OPENCORESI2C Master (3.1)
& GPIOG3)
S EFE(LD)
@ CPU (042)
© LatticeMicos (3.2)
Y LatticeMico32 (3.8)

Wishbene Connection Base

m

Im32_top 28 ‘ i v

Ef) Consele & . LatticeMico32 processer 5 = O |[%2 Component Attributes 22— O

Type Component Message

Attribute B
/ Name

Version

Instance Name
< .

B

The MSB perspective consists of the following views:

Editor
view

Component
Attributes
view

Available Components view, which displays all the available components

that you can use to create the design:

A list of hardware components: microprocessor, memories,
components, and bus interfaces. Bus interfaces can be masters or
slaves (see “Specify the Connections Between Master and Slave

Ports” on page 27 for more information on masters and slaves). The
component list shown in Figure 11 is the standard list that is given for
each new platform.

A list of preconfigured systems: demonstrations and pre-verified
configurations for a given development board or a configuration that
you previously built

You can double-click on a component to open a dialog box that enables
you to customize the component before it is added to the design. The

component is then shown in the Editor view.

Editor view, which is a table that displays the components that you have
chosen in the Available Components view. It includes the following

columns:

Name, which displays the names of the chosen components and their
ports
Wishbone Connection, which displays the connectivity between
master and slave ports
Base, which displays the start addresses for components with slave
ports. This field is editable.

16 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

Size (Bytes), which displays the number of addresses available for
component access. This field is editable for the LatticeMico on-chip
memory (EBR) and the LatticeMico asynchronous SRAM controller
components only.

Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

IRQ, which displays the interrupt priorities of all components that have
interrupt lines connected to the LatticeMico32 microprocessor. The
LatticeMico32 microprocessor can accept up to 32 external interrupt
lines.

Disable, which indicates whether components are temporarily
excluded from the design

Component Help view, which displays information about the component
that you selected in the Available Components view. The Help page
displays the name of the component—for example, “LatticeMico Timer” or
“LatticeMico UART—and gives a brief description of the function of the
component. It also provides a list and explanation of the parameters that
appear in the dialog box when you double-click the component. If you
click the @ icon next to the component name, you can view a complete
description of the component in a PDF file.

Console view, which displays informational and error messages output by
MSB

Component Attributes view, which displays the name, parameters, and
values of the component selected in the Available Components view or
the Editor view. This view is read-only.

Add the Microprocessor Core

The first step in building the platform is to add the microprocessor core. In this
release, only the LatticeMico32 microprocessor is available.

You will be using the default cache setting for this task. Refer to the
LatticeMico32 Processor Reference Manual for more information on caches.

To add the microprocessor core:

1. Under CPU in the Available Components view, click LatticeMico32 to
view the information available about the LatticeMico32 microprocessor.

Information about the LatticeMico32 microprocessor, including the
parameters that you can set for it, now appears in the Component Help
view and in the Component Attributes view in the lower third of the screen.
If you click the @ icon in the Component Help view, you can view the

LatticeMico32 Processor Reference Manual, which provides a complete
description of the microprocessor.

LatticeMico32 Tutorial

17

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

Similarly, if you click this icon for a memory or a peripheral component,
you can view the data sheet about that component.

2. Double-click LatticeMico32 to open the Add LatticeMico32 dialog box.
Alternatively, you can select LatticeMico32, and then click the Add
Component button (@).

The parameters in the dialog box, shown in Figure 12 on page 19,
correspond to those in the table in the Component Help view.

You are defining a development LatticeMico32 microprocessor. The
LatticeMico32 microprocessor component, when the Enable Debug
Interface option is selected, has an internal Embedded Block RAM
memory attached to the Wishbone bus. This memory is automatically
initialized with LatticeMico opcodes. This means that when the
LatticeMico32 microprocessor comes out of reset, it has a valid set of
opcodes to execute. The LatticeMico32 microprocessor needs only a few
key elements to operate correctly: a good input clock, a reset strobe
assertion and de-assertion, and a set of known good opcodes. During the
development process, the Debug Monitor memory attached to the
LatticeMico32 Wishbone bus is the only guaranteed source of known
good opcodes. It is of vital importance for the Reset Exception Address to
point to this memory. By default, the Debug Port Base Address is
assigned to 0x00000000. This address can be changed, but it is important
that the Reset Exception Address be updated to match the Debug Port
Base Address.

This tutorial will leave the Debug Port Base Address set to 0x00000000.
3. Inthe Add LatticeMico32 dialog box, do the following:

a. Select the General tab. If it is not already set as default, type
0x00000000 in the “Location of Exception Handlers” box to set the
LatticeMico32 reset vector, as shown in Figure 12 on page 19. This
step sets the reset exception address, which is the address from
where the microprocessor will begin fetching instructions at power-up.
This address must be aligned to a 256-byte boundary.

18 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

b. Under the section Instruction Cache, select Instruction Cache

Enabled.

Figure 12: Add LatticeMico32 Dialog Box — General Tab

= Add LatticeMico32 1

General | Inline Memory

Instance Mame

Settings

[] Use EBRs for Register File
[¥] Enable Divide

Enable Sign Extend

Location of Exception Handlers (:00000000

Multiplier Settings

[¥] Enable Multiplier

@ Enable Pipelined Multiplier (DSP Block if available)
() Enable Multicylce (LUT Based, 32 cycles) Multiplier

Instruction Cache

[#]Instruction Cache Enabled

Memory Type @ Auto () Distributed RAM

(") Dual-Port EBR (7) Pseudo Dual-Port EBR

LM32
Debug Setting
[#] Enable Debug Interface
of H/W Watchpoint Registers 0
[C] Enable Debugging Code in Flash or ROM
of H/W Breakpoint Registers | 0
[Enable PC Trace
Trace Depth 1024

[C] Enable Dynamic Mapping of Exception Handlers to Debugger

Shifter Settings
@ Enable Pipelined Barrel Shifter

(©) Enable Multicycle Barrel Shifter (upto 32 cycles)

Data Cache

Data Cache Enabled

Set Associativity

Memory Type @ Auto

() Distributed RAM
() Dual-Port EBR

0K | ’ Cancel] ’ Help

c. Select the Inline Memory tab. Under the section Data Inline Memory,
select Enabled. If it is not already set as default, type 0x10000000 in
the Base Address text box, as shown in Figure 13 on page 20.

d. Click OK to accept the default settings for the rest of the options.
Information about the microprocessor now appears in the Name,
Wishbone Connection, Base, End, and Size columns of the table in

the Editor view.

LatticeMico32 Tutorial

19

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Figure 13: Add LatticeMico32 Dialog Box — Inline Memory Tab

-
= Add LatticeMico32 g

- -
— -

General | Inline Memaory |

Instruction Inline Memory
7] Enabled

Memory File

Initialization File Name

Instance Mame | Instruction_IM

Base Address | 0x00100000

Size of Memory(in bytes) | 0:00000800

none

Browse...

File Format | hex
Data Inline Memory l
Enabled
Instance Mame Data_IM
Base Address | 0:10000000
Size of Memory(in bytes) 000000800
Memory File
Initialization File Name none
File Format | hex hd
0K } [Cancel] [Help]
. = ————

20

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

The MSB perspective now shows the LatticeMico32 microprocessor in the
Editor View, as shown in Figure 14.

Figure 14: MSB Perspective with Microprocessor

*platform &2

Name Wishbone Connec... Base End Size(Bytes) Lock IRQ Disab..
LM32 g
Instruction Port 0
Data port 1
Debug Port 0x00000000 Ox00003FFF ox00004000 U
Data_IM 0x10000000 Ox100007FF ox00000800 U

The Wishbone Connection column graphically displays the types of ports and
connections. Black horizontal lines with outbound arrows indicate master
ports, whereas blue horizontal lines with inbound arrows indicate slave ports.
The vertical lines are associated with master ports, and the filled circles
indicate connections between master and slave ports. The illustration shows
that the microprocessor’s slave Debug Port is connected to the master
Instruction Port and Data Port.

LatticeMico32 Tutorial 21

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Add the Off-Chip Memory

Next you will add the LatticeMico asynchronous SRAM controller and the
parallel flash memory.

Add the Asynchronous SRAM Controller

The LatticeMico asynchronous SRAM controller is required to download and
execute the software application code. The LatticeMico32/DSP development
board has two 4-megabit asynchronous SRAM modules organized as 256K x
32, giving a total of 1 megabyte of asynchronous SRAM memory. This SRAM
shares the data and address buses with the on-board parallel flash memory
chips that are organized as 8M x 32. The wen and oen common control
signals are also shared, although each memory type (SRAM, parallel flash
memory) has its own chip select.

To add the asynchronous SRAM memory to the platform:

1. Under Memory in the Available Components view, double-click Async
SRAM to open the dialog box. Alternatively, you can select Async SRAM,
and then click the Add Component button {&).

In the Add Async SRAM dialog box, shown in Figure 15, the SRAM size is
1 megabyte. However, it shares the address bus with the flash device pair.
The address bus size will be adjusted to the correct width when the flash
memory peripheral is configured next in the tutorial. When “Share
External Ports” is selected, the asynchronous memory component with
the largest Address Width entry defines the size of the address bus.

Figure 15: Add Async SRAM Dialog Box

= Add Async SRAM LX)

Instance Name sram
Base Address (:00000000
Size 0x00100000
/| Share External Ports(for HPE_mini Board)
Async SRAM Settings

Read Latency 1 5

Write Latency 1 5

SRAM Address Width 23 =
SRAM Data Width 32 =

SRAM Byte Enable Width 4 5

Performance Settings
/| Registered Data Qutput

WISHBOME Configuration

WISHBOME Data Bus Width |32 -

0K] | Cancel | | Help |

22

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

Note

You can delete a component from the Editor view by right-clicking the component
in the Editor view and selecting Remove Component from the pop-up menu. If
you cannot remove a component, this command will be unavailable on the menu.

2. Accept the default settings in the dialog box, and click OK.

Note

The read and write latencies of the Async SRAM controller are based on the read and
write latencies of the Async SRAM on the board. They are measured in WISHBONE
clock cycles and therefore the clock frequency of the design. The current design
operates at 25 MHz and a read/write latency of 1 is sufficient for the Async SRAM on
the board. For every 25 Mhz increase in clock frequency, the read/write latencies must
be increased by 1. For example, if the design were operating at 50 MHz, the read/write
latencies would be set to 2.

Add the Parallel Flash Memory

The LatticeMico32/DSP development board has two 16-bit-wide, 16-
megabyte Common Flash Interface (CFl) parallel flash components. These
two flash devices together appear as a 8M x 32 flash component. This flash
pair will be used for software deployment.

To add the parallel flash component to the platform:

1. Under Memory in the Available Components view, double-click Parallel
Flash to open the dialog box. Alternatively, you can select Parallel Flash,
then click the Add Component button @

2. Inthe Add Parallel Flash dialog box, shown in Figure 16 on page 24, do
the following:

a. Inthe Base Address box, change the address to 0x02000000.
b. Inthe Size box, change the size to 0x02000000.

The parallel Flash memory is placed at address 0x02000000 because
of the address decode scheme used by the LatticeMico system. All
components in a LatticeMico32 platform must be aligned to an
address that corresponds to the largest Size(Bytes) entry. The
LatticeMico32 address space is divided into two 2GByte ranges.
Addresses below the 2GB boundary are memory components.
Addresses above the 2GB boundary are I/O components. The
alignment of components are based on the memory range in which
they reside. In this tutorial, the largest memory block is the 32MByte
parallel Flash component. This means that all memory components
must be 32MB-aligned. Therefore, valid base addresses for memory
components are 0x00000000, 0x2000000, 0x4000000, 0x6000000,
and so forth.

The flash address bus is shared with the SRAM address bus. The
flash is addressed as 8Mx32, but the address width must be wide
enough to address 32Mx8, so 25 address bits are required. Make sure
that the FLASH Address Width option is set to 25 bits wide to ensure

LatticeMico32 Tutorial

23

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Figure 16: Add Parallel Flash Dialog Box

= Add Parallel Flash

Instance Name flash

Base Address (x02000000

Size | 0x02000000
/| Share External Ports(for HPE_mini board)

Byte signal

/| Enable Extra Flash Signals 7] Byte signal

Write Protect signal

/| Write Protect signal

Reset signal
/| Reset signal
Settings
Read Latency
Write Latency
FLASH Address Width
FLASH Data Width

FLASH Byte Enable Width

Hold Low

Hold Low

Hold Low

25

32

@ Hold High

@ Hold High

@ Hold High

ok ||

Cancel

Help

that there are enough address bits to access the 1Mx8 SRAM block

and the 32Mx8 flash memory block.

c. Click OK to accept the default settings for the rest of the options.

Note

NOTE: The read and write latencies of the Parallel Flash controller are based on the
read and write latencies of the Parallel Flash on the board. They are measured in
WISHBONE clock cycles and therefore the clock frequency of the design. The current
design operates at 25 MHz and a read/write latency of 1 is sufficient for the Parallel
Flash on the board. For every 25 Mhz increase in clock frequency, the read/write
latencies must be increased by 1. For example, if the design were operating at

50 MHz, the read/write latencies would be set to 8.

Add the Peripheral Components

Now you will add the peripheral components to the platform.

24

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Add the GPIO

The first peripheral component that you will add is the LatticeMico GPIO
component, which provides a memory-mapped interface between a

WISHBONE port and general-purpose I/O ports. The 1/O ports connect either

to on-chip user logic or to I/O pins that connect to devices external to the
FPGA.

