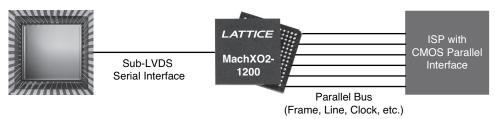


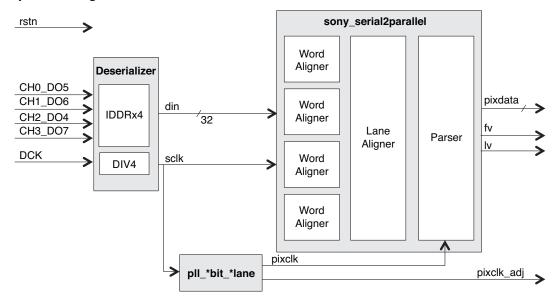
Sub-LVDS Serial to CMOS Parallel Sensor Bridge


October 2012 Reference Design RD1130

Introduction

The Sony Image Sensor Division has begun introducing image sensors with faster frame rates and more megapixels. Examples include the IMX136, a 2.38M pixel sensor (1080p) capable of frame rates of up 120 fps, and the IMX104, a 720p sensor with frame rates up to 120 fps and a serial sub-LVDS interface. These sensors were introduced with CMOS parallel, sub-LVDS parallel, and sub-LVDS serial output formats. The output drivers of the sensor cannot handle the higher bandwidth requirements of the CMOS parallel output format. As a result, for higher resolutions and frame rates, sub-LVDS output formats must be used. Since most ISP vendors only support CMOS parallel inputs, a bridge device must convert the sub-LVDS serial interface to a CMOS parallel interface (Figure 1). The Sub-LVDS Serial to CMOS Parallel Sensor Bridge for Sony Sensors can perform this conversion.

The Sony serial sub-LVDS interface requires the fewest signals to transmit an image. All future Sony cameras will move to this serial interface. If you wish to use the sub-LVDS parallel interface, Lattice has a design solution for this as well. Please refer to RD1122, <u>Sub-LVDS-to-Parallel Sensor Bridge</u>, for details.

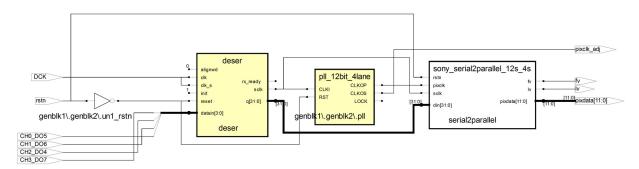

Figure 1. Sub-LVDS Serial to CMOS Parallel Functional Overview

The sub-LVDS Serial to CMOS Parallel Sensor Bridge for Sony Sensors is targeted to Lattice FPGA devices. When an external ISP device is used and only a bridge function is needed, the low-cost MachXO2™ is an ideal choice. Serial sub-LVDS data from the IMX136 is delivered on both rising and falling clock edges (double data rate). The reference design first converts the DDR input to use a single clock edge and reduces the clock rate using DDRx4 gearing. The output from the DDRx4 primitives are converted and aligned to 10 or 12 bit words. Words from each of the serial lanes are then aligned to each other. Aligned words are parsed so that a 10 or 12 bit word is available every pixel clock cycle.

Figure 2. Top Level Diagram

Design Package

The sub-LVDS Serial to CMOS Parallel Sensor Bridge for Sony Sensors design package is available free of charge on the Lattice website at www.latticesemi.com. The design package contains everything you need to get started.


- /bitstream/* Bitstreams for all serial device modes
- /doc/* This document
- /impl/* Lattice Diamond® 1.4 project targeted to the MachXO2-1200HC device in a 132-ball csBGA package
- /IPExpress/* IPexpress[™] modules for PLLs and iddrx4
- /models/* Verilog simulation primitives
- /ngo/* NGOs targeted to the MachXO2 device for all serial device modes
- /rtl/* Top level design module and NGO module black box
- /sim/* Aldec simulation environment files and simulation wizard script
- /testbench/* Verilog simulation test bench
- /Readme.txt Reiterates the basics of this document and how to get started

Top Level Design Module

The top level design module instantiates the deserializer module, PLL module and sony_serial2parallel NGO. The deserializer module contains the IDDRX4 and CLKDIV4 primitives. A PLL is used to convert the divided-down serial clock to the pixel clock. Access to the PLL is available at the top level so users can utilize it for any other design-specific needs. The sony_serial2parallel NGO contains the serial-to-parallel bridge design targeted to the MachXO2 device. The appropriate NGO and PLL are chosen automatically based on bus_width and lane_width parameters when using the included Lattice Diamond project.

