

Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide

Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

1. Introduction	/
1.1. EFB Register Map	8
1.2. WISHBONE Bus Interface	8
1.3. WISHBONE Write Cycle	9
1.4. WISHBONE Read Cycle	10
1.5. WISHBONE Reset Cycle	12
2. Hardened I ² C IP Cores	12
3. I ² C Registers	12
4. Typical I ² C Transactions	19
5. I ² C Functional Waveforms	21
6. I ² C Timing Diagram	25
7. I ² C Simulation Model	25
8. Hardened SPI IP Core	29
9. SPI Registers	29
10. Typical SPI Transactions	39
11. SPI Functional Waveforms	40
12. SPI Timing Diagrams	41
13. SPI Simulation Model	
14. Hardened Timer/Counter PWM	
14.1. Timer/Counter Registers	
15. Timer Counter Simulation Model	
16. Flash Memory (UFM/Configuration) Access	
16.1. Flash Memory (UFM/Configuration) Access Ports	
16.2. Flash Memory (UFM/Configuration) Access through WISHBONE Slave Interface	
16.3. Command and Data Transfers to Flash Memory (UFM/Configuration) Space	
16.4. Command Summary by Application	
16.5. Command Descriptions by Command Code	
17. Interface to Configuration Flash	
18. Command Framing	74
18.1. I ² C Framing	
18.2. SPI Framing	
18.3. WISHBONE Framing	75
19. UFM Write and Read Examples	76
20. Flash Memory Erase and Program Performance	
21. Erase/Program/Verify Time Calculation Example	79
Technical Support Assistance	80
Revision History	81

Figures

Figure 1.1. Embedded Function Block (EFB)	7
Figure 1.2. WISHBONE Bus Interface Between the FPGA Core and the EFB Module	8
Figure 1.3. WISHBONE Bus Write Operation	10
Figure 1.4. WISHBONE Bus Read Operation	11
Figure 1.5. EFB WISHBONE Interface Reset	
Figure 3.1. I ² C Master Read/Write Example (via WISHBONE)	18
Figure 3.2. I ² C Slave Read/Write Example (via WISHBONE)	19
Figure 4.1. Simple I ² C Command (for example, ISC_ERASE)	19
Figure 4.2. I ² C Command with Write Data (for example, LSC_PROG_INCR_NV)	20
Figure 4.3. I ² C Command with Read Data (for example, LSC_READ_STATUS)	
Figure 5.1. EFB Master – I ² C Write	21
Figure 5.2. EFB Master – I ² C Read	22
Figure 5.3. EFB Slave – I ² C Write	23
Figure 5.4. EFB Slave – I ² C Read	
Figure 6.1. I ² C Bit Transfer Timing	25
Figure 9.1. SPI Master Read/Write Example (via WISHBONE) – Production Silicon	36
Figure 9.2. SPI Master Read/Write Example (via WISHBONE) – R1 Silicon	37
Figure 9.3. SPI Slave Read/Write Example (via WISHBONE) – Production Silicon	38
Figure 10.1. Simple SPI Command (for example, ISC_ERASE)	
Figure 10.2. SPI Command w/ Write Data (for example, LSC_PROG_INCR_NV)	
Figure 10.3. SPI Command w/ Read Data (for example, LSC_READ_STATUS)	39
Figure 11.1. Fully Specified SPI Transaction (MachXO2 as SPI Master or Slave)	
Figure 11.2. Minimally Specified SPI Transaction Example (MachXO2 as SPI Slave)	
Figure 12.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)	
Figure 12.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)	
Figure 12.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)	
Figure 12.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)	
Figure 12.5. Slave SPI Dummy Byte Response (SPICR2[SDBRE]) Timing	
Figure 16.1. Interfaces to the UFM/Configuration Sectors	54
Figure 17.1. Basic Configuration Flash Update Example	
Figure 18.1. I ² C Read Device ID Example	
Figure 18.2. SSPI Read Device ID Example	75
Figure 18.3, WISHBONE Read Device ID Example (-1200 HC Device)	75

Tables

Table 1.1. EFB Register Map	8
Table 1.2. WISHBONE Slave Interface Signals of the EFB Module	
Table 3.1. I ² C Registers	
Table 3.2. I ² C Control (Primary/Secondary)	
Table 3.3. I ² C Command (Pri/Sec)	
Table 3.4. I ² C Clock Prescale 0 (Primary/Secondary)	
Table 3.5. I ² C Register Clock Prescale 1 (Primary/Secondary)	
Table 3.6. I ² C Transmit Data Register (Primary/Secondary)	
Table 3.7. I ² C Status (Primary/Secondary)	
Table 3.8. I ² C General Call Data Register (Primary/Secondary)	
Table 3.9. I ² C Receive Data Register (Primary/Secondary)	
Table 3.10. I ² C Interrupt Status (Primary/Secondary)	
Table 3.11. I ² C Interrupt Enable (Primary/Secondary)	
Table 7.1. I ² C Primary Simulation Mode	
Table 7.2. I ² C Secondary Simulation Model	
Table 9.1. SPI Registers	
Table 9.2. SPI Control 0	
Table 9.3. SPI Control 1	30
Table 9.4. SPI Control 2	31
Table 9.5. SPI Clock Prescale	32
Table 9.6. SPI Master Chip Select	33
Table 9.7. SPI Transmit Data Register	33
Table 9.8. SPI Status	33
Table 9.9. SPI Receive Data Register	34
Table 9.10. SPI Interrupt Status	34
Table 9.11. SPI Interrupt Enable	35
Table 13.1. SPI Simulation Model	43
Table 14.1. Timer/Counter Registers	
Table 14.2. Timer/Counter Control 0	
Table 14.3. Timer/Counter Control 1	
Table 14.4. Timer/Counter Set Top Counter Value 0	
Table 14.5. Timer/Counter Set Top Counter Value 1	
Table 14.6. Timer/Counter Set Compare Counter Value 0	
Table 14.7. Timer/Counter Set Compare Counter Value 1	
Table 14.8. Timer/Counter Control 2	
Table 14.9. Timer/Counter Counter Value 0	
Table 14.10. Timer/Counter Counter Value 1	
Table 14.11. Timer/Counter Current Top Counter Value 0	
Table 14.12. Timer/Counter Current Top Counter Value 1	
Table 14.13. Timer/Counter Current Compare Counter Value 0	
Table 14.14. Timer/Counter Current Compare Counter Value 1	
Table 14.15. Timer/Counter Current Capture Counter Value 0	
Table 14.16. Timer/Counter Current Capture Counter Value 1	
Table 14.17. Timer/Counter Status Register	
Table 14.18. Timer/Counter Interrupt Status	
Table 14.19. Timer/Counter Interrupt Enable	
Table 15.1. Timer/Counter Simulation Mode	
Table 16.1. WISHBONE to Flash Memory (CFG) Logic Registers	
Table 16.2. Flash Memory (UFM/Configuration) Control	
Table 16.3. Flash Memory (UFM/Configuration) Transmit Data	
Table 16.4. Flash Memory (UFM/Configuration) Status	
Table 16.5. Flash Memory (UFM/Configuration) Receive Data	56