To add the GPIO to the platform:

1. Under IO in the Available Components view, double-click GPIO.

Alternatively, you can select GPIO, then click the Add Component button

2. Inthe Add GPIO dialog box, shown in Figure 17 on page 25, do the
following:

a.

b. Change the setting of the Data Width option to 8.

Figure 17: Add GPIO Dialog Box

C.

In the Instance Name box, change the name of the GPIO to LED.

2 Add GPIO ===
Instance Name LED
Base Address (x80000000

Port Types Input/Output Port Widths

@ Output Ports Only Data Width | &

() Input Ports Only

) Input Width | 1

() Tristate Ports

() Both Input and Output QD (|
IRQ Mode

[T]IRQ Mode Level Sensitive @ Edge Sensitive
Edge Response

Either Edge @) Postive Edge MNegative Edge
WISHBOME Configuration
WISHBONE Data Bus Width
0K] ’ Cancel] ’ Help]

Click OK to accept the default settings for the rest of the options.

For this tutorial, the GPI1O block must be named LED. Failure to name
the GPIO block LED will cause mismatches in the FPGA I/O pin
names. The example C source code uses this instance name to
access the GPIO registers.

LatticeMico32 Tutorial

25

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

Add the UART

The final component that you will add is a LatticeMico universal asynchronous
receiver-transmitter (UART), a core that contains a receiver and a transmitter.

The receiver performs serial-to-parallel conversion of the asynchronous data

frame received at its serial data input pin. The transmitter performs parallel-to-
serial conversion on the 8-bit data received from the CPU.

To add the UART to the platform:

1. Under IO in the Available Components view, double-click UART to open
the dialog box. Alternatively, you can select UART, and then click the Add
Component button (&).

2. Inthe Add UART dialog box, shown in Figure 18, click OK to accept the
default settings.

Figure 18: Add UART Dialog Box

= Add UART [

Instance Name uart
Base Address (x80000000

UART Cenfiguration

Baud Rate [115200 -

Data Bits [8 -

Stop Bits [1 -

[7] Parity Enable Odd Parity Stick Parity
[] Set Break
[T Tx/Rx FIFO

UART Sideband Signals
[Receiver Ready [] Transmitter Ready

Software settings
Use interrupt
Block on transmit
Block on receive

Rx Buffer Size 4 -

Tx Buffer Size 4 =

Transmit Settings for RTL Simulation
[7] Print Transmit Character

Emulate Transmit Operation

ok || cancel |[Hep

26 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

The MSB perspective now resembles the illustration in Figure 19.

Figure 19: MSB Perspective After Addition of All Components in a Shared-Bus Arbitration Scheme

platform 3
MName
LM32
Instruction Port
Data port
Debug Port
Data_IM
sram
ASRAM Port
flash
Data Port
LED
GP I/O Port
uart
UART Port

Wishbone Connec.. Base

—

aua

0x00000000
0x10000000

0x00000000

0x02000000

0x80000000

0x80000000

End

OxO0003FFF
Ox100007FF

OxOO00FFFFF

OXO3FFFFFF

0x8000000F

Ox8000000F

Size(Bytes)

Ox00004000
000000800

0x00100000

0x02000000

0x00000010

Ox00000010

Lock IRQ Disab..
O

Specify the Connections Between
Master and Slave Ports

The connections that you will make between the master and slave ports in the
Editor view will reflect the access scheme shown in Figure 1 on page 4.

The following information applies to master and slave ports in the Editor view:

There are two types of ports: master ports and slave ports.

A master port can initiate read and write transactions.

A slave port cannot initiate transactions but can respond to
transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

A master port can be connected to one or more slave ports.

A component can have one or more master ports, one or more slave
ports, or both.

LatticeMico32 Tutorial

27

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Horizontal lines with outbound arrows sourced from a component port
indicate a master port.

Horizontal lines with inbound arrows targeting a component port indicate a
slave port.

The vertical lines are associated with horizontal lines with outbound
arrows (that is, master ports) to facilitate "connectivity" from a master port
to a slave port. A circle represents the intersection of the vertical line and
a horizontal line associated with a slave port.

A filled circle indicates a connection between the master port represented
by the vertical line and the slave port represented by the horizontal line
associated with the filled circle.

A hollow circle indicates an absence of connection between the master
port represented by the vertical line and the slave port represented by the
horizontal line associated with the hollow circle. This can be seen in
Figure 19 on page 27, where only the LatticeMico32 microprocessor
Wishbone ports are connected.

The numbers next to the lines representing the master ports are the
priorities in which the master ports can access the slave ports. You can
change the priority of these connections by following the instructions in
the online Help for LatticeMico System.

To specify the connections between master and slave ports:

1.

Connect the instruction and data ports to the LatticeMico asynchronous
SRAM controller slave port by clicking both circles in the Wishbone
Connection column of the ASRAM Port row.

Connect the instruction and data ports to the LatticeMico parallel flash
slave port by clicking both circles in the Wishbone Connection column of
the Data Port row.

Connect the data port to the LatticeMico GPIO slave port by clicking the
circle in the Wishbone Connection column of the GP 1/O Port row.

Connect the data port to the LatticeMico UART slave port by clicking the
circle in the Wishbone Connection column of the UART Port row.

Figure 20 on page 29 shows the resulting connections in the Editor view.

This tutorial example uses the shared-bus arbitration scheme. For information
about bus arbitration schemes, refer to the LatticeMico32 Software
Developer's User Guide. The master ports are represented by black lines, and
the slave ports are represented by blue lines. Both the instruction and data
ports connect to the LatticeMico asynchronous SRAM controller and the

28

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

parallel flash controller, but only the data port connects to the LatticeMico
GPIO and the LatticeMico UART.

Figure 20: Connections for Shared Bus Arbitration

- LM32
Instruction Port 0 «—F— Master ports
D L «—
ata port - +1
Debug Port o I
Instruction_IM
Data_IM
—| Eram
Slave ports
ASRAM Port " P SR
—| flash
Data Port -+
-] LED
GP /O Port 4 = »
= wart
UART Port s i

Figure 21 shows the connections generated by MSB. MSB automatically
generates the arbiter, depending on which arbitration scheme is selected. In
the case of the shared-bus arbitration scheme, it generates the
microprocessor platform to allow multiple master ports access to multiple
slave ports over a single shared bus. In the diagram, the instruction port
accesses the LatticeMico asynchronous SRAM controller and the flash
controller. The data port accesses the LatticeMico asynchronous SRAM

LatticeMico32 Tutorial 29

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

controller, the LatticeMico GPIO, the LatticeMico parallel flash controller, and
the LatticeMico UART.

Figure 21: Connections Generated by MSB

SRAM slave
device (memory

— for code and

data)

Instruction GPIO slave

Instruction port ﬁ Shared Bus controlling LEDS)

LM32 CPU
(master ports)

Data port

port — jcvice (for

Arbiter
Data port Parallel flash

' memory (for
deploying the

application code)

UART slave

——] device (for host

communication)

Assign Component Addresses

The next step is for MSB to generate an address for each component with
slave ports. Addresses are specified in hexadecimal notation. Components
with master ports are not assigned addresses.

Note

You can only edit the addresses in the Base column in the Editor View. You cannot edit
the addresses in the End column. The value of the end address is equivalent to the
value of the base address plus the value of the size.

You will not assign individual addresses. There are only two addresses that
need to be manually assigned: the Debug Memory and the Parallel Flash
Memory.

During the creation of the Parallel Flash component, you explicitly assigned
an address (0x02000000) to the parallel flash component and the Inline Data
memory. You must lock the parallel flash address so that MSB will not
automatically assign it a new address. You do not want the flash address to
change for this example, because that is where the final software application
code will reside.

30

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

To lock the address:

1.
2.

In the Lock column, select the box for the parallel flash (flash).

In the Lock column, select the box for the Debug Port.

To automatically assign component addresses:

Choose Platform Tools > Generate Address, or click the Generate
Base Address button @), or right-click in the Editor view and choose
Generate Address from the pop-up menu.

The addresses now appear in the Base and End columns in the Editor
view, in hexadecimal notation. Slave components that are not memories
are assigned addresses within the 0x80000000-0xFFFFFFFF memory
range. The Generate Address command sets A31 of each of the I/O
components to ‘1’.

Note

Address and size values that appear in italic font in the Editor view cannot be
changed.

Your MSB perspective should now resemble the example shown in
Figure 22. The base addresses that you see in your Editor view might be
different from those shown.

Figure 22: MSB Perspective After Assignment of Addresses in a Shared-Bus Arbitration Scheme

platform &2
Name
4 LM32
Instruction Port
Data port
Debug Port
Data_IM
4 sram
ASRAM Port
4 flash
| Data Port
4 LED
GP I/O Port
4 yart
UART Port

Wishbone Connec...

— |

—

Base End Size(Bytes) Lock IRQ Disab..
O

0x00000000 OxO0003FFF k00004000
0x10000000 Ox100007FF ox00000800 O

O
0x00000000 OxO00FFFFF 0x00100000 O

O
0x02000000 OxO3FFFFFF 0x02000000

O
0x80000000 Ox8000000F ox00000010 O

O

0x80000000 0x8000000F 0x00000010 O =

LatticeMico32 Tutorial

31

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

Assign Interrupt Request Priorities

The interrupt request priority is the order in which hardware components
request computing time from the CPU. Now you will assign an interrupt
request priority (IRQ) to all components that feature a dash in the IRQ column
of the Editor view. You cannot assign interrupt priorities to components lacking
this dash in the IRQ column, such as memories and CPUs.

To assign interrupt priorities for all components providing interrupt
functionality:

Choose Platform Tools > Generate IRQ, or click the Generate IRQ
button (m), or right-click in the Editor view and choose Generate IRQ
from the pop-up menu.

Note

To reassign an interrupt priority for a specific component, go to the IRQ column in the
row for the component, click on the current interrupt priority number, and choose the
new priority number from the drop-down menu. Explicitly assigned interrupt priorities
will not be overridden by the interrupt generator tool. The Lock control does not affect
IRQ assignment; it only prevents auto-assignment of the Base Address.

If you accidentally assign duplicate priorities, MSB will issue an error
message in the Console view when you select Platform Tools > Generate

IRQ.

Perform a Design Rule Check

You will want to perform a design rule check to verify that components in the
platform have valid base addresses, interrupt request values, and other
fundamental properties.

To perform a design rule check:

Choose Platform Tools > Run DRC, or click the Run DRC button (@),
or right-click in the Editor view and choose Run DRC from the pop-up
menu.

In the Console view, MSB shows that there are no errors in the platform.

Generate the Microprocessor Platform

You are now ready to generate the microprocessor platform. During the
generation process, MSB creates the following files in the
.\TutoriaNlm32_tutor\platform1\soc directory:

A platform1.msb file, which describes the platform. It is in XML format and
contains the configurable parameters and bus interface information for the
components.

32

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

A platform1.v (Verilog) file, which is used by both Verilog and mixed
Verilog/VHDL users:

For Verilog users, the platform1.v file is used in both simulation and
implementation. It instantiates all the selected components and the
interconnect described in the MSB graphical user interface. This file is
the top-level simulation and synthesis RTL file passed to Diamond. It
includes the .v files for each component in the design. These .v files
are used to synthesize and generate a bitstream to be downloaded to
the FPGA. The first time Generate is run, the Verilog source for each
component in the platform, which is located in
<Diamond_install_path>/micosystem/components/<component>, is
copied into a subdirectory called “components.” The components
subdirectory is a sibling to the soc subdirectory.

For mixed Verilog/VHDL users, the platform1.v file is used in
simulation only.

A mixed-mode Verilog and VHDL simulator, such as Aldec® Active-
HDL™, is needed for functional simulation.

A platforml1_vhd.vhd (VHDL) file is created if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
mixed Verilog/VHDL design. The platform1_vhd.vhd contains the top-level
design used for synthesis. This top-level design file instantiates the
platform1 component.

The contents of the platform1.msb file are used by the C/C++ development
tools. The C/C++ source code build process extracts the base address
information and the size of each component and uses the information to build
GNU LD linker files. Each time the Generate function is run, it causes the C/
C++ compiler to consider the C/C++ source code to be out of date. This
means that the source code will be rebuilt from scratch after each Generate
process.

To generate the microprocessor platform:

Click anywhere in the Editor view and choose Platform Tools > Run
Generator, or click the Run Generator button @), or right-click and
choose Run Generator from the pop-up menu.

The Console view displays the output as MSB processes the design.

If you are using Verilog, you will see Finish Generator in the Console
view when the generator is finished. If the project was created with the
“Create VHDL Wrapper” option selected, the project is a mixed Verilog/
VHDL flow and the generator silently launches Synplify synthesis and
Diamond to create the wrapper. If you are using mixed Verilog/VHDL, you
must wait for the Finish VHDL Wrapper message to appear in the
Console view.

LatticeMico32 Tutorial 33

LATTICEMICO32 TUTORIAL

Task 2: Create the Development Microprocessor Platform

The MSB perspective now looks like the illustration in Figure 23. The
assigned addresses for the components other than the parallel flash might
differ.

Figure 23: MSB Perspective After Building the Microprocessor Platform in a Shared-Bus
Arbitration Scheme

platform &2

MName

LM32

Instruction Port

Data port

Debug Port

Data_IM
sram

ASRAM Port
flash

Data Port
LED

GP I/O Port
uart

UART Port

Wishbone Connec...