Figure 3. Top Level RTL Diagram from Synplify Pro - RTL View

There are six possible configurations for the IMX136 in serial mode, all of which are supported by the bridge. The mode can be configured using the Verilog parameters at the top level of the sony_serial_sensor_bridge.v design file on lines 50 and 51.

- 10-bit, 1-lane
- 12-bit, 1-lane
- 10-bit, 2-lane
- 12-bit, 2-lane
- 10-bit, 4-lane
- 12-bit, 4-lane

Figure 4. Top Level Verilog Parameters for Bus and Lane Widths

```
dule sony serial sensor bridge #(
parameter bus_width = 1
parameter lane_width = 4
                                                       // 10, 12 - the width of the pixel data, 10 bit or 12 bit widths supported // 2, 4 \, - the number of lanes used, 10 bit or 12 bit widths supported
input wire
                                                                       // reset, active low
input
input
                                               CHO DOS
                                               CH1_DO6
CH2_DO4
input
input
output wire
                                               CH3_DO7
pixclk_adj
                                                                       // LVDS DDR input data
                                                                       // output pixel clock
// output SDR data(LVCMOS)
                  [bus_width-1:0]
output wire
                                               pixdata
output wire
                                                                  , // frame valid output
// line valid output
 output wire
```


Top Level Verilog Parameters for Bus and Lane Widths

The top level pinout for the design consists of the serial sub-LVDS inputs from the IMX136, the parallel CMOS output bus, frame and line valid indictor pins and an output clock.

Table 1. Top Level Design Pinout

Parameter	Configurations	Description
bus_width	10, 12	Pixel bus width
lane_width	1, 2, 4	Number of data lanes used

Signal	Direction	I/O Type	Description
rstn	Input	LVCMOS	Sensor bridge reset
CH0_DQ5	Input	LVDS	Lane 0 serial data
CH1_DQ6	Input	LVDS	Lane 1 serial data
CH2_DQ4	Input	LVDS	Lane 2 serial data (only used when lane_width==4)
CH3_DQ7	Input	LVDS	Lane 3 serial data (only used when lane_width==4)
DCK	Input	LVDS	Serial clock
pixdata[bus_width-1:0]	Output	LVCMOS	Pixel data
fv	Output	LVCMOS	Frame valid
lv	Output	LVCMOS	Line valid
pixclk	Output	LVCMOS	Pixel clock

Gearing the data in the FPGA allows the design to internally run at a much slower clock rate, which increases performance, decreases power and decreases cost. Serial data from the IMX136 is converted to use a single clock edge. It is also reduced to a lower clock speed, which can be calculated by the following equation:

The pixel clock output is used to clock out the parallel data and is calculated with the following equation:

Table 2. sclk and pixclk Speeds for Device Modes

Device Mode	Frame Rate (Frames/Second)	Input Data Rate (Mbps/Channel)	scik (MHz)	pixclk (MHz)
	30	445.5	55.6875	74.25
1080p Full HD mode	30	222.75	27.84375	74.25
	60	445.5	55.6875	148.5
WUXGA All-pixel scan mode	27	445.5	55.6875	74.25
	54	222.75	27.84375	74.25
	108	445.5	55.6875	148.5
	30	222.75	27.84375	37.125
	30	111.375	13.921875	37.125
720p Full HD mode	60	445.5	55.6875	74.25
	60	222.75	27.84375	74.25
	120	445.5	55.6875	148.5

The active region of the image is found by using the sync codes embedded in each serial data lane by the Sony IMX136. Sync codes are detected and control the pixdata output as well as the fv and lv (frame valid and line valid) output indicators.