Table 16.6. Flash Memory (UFM/Configuration) Interrupt Status	57
Table 16.7. Flash Memory (UFM/Configuration) Interrupt Enable	
Table 16.8. Unused (Reserved) Register	58
Table 16.9. EFB Interrupt Source	
Table 16.10. UFM (Sector 1) Commands	59
Table 16.11. Configuration Flash (Sector 0) Commands	60
Table 16.12. Non-Volatile Register (NVR) Commands	61
Table 16.13. Erase Flash (0x0E)	61
Table 16.14. Read TraceID Code (0x19)	62
Table 16.15. Disable Configuration Interface (0x26)	
Table 16.16. Read Status Register (0x3C)	
Table 16.17. Reset CFG Address (0x46)	
Table 16.18. Reset UFM Address (0x47)	
Table 16.19. Program DONE (0x5E)	
Table 16.20. Program Configuration Flash (0x70)	
Table 16.21. Read Configuration Flash (0x73) (SPI)	
Table 16.22. Read Configuration Flash (0x73) (I ² C/SPI)	
Table 16.23. Read Configuration Flash (0x73) (WISHBONE)	
Table 16.24. Enable Configuration Interface (Transparent) (0x74)	
Table 16.25. Refresh (0x79)	
Table 16.26. STANDBY (0x7D)	
Table 16.27. Set Address (0xB4)	
Table 16.28. Read USERCODE (0xC0)	
Table 16.29. Program USERCODE (0xC2)	
Table 16.30. Enable Configuration Interface (Offline) (0xC6)	
Table 16.31. Program UFM (0xC9)	
Table 16.32. Read UFM (0xCA) (SPI)	
Table 16.33. Read UFM (0xCA) (I ² C/SPI)	
Table 16.34. Read UFM (0xCA) (WISHBONE)	
Table 16.35. Erase UFM (0xCB)	
Table 16.36. Program SECURITY (0xCE)	
Table 16.37. Program SECURITY PLUS (0xCF)	
Table 16.38. Read Device ID Code (0xE0)	
Table 16.39. Device ID Table	
Table 16.40. Verify Device ID Code (0xE2)	
Table 16.41. Program Feature Row (0xE4)	
Table 16.42. Read Feature Row (0xE7)	
Table 16.43. Check Busy Flag (0xF0)	
Table 16.44. Program FEABITs (0xF8)	
Table 16.45. Read FEABITs (0xFB)	
Table 16.46. Bypass (Null Operation) (0xFF)	
Table 18.1. Command Framing Protocol, by Interface	
Table 18.2. Command Framing Protocol, by Interface	
Table 18.3. Command Framing Protocol, by Interface	
Table 19.1. Write Two UFM Pages	
Table 19.2. Read One UFM Page (All Devices, WISHBONE/SPI)	
Table 19.3. Read Two UFM Pages (WISHBONE/SPI)	
Table 20.1. Flash Memory (UFM/Configuration) Performance in MachXO2 Devices ¹	
Table 21.1. E/P/V Calculation parameters	79

1. Introduction

This reference guide supplements Using User Flash Memory and Hardened Control Functions in MachXO2™ Devices Usage Guide (FPGA-TN-02162) which explains the software usage. In this document you can find:

- WISHBONE Protocol
- EFB Register Map
- Command Sequences
- Examples

As an overview, the MachXO2 FPGA family combines a high-performance, low power, FPGA fabric with built-in, hardened control functions and on-chip User Flash Memory (UFM). The hardened control functions ease design implementation and save general purpose resources such as LUTs, registers, clocks and routing. The hardened control functions are physically located in the Embedded Function Block (EFB). All MachXO2 devices include an EFB module. The EFB block includes the following control functions:

- Two I2C Cores
- One SPI Core
- One 16-bit Timer/Counter
- Interface to Flash Memory which includes:
 - User Flash Memory for MachXO2-640 and higher densities
 - Configuration Logic
- Interface to Dynamic PLL configuration settings
- Interface to On-chip Power Controller through I2C and SPI

Figure 1.1 shows the EFB architecture and the interface to the FPGA core logic.

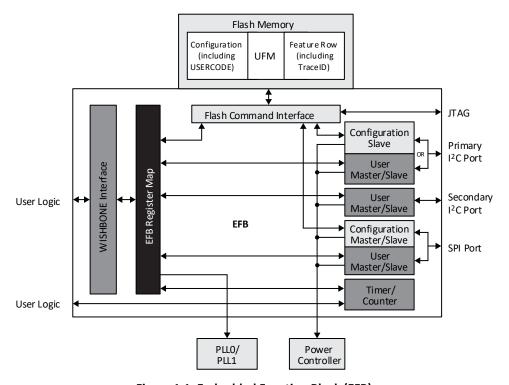


Figure 1.1. Embedded Function Block (EFB)

1.1. EFB Register Map

The EFB module has a Register Map to allow the service of the hardened functions through the WISHBONE bus interface read/write operations. Each hardened function has dedicated 8-bit Data and Control registers, with the exception of the Flash Memory (UFM/Configuration), which are accessed through the same set of registers. Table 1.1 documents the register map of the EFB module. The PLL registers are located in the MachXO2 PLL modules, but they are accessed through EFB WISHBONE read/write cycles.