— |

—

Base

0x00000000
0x06000000

0x04000000

0x02000000

0x80000000

0x80000010

End

Ox00003FFF
Ox060007FF

OXO4OFFFFF

OXO3FFFFFF

0x8000000F

0x8000001F

Size(Bytes)

0x00004000
0x00000800

0x00100000

0x02000000

0x00000010

0x00000010

Lock

RQ Disab..
]

34

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

As shown in Figure 24, MSB generates a platform1_inst.v file, which contains
the Verilog instantiation template for use in a design where the platform is not
the top-level module. For a mixed Verilog/VHDL project, no equivalent file is
generated.

Figure 24: Verilog Instantiation Template

platforml platforml u (

.clk_i(clk_i),

.reset_n(reset_n)

, .sramsram_csn(sramsram csn) //

, .sramsram be (sramsram be) // [4-1:0]

, .flashsram csn(flashsram csn) //

, .flashsram be (flashsram be) // [4-1:0]
“ifdef FLASH BYTE ENB

, .flashsram byten(flashsram byten) //
“endif // FLASH BYTE ENB

“ifdef FLASH WP ENB

, .flashsram wpn(flashsram wpn) //
“endif // FLASH WP ENB

“ifdef FLASH RST ENB

, .flashsram rstn(flashsram rstn) //
“endif // FLASH RST_ENB

, .LEDPIO OUT (LEDPIO_ OUT) // [10-1:0]

, .uartSIN(uartSIN) //

, .uartSoUT (uartsouT) //

, .sramflashOEN (sramflashOEN)

, .sramflashWEN (sramflashWEN)

, .sramflashADDR (sramflashADDR)// [24:0]
, .sramflashDATA (sramflashDATA)// [31:0]

Figure 25 on page 36 shows the structure of the directory that MSB
generates. The directory structure is created the first time the Generate
process is run. The contents of the components subdirectory is only written
the very first time the Generate function is run. After the first run it remains
static. There is an exception: when a MSB project is opened after installing a
new version of the LatticeMico System Builder, a new component version
might exist. You are given an opportunity to update to the new component.
Accepting the update will modify the components subdirectory.

Note

Figure 25 shows an example platform. The figure does not show the entire directory
and file structure.

Task 3: Create the Software Application Code

In this task, you create the software application by using C/C++ in the
LatticeMico System Software Project Environment (C/C++ SPE). The
software application is the code that runs on the LatticeMico32
microprocessor to control the components, the bus, and the memories. The
application is written in C/C++.

LatticeMico32 Tutorial

35

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

Figure 25: MSB Directory Structure

<install_path>
L [_‘_‘l examples
L D Im32_tutor

L |:| platforml <« Platform project directory

- D components < Components repository
— D asram_top

— D uart_core

—|_] gpio

— |:| Im32_top

—] < Hardware implementation

L D Verilog
L D Im32_top.v top-level processor file

D Im32_debug.v and other debug module *.v files

D drivers 4————— Software implementation
— D peripheral.mk file

D device

LD *.c, *.h files
LatticeMico-specific make files for
L «— .
D gnu managed-make software builds

— D SoC < Platform definition/implementation directory
— D platforml.msb <—— Platform definition (also for software flow)
— D platformlv <——— Verilog platform implementation (for Diamond)

_ D platform1_instv «—— Verilog instantiation template (for Diamond)

- D platform1_vhd.vhd «— VHDL wrapper (if mixed Verilog/VHDL design)

36 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

C/C++ SPE is based on the Eclipse environment and provides an integrated
development environment for developing, debugging, and deploying C/C++
applications. C/C++ SPE uses the GNU C/C++ tool chain (compiler,
assembler, linker, debugger, and other necessary utilities) that has been
customized for the LatticeMico32 microprocessor.

C/C++ SPE uses the same LatticeMico System interface as MSB, but it uses
a different perspective called the C/C++ perspective.

To activate the C/C++ perspective:

In the upper left-hand corner of MSB graphical user interface, select
C/C++.

The C/C++ perspective is shown in Figure 26.

Figure 26: C/C++ Perspective

CIC++
Projects
view or
Navigator
view

Editor

3 OO - patioml - Epae Pt T

| File Edit Nmigete Project PlatformTook Tock Search FRun Window Help
|

| By i ws (EECACes | Debug

~id-a-Eg-g- -0 @ - - - iR abng
= O|((g) pleormt = O[5 Outhi... & ™. Make..| = O
7 Hame Vishbgne Lunnetin Bie o SuelBytes) Loy | OSLEN® & ick Naable.
= LM32 I
Irstruction Port —il
Dats port
Debug Part - . 04000000 (nAO03FFE [T |
Instruction IM 5000000 MOSO00TFF mooooos0 O
Dats M 6000000 MB000TFF toooooso0 [
saam
ASRAM Port - . 00000000 OMOOFFFFE montoooes O
= flach
Dats Port 02000000 OWOQFFFTFF 602000000 B .
w0 ——— Outline
GO Port . 4 EDO0N00 0000 oooooets [
= ust
UART Port 4—[— 3 50000010 OB00000IF oot [

view

Problems | & Console 2 . Properties tB-r-=0

No consoles to disphay #t this time.

Problems view, Console view, Properties view, Debug view, Tasks view, or Search view

The C/C++ perspective consists of the following views:

C/C++ Projects view, which lists C/C++ SPE projects that have been
created

Navigator view, which shows all of the file system's files under the
workspace directory

Editor view, which is similar to the Editor view in the MSB perspective

Outline view, which displays the structure of the file currently open in the
Editor view

LatticeMico32 Tutorial

37

LATTICEMICO32 TUTORIAL

Task 3: Create the Software Application Code

Problems view, which displays any error, warning, or informational
messages output by C/C++ SPE

Console view, which displays informational messages output by the
C/C++ SPE build process

Properties view, which displays the attributes of the item currently
selected in the C/C++ Projects view. This view is read-only.

Search view, which displays the results of a search when you choose
Search > File.

Tasks view, which shows the tasks running concurrently in the background

Make Targets view, which is not used in LatticeMico C/C++ projects

Create a New C/C++ SPE Project

You will create a new project in C/C++ SPE, import the platform1.msb file into
the project, select the application code template to use so that you do not
have to write the code yourself, and compile the code.

To create a new C/C++ SPE project:

1.

In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

In the New Project dialog box, make the following selections:

a. Inthe Project Name box, enter LEDTest.

b. In the Location box, browse to the following directory:
For Windows, <Diamond_install_path>\examples\Im32_tutor
For Linux, ~/LatticeMico32/Im32_tutor/platform1

c. Inthe MSB System box, browse to the following location, select the
platform1.msb file in the dialog box, and click Open.

For Windows,
<Diamond_install_path>\examples\Im32_tutor\platform1\soc\
platform1l.msb

For Linux,
~/LatticeMico32/Im32_tutor/platform1/soc/platform1l.msb

d. Inthe Select Project Templates box, select LEDTest as the template
for the application code.

Note

Project templates are packaged software application files that are copied to the
new project and provide a starting point for building an application. Some
templates have specific requirements, as described in the description pane. If
these hardware and software requirements are not met, the application built may
not function correctly and may require you to debug the application by using the C/
C++ SPE debug interface. C/C++ SPE enables you to create templates in addition
to those included with the installation.

38

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

The New Project dialog box should resemble the figure shown in
Figure 27.

Figure 27: New Project Dialog Box

qmpmjmq i

Mico Managed Make Project Wizard

Mico Managed Make Project Wizard Setting

b

Project Name: LEDTest
Project contents

Location Chlscc\diamond'l.4\examples\m32_tutor\LEDTest B

?,

Select Target Hardware

MSB Systern: Ci/flsco/diamond/1.4/examples/lm32_tutor/platforml/soc/platforml.msb | Browse..

Select Project Templates

CFIFlashProgrammer » | Description
DMATest

hello world
LCD Tirmer Test

LEDiSeos Test It scrolls a running pattern on the LEDs. 3

LEDTest small size
MicroCOS5 LED T5egs App
MicraCOS LED UART App
minimal skeleton
Opencores [2C test
SPIFlashProgrammer
TimerTest _
UART Echo = ¥

— This example exercises the LEDs on
LatticeMico32 Development board.

»

m

MOTE: This may not work on the ISS if the ISS
is not modified to support
GPIO instance.

@ Finish | [Cancel

Note

The directory shown in the Location box in the Project Contents field is where the
software project directory will be created. Your user files will be placed in this
directory.

3. Click Finish.

LatticeMico32 Tutorial 39

LATTICEMICO32 TUTORIAL

Task 3: Create the Software Application Code

Now you see the source code in the middle pane of the C/C++ perspective, as
shown in Figure 28.

Figure 28: Source Code in C/C++ Perspective

IS M
File Edit MNavigate Project Tools Search Run Window Help
il |I°'_—|? S Eracrdr@r o H-QO @@ (2~ - - f=T s -
5 B mse [B C/C++ | %5 Debug
C/C++ Projects &3 = O|/() platform1 LEDTest.c &1 = B|[E= outli... &2 Make..| = 8
AEEN N , E - BRW e
[ERE] LEDTest e * N . @ DDStructsh
* board. =
P LookupServices.h
. i ™ stdioh
. o ® MicoUtilsh
= L i @° LED_GPIO_INSTANCE
. L. ®% uiBlink
* L@ main
#include "DDStructs.h” |
#include "LookupServices.h"
#include "stdio.h"
#inclode "MicoUtils.h"
const char *LED GPIO_INSTANCE = "LED";
const unsigned int uwiBlink = 1:;
int main(void)
{
unsigned char ivValue = 0x1;
unsigned char iShiftlLeft = 1;
% Fetch GPIO instance named "LED" =/
MicoGPIOCtx_t *leds = (MicoGPICCtx t *)MicoGetDevice (LED_GPIO_INSTRNCE) -
4| — Som *
Problems | & Console 2 Properties a} -h-=0
No consoles to display at this time.
/LEDTest o

Linker Configuration

A new C project is almost ready to be compiled and linked. Before you
compile the source code, it is necessary to configure the linker. Every C/C++/
assembly file has, at a minimum, three fundamental sections that need to be
placed.

The compiler splits the source code into an instruction section, a read-only
data section, and a read-write section by default. The first two sections can
be placed in either read-only or read-write memories, while the final section
must be placed in a read-write memory. The C/C++ SPE provides you with an
easy-to-use feature for selecting memories for each region.

Your platform contains three memory components: a data inline memory, a
parallel flash memory, and an asynchronous SRAM memory. You will build the
LEDTest application to run from the asynchronous SRAM memory and data
inline memory.

The Properties dialog box enables you to select and change where the linker
places each of the sections.

40

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

To modify how the linker assigns each section:
1. Make sure that the LEDTest is selected in the C/C++ Projects view.
2. Choose Project > Properties.

The Properties for LEDTest dialog box now appears, as shown in
Figure 29.

Figure 29: Properties for LEDTest Dialog Box

fype filter tex] Info ..

.. Info
. Path: fLEDTest
i Builders

. C/Ce+ build Up= e
H /C++ Indexer Location: Chlsccdiamond\l 4\examplesiim32_tutor\L[EDTest

-~ Platform Last modified: August 11, 2011 6:14:17 PM
i Project References

Text file encoding
@ Inherited from container (Cpl252)
@ Other: | Cpl252

Mew text file line delimiter

@ Inherited from container

() Other:

[Re;tore Defaults.l [Apply]

@ [oK | [canca |

-

You can select from the list on the left side of the Properties window to
open one of the following panes:

Info — provides basic project location information.

Builders — provides information on the builder system used for this
managed build project. It is preconfigured to use the LatticeMico
builder system.

C/C++ Build — enables you to select and manage the compiler,
assembler, and linker settings.

C/C++ Indexer — enables you to specify the indexing method for
searches: fast, full, or no indexer.

Platform — provides information on the platform used by this project, in
addition to other information such as the linker section setting.

Project References — enables you to manage other projects
referenced by the current project. Project References cannot be used
for the LatticeMico C/C++ SPE managed build environment.

3. Select the Platform pane.

LatticeMico32 Tutorial 41

LATTICEMICO32 TUTORIAL

Task 3: Create the Software Application Code

The Target Hardware Platform text box shows the current MSB platform.
You can change the hardware platform used by the software application,
but you must rebuild the software application.

The options in the Linker Script section enable you to select your own
linker script. However, for this tutorial you will use the auto-generated
(default) linker script. For the auto-generated linker script, you can specify
the memories that will be used for the linker sections. The C/C++ SPE
managed build process inspects the specified MSB platform to determine
the available memory regions. As a default, the C/C++ SPE managed
build process selects the largest read/write memory available to contain
all the sections. For this tutorial, you will select the SRAM for program and
read/write data memory sections, and it will select Data Inline Memory for
read-only data memory sections.

4. In the Linker Script section, make the following selections from the drop-
down menus, as shown in Figure 30:

For Program memory, select sram.
For Read-only data memory, select Data_IM.

For Read/write data memory, select sram.

Figure 30: Platform Pane of the Properties for LEDTest Dialog Box

type filter text

- Info
. Builders
: - C/C++ build
- C/C++ Indexer
Platform
Project References

Platform

Target Hardware Platform
M5B System: Ci\lscc\diamend\L M examplesiim32_tuter\platfermlisec\platforml.m

Linker Script

@ Use auto generated linker script |:| Enable Deployment Stdio Redirection

Program memory: Deploy stdin: JTAG UART(LM32) ~

Read-only data memory: Deploy stdout: JTAG UART(LM32) -

Read/write data memory: Deploy stderr: JTAG UART(LM32) ~

() Use custom linker script

l Restore Defaults] [Apply]

[ok [Cancer |

5. Click OK to return to the C/C++ perspective.

Build the Project

The next step is to build the project, in which C/C++ SPE compiles,
assembles, and links your application code, as well as the system library code
provided by C/C++ SPE.

