
1 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

May 2012

Lattice Semiconductor

5555 Northeast Moore Ct.
Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

http://www.latticesemi.com/

2 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

Introduction

What do the advertisements of the world’s leading phone makers have in common?

Answer: they almost never say anything about using their products to make an actual

phone call – unless it happens to be some form of video call.

Instead, they promise to connect you with anyone so that you can share anything. They

tout the hundreds of thousands of apps that you can download. These apps promise to

do everything from helping you clean your carpet to navigating by the stars to a faraway

land, all the while tweeting a stream of real-time updates to your faithful followers the

world over.

Now, all of this might seem like just interesting marketing trivia, but if we dig a little

deeper, we find a profound engineering situation that impacts every smartphone

designer.

By adding an Internet browser, the iPhone created a fundamental change in the phone’s

use model. Instantly, the feature phone became a 24/7 mobile portal to all that the

World Wide Web has to offer. Today, there are approximately 100,000 unique

application developers, servicing all the various smartphones. The size of this

ecosystem is unparalleled in the industry, and one of its many effects on smartphones is

the rapid generation of new requirements. For example, game developers are

clamoring for bigger, better displays as well as smartphone output connections to even

bigger external displays. After all, probably the only thing more righteous than

destroying that last pig in “Angry Birds” is destroying it on a high-definition big screen in

front of all your friends.

The Effect on Smartphone Designers

This accelerated pace to meet new requirements produces very short product

development cycles. And the pressure to meet these schedules causes more reliance

on standard chips – i.e. fully loaded application processors (Systems on a Chip, or

SoC), such as the Qualcomm Snapdragon or the TI OMAP. But now we have a

3 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

paradox: big chips like application processors take two to three years to develop,

meaning that any device you can buy today was defined two or three years ago –

which, at the pace of the smartphone evolution, is an eternity.

Another way to look at this is from the application processor designer’s perspective.

They must define tomorrow’s chip using today’s knowledge. But even if they succeed,

as soon as the application processor is released in a new smartphone, one hundred

thousand developers will start working on it in an effort to do something new and

different, generating yet more requirements.

So what is a smartphone designer supposed to do? In order to meet your design

schedules, you must use readily available chips. But yesterday’s application processors

often fail to meet today’s requirements. So you need either to delay your ideas until the

application processor supports them directly (when all of your competitors will also have

access) or you need to supplement the application processor with something else.

Bridging the Application Processor Development Cycle Gap

One solution would be to use an FPGA. You could then do what you wanted with no

waiting. But, until recently, this was not an option. FPGAs were simply too big, too

expensive and too power-hungry for use in smartphones. This is because traditional

FPGAs have been designed for applications that aren’t limited by the price, power and

space constraints of smartphones.

Increasingly, however, you can find FPGAs that are specifically targeted at the needs of

small, inexpensive, power-sensitive consumer devices – and smartphones in particular.

This new breed of FPGA can be used to supplement an application processor and help

bridge the gap in the processor release cycle (Figure 1).

4 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

Figure 1

Sensor Surplus

No component inside a phone better illustrates the situation we’ve described than the

sensor. Completely unnecessary for making a phone call, sensors originally were used

for simple functions such as adjusting the display’s backlighting based on the ambient

light. But sensors provide much information on the phone’s environment, and that

information can be used in lots of different ways. As a result, more and more sensors

are being added to smartphones: today’s smartphone can have between one and two

dozen different sensors in it.

This creates a problem for the designer, however: how to handle the information coming

from the sensors? The obvious answer is to feed the sensor output to the application

processor, but processors typically have too few of the I2C or SPI ports that sensors

use. This means finding some other way of multiplexing or using general-purpose I/Os

(often with poor performance) to handle the sensor glut.

But here’s the challenge: a phone is tiny, and space matters above all else – even more

than power. You can’t just put multiple discrete components in the phone to increase

5 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

the number of sensors. Now, if this were any other kind of non-consumer system, the

obvious solution would be to use an FPGA. But, according to conventional wisdom, no

one would put an FPGA in a phone: they’re too big, they’re too expensive and they’re

too power-hungry.

And that’s because most FPGAs have been designed for the large number of

applications that aren’t bothered by these characteristics. Increasingly, however, you

can find FPGAs that are specifically targeted at the needs of small, inexpensive, power-

sensitive consumer devices – and phones in particular. These are the application

processor companions that can bridge the promise of new hardware possibilities – like

dozens of sensors – to the realities of what the application processors can do.