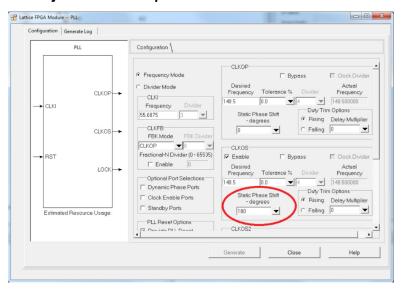
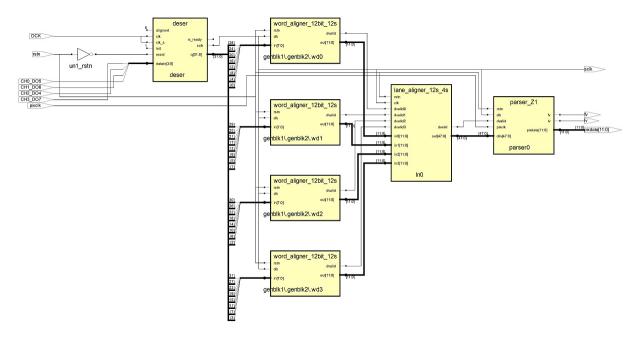


Table 3. Sync Codes and Indicator States

	Сус	le 1	Сус	le 2	Сус	le 3	Сус	le 4		
Sync Code	12-bit	10-bit	12-bit	10-bit	12-bit	10-bit	12-bit	10-bit	FV State	LV State
SAV (valid line)	0xFFF	0x3FF	0x000	0x000	0x000	0x000	0x800	0x200	1	1
EAV (valid line)	0xFFF	0x3FF	0x000	0x000	0x000	0x000	0x9D0	0x274	1	0
SAV (invalid line)	0xFFF	0x3FF	0x000	0x000	0x000	0x000	0xAB0	0x2AC	0	0
EAV (invalid line)	0xFFF	0x3FF	0x000	0x000	0x000	0x000	0xB60	0x2D8	0	0

pixdata, fv and Iv are all edge-aligned with pixclk at the Lattice device output. pixclk_adj is the output clock to be used by the ISP. By default, pixclk_adj is offset from pixclk by 180 degrees. This means that pixdata, fv and Iv are center-aligned with pixclk_adj at the output. The offset can be adjusted in IPexpress if desired by the user. To do this, click on the **pll_*bit_*lane.ipx** file for your configuration and to adjust the phase on the CLKOS output.

Figure 5. pixclk_adj Phase Adjustment in IPexpress



Reference Design NGO

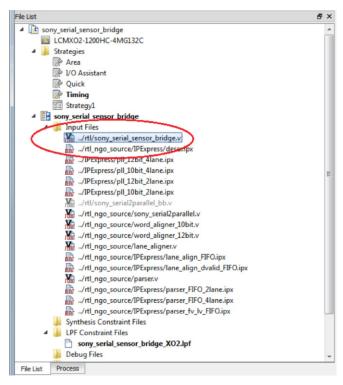
The design NGO files contain a complete sensor bridge design for all serial configurations available on the IMX136.

Figure 6. NGO RTL Diagram from Synplify Pro - RTL View

Changing configuration parameters in the top level design file (sony_serial_sensor_bridge.v) will call the corresponding NGO automatically when using the included Diamond software project (sony_serial_sensor_bridge.ldf). I/O for the NGO consists of the deserialized data bus and clocks, as well as the parallel data, clock, and control outputs.

Table 4. NGO I/O Descriptions

Parameter	Configurations	Description
bus_width	10, 12	Pixel bus width
lane_width	1, 2, 4	Number of data lanes used


Signal	Direction	Description
rstn	Input	Sensor bridge reset
sclk	Input	Serial clock/4
pixclk	Input	Upconverted pixel clock from PLL. Based on sclk.
		Deserialized sensor data input. I/O created to match IPexpress generated output for iddrx4 core with 4 serial inputs.
		Lane 0: {din[28],din[24],din[20],din[16],din[12],din[8],din[4],din[0]}
din[31:0]	Input	Lane 1: {din[29],din[25],din[21],din[17],din[13],din[9],din[5],din[1]}
		Lane 2: {din[30],din[26],din[22],din[18],din[14],din[10],din[6],din[2]}
		Lane 3: {din[31],din[27],din[23],din[19],din[15],din[11],din[7],din[3]}
pixdata[bus_width-1:0]	Output	Pixel data
fv	Output	Frame valid
Iv	Output	Line valid

Diamond Project Information

Included in the packaged design is the Lattice Diamond project file (sony_serial_sensor_bridge.ldf). The project is pre-configured for the MachXO2-1200HC-6 in a 132-ball csBGA package. Configuring the top level design file for your desired mode of operation can be performed by double clicking **sony_serial_sensor_bridge.v** under Input Files in the File List.