42

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

To compile the project:

In the C/C++ Projects view (left-hand pane), select LEDTest and choose
Project > Build Project. Do not click on any of the buttons in the Build
Project dialog box.

The compilation process generates the following files, among others, in the
LEDTest\platform1 directory:

A C header file, DDStructs.h, that describes the device-driver structures
for the applicable devices, in addition to the relevant platform settings,
such as the microprocessor clock frequency

A C source file, DDStructs.c, that describes the component instance
parameters required by the device drivers in appropriate structures

A C source file, DDInit.c, that invokes specified device initialization
routines for putting the relevant instantiated components in a known state

A linker script, linker.ld (in LEDTest\platform1\Debug), that contains the
location and size of the memory components and the rules for generating
an executable file image, as required by the GNU linker. C/C++ SPE uses
this information to ensure that the program code and data are located at
the correct addresses. Although it is not covered in this tutorial, the
LatticeMico C/C++ SPE enables you to easily specify a custom linker
script to be used in lieu of the generated script for the managed build.

A LatticeMico software executable linked formal file (.elf). The .elf file
contains the Mico instructions, debug information, and information about
the pre-initialized data. This tutorial generates a file called platform1.elf.

These files are included in the directory that C/C++ SPE generates in the
background. The structure of this directory is shown in Figure 31 on page 44.

LatticeMico32 Tutorial

43

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

The contents of this directory are dynamically generated, and any changes to
them are overwritten from build to build.

Note

Only the most important files are shown in Figure 31.

Figure 31: C/C++ SPE Directory Structure

[:l LEDTest <« Project directory
- D debug « Build configuration project output directory

_D *elf < Application executable

— D *0 ¢ User-source object files

— D makefile « Application makefile

| D drivers.mk < Makeflle defining peripheral o
include/source paths for application
Output directory for platform sources

o
)
o
c
«
A

compiled by application makefile

| D 0 Library source object files compiled by
' application makefile

A

Platform library file containing platform-
specific drivers

—D libplatforml.a <«

— [] platforml < Platform library directory

The platform1 library directory shown in Figure 31 contains platform-specific
information for the building of an application.

44 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 4: Generate the Microprocessor Bitstream

Figure 32 shows the automatically generated files in this directory that are
required to build an application. The contents of this directory are generated
dynamically, and any changes to them are not preserved from build to build.

Note

Only the most important files are shown in Figure 32.

Figure 32: LEDTest\Platform1 Library Directory Structure

|:| platforml « Platform library directory
| [:l Debug < Build-configuration platform library output
b directory
- D drivers.mk < Makefile that identifies peripheral
N makefiles for library build

Build settings inherited from application
build settings

- D linker.ld « Default linker script for this platform

— D inherited_settings. mk «

Makefile identifying linker script to use

A

— D linker_settings.mk

— D makefile < Makefile for building platform library

Platform build variables inherited from
application settings

A

— D platform_rules.mk

— D settings.xml < Platform library build-settings file

— ﬁ *clrs < Platform-specific driver sources

— D *h <« Platform-specific driver header files

— ﬁ DDInit.c <« Driver initialization source file
Peripheral instance-specific data

_ ﬁ DDStructs.c < b P
structures

— ﬁ DDStructs. <« Peripheral-specific data structures
LatticeMico boot/startup assembly source

D crtOram.s file

— D system_conf.h System configuration manifest header file

A

Task U: Generate the Microprocessor Bitstream

The next step in the flow is to generate the microprocessor bitstream file. This
bitstream file is then downloaded to the FPGA on the circuit board. To
generate the bitstream file, return to Diamond.

LatticeMico32 Tutorial 45

LATTICEMICO32 TUTORIAL

Task 4: Generate the Microprocessor Bitstream

Import the MSB Output File

First, you must import the Verilog file output by MSB, the Verilog and VHDL
files for mixed Verilog/VHDL, or the EDIF file created by the synthesis tool into
Diamond.

The process of importing the generated platform file into Diamond is the same
for Verilog and mixed Verilog/VHDL, except that you must import the VHDL
wrapper file in addition to the Verilog file for mixed Verilog/VHDL.

Configure the Lattice Diamond Environment

The Diamond build process has the ability to operate in two different modes.
One is to copy all HDL source files into the Diamond project directory, and the
other is to reference them in their current directory structure. The LatticeMico
build requires that the source files remain in the directory structure created by
MSB. The default Diamond behavior is to leave the files where they are, but it
is advisable to verify that Diamond is configured correctly.

1. In Diamond, choose Tools > Options.

2. Under Environment, in the left pane of the Options dialog box, select
General.

3. If the option "Copy file to Implementation's Source directory when adding
existing file" is selected, clear this option and click OK.

Importing the Source Files

You can import the HDL source files generated by MSB into Diamond. If your
design is in Verilog only, you will import the platform1.v file. If your design is a
mixed Verilog/VHDL design, you will import both the platform1_vhd.vhd file
and the platform.v file.

To import the Verilog or Verilog/VHDL files for the tutorial example:
1. In Diamond, choose File > Add > Existing File.
2. Inthe dialog box, browse to the ..\platform1\soc directory:
3. Do one of the following:
Select the platform1.v file (Verilog), and click Add.

If your design is mixed Verilog/VHDL, select both the platform1.v file
and the platform1_vhd.vhd file and click Add.

4. If your design is mixed Verilog/VHDL, perform the following additional
steps:

a. Choose Project > Property Pages.

b. In the dialog box, select the project name that appears in bold type
next to the implementation icon |E_E'

c. Inthe right pane, click inside the Value cell for “Top-Level Unit” and
select <platform1>_vhd from the drop-down menu.

46

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 4: Generate the Microprocessor Bitstream

d. Click inside the Value cell for “Verilog Include Search Path,” and then

click the browse button to open the “Verilog Include Search Path”
dialog box.

e. Inthe dialog box, click the New Search Path button E, browse to the

<platform1>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the

“Verilog Include Search Path” dialog box.

g. Click OK to return to the Diamond main window.

Connect the Microprocessor to the
FPGA Pins

You have two options for connecting the microprocessor to the FPGA pins:

Manually create the pin constraints and import them into Diamond.

Import a preconfigured preference file into Diamond.

For this tutorial, you will import a preconfigured pin preference file into
Diamond.

To import the preconfigured pin preference file:

1.
2.
3.

In Diamond, select the File List tab and double-click Strategy1.
In the Strategies dialog box, select Translate Design in the left pane.

In the right pane, double-click the cell in the Value column for “Consistent
Bus Name Conversion.”

Choose Lattice from the drop-down menu and click OK.

In Diamond, choose File > Add > Existing File.

In the Add Existing File dialog box, do the following:

a. Select Constraint Files (*.1pf) from the Files of type menu.

b. Select the option Copy file to Implementation’s Source directory.

c. Navigate to the following directory, select the PlatformE.Ipf file for the
File Name box, and click Add.

<Diamond_install_path>\micosystem\platforms\PlatformE\
ECP2\HPE_MINL.Ipf

Diamond adds the .Ipf file to the project and displays file name and path in
the File List.

In the File List pane, right-click HPE_MINL.Ipf and choose Set as Active
Preference File.

Diamond displays the HPE_MINI .Ipf file and path in bold type, indicating
that the HPE_MINI will now be used instead of the platform1.Ipf file.

LatticeMico32 Tutorial

47

LATTICEMICO32 TUTORIAL

Task 4: Generate the Microprocessor Bitstream

Perform Functional Simulation

You can optionally simulate the functionality of the output top-level platform1.v
or platforml1_vhd.vhd module by using a simulator such as Active-HDL in
Diamond. See the Active-HDL online Help in Diamond for more information
on this procedure.

For Verilog simulation, you use platforml1.v and all the Verilog files for
each attached component.

For mixed Verilog/VHDL simulation, you use platform1_vhd.vhd,
platform1.v, and all the Verilog files for each attached component. You
must use a mixed-language simulator such as ModelSim® SE or Aldec
Active-HDL.

See Also “Performing HDL Functional Simulation of LatticeMico Platforms”
in the LatticeMico32 Software Developer User Guide.

Perform Timing Simulation

You can optionally validate the timing of your design by performing timing
simulation. Because timing simulation is a complex topic, it is not addressed
in this tutorial. For information on timing simulation, see the Achieving Timing
Closure in FPGA Designs Tutorial, the “Design Verification” topic in the
Diamond online Help, or the “Strategies for Timing Closure” chapter of the
FPGA Design Guide.

The timing simulation process automatically builds a database and maps,
places, and routes the design.

Generate the Bitstream

Now you will generate a bitstream to download the microprocessor platform to
the FPGA. If you did not perform timing simulation, the bitstream generation
process will automatically synthesize, map, place, and route the design
before it generates the bitstream.

To generate a bitstream (.bit) file:
1. In Diamond, select the Process tab.
2. Inthe Export Files section, double-click Bitstream File.

Diamond now generates a bitstream data file, platform1.bit, that is ready to be
downloaded into the device. This process takes several minutes.

48

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 5: Download the Hardware Bitstream to the FPGA

Task 5: Download the Hardware Bitstream to the

FPGA

The bitstream file generated in the previous section contains all the
information required to program the LatticeECP2 FPGA. Lattice
Semiconductor provides the Diamond Programmer tool that sends the
programming bitstream to the FPGA over a parallel port or USB port
communications link. Now you will use Programmer to download the
hardware bitstream that you generated in the previous section to the FPGA
on the board. For instructions on connecting the USB cable to the board, refer
to the LatticeMico32 Development Kit User’ Guide for LatticeECP2.

To download the bitstream to the FPGA on the board:
1. Remove any Lattice USB Programming cables from your system.
2. Connect the power supply to the development board.

3. Connect a USB cable from your computer to the LatticeMico32/DSP for
ECP2 development board. The USB cable must be connected to the USB
target connector adjacent to the keypad. Give the computer a few
seconds to detect the USB device on the LatticeMico32/DSP for ECP2
development board before moving to step 3.

Note
A USB cable is included with the board.

4. In Diamond, choose Tools > Programmer.

In the Getting Started dialog box, choose Create a new Blank Project.
and click OK. Leave the Import File to Current Implementation box
checked. Programmer scans the device database, and then the
Programmer view displays in Diamond.

Note

If the Programmer output window displays “Cannot identify detected device on row 1.
Please manually select correct device,” choose LFE2-50E from the Device column
drop down menu.

6. Inthe Cable Settings dialog box on the right side of the Programmer
window, do the following:

a. Inthe Cable box, select USB.

b. Inthe Port box, choose the only setting available in the drop-down
menu, EzUSB-O0.

7. Double-click the Operation column to display the Device Properties dialog
box, as shown in Figure 33, and choose the following settings:

For Access Mode, choose JTAG 1532 Mode from the pull-down
menu.

For Operation, choose Fast Program from the pull-down menu,

LatticeMico32 Tutorial

49

LATTICEMICO32 TUTORIAL : Task 5: Download the Hardware Bitstream to the FPGA

8. Double-click the File Name column. Click _J to display the Open File
dialog box, and browse to the platform1_platform1.bit file in the following
directory:

For Windows,
<Diamond_install_path>\examples\Im32_tutor\platform1_platform

1.bit
For Linux, ~/LatticeMico/lm32_tutor/platforml1_platform1.bit

9. Click Open.

Figure 33: Device Properties Dialog Box.

{.} LatticeECP2 - LFE2-50E - Device Properties PN X

Device Operation

Access Mode: 174G 1532 Mode -]

Operation: [Fast Frogram ']

Programming Options

Programming File: _d0c_Im32,-’diam0nd,-’platform,-’platform_pIatform.biﬂ D

Device Options

|:| Reinitialize part on program error

10. Click OK.

11. The Programmer view should look as shown in Figure 34.

Figure 34: Diamond Programmer

B StartPage | [Reports | . Programmer - platform1xcf * [| P
BE@ B S
Enable Status Device Vendor Device Family Device Operation File Name ile Date/Time Checksum USERCODE Verboselogging IR Length Cable Settings |~
1} Lattice LstticeECP2 LFE2-S0E Fast Program _rjplatform /platform_plstform.bit 111:42:53 NAA 0+00000000 [] Off 8
Cable: uss -

m

1/0 Settings
@ Use Default 1/0 Settings
(©) Use Custom I/O Settings

Cable and 1/0 Settings

ik Lo
12. Click the Program button “=* on the Programmer toolbar to initiate the
download.

13. Check the Programmer output console to see if the download passed, as
shown in Figure 35. If the programming process succeeded, you will see a
green-shaded PASS in the Programmer Status column.

50 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

Figure 35: Programmer Output Console

Output F X

Starting: "prj_project open "C:/lscc/diamond/l.4/examples/lm32_ tutor/platforml.ldf™"

Lattice VM Drivers detected (LATTICE, USB)

Programmer device database loaded

Starting: "pgr_project open "C:/lscc/diamond/l.4/examples/lm32 tutor/platforml/platforml.xci™"
Starting: "pgr_program run"

Check configuration setup: Start.

JIAG Chain Verification. No Errors.

Check configuration setup: Successful.