Table 1.1. EFB Register Map

Address (Hex)	Hardened Function			
0x00-0x1F	PLLO Dynamic Access ¹			
0x20-0x3F	PLL1 Dynamic Access ¹			
0x40-0x49	I ² C Primary			
0x4A-0x53	I ² C Secondary			
0x54-0x5D	SPI			
0x5E-0x6F	Timer/Counter			
0x70-0x75	Flash Memory (UFM/Configuration)			
0x76-0x77	EFB Interrupt Source			

Note:

There can be up to two PLLs in a MachXO2 device. PLL0 has an address range from 0x00 to 0x1F. PLL1 (if present) has an
address range from 0x20 to 0x3F. Reference MachXO2 sysCLOCK PLL Design and Usage Guide (FPGA-TN-02157), for details on
PLL configuration registers and recommended usage.

Address spaces that are not defined in Table 1.1 are invalid and cause non-deterministic results. It is the responsibility of the designer to ensure valid addresses are presented to the EFB WISHBONE slave interface.

1.2. WISHBONE Bus Interface

The WISHBONE Bus in the MachXO2 is compliant with the WISHBONE standard from OpenCores. It provides connectivity between FPGA user logic and the EFB functional blocks. The user can implement a WISHBONE Master interface to interact with the EFB WISHBONE slave interface or a LatticeMico8™ soft processor core can be used to interact with the EFB WISHBONE.

The block diagram in Figure 1.2 shows the supported WISHBONE bus signals between the FPGA core and the EFB. Table 1.2 provides a detailed definition of the supported signals.

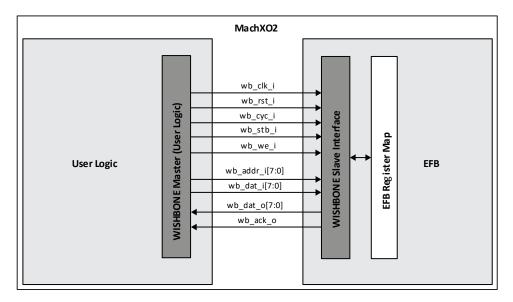


Figure 1.2. WISHBONE Bus Interface Between the FPGA Core and the EFB Module

Table 1.2. WISHBONE Slave	Interface Signals of the EFB Module
---------------------------	-------------------------------------

Signal Name	1/0	Width	Description	
wb_clk_i	Input	1	Positive edge clock used by WISHBONE Interface registers and hardened functions within the EFB module. Supports clock speeds up to 133 MHz. When used in conjunction with the I ² C User Slave or Configuration Slave ports, the clock speed must be at least 7.5x the I ² C bus speed (for example, >3.0 MHz when I ² C rate = 400 kHz).	
wb_rst_i	Input	1	Active-high, synchronous reset signal that only resets the WISHBONE interface logic. This signal does not affect the contents of any registers. It only affects ongoing bus transactions. Wait 1 us after de-assertion before starting any subsequent WISHBONE transactions.	
wb_cyc_i	Input	1	Active-high signal, asserted by the WISHBONE master, indicates a valid bus cycle is present on the bus.	
wb_stb_i	Input	1	Active-high strobe, input signal, indicating the WISHBONE slave is the target for the current transaction on the bus. The EFB module asserts an acknowledgment in response to the assertion of the strobe.	
wb_we_i	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.	
wb_adr_i	Input	8	8-bit wide address used to select a specific register from the register map of the EFB module.	
wb_dat_i	Input	8	8-bit input data path used to write a byte of data to a specific register in the register map of the EFB module.	
wb_dat_o	Output	8	8-bit output data path used to read a byte of data from a specific register in the register map of the EFB module.	
wb_ack_o	Output	1	Active-high, transfer acknowledge signal asserted by the EFB module, indicating the requested transfer is acknowledged.	

To interface to the EFB you must create a WISHBONE Master controller in the User Logic. In a multiple-Master configuration, the WISHBONE Master outputs are multiplexed in a user-defined arbiter. A LatticeMico8 soft processor can also be utilized along with the Mico System Builder (MSB) platform which can implement multi-Master bus configurations. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

The EFB WISHBONE bus supports the Classic version of the WISHBONE standard. Given that the WISHBONE bus is an open source standard, not all features of the standard are implemented or required:

- Tags are not supported in the WISHBONE Slave interface of the EFB module. Given that the EFB is a hardened block, these signals cannot be added by the user.
- The Slave WISHBONE bus interface of the EFB module does not require the byte select signals (sel_i or sel_o), since the data bus is only a single byte wide.
- The EFB WISHBONE slave interface does not support the optional error and retry access termination signals. If the slave receives an access to an invalid address, it simply responds by asserting wb_ack_o signal. It is the responsibility of the user to stay within the valid address range.

1.3. WISHBONE Write Cycle

Figure 1.3 shows the waveform of a Write cycle from the perspective of the EFB WISHBONE Slave interface. During a single Write cycle, only one byte of data is written to the EFB block from the WISHBONE Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the wb_adr_i[7:0] address lines.
- Updates the data written to the EFB block, wb_dat_i[7:0] data lines.
- Asserts the write enable wb_we_i signal, indicating a write cycle.
- Asserts the wb_cyc_i to indicate the start of the cycle.
- Asserts the wb_stb_i, selecting a specific slave module.

On clock Edge 1, the EFB WISHBONE Slave decodes the input signals presented by the master. During this cycle:

FPGA-TN-02163-2.9

9

- The Slave decodes the address presented on the wb adr i[7:0] address lines.
- The Slave prepares to latch the data presented on the wb dat i[7:0] data lines.
- The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line.
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave asserts wb_ack_o signal.

The following occurs on clock Edge 2:

- The Slave latches the data presented on the wb_dat_i[7:0] data lines.
- The Master de-asserts the strobe signal, wb_stb_i, the cycle signal, wb_cyc_i, and the write enable signal, wb we i.
- The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the Master de-assertion of the strobe signal.

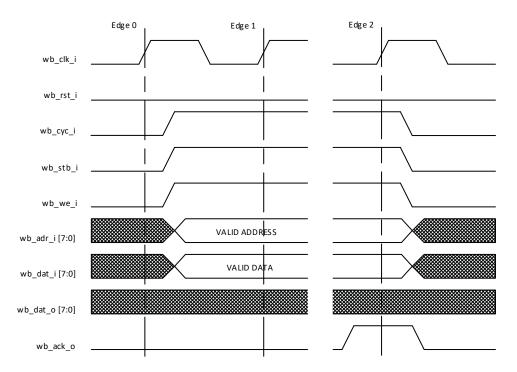


Figure 1.3. WISHBONE Bus Write Operation

1.4. WISHBONE Read Cycle

Figure 1.4 shows the waveform of a Read cycle from the perspective of the EFB WISHBONE Slave interface. During a single Read cycle, only one byte of data is read from the EFB block by the WISHBONE master. A Read operation requires a minimum of three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the wb adr i[7:0] address lines.
- De-asserts the write enable wb we i signal, indicating a Read cycle.
- Asserts the wb cyc i to indicate the start of the cycle.
- Asserts the wb stb i, selecting a specific Slave module.