FPGAs in Smartphones

Managing sensors is a good example of how such an application processor companion

can make tomorrow’s SoC capability available today. The most basic issue to be

addressed is the mismatch between the number of sensors and the number of ports

available on the application processor.

For example, a Qualcomm baseband processor – say, the MSM8X55 – can only handle

up to threeI2C inputs. A smartphone today will have, at a minimum, three positioning

sensors – accelerometer, gyroscope and compass –along with a touch panel and a

battery monitor. In order to appeal more to fitness enthusiasts, for example, you may

want to add heart rate and perspiration monitors as well as an altimeter (for hikers).

The touchscreen has to have its own input so that no touch events are missed while

some other sensor is being polled. That means all the other sensors would have to

share the remaining two I2C busses.

An application processor companion can be programmed to add more I2C masters and

be a bridge between the sensors and Qualcomm’s external bus interface (EBI2). As

shown in Figure 2, all of the I2C functionality is handled in the application processor

companion, and the sensor output is then buffered in FIFOs and delivered through a

high-speed EBI2 interface without using any I2C ports at all.

6 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

Figure 2

Offloading the Application Processor

Expanding the number of ports available to an application processor can be helpful, but

it can also make a different problem worse. The application processor typically has to

do work to process sensor data, and, the more sensors there are, the more work it has

to do.

For example, inertial measurement units, like gyroscopes and accelerometers, simply

provide a value at their output, either rotational or translational acceleration,

respectively. They don’t tell you when their value changes. That means that something

– typically the application processor–has to poll constantly to confirm whether or not

there has been a change. Even if the application processor has nothing else to do, this

can prevent the application processor from going into sleep mode, increasing power

consumption.

What’s needed is a way to offload the sensor management tasks from the application

processor, and an FPGA that can act as an application processor companion is an

effective way to do this (Figure 3). You can create an auto-polling block and track the

values, alerting the application processor when there has been a change that requires

Qualcomm

MSM8x55

Accelerometer

E
B

I2
 In

te
rfa

c
e

I2C

Master #0

Application Processor Companion

Gyroscope

Compass

Battery Monitor

Touch Panel

I2C

Master #1

I2C

Master #2

256-byte

FIFO

256-byte

FIFO

256-byte

FIFO

I2C

Master #3

256-byte

FIFO

I2C

Master #4

256-byte

FIFO

Heart-rate Monitor

Perspiration Monitor

Altimeter

EBI2

7 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

some action. This effectively transforms the sensor reading from a “pull” to a “push,”

allowing the application processor to ignore the sensor until interrupted.

Figure 3

On the other end of the spectrum, some sensors, like touch sensors, already provide an

interrupt signal so that the application processor doesn’t have to deal with it until there’s

an event of interest. The problem is, when you get multiple fingers touching the sensor

and swiping, the huge number of interrupts – potentially thousands of them – easily

overwhelms the application processor. Here again, an application processor

companion can manage the flood of interrupts, as shown in Figure 4, sorting through

them to filter out the noise and deliver only those of interest to the application processor.

This frees the application processor from meaningless distractions, allowing it to focus

on more substantive tasks.

Figure 4

Qualcomm
MSM8x55 Gyroscope

I2C

IRQ

EBI2 EBI2
Interface

FIFO I2C
Master

w/
Auto

Polling
Data

Filtering

Application Processor Companion

Qualcomm
MSM8x55

Application Processor Companion

Touch Panel

I2C Bus

IRQIRQ

I2C
Master

IRQ
Control

&
FIFO

I2C
Slave

SPI
Slave

(Reserve)

I2C Bus

8 An FPGA “Companion” in Smartphone Design

A Lattice Semiconductor White Paper

Note that you can also handle interface conversion at the same time. While the

application processor shown above may accept an I2C input, by including an SPI

interface in the application processor companion, you can reuse the same design for a

different application processor requiring an SPI interface, or perhaps for an application

processor whose I2C ports have already been committed to some other purpose.

These are examples of ways in which an FPGA – functioning as an application

processor companion – can be paired with an application processor, designed three

years ago, to allow you to take advantage of your new ideas today… not three years

from now.

Lattice Semiconductor’s iCE40™ mobileFPGA™ is a good example an FPGA

specifically designed for the small footprint, low power and low cost requirements of

smartphones. The FPGA makes it possible to keep up with the dizzying pace of

innovation as smartphone life spans continue to shrink, while at the same time giving

the mere conversation a back seat to all the other incredible things a “phone” can do.