Devicel LFE2-50E: Fast Program

Operation Done. No errors.

Elapsed time: 00 min : 11 sec

Operation: successful.

Td Console Output | Error Warning Find Results
Ready Mem Usage: 155,024 K

14. At the end of this process, the FPGA is loaded with the microcontroller
hardware configuration.

15. In Diamond, choose File > Save platform1.xcf.

16. Exit Diamond by choosing File > Exit.

Task 6: Debug and Execute the Software Application
Code on the Development Board

In this task, you will use the debugger to download the executable file
containing the software application code to the LatticeMico32/DSP
development board. This enables the LatticeMico32 microprocessor, which is
part of the FPGA bitstream you downloaded in Task 5, to execute the
application code.

This task assumes that you have successfully downloaded the platform FPGA
bitstream to the development board in “Task 5: Download the Hardware
Bitstream to the FPGA” on page 49.

If you encounter any problems with the debug session, refer to "Debug
Session Troubleshooting” in the Lattice Software Project Environment online
Help. This troubleshooting topic describes the most common problems
encountered in launching a debug session and the reasons the debugger
sometimes fails to operate.

LatticeMico32 Tutorial 51

LATTICEMICO32 TUTORIAL

Task 6: Debug and Execute the Software Application Code on the Development Board

Software Application Code Execution
Flow

The FPGA is now configured with the LatticeMico32 Development
microprocessor platform. The order in which the LatticeMico32
microprocessor executes the software application code images is as follows:

1.

2.

3.

The LatticeMico32 microprocessor starts execution at the address
contained in its exceptions base address (EBA).

This is the address you specified when you added the LatticeMico32
microprocessor core in Task 2.

When you start the LatticeMico System debugger, it communicates with
the microprocessor over the microprocessor's debug module.

The debug module is a collection of files inside the Im32_top\rtl\verilog
directory, as shown in Figure 25 on page 36. The debug module, in turn,
generates a debug exception that causes the microprocessor to execute
the debug monitor code. The LatticeMico32 microprocessor, in order to
respond to the debug exception, must be running valid opcodes and must
not be stuck waiting for a bus cycle to complete. Upon successful
execution of the debug exception, the debug monitor code then
communicates with the LatticeMico System debugger running on the host
computer.

At this point, the debugger has control over the microprocessor and can
access the platform's memory through the debug module or
microprocessor to download the application to the selected memories.

52

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Task 6: Debug and Execute the Software Application Code on the Development Board

4. After it has downloaded the application to be debugged to the target

memory or memories, the debugger sets the microprocessor's program

counter to start executing the downloaded code.

Figure 36: Software Application Code Execution Flow

LEDs
FPGA
LED
(GPIO)
Parallel flash .
Executing
\ LM32 EBR
JTAG UART Debug
/_'— .
Debug module || Monitor
code
A
SRAM
LEDTest (software
application code)

with breakpoint at PC

main()

LatticeMico System
Debugger

-
LEDTest

elf

Debug the Software Application Code

on the Board

Now that you have a LatticeMico32 platform loaded into the LatticeMico32/

DSP for ECP2 development board and a compiled and linked C program, you

can begin working with the LatticeMico source code debugger.

The source code debugger allows you to download the fully resolved ELF file
created by the linker into the memories specified by the auto-generated linker
script. The debugger enables you to set breakpoints, control the program flow,
and inspect variables, registers, and memory. It enables you to validate that
your program is functioning correctly, and it enables you to find any problems

that exist in the applications source code.

LatticeMico32 Tutorial

53

LATTICEMICO32 TUTORIAL Task 6: Debug and Execute the Software Application Code on the Development Board

To debug the software application code on the board:
In the C/C++ SPE perspective, click LEDTest in the C/C++ Projects view

(left-hand pane).
Right click the project and choose Debug As-> Debug Configurations.

1.

The Debug dialog box opens, as shown in Figure 37.

Figure 37: Debug Dialog Box

Create. manage. and run configurations

-+
e -
| B & Configure launch settings from this dialog:
jtyphlicie [- Press the 'New' button to create a configuration of the selected type.

- mico32 hardware
i - Press the 'Duplicate’ button to copy the selected configuration.

. mico32 instruction set simulator

3 - Press the 'Delete’ button to remove the selected configuration.

'4"=::> - Press the 'Filter' button to configure filtering options,

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

3. Select mico32hardware, and then click the New launch configuration
button | % on the toolbar.
If you are connecting to the evaluation board for the first time, the
Progress Information message box appears.
The appearance of the Debug dialog box changes again, as shown in
Figure 38.

LatticeMico32 Tutorial

54

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

Figure 38: Debug Dialog Box with Tabs

« Debug Configurations &J
Create, manage, and run configurations ;

R INEE Name: LEDtest Debug

ype filteriext E] Main . El Hardware Connection| % Debugger| %+ Source| = Common

mico32 hardware

LEDtest Debug
mico32 instruction set simulator Debug\LEDtest.elf Search Project... ‘ \ Browse... ‘

C/C++ Application:

Project:

LEDtest Browse...

Build (if required) before launching

Build configuration: | Debug v]
() Enable auto build () Disable auto build
Q) Use workspace settings Configure Workspace Settings...

Connect process input & output to a terminal.

-
s
=
@
@

Filter matched 3 of 3 items

@ I Debug l I Close

In this dialog box, you specify the project or executable to debug. Since

you selected the project before selecting Run > Debug Configurations,
the boxes are filled in by Eclipse. If these boxes are not populated, follow

these instructions to configure the items in this dialog box:

a. Use the Browse button to select the Eclipse project.

Clicking Browse activates a dialog box that lists the available projects

created or imported in Eclipse.

b. Select LEDTest.

c. Click the Search Project button to select the executable (.elf) file that

you want to debug.

A project may have multiple executables. Clicking the Search Project

button activates a dialog box that lists the executables built for the project.

If you want to use an executable not built within C/C++ SPE, click the

Browse button to activate a file selection dialog box in which to select the

appropriate .elf-format executable file.

LatticeMico32 Tutorial

55

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

4. Click the Debugger tab of the Debug dialog box, as shown in Figure 39.

Figure 39: Debugger Tab of the Debug Dialog Box

Create. manage. and run configurations

¥ B EoI
= W' E & Name: LEDtest

type filter text

[2] Main| [Hardware Connection | %5 Debugger - E Source| = Common
= mico32 hardware

Debugger: | com.lattice. mdk.debug.mico32debugger

... mico32 instruction set simulator .
Start Up Option

(@) Stop on startup at:

(7) Stop at LatticeDDInit()

Remote target: lecalhost:1000

Debugger Options

GDB debugger: Im32-elf-gdb

Apply Revert

@ Debug l [Close

The Debugger tab features the following Debugger settings:

The Start Up Option section enables you to choose where you want
your initial breakpoint. For a debug launch, the Debugger downloads
the code and sets an initial breakpoint to enable debugging. You can
place your breakpoint either at the start of your main program or at the
start of the Device Driver initialization routine generated by the C/C++
SPE managed build process. The default behavior is to set the initial
breakpoint at the first executable source line inside the main()
function.

Remote target option, which provides the address for the LatticeMico
debug proxy program that will be launched on your computer. This
proxy program allows C/C++ SPE to debug the program by using the
GNU GDB program and provides a communication channel to the
microprocessor over a JTAG connection. Refer to the LatticeMico32
Software Developer User Guide for more details on the debugging
setup.

Debugger Options, which lists the debugger application that C/C++
SPE will use as the debugger. This setting must not be changed.

If you attempt to change settings, the Apply button might become
available. In this case, click the Apply button to save your settings.

56 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

5. Click the Debug button located on the lower right side of the dialog box.

Note

If you encounter any problems with the debug session, refer to "Debug Session
Troubleshooting" in the Lattice Software Project Environment online Help. This
troubleshooting topic describes the most common problems encountered in
launching a debug session and the reasons the debugger sometimes fails to
operate.

When you click the Debug button, the dialog box closes, and C/C++ SPE
attempts to interface to the debug monitor in the LatticeMico32 platform.
Once it has established a connection to the debug monitor it downloads
the LatticeMico executable code to the memories specified by the linker
script. After it has successfully done this, the Confirm Perspective Switch
prompt box containing the following message appears:

This kind of launch is configured to open the Debug
perspective when it suspends. Do you want to open this
perspective now?

Select the Remember my decision box, and click the Yes button. Click
Yes in the prompt box.

Note

If you did not previously download the bitstream, a message box with the following
error message may appear:

Check that the target FPGA contains an LM32 CPU with
DEBUG_ENABLED equal to TRUE and that the FPGA has configured
successfully.

Return to “Task 5: Download the Hardware Bitstream to the FPGA” on page 49,
and download the bitstream before proceeding.

LatticeMico32 Tutorial

57

LATTICEMICO32 TUTORIAL

Task 6: Debug and Execute the Software Application Code on the Development Board

Figure 41: Debug Perspective

Note

Selecting Run > Debug Configurations on a computer running the Windows
operating system might activate the Windows firewall. The Windows Security Alert

dialog box shown in Figure 40 might appear.

Figure 40: Windows Security Alert Dialog Box

= Windows Security Alert le

"Tt To help protect your computer, Windows Firewall has blocked
zome features of thiz program.

Do you want to keep blocking this program?

TCP2ITAGYC

D M ame:
Fublisher: Unknown

K.eep Blocking] [Unblock] [Ask Me Later

‘windows Firewall has blocked this program from accepting connections from the
Internet or a network. |f you recognize the program or trust the publizher, you can
unblock it. When should | unblock a program?

Click unblock to continue debugging.

TCP2JTAGVC is the application that provides the communication channel
between the LatticeMico32 microprocessor debug module and Im32-elf-gdb (GDB

modified for the LatticeMico32 microprocessor).

C/C++ SPE now switches to the Debug perspective, shown in Figure 41.

(S e e e Variables view,
File Edit Mawvigate Propect Took Search Run Window Help .
MrH@lB $-0- @ @~ d-H-e- Breakpoints
[[MiE [CiCes [Debug ;
4 Debug = > [] i 7 7 0| Breakpoints = . Variables| Modules] W — [view, MOdUIeS
LEDtest [mico22 hardware] view
& comuattice.madk, debugmico3idebugger (811711 1043 PM) (Suspended) !
i o® Thread [0] {Suspended) i
Debug = 1 mani) ‘.1'::||vl'|(\h|.|.' 2 tutorl ei Rengters
i Debugger Process (8/11/11 11:43 PM) . S |
VieW TR Gl 1 tutorl EDtest.elf @/11/11 1143 Phv view, Igna S
view, or
) Expressions
() plotiernt ([LEDTeste £ [LEDTeste = O[5 outline % =0 view
#finclude
:::t:‘:: :: O0Structs b
#inolude "Mi 1.k - "'::fsm‘“"'
i e L ——— U Micolitie
Editor e e o i o s
view or) :‘ .:;::.k - .
|l ses masnieray Outline view or
Source | I —— i
. anaigned char 18 N Disassembly
view .
F c 4 =LED™ * view
Hicob SoGPICCLX Tt *)MicoGetDevice (LED GPIO INSTANCE):
if {1 -0} {
B Consale B Tasks| Memory - ® 2 B8-r =]
LEI i hardware] C:A\l: di 4 gl tutor\LEl EDtesteff (3/11/11 1143 PM)
Writable 1:1
Console view, Tasks view, or Memory view
58 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

The Debug perspective consists of many views, some of which may not
be visible:

Debug view, which displays the function calls made so far. It also
contains application and process information.

Variables view, which displays the variables that are used in the
source code functions

Breakpoints view, which appears when you insert a breakpoint

Source view, which displays the source code when you click on a
thread in the Debug view

Outline view, which displays the functions in the source code
Console view, which displays the output of the debugging session
Tasks view, which is not used

Modules view, which displays the modules of the executable loaded. If
you click on a module, C/C++ SPE displays all the functions that
compose that module.

Registers view, which displays the registers in the CPU. It also shows
the values on the registers at the breakpoints. Values that have
changed are highlighted in the Registers view when your program
stops.

Signals view, which enables you to view the signals defined on the
selected debug target and how the Debugger handled each one

Memory view, which enables you to inspect and change multiple
sections of your process memory

Expressions view, which is activated if you right-click in the Source
view, choose Add Watch Expression, and enter a variable in the Add
Expression dialog box

Disassembly, which shows the source code in assembly language
with offsets. It shows the instructions that reside at each address.

To select views that are not visible for this perspective, click Window >
Show View and choose the appropriate view.

7. Ifitis not already displayed, expand the LEDTest in the top left of Debug
view. It should resemble the illustration in Figure 42.

Figure 42: Expanded Debug View

o3 Debug &2 = | iv ¥ 7
= | ECtest [mico32 hardware]
— com.lattice. mdk.debug.mico32debugger (8/11/11 11:43 PM) (Suspended)
\ o Thread [0] (Suspended)
L= 1main(\eygdrivel\dlsccdiamond\l 4\ examplesi\im32_tutor\LEDtest\LED Test, c:23 000000288
p. Debugger Process (8/11/11 11:43 PM)
E""'D- Cihlscchdiamondil 4\examplesiim32_tutor LEDtest\Debugh LEDtest.elf (8/11/11 11:43 PM]

This shows the processes that are running on the host PC.

LatticeMico32 Tutorial 59

LATTICEMICO32 TUTORIAL

Task 6: Debug and Execute the Software Application Code on the Development Board

Insert Breakpoints

The information in the expanded Debug view under
com.lattice.mdk.debug.mico32debugger contains information about the
executable downloaded to the FPGA and executed by LatticeMico. It shows
that the execution is suspended because of a breakpoint at a line within the
LEDTest.c source file.