On clock Edge 1, the EFB WISHBONE slave decodes the input signals presented by the master. The following occurs during this cycle:

The Slave decodes the address presented on the wb_adr_i[7:0] address lines.

- The Master prepares to latch the data presented on wb_dat_o[7:0] data lines from the EFB WISHBONE slave on the following clock edge.
- The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line.
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave presents valid data on the wb_dat_o[7:0] data lines.
- The Slave asserts wb_ack_o signal in response to the strobe, wb_stb_i signal.

The following occurs on clock Edge 2:

- The Master latches the data presented on the wb dat o[7:0] data lines.
- The Master de-asserts the strobe signal, wb_stb_i, and the cycle signal, wb_cyc_i.
- The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the master de-assertion of the strobe signal.

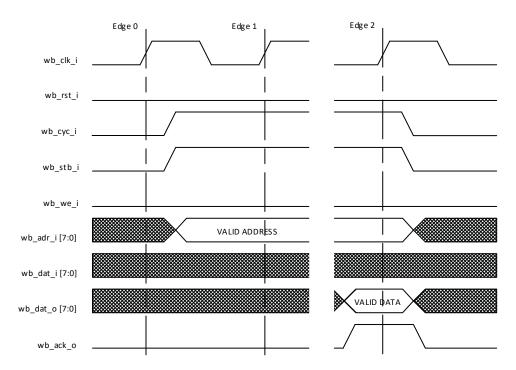


Figure 1.4. WISHBONE Bus Read Operation

To avoid simulation mismatch in functional simulations, add a delay of 100 ps to wb_cyc_i and wb_stb_i assertion assignments. See the examples below. The examples assume the signal 'wb_cyc_i_gen' is generated elsewhere in the design, for example, from a synchronous state machine (SSM).

Verilog example: (assumes `timescale 1 ns/100 ps)

```
assign wb_cyc_i = #0.100 wb_cyc_i_gen;
```

VHDL example:

Additionally, ensure your logic monitors for wb_ack_o, and deassert wb_cyc_i and wb_stb_i immediately.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

1.5. WISHBONE Reset Cycle

Figure 1.5 shows the waveform of the synchronous wb_rst_i signal. Asserting the reset signal only resets the WISHBONE interface logic. This signal does not affect the contents of any registers in the EFB register map. It only affects ongoing bus transactions.

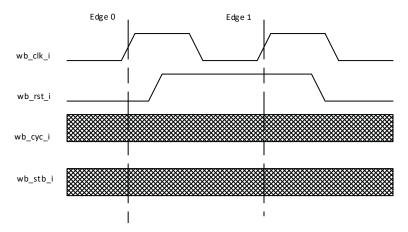


Figure 1.5. EFB WISHBONE Interface Reset

The wb_rst_i signal can be asserted for any length of time.

2. Hardened I²C IP Cores

I²C is a widely used two-wire serial bus for communication between devices on the same board. Every MachXO2 device contains two hardened I²C IP cores designated as the Primary and Secondary I²C IP cores. Either of the two cores can be operated as an I²C Master or as an I²C Slave. The difference between the two cores is that the Primary core has preassigned I/O pins while the ports of the secondary core can be assigned by designers to any general purpose I/O. In addition, the Primary I²C core can be used for accessing the User Flash Memory (UFM) and for programming the Configuration Flash. However, the Primary I²C port cannot be used for both UFM/Config access and user functions in the same design. When instantiating the Hardened I²C IP cores for Slave operations, the EFB 'wb_clk_i' input must be connected to a valid clock source of at least 7.5x the I²C bus rate (for example, >3.0 MHz when I2C rate = 400 kHz).

3. I²C Registers

Both I²C cores communicate with the EFB WISHBONE interface through a set of control, command, status and data registers. Table 3.1 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 3.1. I²C Registers

I ² C Primary Register Name	I ² C Secondary Register Name	Register Function	Address I ² C Primary	Address I ² C Secondary	Access
I2C_1_CR	12C_2_CR	Control	0x40	0x4A	Read/Write
I2C_1_CMDR	I2C_2_CMDR	Command	0x41	0x4B	Read/Write
I2C_1_BR0	I2C_2_BR0	Clock Pre-scale	0x42	0x4C	Read/Write
I2C_1_BR1	I2C_2_BR1	Clock Pre-scale	0x43	0x4D	Read/Write
I2C_1_TXDR	I2C_2_TXDR	Transmit Data	0x44	0x4E	Write
I2C_1_SR	12C_2_SR	Status	0x45	0x4F	Read
I2C_1_GCDR	I2C_2_GCDR	General Call	0x46	0x50	Read
I2C_1_RXDR	I2C_2_RXDR	Receive Data	0x47	0x51	Read
I2C_1_IRQ	I2C_2_IRQ	IRQ	0x48	0x52	Read/Write
I2C_1_IRQEN	I2C_2_IRQEN	IRQ Enable	0x49	0x53	Read/Write

Note: Unless otherwise specified, all reserved bits in writable registers shall be written '0'.

Table 3.2. I²C Control (Primary/Secondary)

I2C_1_CR/I2C_2_CR 0x40/0								
Bit	7	6	5	4	3	2	1	0
Name	I2CEN	GCEN	WKUPEN	(Reserved)	SDA_DEL_SEL[1:0]		(Rese	rved)
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	_	R/W	R/W	_	_

Note: A write to this register causes the I²C core to reset.

I2CEN

I2C System Enable Bit – This bit enables the I2C core functions. If I2CEN is cleared, the 2C core is disabled and forced into idle state.

0: I2C function is disabled

1: I2C function is enabled

GCEN

Enable bit for General Call Response – Enables the general call response in slave mode.

0: Disable

1: Enable

The General Call address is defined as 0000000 and works with either 7- or 10-bit Addressing.