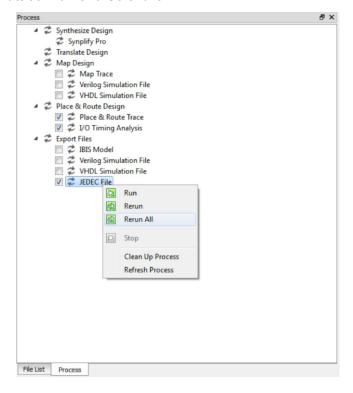


Figure 7. File List Tab in Lattice Diamond Software

Synthesis of the design and generation of a JEDEC bitstream can be performed by clicking on the **Process** tab. Then check the **JEDEC File checkbox** under Export Files, right-click on **JEDEC File**, and click **Rerun All**. After synthesis is complete, a *.JED bitstream file will be available in the *impl\sony_serial_sensor_bridge\ directory.

Figure 8. Process Tab in Lattice Diamond Software

Simulation

The included test bench is capable of testing all lane and bus widths available on the IMX136 for serial sub-LVDS mode. 1-lane 10-bit, 1-lane 12-bit, 2-lane 10-bit, 2-lane 12-bit, 4-lane 10-bit, and 4-lane 12-bit modes were all simulated for design verification. The easiest way to set up, access and run the simulation is through Lattice Diamond and the pre-configured scripts (sony_serial_bridge_simulation.spf) provided in the *.ldf project. To do this, double-click on the script file under Script Files in the File List. Then click **Finish** in the Simulation Wizard. This will open Aldec Active HDL Simulator. Follow the instructions for running a basic simulation in the simulator help if you are unfamiliar with the environment.

Similar to configuring the serial device mode for synthesis, the design test bench parameters also need to be configured for the desired mode of operation. This can be done in the same way by opening the Verilog test bench (sony_serial_sensor_bridge_tb.v) and modifying the Verilog parameters on lines 52 and 53.

Figure 9. Verilog Testbench Parameters

Figure 10. Simulation Screen Shot of Design Output

Device Support

The MachXO2-1200 device in the 132-ball csBGA package has been a proven solution for sensor bridge design implementation. For this reason, it has been chosen as the default target device. Other devices and packages can be targeted, but the pinout and design implementation choices are left up to the user. For best results, use the device, package and pinout described below. With this pinout, no external termination resistors are required for the sub-LVDS lanes.

Table 5. Device Pinout

MachXO2, 132-Ball csBGA, Speed Grade -6
C1
N6
P6
M11
P12
P8
M8
P2
N2
M7
N8
A11
B7
C4
C6
B3
C11
A12
A7
B5
A9
A10
A2
B12
C12
B13

Table 6. Design Performance

		f _{MAX} (MHz)					
		Speed (Grade -4	Speed (Grade -5	Speed (Grade -6
Device Family	Configuration	sclk	pixclk	sclk	pixclk	sclk	pixclk
	10-bit, 2-lane	110.412	131.216	104.384	154.488	123.778	163.639
MachXO2	12-bit, 2-lane	124.456	140.469	126.310	156.006	140.805	170.010
MacrixO2	10-bit, 4-lane	51.222	131.216	69.099	151.860	78.456	168.947
	12-bit, 4-lane	67.105	139.005	72.786	156.006	79.510	162.417

Table 7. Resource Utilization

Device Family	Configuration	Registers	LUTs	EBRs	PLL
	10-bit, 1-lane	322	345	2	1
	12-bit, 1-lane	310	340	2	1
MachXO2	10-bit, 2-lane	482	526	3	1
IVIACITA OZ	12-bit, 2-lane	535	513	3	1
	10-bit, 4-lane	923	1029	4	1
	12-bit, 4-lane	950	891	4	1

Table 8. I/O Timing Analysis of Sub-LVDS Parallel Input Bus

	Setup	Hold	Setup	Hold	Setup	Hold
Device Family	Speed Grade -4		Speed (Grade 5	Speed (Grade 6
MachXO2	0.222	0.337	0.222	0.254	0.222	0 .175

References

• Sony IMX136LQJ Data Sheet

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Date	Version	Change Summary
June 2012	01.0	Initial release.
August 2012	01.1	Updated to include support of the built in WDR capability of the Sony IMX136/104.
October 2012	01.2	Updated Introduction section.