1. In the Debug view, click on the statement containing the line main().

This step activates the file in the Source view, located below the Debug
view. A line with green highlighting shows the line at which the
LatticeMico32 microprocessor has been suspended because of a
breakpoint. The breakpoint is at the beginning of your main program, as
configured for this debug launch.

You will now insert a breakpoint to check the software and platform
functionality.

2. Inthe LEDTest.c file displayed in the Source view, click on the line
beginning with “MicoGPIOCtx_t,” as indicated in Figure 43.

Figure 43: Breakpoint Line

int main (void)
{
» unsigned char iValue = 0x1;

un=igned char iShiftLeft = 1;

/* Fetch GPI0O instance named "LED" */
MicoGPIOCtx t *leds = (MicoGPIOCtx t *)MicoGetDevice (LED GPIC INSTANCE);
if (leds == 0) {

printf("failed to find GPIC instance named LED\r\n"):

return (0) ;

3. Insert a breakpoint by double-clicking in the left margin, aligned to the line
shown in Figure 43. Alternatively, you can select Run > Toggle Line
Breakpoint.

As shown in Figure 44, LEDTest.c should now appear in the Source view
with a blue bubble and a check mark in the margin aligned to the line of
interest. If the Breakpoint view is open, it be should updated to show this
breakpoint.

Figure 44: Inserted Breakpoint
platforml | [¢] LEDTestc | [LEDTestc &4

const char *LED GPIO INSTANCE = "LED";
const on=signed int wiBlink = 1;

int main (void)
{
> unsigned char iValue = 0x1;
un=igned char iShiftLeft = 1;

/* Fetch GPIO instance named "LED" */
-] MicoGPIOCtx t *leds = (MicoGPIOCtx t *)MicoGetDevice (LED GPIC INSTANCE):
if (leds == 0) {
printf("failed to find GPIO instance named LED\r\n"):

60

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

Execute the Software Application Code

Now you can resume executing the software application code on the board.

1. Inthe Debug view, click the green arrow [| to the right of the “Debug” tab
title. Alternatively, you can choose Run > Resume.

The Debugger now issues a “continue” command to the LatticeMico32
microprocessor, which executes the code until it reaches the breakpoint
that you inserted previously.

2. Step over the C source line by clicking the E icon in the same line as the
Debug tab title. Alternatively, you can choose Run > Step Over or press
the F6 key.

The Debugger causes the microprocessor to execute the source line at
which the breakpoint was inserted.

At this point, the Variables view is updated, as shown in Figure 45.

Note

If the Variables view is not visible, choose Window > Show View > Variables to
make it visible. If the Variables view is inactive—that is, the tab is shown in gray
tones—click on the Variables tab to make it active.

Figure 45: Updated Variables View

Breakpoints | #9= Variables 3 - Modules k£ | = % ~ — O
Mame Value

(9= iValue

9= iShiftLeft
+ m leds 00000304 ¢

The value of the “leds” variable might be different from that shown in
Figure 45. However, if the value of the “leds” variable shown in Figure 45
is 0x00000000 (or 0) for your view, the platform most likely does not have
a GPIO named LED in the platform. Repeat the tutorial, following the
procedures exactly.

3. Inthe Debug view, click the green arrow next to the tab title, or choose
Run > Resume.

The Debugger issues a “continue” command to the LatticeMico32
microprocessor, which causes the microprocessor to continue execution
of the downloaded code.

The Console view in the bottom of the C/C++ SPE window should display
the text line shown in Figure 46 on page 62. This text is output by the
LEDTest application running on LatticeMico, which uses the JTAG

LatticeMico32 Tutorial 61

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

connection to the Debugger for standard input/output communication to
the C/C++ SPE console.

Figure 46: Console Output

El Console 52 . Tasks| Memaory

LEDtest [mico32 hardware] Chlscch\diamond\l $\examplesilm32_tutor\LEDtest\DebughLEDtest.e
found GPIC instance named LED

4. Observe the LEDs on the LatticeMico32 development board to confirm a
back-and-forth scrolling LED pattern, which is controlled by the code
executed by LatticeMico.

5. Expand the Debug view to show the active processes, shown in
Figure 47.

Figure 47: Running Processes

%7 Debug 22 oo m |

= LEDtest [mico32 hardware]
- com.lattice.mdk.debug.mico32debugger (8/11/11 11:43 PM)
e
D‘ Debugger Process (8/11/11 11:43 PM)
P Chlscchdiamond'l. 4\ examplesiim32_tutor\LEDtest\Debug'LEDtest.elf (8/11,/11 11:43 PM)

6. Click the line containing the text Thread[0] (Running) to activate the
following two buttons:

A button with two orange bars, ||| |, located towards the center of the
debug view title bar, which pauses execution. It inserts an
asynchronous breakpoint similar to a pre-set line breakpoint.

A button with a red square, |8 | which terminates the running
application on LatticeMico. The Debugger no longer provides access
to the code being debugged. Use Run > Debug Configurations to
restart the debugging session.

7. Click the red-square button to terminate execution of the LEDTest
application on LatticeMico.

8. Click the FE/C/c++ button on the top left of the Debug perspective
window to return to the C/C++ perspective. Alternatively, you can select
Windows > Open Perspective > C/C++ to return to the C/C++
perspective.

62 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

Modify and Re-execute the Software
Application Code

The LEDTest.c application contained some printf statements for test
purposes. The platform is configured so that these printf statements
communicate through the microprocessor’s debug module to the debugger
running on the host machine for outputting information to the

C/C++ SPE console. If the debugger is absent, the printf statements cause
the debug module to wait indefinitely for a client to communicate with.
Therefore, now that the code is validated and needs to be deployed, it must
be devoid of printf statements.

1. Delete the two printf statements from the code to make it similar to the
example shown in Figure 48.

Figure 48: Modified LEDTest Code

int mainivoid)

{
unsigned int ivalues = 0Ox1:
unsigned int iZhifclefc = 1:

/% Feteh SPIO instance nsmed "LED™ %/
MicoGPIOCLx_t *leds = MicoGetDeviece (LED_GPIO INSTANCE)
if(leds == 0]
returni(0) ;
+

/% if we're not to bhlink, return immediately */
if (uiBlink == 0)

returni(0) ;

f* scroll the LEDs, every 100 msecs forever */F

while (1) {
*ijrolatile unsiymed int *) [leds->base)) = ~iValue;
Mico3leepMilliZecs (100) ;
if (iZhifcLeft == 1)
iValue = iValue << 1:
if(iValue == 0x100) {
iValues = 0Ox40;
iZhifcLeft = 0O;
i
telse
iValue = iValue >> 1:
if(iValus == 0] {

iWalus = 0x02Z;
iZhifclLeft = 1;
i

% all done %/
return (0) ;

2. Choose File > Save to save the modified file.

Before you rebuild the project, it is important that you terminate any prior
debug session. If the Debugger is still paused or running, the Build Project
command will fail when the linker tries to overwrite the platform1.elf file.

LatticeMico32 Tutorial

63

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

3. To rebuild the modified code, select LEDTest and choose Project > Build
Project.

4. Return to the Debug perspective.
To download, debug, and execute the modified code, do the following:

a. Click Run > Debug Configurations, and then click Debug in the
Debug window.

b. Click the green arrow || next to the tab title.

c. Step over the C source line by clicking the 7 icon in the Debug view
or choose Run > Step Over or press the F6 key.

d. Click the green arrow || again.

This code is now ready for stand-alone deployment in the parallel flash
memory.

You have now completed the task of downloading and executing the
software application code on the LatticeMico32/DSP development board.

6. Verify that the LEDTest program is functioning by noting the sweeping
LED pattern on the board.

7. Click the Terminate (||) button to stop the demonstration program and
unload the debug session. Failing to unload the debug session interferes
with programming the parallel flash memory, a process that is described in
the next session.

Task 7: Deploy the Software Code to Parallel Flash

Memory

As part of Task 6, you debugged and executed the LEDTest software
application code from Lattice Software Project Environment. That is, you used
the Lattice Software Project Environment to load the LEDTest software code
onto volatile memory on the development board and then debug/execute it.

In this task, you will prepare the LEDTest software for deployment to parallel
flash memory and then load the executable linked format file (.elf) into the
parallel flash memory, which is non-volatile memory.

Refer to the LatticeMico32 Software Developer User Guide for details on
deployment strategies and user flow.

The LatticeMico System software provides example code for programming
Common Flash Interface (CFI) parallel flash PROMs. You will use this flash
programming application to program the LEDTest executable code into the
parallel flash PROMs on the LatticeMico32/DSP for ECP2 development
board.

64 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

Parallel Flash Memory Deployment Flow

The steps involved in deploying the software application code to the parallel
flash memory are as follows:

1. The CFIFlashProgrammer flash programming application is compiled and
linked to run from the SRAM location.

2. The C/C++ Perspective Software Deployment Ul is configured, and the
CFIFlashProgrammer application is downloaded to the SRAM memory.

Figure 49: Parallel Flash Memory Deployment Flow

LEDs
FPGA
LED
(GPIO)
Parallel flash .
Executing
\ LM32 EBR
Debug Module
JTAG UART Debug
monitor
» | Flash Programmer code

SRAM
Flash
Programmer
elf PC

LatticeMico System Debugger

T

Flash LEDTest
Programmer elf
elf

LatticeMico32 Tutorial 65

LATTICEMICO32 TUTORIAL

Task 7: Deploy the Software Code to Parallel Flash Memory

3. The flash programming application is now executing on the LatticeMico32
microprocessor. It reads the LEDTest software application code from the
PC. The code has been converted on the PC to a simple binary image.
The flash programming application then writes the application code to the
parallel (CFI) flash memory. Figure 50 illustrates these steps.

The CFIFlashProgrammer application terminates and exits the debug
session. The CFIFlashProgrammer presents the results of the
programming sequence in the debug Console Tab.

Figure 50: Parallel Flash Memory Deployment Flow, continued

LEDs
FPGA
LED
(GPIO)
Parallel flash Executing
LEDTest ‘ LM32 EBR
Debug Module
JTAG UART Debug
A monitor
Flash Programmer code
SRAM
Flash
Programmer
elf PC

LatticeMico System Debugger

Flash LEDTest
Programmer elf

.elf

Create a CFI Flash Programmer
Application

In order for a LatticeMico32 based SOC system to operate correctly when
power is applied to the system, it is necessary for the microprocessor to fetch
opcodes from a non-volatile memory. A Common Flash Interface
programming application is provided in the C/C++ SPE perspective to enable
non-volatile parallel flash PROMs to be loaded with the initial microprocessor

66

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

opcodes. In order for the CFIFlashProgrammer application to work correctly,
the LatticeMico32 platform must include a CFl-compliant parallel flash
memory.

C/C++ SPE provides a CFl flash programmer template, which can program
binary data stored in a file on the host computer to any valid flash component.

The CFI flash programmer application relies on the device drivers for
performing flash operations. They can be enhanced to support CFI flash
configurations and command sets that are not currently supported. Refer to
the LatticeMico32 Software Developer User Guide for an overview of the
supported CFlI flash configurations and command sets.

To create the flash programmer application:

1.
2.

Return to the MSB Perspective.

Modify the LatticeMico32 Exception Vector base address to point to the
parallel flash memories base address (0x02000000).

Generate the platform.

The next steps assume that the LatticeMico32 Development
microprocessor bitstream is loaded on the board, as explained in “Task 5:
Download the Hardware Bitstream to the FPGA” on page 49.

In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

In the New Project dialog box, do the following:

a. Inthe Location box, browse to the following location and click OK:
For Windows, <Diamond_install_path>\examples\Im32_tutor\
For Linux, ~/LatticeMico32/Im32_tutor/

b. Inthe Project Name box, type FlashProgrammer.

c. Inthe MSB System box, browse to the following location, select the
platform1.msb file, and click Open:

For Windows,
<Diamond_install_path>\examples\Im32_tutor\platform1\
soc\platforml.msb

For Linux, ~/LatticeMico32/Im32_tutor/platforml1/soc/
platform1l.msb

d. Inthe Select Project Templates box, select CFIFlashProgrammer as
the template for the application code.

LatticeMico32 Tutorial

67

LATTICEMICO32 TUTORIAL

Task 7: Deploy the Software Code to Parallel Flash Memory

The New Project dialog box should look like the example shown in

Figure 51.

Figure 51: New Project Dialog Box

Mico Managed Make Project Wizard
Mico Managed Make Project Wizard Setting

Project Name: FlashProgrammer

Praject contents

Select Target Hardware

Select Project Templates

Location Ci\lscchdiamondl.4\examplesiim32_tutor\FlashProgrammer

e

=

Browse...

MSE System: Ci/lscc/diamend/1.4/examples/Im32_tutor/platforml/soc/platforml.msh

[T S - | Description

DMATest L This template demonstrates programming -

EEII!!DTWD’MT CFlIflash device. E
imer Test The time taken to program the flash depends 3

LED7SegsTest on the amount of dats and can be rather slow

LEDTest

LEDTest small size for large data over ITAG cennection.

MicroCOS LED 75egs App
MicroCOS LED UART App
minimal skeleton
Opencores [2C test
SPIFlashProgrammer
TimerTest

UART Echo - -

m

This template supports those CFI flash devices
that are supported by LatticeMico32 CFI flash
driver. It serves as a starting point to
custamize flash-programming selutions.