WKUPEN

Wake-up from Standby/Sleep (by Slave Address matching) Enable Bit — When this bit is enabled, the I2C core can send a wake-up signal to the on-chip power manager to wake the device up from standby/sleep. The wake-up function is activated when the MachXO2 Slave Address is matched during standby/sleep mode.

0: Disable

1: Enable

SDA_DEL_SEL[1:0]

SDA Output Delay (Tdel) Selection (see Figure 6.1)

00: 300 ns (min) 300 ns + 2000/[wb_clk_i frequency in MHz] (max)

01: 150 ns (min) 150 ns + 2000/[wb_clk_i frequency in MHz] (max)

10: 75 ns (min) 75 ns + 2000/[wb_clk_i frequency in MHz] (max)

11: 0 ns (min) 0 ns + 2000/[wb_clk_i frequency in MHz] (max)

Table 3.3. I²C Command (Pri/Sec)

I2C_1_CMDR/I2C_2_CMDR								0x41/0x4B
Bit	7	6	5	4	3	2	1	0
Name	STA	STO	RD	WR	ACK	CKSDIS	(Reserved)	
Default	0	0	0	0	0	1	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	_	_

STA Generate START (or Repeated START) condition (Master operation).

STO Generate STOP condition (Master operation).

RD Indicate Read from slave (Master operation).

WR Indicate Write to slave (Master operation).

ACK Acknowledge Option – when receiving, ACK transmission selection.

0: Send ACK 1: Send NACK

CKSDIS Clock Stretching Disable.

Clock stretching is not supported in this device. Please refer to Lattice Product Change

Notice (PCN) #10A-13 for further information.

This bit must be set to '1' for all writes to this register.

Table 3.4. I²C Clock Prescale 0 (Primary/Secondary)

I2C_1_BR0/I2C_2_BR0								
Bit	7	6	5	4	3	2	1	0
Name	I2C_PRESCALE[7:0]							
Default ¹	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note:

Table 3.5. I²C Register Clock Prescale 1 (Primary/Secondary)

I2C_1_BR1/I2C_2_BR1 (0x43/0x4D
Bit	7 6 5 4 3 2						1	0
Name		(Reserved)						CALE[9:8]
Default ¹	0	0	0	0	0	0	0	0
Access	_	_	_	_	_	_	R/W	R/W

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

I2C_PRESCALE[9:0] I²C Clock Prescale value. A write operation to I2CBR [9:8] causes an I2C core reset.

The WISHBONE clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I²C

clock frequency supported by the I²C bus (50 kHz, 100 kHz, 400 kHz).

Note

Different from transmitting a Master, the practical limit for Slave I2C bus speed support is (WISHBONE clock)/2048. For example, the maximum WISHBONE clock frequency to support a 50 kHz Slave I2C operation is 102 MHz.

Note:

The digital value is calculated by IPexpress™ when the I²C core is configured in the I²C tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the I²C Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO2 device during device programming. After power-up or device reconfiguration, the data is loaded onto the I2C_1_BR1/0 and I2C_2_BR1/0 registers. Registers I2C_1_BR1/0 and I2C_2_BR1/0 have Read/Write access from the WISHBONE interface. Designers can update these clock pre-scale registers dynamically during device operation; however, care must be taken to not violate the I²C bus frequencies.

^{1.} Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

Table 3.6. I ² C Transmit Data Register	(Primary/Secondary)

I2C_1_TXDR/I	DR/I2C_2_TXDR										
Bit	7	7 6 5 4 3 2 1									
Name		I2C_Transmit_Data[7:0]									
Default	0	0 0 0 0 0 0 0									
Access	W	W	W	W	W	W	W	W			

I2C_Transmit_Data[7:0] I²C Transmit Data. This register holds the byte to be transmitted on the I2C bus during the Write Data phase. Bit 0 is the LSB and is transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 3.7. I²C Status (Primary/Secondary)

I2C_1_SR/I2C_2_SR									
Bit	7	6	5	4	3	2	1	0	
Name	TIP ¹	BUSY ¹	RARC	SRW	ARBL	TRRDY	TROE	HGC	
Default	_	_	_	_	_	_	_	_	
Access	R	R	R	R	R	R	R	R	

Note:

1. These bits exhibit 0.5 SCK period latency before valid in R1 devices. For more details on the R1 to Standard migration, refer to Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices (FPGA-AN-02012).

TIP

Transmit In Progress. The current data byte is being transferred. Note that the TIP flag suffers one-half SCL cycle latency right after the START condition because of the signal synchronization. Also note that this bit could be high after configuration wakeup and before the first valid I²C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

- 1: Byte transfer in progress
- 0: Byte transfer complete

BUSY

 I^2C Bus busy. The I^2C bus is involved in transaction. This is set at START condition and cleared at STOP. Note only when this bit is set should all other I^2C SR bits be treated as valid indicators for a valid transfer.

- 1: I²C bus busy
- 0: I2C bus not busy

RARC

Received Acknowledge. An acknowledge response is received by the acknowledge bit monitor. All ACK/NACK bits are monitored and reported, regardless of Master/Slave source or Read/Write mode.

- 1: No acknowledge received
- 0: Acknowledge received

SRW

Slave Read/Write. Indicates transmit or receive mode.

- 1: Master receiving/slave transmitting
- 0: Master transmitting/slave receiving

Note: SRW is valid after TRRDY=1 following a synchronization delay of up to four WISHBONE clock cycles. Do not test both SRW and TRRDY in the same WISHBONE transaction, but test SRW at least four WISHBONE clock cycles after TRRDY is tested true. This delay is represented in Figure 5.2.

ARBL

Arbitration Lost. The core has lost arbitration in Master mode. This bit is capable of generating an interrupt.

1: Arbitration Lost

0: Normal

TRRDY Transmitter or Receiver Ready. The I2C Transmit Data register is ready to receive

transmit data, or the I2C Receive Data Register contains receive data (dependent

upon master/slave mode and SRW status). This bit is capable of generating an interrupt.

1: Transmitter or Receiver is ready

0: Transmitter of Receiver is not ready

TROE Transmitter/Receiver Overrun Error. A transmit or receive overrun error has occurred

(dependent upon master/slave mode and SRW status).

Note: When acting as a transmitter (Master Write or Slave Read) a No Acknowledge received also asserts TROE indicating a possible orphan data byte exists in TXDR.

This bit is capable of generating an interrupt.

1: Transmitter or Receiver Overrun detected

0: Normal

HGC Hardware General Call Received. A hardware general call has been received in slave

mode. The corresponding command byte is available in the General Call Data

Register. This bit is capable of generating an interrupt.

1: General Call Received in slave mode

0: Normal

Table 3.8. I²C General Call Data Register (Primary/Secondary)

I2C_1_GCDR/	12C_2_GCDR 0x46/0x50										
Bit	7	7 6 5 4 3 2 1									
Name		I2C_GC_Data[7:0]									
Default	_										
Access	R	R	R	R	R	R	R	R			

I2C_GC _Data[7:0]

I²C General Call Data. This register holds the second (command) byte of the General Call transaction on the I2C bus.

Table 3.9. I²C Receive Data Register (Primary/Secondary)

I2C_1_RXDR/I	1_RXDR/I2C_2_RXDR 0x47/0x51										
Bit	7	7 6 5 4 3 2 1									
Name		I2C_Receive_Data[7:0]									
Default	_										
Access	R	R	R	R	R	R	R	R			

I2C_Receive _Data[7:0] I²C Receive Data. This register holds the byte captured from the I2C bus during the Read Data phase. Bit 0 is LSB and is received last.

Table 3.10. I²C Interrupt Status (Primary/Secondary)

I2C_1_IRQ/I2C_2_IRQ 0x48/0x5										
Bit	7	6	5	4	3	2	1	0		
Name		(Rese	rved)		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC		
Default	_	_	_	_	_	_	_	_		
Access	_	_	_	_	R/W	R/W	R/W	R/W		

IRQARBL Interrupt Status for Arbitration Lost.

When enabled, indicates ARBL is asserted. Write a '1' to this bit to clear the

interrupt.

1: Arbitration Lost Interrupt

0: No interrupt

IRQTRRDY Interrupt Status for Transmitter or Receiver Ready.

When enabled, indicates TRRDY is asserted. Write a '1' to this bit to clear the

interrupt.

1: Transmitter or Receiver Ready Interrupt

0: No interrupt

IRQTROE Interrupt Status for Transmitter/Receiver Overrun or NACK received.

When enabled, indicates TROE is asserted. Write a '1' to this bit to clear the

interrupt.

1: Transmitter or Receiver Overrun or NACK received Interrupt

0: No interrupt

IRQHGC Interrupt Status for Hardware General Call Received.

When enabled, indicates HGC is asserted. Write a '1' to this bit to clear the

interrupt.

1: General Call Received in slave mode Interrupt

0: No interrupt

Table 3.11. I²C Interrupt Enable (Primary/Secondary)

I2C_1_ IRQ	N / I2C_2_IRQ			0x49/0x53				
Bit	7	6	5	4	3	2	1	0
Name		(Rese	rved)		IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	R/W	R/W	R/W	R/W

IRQARBLEN Interrupt Enable for Arbitration Lost

1: Interrupt generation enabled0: Interrupt generation disabled

IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready

1: Interrupt generation enabled0: Interrupt generation disabled

IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received

1: Interrupt generation enabled0: Interrupt generation disabled

IRQHGCEN Interrupt Enable for Hardware General Call Received

1: Interrupt generation enabled0: Interrupt generation disabled

Figure 3.1 shows a flow diagram for controlling Master I2C reads and writes initiated via the WISHBONE interface.

The following sequence is for the Primary I2C but the same sequence applies to the Secondary I^2C . Note: t_{TCL} refers to the I^2C clock period.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

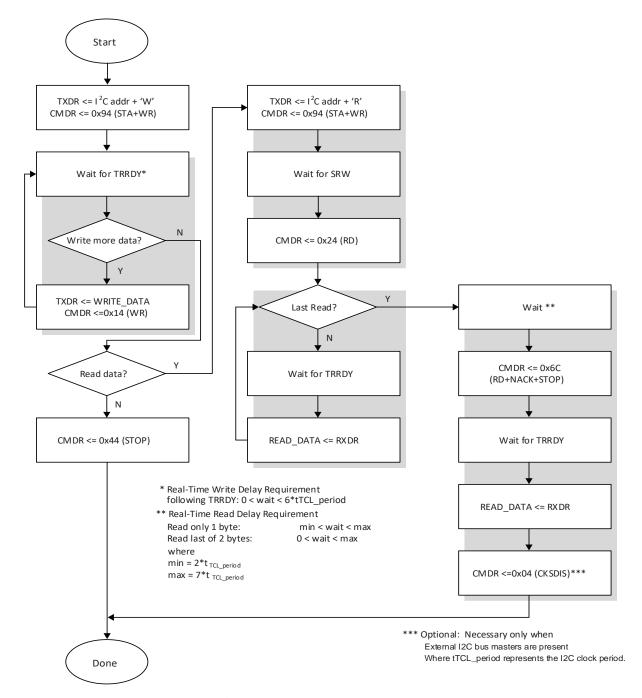


Figure 3.1. I²C Master Read/Write Example (via WISHBONE)

Figure 3.2 shows a flow diagram for reading and writing from an I^2C Slave device via the WISHBONE interface. The following sequence is for the Primary I^2C but the same sequence applies to the Secondary I^2C .

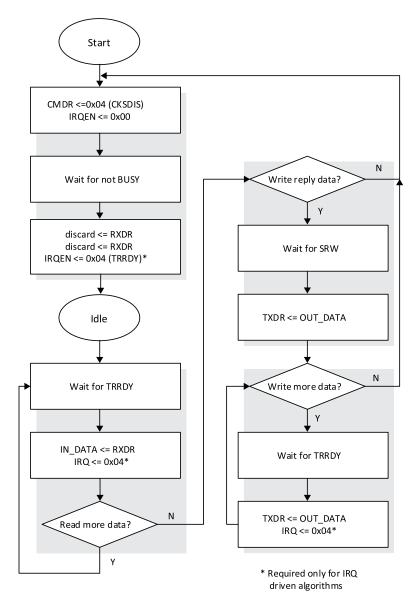


Figure 3.2. I²C Slave Read/Write Example (via WISHBONE)

4. Typical I²C Transactions

Figure 4.1, Figure 4.2, and Figure 4.3 illustrate typical User I²C bus protocol transactions that are supported by the Master and Slave flows shown in Figure 3.1 and Figure 3.2. Additionally, the figures below reference typical sysConfig Configuration commands structures.