@ Finish l [Cancel

e. Click Finish.

6. Inthe left-hand pane of the C/C++ perspective, right-click
FlashProgrammer and choose Properties from the pop-up menu.

7. Select Platform.

8. Inthe Linker Script section, select sram for Program memory, Read-only
data memory, and Read/write data memory.

9. Inthe Stdio Redirection section, select JTAG-UART (LM32) for stdin,
stdout, and stderr.

10. Click OK to close the dialog box.

11. In the C/C++ perspective, select FlashProgrammer and choose
Project > Build Project.

Prepare LEDTest for Flash Deployment

The flash programmer application is a generic binary data programmer that
reads data from a file on the host computer and programs it to a valid flash
memory. The LEDTest application is in an executable linked format (ELF) and
must be converted to binary data so that the flash programmer application
can use it.

68

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

The first step is to compile the LEDTest ELF. You cannot use the LEDTest ELF
created in Task 3, since it was built for both deployment and execution from
SRAM and data inline memory. What you need is an LEDTest ELF that is built
for deployment into parallel flash memory and is built for execution from
SRAM and data inline memory. Therefore, before deploying LEDTest
application to parallel flash memory, you must recompile LEDTest ELF to
change the deployment location to parallel flash memory.

As part of this recompilation, the Lattice Software Project Environment (C/C++
SPE) will instruct GCC to build a code relocator into the LEDTest ELF. This
code relocator is essential, because it will be responsible for copying the
LEDTest program and read/write data memory sections to SRAM and copying
the read-only sections to data inline memory from parallel flash memory for
execution of the LEDTest software upon board reset.

Note

You can no longer use the new LEDTest ELF for debugging and execution
purposes from Lattice C/C++ SPE, since it has been prepared for parallel
flash deployment. The LEDTest ELF must be recreated, as shown in Task 3,
for this purpose.

For deployment, the RS-232 UART will be used for standard 1/O operations
instead of JTAG UART. You will set these stdio properties, in addition to the
linker script properties, and rebuild the project.

To change the properties and rebuild the LEDTest project:

1. Inthe C/C++ perspective, select LEDTest and choose Project >
Properties.

2. Inthe Properties dialog box, select Platform.
3. Inthe Linker Script section, do the following:
a. Select Enable Deployment.
b. For Program memory, choose sram.
c. For Read-only data memory, choose Data_IM.
d. For Read/write data memory, choose sram.

e. Inthe Stdio Redirection section, choose RS-232(uart) for stdin, stdout,
and stderr.

LatticeMico32 Tutorial 69

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

The Platform Properties dialog box should look like the example shown in

Figure 52.

Figure 52: Platform Properties with RS-232 (UART) Stdio Redirection

type filter text Platform < <
- Info
‘.. Builders Target Hardware Platform
- C/C++ build MSB System: scc\diamond\14\exampl
. ples\im32_tutor\platformlisoc\platforml.msb | Browse...
. G/ C++ Indexer
i Platform
- Linker Script
i Project References - S
@ Use auto generated linker script [#] Enable Deployment GidilRedi=cting
Program memory: sram e [¥] Deploy S RS-232(uart) v
Read-conly data memory: Data IM = Deploy stdout: R5-232(uart) -
Read/write data memory: sram e5 Deploy Sl RS-232(uart) v
() Use custom linker script
Browse...
’Restore Defaults] ’ Apply]
@ [0K] ’ Cancel]
4. Click OK.

5. Inthe MSB perspective, verify that the LatticeMico32 Exception Handler

address is set to 0x02000000. If it is not,

update the Exception Handler

address and regenerate the platform. You will also need to rebuild the
CFIFlashProgrammer application if the Exception Handler has address

changed.

6. Inthe C/C++ perspective, select LEDTest and choose Project > Build

Project.

C/C++ SPE provides an easy-to-use interface for preparing LEDTest for flash
deployment. Consult the LatticeMico32 Software Developer User Guide for
functional details on the flash programming utility.

To prepare LEDTest for flash deployment:

1. Inthe C/C++ perspective, select FlashProgrammer and choose

Tools > Software Deployment.

The Software Deployment Tools dialog box appears with the Software
Deployment Tools screen selected, as shown in Figure 53 on page 71.

Three programming configurations are available:

Mico32 Flash Deployment configuration, which provides a graphical
user interface for preparing and programming an application to parallel

70

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL Task 7: Deploy the Software Code to Parallel Flash Memory

Figure 53: Software Deployment Tools Dialog Box Showing
Programming Configurations

Software Deployment Tools

+
it -
| B Configure launch settings from this dialog:
type fiter tex] |4 - Pressthe 'New' button to create a configuration of the selected type.
Mico32 Flash Depl t
UL a5 Tep oymen ‘=) - Press the 'Duplicate’ button to copy the selected cenfiguration.

& Mico32 Multi On Chip Memo
& Mico32 On Chip Memory Deg
& Micol Memery Deployment

- Press the 'Delete’ button to remove the selected configuration.

hr R i

- Press the 'Filter’ button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

flash memory. Refer to the LatticeMico32 Software Developer User
Guide for this deployment strategy.

Mico32 Multi On-Chip Memory configuration, which provides a
graphical user interface for preparing multiple applications for
deployment into on-chip memory.

Mico32 On-Chip Memory configuration, which provides a graphical
user interface for preparing a single application for deployment into

on-chip memory.

Note

Mico8 Memory Deployment is for LatticeMico8 microcontroller.

2. Select Flash Deployment, and click the New launch configuration
button | % on the toolbar.

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL Task 7: Deploy the Software Code to Parallel Flash Memory

The Software Deployment Tools dialog box displays a flash programming
configuration settings pane similar to that shown in Figure 54.

Figure 54: Software Deployment Dialog Box Showing Flash
Programming Settings

fa ™
o I ==

Software Deployment Tools

(@ Flash Address is not specified!

L

3 B e
EER. | S & Name: FlashProgrammer
type filter text
Main
=@ Mico32 Flash Deployment
' J FlashProgrammer

@ Mico32 Multi On Chip Memo || | Preject
@ Mico32 On Chip Memory Deg

FlashProgrammer
@ Micod Memory Deployment

C/C++ Application:

Debug'\FlashProgrammer.elf

Search Project...] [Browse... I
Deployment Options

[] Use ispVM to deploy application.
[] Prepend Code Relocator

Reset Vector Address (EBA Value):(0:0 -- 0xFFFFFFFF)

Flash Programmer Application:

Save Binary Output File As...
Browse...
. — R Apply Revert
®

In the Name box, change the name to LEDTestDeploy.

Click the Browse button next to the Project box.

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

The Project Selection dialog box comes up, as shown in Figure 55.

Figure 55: Project Selection Dialog Box

Choose a project to constrain the search for a program

=5 FlashProgrammer
5 LEDtest

5. Select LEDTest and click OK to select the project containing the
executable that needs to be programmed to flash.

6. Click Search Project next to the C/C++ Application text box.

LatticeMico32 Tutorial 73

LATTICEMICO32 TUTORIAL

Task 7: Deploy the Software Code to Parallel Flash Memory

The Program Selection dialog box appears, as shown in Figure 56. It
contains the list of executables for the selected project, LEDTest.

Figure 56: Program Selection Dialog Box

7.

10.

= Program Selecti_

Choose a program to run:

Binaries:

D LEDtest.elf

Qualifier:

%5 nonebe - /LEDtest/Debu g/LEDtest.elf

(3] oK] ’ Cancel

From the Binaries list, select LEDTest.elf and click OK.

Note

In the Deployment Options section, do not select the Prepend Code Relocator.
This option should not be enabled unless the LEDTest application was compiled
with a version of LatticeMico System Builder prior to 8.0. In these earlier versions,
the code relocator was not built into the application; therefore, it was necessary to
prepend a separate relocator code to the actual application.

In the Reset Vector Address box, under Deployment Options, enter
0x02000000, which is the base address for the flash component, as well
as being LatticeMico’s reset exception address.

The flash programmer uses this address to verify the presence of a flash
device containing this absolute address. It uses device information
contained as part of the device driver framework in this verification. It also
uses this address to determine the offset within the flash device where it
needs to program binary data

Click the Browse button next to the Flash Programmer Application box.
A file selection dialog box appears.

Select the FlashProgrammer.elf file, located in the following directory,
and click Open:

74

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

For Windows, <Diamond_install_path>\examples\Im32_tutor\
FlashProgrammer\Debug\FlashProgrammer.elf

For Linux, ~/LatticeMico32/Im32_tutor/
FlashProgrammer\Debug\FlashProgrammer.elf

The Software Deployment dialog box should resemble the illustration
shown in Figure 57.

Figure 57: Software Deployment Dialog Box Showing Completed Flash Programming Settings

fa ™

Software Deployment Tools

3= —F,
DEX|E3-

MName: LEDTestDeploy
type filter text

Main

4@ Mico32 Flash Deployment
. 1.2 LEDTestDeploy _
& Mico32 Multi On Chip Memory Deployme Project:

& Mico32 On Chip Memory Deployment LEDtest

[]-@ Mico8 Memory Deployment

C/C++ Application:

Debug/LEDtest.elf Search Project...] ’ Browse...]

f Deployment Options

[] Use ispVM to deploy application.
[] Prepend Code Relocator

Reset Vector Address (EBA Value):(0x0 -- OxFFFFFFFF) | 0:02000000

Flash Prograrnmer Application: ! tutor\FlashProgrammer\Debug\FlashProgrammer.elf

Save Binary Output File As...

Browse...

4 1 | »

11. Click Analyze to confirm that the selected LEDTest sections are being
deployed to parallel flash memory.

LatticeMico32 Tutorial 75

LATTICEMICO32 TUTORIAL

Task 7: Deploy the Software Code to Parallel Flash Memory

12.

13.

In this tutorial, you deploy all LEDTest sections to parallel flash memory.
Clicking on Analyze should show that the following sections are deployed:
.boot, .text, .rodata, .data, .bss.

Note

If this list of sections deployed to flash memory comes up empty, it is most likely a
symptom of the following errors:

The Reset Vector Address (Step 8 on Page 79) does not match the
"Location of Exception Handlers" of LM32 (Step 3 on Page 18).

The Reset Vector Address is not an address within the parallel flash
address range (0x02000000 to OX03FFFFFF).

LEDTest ELF has not been prepared for parallel flash deployment
(see Figure 52 on page 70).

Click Apply to save the configuration if you want to reprogram the
application with these settings.

Click Start.

Note

Loading the parallel flash memory takes several minutes.

The Software Deployment tool runs scripts that convert the LEDTest.elf
into a raw binary format. After the conversion of the LEDTest.elf file, the
CFIFlashProgrammer application erases the parallel flash memory and
programs the raw binary into the flash memory.

The console in the C/C++ perspective displays messages from the flash
programmer as it progresses through flash programming. If the
programmer encounters any errors, it displays the text in this console.

Consult the LattticeMico32 Software Developer User Guide for
information on the implementation and functional details of the flash
programming elements mentioned in this section.

As the programmer application executes successfully, you see a console
display similar to the one shown in Figure 58. Depending on the size of

76

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Task 7: Deploy the Software Code to Parallel Flash Memory

LEDTest, the programming time may vary from a few seconds to a few
minutes.

Figure 58: Successful Flash Programming Console

Problems | Bl Console 52 Properties | Debug

<terminated> LEDTestDeploy [Mico32 Flash Deployment] 5pi Launch Process

0x040003fc in 27 (]|

Loading section .hoot, size O0x1d3 lma 0x6000000

Loading section .text, size Ox10lac lma O0x6000145

Loading section .rodata, size Oxbl4 lma Ox6010385

Loading section .data, size Oxalc lma 0x6010ea0

Start address 0x6000000, load size 71544

Transfer rate: 71844 hits/sec, 505 bytes/write.

Info: Flash programmer does not back-up flash data as default

Info: To enashle backup prior to erasing/writing to flash,
please define FLASH PROGRAMMER 3AVE DATA preprocessor
definition and recompile FlashProgrssaner

programmming £lash with new data, 25352 total bytes at offset Ox0

erasing sector at offset Ox0

erasing sector at offset 0x4000

done erasing affected sectors

starting to write total 25352 bhytes

Note: each dot represents 4096 bytes

These messages might disappear from the screen. If they disappear and
you want to view them again, return to the Debug perspective and click on
the highlighted terminated message in the Debug view, as shown in
Figure 59. The messages will be displayed in the Console view of the
Debug perspective.

Figure 59: Highlighted Terminate Message
%% Debug &2 |
% e i+ 7

E & <terminated =LEDTestDeploy [Flash Deplovment]
@ =terminated, exit walue: 0=Spi Launch Process

E|-.. <kerminated, exit value: 0>1Tag Server Process
BB <terminated, e IF-gdb 3 454

When you have completed Task 7, the LatticeMico32 platform will be in the
following state:

The FPGA is programmed with the LatticeMico32 Development
Microprocessor (EBA = Debug Port Base Address).

Parallel flash memory contains the LEDTest application with a code
relocator appended.

LatticeMico32 Tutorial 77

LATTICEMICO32 TUTORIAL : Task 8: Deploy the Production Microprocessor Bitstream to SPI Flash Memory

Task 8: Deploy the Production Microprocessor
Bitstream to SPI Flash Memory

As part of Task 7, you deployed the LEDTest application to non-volatile
memory. To attain stand-alone operation for an actual product deployment,
you will now program a LatticeMico32 Production microprocessor to SPI flash
memory, which is a non-volatile memory.