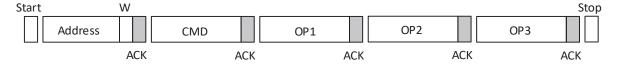


Figure 4.1. Simple I²C Command (for example, ISC_ERASE)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 4.2. I²C Command with Write Data (for example, LSC_PROG_INCR_NV)

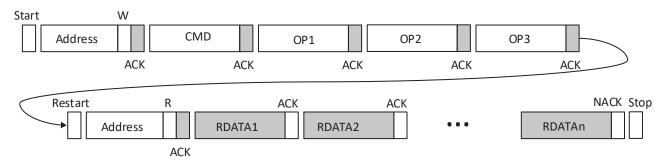


Figure 4.3. I²C Command with Read Data (for example, LSC_READ_STATUS)

5. I²C Functional Waveforms

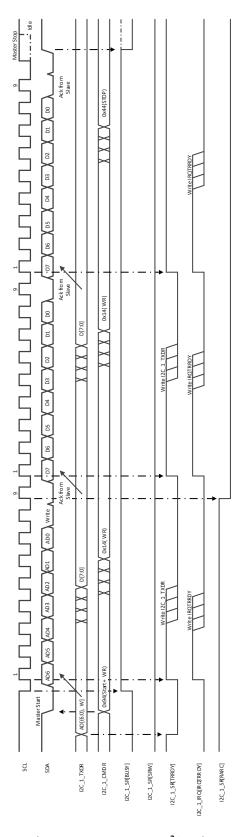


Figure 5.1. EFB Master – I²C Write

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

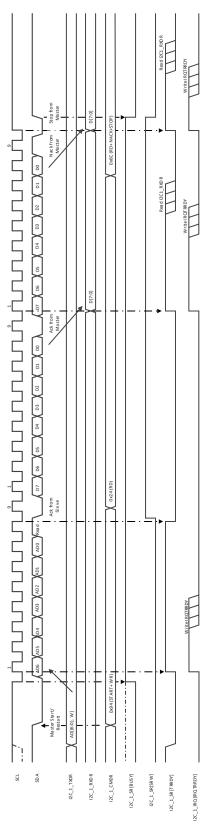


Figure 5.2. EFB Master - I²C Read

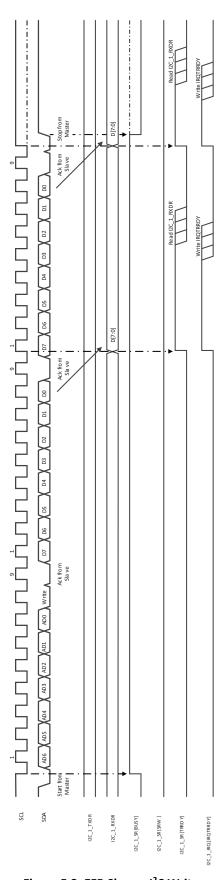


Figure 5.3. EFB Slave – I²C Write

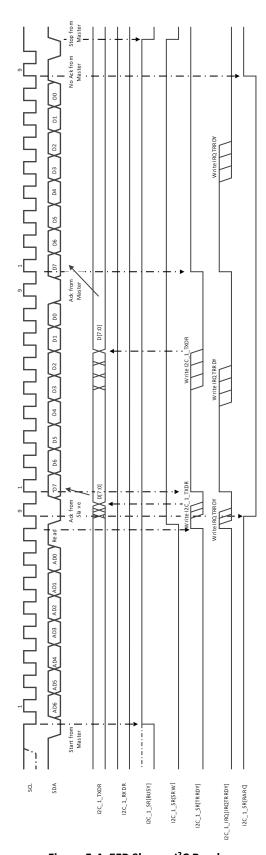


Figure 5.4. EFB Slave – I²C Read

6. I²C Timing Diagram

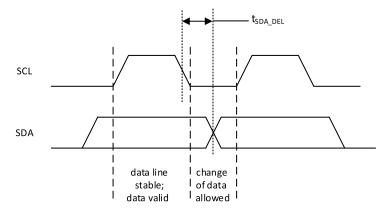


Figure 6.1. I²C Bit Transfer Timing

7. I²C Simulation Model

The I^2C EFB Register Map translation to the MachXO2 EFB software simulation model is provided in below.

Table 7.1. I²C Primary Simulation Mode

I ² C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_CR	[7:0]	Control	0x40	Read/ Write	i2ccr1[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2CEN	7	-	_	ı	i2c_en	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
GCEN	6	ı	_	ı	i2c_gcen	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
WKUPEN	5	ı		I	i2c_wkupen	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
SDA_DEL_SEL[1:0]	[3:2]	ı	_	ı	sda_del_sel	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_CMDR	[7:0]	Command	0x41	Read/ Write	i2ccmdr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
STA	7	ı		I	i2c_sta	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
STO	6	ı		I	i2c_sto	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
RD	5	ı		ı	i2c_rd	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
WR	4	ı	_	1	i2c_wt	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
ACK	3	ı		I	i2c_nack	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
CKSDIS	2	_	_	_	i2c_cksdis	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_BR0	[7:0]	Clock Pre-scale	0x42	Read/ Write	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_PRESCALE[7:0]	[7:0]	_	_	_	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/

I ² C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_BR1	[7:0]	Clock Pre-scale	0x43	Read/ Write	i2cbr[9:8]	<pre>/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/</pre>
I2C_PRESCALE[9:8	[1:0]	_	_	_	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_TXDR	[7:0]	Transmit Data	0x44	Write	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_Transmit_Dat a[7:0]	[7:0]	1		1	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_SR	[7:0]	Status	0x45	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core_ins t/cfg_cdu/ njport_unit/i2c_1st/
TIP	7	ı	-	ı	i2c_tip_sync	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
BUSY	6	ı		ı	i2c_busy_sync	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
RARC	5	ı		ı	i2c_rarc_sync	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
SRW	4	ı	-	ı	i2c_srw_sync	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
ARBL	3	ı	1	ı	i2c_arbl	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
TRRDY	2	ı	1	ı	i2c_trrdy	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
TROE	1	ı	1	ı	i2c_troe	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/</pre>
HGC	0	-	1	1	i2c_hgc	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/</pre>
I2C_1_GCDR	[7:0]	General Call	0x46	Read	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_GC_Data[7:0]	[7:0]	ı	1	ı	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_RXDR	[7:0]	Receive Data	0x47	Read	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_Receive_Dat a[7:0]	[7:0]	-	1	1	i2crxdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_1st/</pre>
I2C_1_IRQ	[7:0]	IRQ	0x48	Read/ Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqst s_3, i2csr_1st_irqst s_2, i2csr_1st_irqst s_1, i2csr_1st_irqst s_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBL	3	_		_	i2csr_1st_irqst s_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2	_	_	_	i2csr_1st_irqst s_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1	_	_	_	i2csr_1st_irqst s_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0	_	_	_	i2csr_1st_irqst s_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