The platform described at the end of Task 7 is not capable of operating after
power is applied to the system. The reason for this is two-fold:

The FPGA image has not been placed in a non-volatile memory.

The LatticeMico32 microprocessor is in a development mode. The
Exception Base Address is not assigned to an address that contains
opcodes stored in a non-volatile memory.

The first step in Task 8 is to build the Production LatticeMico32
microprocessor. The Production LatticeMico has the Exception Handler
address set to 0x02000000 (i.e. the base address of the parallel flash
memory).

You might have observed in Task 7 that the Exception Handler address was
changed to 0x02000000 and the Generate function was performed, but the
Diamond Bitstream Generation process was never run. Now you will build a
new FPGA bitstream following these steps:

1. Save the bitstream containing the Development LatticeMico32
microprocessor. Go to the Im32_tutorial directory and rename
“platform1.bit” to “platforml_development.bit.” This bitstream is your fail-
safe recovery point to allow debugging to continue in the event that the
Production LatticeMico32 microprocessor fails to operate.

2. Return to Diamond and run the Bitstream File process. When Diamond
finishes running this process, you have a new platform1.bit file. This file
contains the Production LatticeMico32 microprocessor.

3. Write the Production LatticeMico32 microprocessor bitstream into a non-
volatile memory. Writing the FPGA bitstream into a non-volatile memory
means that the FPGA configuration will be recovered when power is
applied to the system

The LatticeMico32/DSP for ECP2 development board has a SPI flash that is
used to store the FPGA configuration bitstream.

To deploy the microprocessor bitstream:
1. In Diamond, choose Tools > Programmer.
In the Programmer window, the LFE2-50E device and platform1.bit should

still be displayed. If they are not displayed, follow the instructions in “Task
5: Download the Hardware Bitstream to the FPGA” on page 49.

2. Highlight the row, and then click the Device Properties button “ onthe
Programmer toolbar to display the Device Properties dialog box.

3. Under Access Mode, select SPI Flash Programming.

78 LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL

Task 8: Deploy the Production Microprocessor Bitstream to SPI Flash Memory

4. Under Operation, select SPI Flash Erase, Program, Verify.

5. Inthe SPI Flash Options box:

a.
b.
c.
d.

6. Click Load Size from Programming File to load the data file size.

Under Family, select SPI Serial Flash.

For Vendor, select Numonyx.

For Device, select SPI

-M25P16

For Package, select 8-pin SOIC.

The Device Information dialog box should resemble the illustration shown
in Figure 60.

Figure 60: Device Properties Dialog Box

ib LatticeECP2 - LFE2-50E - Device Properties

Operation:

Device Operation

Access Mode:

[SPI Flash Programming

[SPI Flash Erase,Program, Verify

Programming Options

SPI Flash Options

Family:

Vendor:

Device:

Package:

SPI Programming

Data File Size (Bytes): 1166387

Start Address (Hex):
End Address (Hex):

|:| Erase SPI Part on Programming Error

Programming File: amond,1.4fexamples,Im32_tutor fplatform 1/platform 1_platform 1.bit E]

[5P1 Serial Flash

[Numonyx

[sPr-MasP1s

[8-pin s01C

[Load Size from Programming File]

[0x000000

[0x110000

OK

] [Cancel

7. Click OK in the Device Information dialog box.

."_'.
8. Click the Program button “=* on the Programmer toolbar to initiate the

deployment.

LatticeMico32 Tutorial

79

LATTICEMICO32 TUTORIAL

Task 8: Deploy the Production Microprocessor Bitstream to SPI Flash Memory

Programmer deploys the SPI flash by means of the FPGA. The results are
shown in the Programmer output console in Figure 61.

Figure 61: Programmer Output Console

Qutput 4

Starting: "prj_project open "C:/lscc/diamond/l.4/examples/lm32_ tutor/platforml.ldf™"
Lattice VM Drivers detected (LATTICE, USB)
Programmer device database loaded

Starting: "pgr_project open "C:/lscc/diamond/l.4/examples/lm32 tutor/platforml/platforml.xci™"

Check XCF Project: The current XCF Project is walid.
Starting: "pgr_program run"

Check configuration setup: Start.

JIAG Chain Verification. No Errors.

Check configuration setup: Successful.

Devicel LFE2-50E: LFE2-50E: Erase Only

Operation Done. No errors.

Devicel LFE2-50E: SPI-M25P1&: SPI Flash Erase, Program,Verify

Execution time: 00 min : 5& sec
Operation Done. No Error.

Elapsed time: 00 min : 59 sec

Operation: successful.

Td Console Output | Error I Warning Find Results
Ready Mem Usage: 144,100 K

9. Disconnect and then reconnect the power supply.
The FPGA takes about three seconds to be programmed by the SPI flash.

After the FPGA is programmed, the LatticeMico32 microprocessor starts
executing from the parallel flash memory. Built into the LEDTest
application by GCC (as part of crtOram.S), the code locator performs the
following tasks:

Copies the LEDTest instructions and read/write data from the parallel
flash memory and writes them into the SRAM.

Copies the LEDTest read-only data from the parallel flash memory and
writes them into the data inline memory.

After the software application is copied into the SRAM and data inline
memory, the code locator performs a control transfer (unconditional
branch) and begins running the LEDTest program.

Figure 62 illustrates these steps.

80

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Summary

You now see the red LED lights blinking.

Figure 62: Parallel Flash Memory Deployment Flow, continued

LEDs
; FPGA
Parallel flash Executing
LEDTest Application LED
(GPIO)
LEDTest
L T ‘ LM32 EBR
| Code Locator |
Data Debug Module Debug
Inline JTAG UART monitor
»|Memory | Flash Programmer code
SRAM
Flash
Programmer
.elf PC
LatticeMico System Debugger
Ty
Flash LEDTest
Programmer elf
elf
Note
If you accidentally press the Reset button on your keypad, you will lose USB
communication with the board, and the debugging will fail in both Programmer and
MSB. To restore this communication, remove the power source from the board, re-
connect the power source to the board, and make sure that the FPGA bitstream is
reloaded.
Summary

You have finished the LatticeMico32 Tutorial. In this tutorial, you have learned
how to do the following:
Set up a Lattice Diamond FPGA project.

Create microprocessor platform for the LatticeMico32 embedded
microprocessor in MSB.

LatticeMico32 Tutorial

81

LATTICEMICO32 TUTORIAL

Summary

Create the software application code for the microprocessor platform with
C/C++ SPE.

Generate a bitstream of the microprocessor platform in Diamond and
download it to the board with Programmer.

Download the hardware bitstream to the FPGA on the board.
Debug and execute the software application code on the board.

Download the .elf file containing the software application code to the
parallel flash memory.

Deploy the microprocessor bitstream to the SPI flash memory.

82

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Glossary

Glossary

Following are the terms and concepts that you should understand to use this
tutorial effectively.

breakpoints. Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE. C/C++ SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The
C/C++ SPE tool chain uses a GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) optimized for the
LatticeMico process. It uses the same graphical user interface as MSB.

CDT. CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

CFI. CFl is an abbreviation for Common Flash Interface (CFI) parallel flash
memory, which is an open standard jointly developed by a number of chip
vendors for a type of EEPROM that stores information without requiring a
power source.

code-relocator code. Code-relocator code is code that copies the software
application code to a destination memory and jumps to the application start
address to run the application.

CSR. CSR is an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

debugging. Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse. Eclipse is an open-source platform that provides application
frameworks for software application development. The LatticeMico System
interface is based on the Eclipse environment.

.elf file. An .elf file is a file in executable linked format that contains the
software application code written in C/C++ SPE.

LatticeMico32 Tutorial

83

LATTICEMICO32 TUTORIAL

Glossary

GDB. GDB is an abbreviation for GNU Debugger, which is a source-level
debugger based on the GNU compiler. It is part of the C/C++ SPE Debugger.

GNU Compiler Collection (GCC). The GNU Compiler Collection (GCC) is a
set of programming language compilers. It is free software produced by the
GNU Project.

HAL. HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module. The hardware debugger module is a
component of C/C++ SPE that is used to find problems in the software
application.

hardware platform. A hardware platform is the embedded microprocessor in
an SoC (system on a chip) design and the attached components, buses,
component properties, and their connectivity.

IRQ. IRQ is an abbreviation for interrupt request, which is the means by which
a hardware component requests computing time from the CPU. There are 16
IRQ assignments (0-15), each representing a different physical (or virtual)
piece of hardware. For example, IRQO is reserved for the system timer, while
IRQL1 is reserved for the keyboard. The lower the number, the more critical the
function.

JTAG ports. JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

pf file. The logical preference file (.Ipf) is a post-synthesis FPGA constraint
file that stores logical preferences that have been defined in the pre-map
stage and post-map stage. This file is automatically generated when you
create a new project in Lattice Diamond, and it stores logical preferences only.

master port. A master port is a port that can initiate read and write
transactions.

MSB. MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing components, such
as a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the microprocessor and the chosen
components. It uses the same graphical user interface as C/C++ SPE.

.msb file. An .msb file is an XML-format file output by MSB.

perspective. A perspective is a combination of windows, menus, and
toolbars in the LatticeMico System graphical user interface that enables you
to perform a particular task. For example, the Debug perspective has views
that enable you to debug the programs that you created in C++ SPE.

project. A project is the software application code written in C/C++ SPE.

84

LatticeMico32 Tutorial

LATTICEMICO32 TUTORIAL : Recommended References

PROM. Programmable read-only memory (PROM) is a permanent memory
device that is programmed by the customer rather than by the device
manufacturer. It differs from a ROM, which is programmed at the time of
manufacture. PROMs have been mostly superseded by EEPROMSs, which
can be reprogrammed.

running. Running is the process of executing a software program.

slave port. A slave port is a port that cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

software application. The software application is the code that runs on the
LatticeMico32 microprocessor to control the components, the bus, and the
memories. The application is written in a high-level language such as C++.

SPI. SPI is an acronym for serial peripheral interface, a core that allows high-
speed synchronous serial data transfers between microprocessors,
microcontrollers, and peripheral devices. It can operate either as a master or
as a slave.

watchpoint. A watchpoint is a type of breakpoint that stops the execution of a
software program whenever the value of a specific expression changes,
without indicating where this may occur. A watchpoint halts program
execution, even if the new value being written is the same as the old value of
the field.

XML. XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

Recommended References

The following reference materials are recommended to supplement this
tutorial:

LatticeMico System online Help. From the LatticeMico Help menu, choose
Help > Help Contents.

LatticeMico32 Hardware Developer User Guide, which explains how to
use the Lattice Mico System Builder to create and configure a hardware
platform for the LatticeMico32 embedded microprocessor

LatticeMico32 Software Developer User Guide, which explains how to use
C/C++ SPE to program the microprocessor, gives examples of the code
used for different parts of the architecture, and describes the processes
occurring in the background

LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including

configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

LatticeMico32 Tutorial

85

LATTICEMICO32 TUTORIAL

Recommended References

LatticeMico32/DSP Development Board User’s Guide, which describes
the features and functionality of the LatticeMico32/DSP development
board. This board is designed as a hardware platform for design and
development with the LatticeMico32 microprocessor, as well as for the
LatticeMico8 microcontroller, and for various DSP functions.

Lattice Diamond Installation Guide, which explains how to install
LatticeMico System on the Linux Red Hat operating system.

Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench

LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico SPI flash component

LatticeMico Timer, which describes the features and functionality of the
LatticeMico timer

LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

Lattice Diamond Installation Notice for the current release, which explains
how to install the LatticeMico System software

LatticeECP2 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP2 devices

LatticeECP2 Family Data Sheet

LatticeECP2M Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP2M devices

LatticeECP2M Family Data Sheet

LatticeECP3 Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP3 devices

LatticeECP3 Family Data Sheet

86

LatticeMico32 Tutorial

	LatticeMico32 Tutorial
	Introduction
	Learning Objectives
	Time to Complete This Tutorial
	System Requirements
	Accessing Online Help
	About the Tutorial Design
	Tutorial Data Flow

	LatticeMico32/DSP Development Board
	Task 1: Create a New Lattice Diamond Project
	Task 2: Create the Development Microprocessor Platform
	Create a New MSB Platform
	Add the Microprocessor Core
	Add the Off-Chip Memory
	Add the Peripheral Components
	Specify the Connections Between Master and Slave Ports
	Assign Component Addresses
	Assign Interrupt Request Priorities
	Perform a Design Rule Check
	Generate the Microprocessor Platform

	Task 3: Create the Software Application Code
	Create a New C/C++ SPE Project
	Linker Configuration
	Build the Project

	Task 4: Generate the Microprocessor Bitstream
	Import the MSB Output File
	Connect the Microprocessor to the FPGA Pins
	Perform Functional Simulation
	Perform Timing Simulation
	Generate the Bitstream

	Task 5: Download the Hardware Bitstream to the FPGA
	Task 6: Debug and Execute the Software Application Code on the Development Board
	Software Application Code Execution Flow
	Debug the Software Application Code on the Board
	Insert Breakpoints
	Execute the Software Application Code
	Modify and Re-execute the Software Application Code

	Task 7: Deploy the Software Code to Parallel Flash Memory
	Parallel Flash Memory Deployment Flow
	Create a CFI Flash Programmer Application
	Prepare LEDTest for Flash Deployment

	Task 8: Deploy the Production Microprocessor Bitstream to SPI Flash Memory
	Summary
	Glossary
	Recommended References