I ² C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_IRQEN	[7:0]	IRQ Enable	0x49	Read/ Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqe na_3, i2csr_1st_irqe na_2, i2csr_1st_irqe na_1, i2csr_1st_irqe na_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3	_	_	_	i2csr_1st_irqe na_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2	1		-	i2csr_1st_irqe na_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1	_	_	_	i2csr_1st_irqe na_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0	-	_	_	i2csr_1st_irqe na_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

Table 7.2. I²C Secondary Simulation Model

I ² C Secondary Register Name	Register Size/Bit Location	Register Function	Address I ² C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
12C_2_CR	[7:0]	Control	0x4A	Read/ Write	i2ccr1[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
12CEN	7	_	_	_	i2c_en	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
GCEN	6	_	_	_	i2c_gcen	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/
WKUPEN	5	_	_	_	i2c_wkupen	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
SDA_DEL_SEL [1:0]	[3:2]	-	-	-	sda_del_sel	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_CMDR	[7:0]	Command	0x4B	Read/ Write	i2ccmdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
STA	7	-	-	-	i2c_sta	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
STO	6	-	-	-	i2c_sto	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
RD	5	_	_	_	i2c_rd	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
WR	4	_	_	_	i2c_wt	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
ACK	3	_	_	_	i2c_nack	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
CKSDIS	2	_	_	_	i2c_cksdis	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_BR0	[7:0]	Clock Pre-scale	0x4C	Read/ Write	i2cbr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_PRESCAL E[7:0]	[7:0]	_	_	_	i2cbr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

I ² C Secondary Register Name	Register Size/Bit Location	Register Function	Address I ² C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_2_BR1	[7:0]	Clock Pre-scale	0x4D	Read/ Write	i2cbr[9:8]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_PRESCAL E[9:8]	[1:0]	_	_	_	i2cbr[9:8]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_TXDR	[7:0]	Transmit Data	0x4E	Write	i2ctxdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_Transmit _Data[7:0]	[7:0]	ı	_	_	i2ctxdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_SR	[7:0]	Status	0x4F	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/
TIP	7	ı	_	_	i2c_tip_sync	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
BUSY	6	ı	_	_	i2c_busy_sync	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
RARC	5	ı	_	_	i2c_rarc_sync	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
SRW	4	ı	_	-	i2c_srw_sync	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
ARBL	3	ı	_	ı	i2c_arbl	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
TRRDY	2	ı	_	ı	i2c_trrdy	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
TROE	1	ı	_	ı	i2c_troe	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
HGC	0	_	_	_	i2c_hgc	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_GCDR	[7:0]	General Call	0x50	Read	i2cgcdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_GC_Data [7:0]	[7:0]	ı	_	ı	i2cgcdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_RXDR	[7:0]	Receive Data	0x51	Read	i2crxdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_Receive_ Data[7:0]	[7:0]	ı	_	_	i2crxdr[7:0]	<pre>/efb_top/config_plus_inst/config_core _inst/cfg_cdu/ njport_unit/i2c_2nd/</pre>
I2C_2_IRQ	[7:0]	IRQ	0x52	Read/ Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqs ts_3, i2csr_2nd_irqs ts_2, i2csr_2nd_irqs ts_1, i2csr_2nd_irqst s_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBL	3	_	_		i2csr_2nd_irqs ts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2	_	_	_	i2csr_2nd_irqs ts_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1	_	_	_	i2csr_2nd_irqs ts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0	_	_	_	i2csr_2nd_irqs ts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

I ² C Secondary Register Name	Register Size/Bit Location	Register Function	Address I ² C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_2_IRQEN	[7:0]	IRQ Enable	0x53	Read/ Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqe na_3, i2csr_2nd_irqe na_2, i2csr_2nd_irqe na_1, i2csr_2nd_irqe na_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3	_	_	_	i2csr_2nd_irqe na_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2	_	_	_	i2csr_2nd_irqe na_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1	_	_	_	i2csr_2nd_irqe na_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0	_	_	_	i2csr_2nd_irqe na_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

8. Hardened SPI IP Core

The MachXO2 EFB contains a hard SPI IP core that can be configured as a SPI Master or Slave. When the SPI core is configured as a Master it is able to control other devices with Slave SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Slave, it is able to interface to an external SPI Master device.

9. SPI Registers

The SPI core communicates with the WISHBONE interface through a set of control, command, status and data registers. Table 9.1 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 9.1. SPI Registers

SPI Register Name	Register Function	Address	Access
SPICR0	Control Register 0	0x54	Read/Write
SPICR1	Control Register 1	0x55	Read/Write
SPICR2	Control Register 2	0x56	Read/Write
SPIBR	Clock Pre-scale	0x57	Read/Write
SPICSR	Master Chip Select	0x58	Read/Write
SPITXDR	Transmit Data	0x59	Write
SPISR	Status	0x5A	Read
SPIRXDR	Receive Data	0x5B	Read
SPIIRQ	Interrupt Request	0x5C	Read/Write
SPIIRQEN	Interrupt Request Enable	0x5D	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written 0.

Table 9.2. SPI Control 0

SPICR0	SPICRO								
Bit	7	6	5	4	3	2	1	0	
Name	TIdle_X	CNT[1:0]	Т	TTrail_XCNT[2:0] TLead_XCNT[2:0]			0]		
Default	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: A write to this register causes the SPI core to reset.

TIdle_XCNT[1:0]

Idle Delay Count. Specifies the minimum interval prior to the Master Chip Select low assertion (Master Mode only), in SCK periods.

00: 1/2

01:1

10: 1.5

11:2

TTrail_XCNT[2:0]

Trail Delay Count. Specifies the minimum interval between the last edge of SCK and the high deassertion of Master Chip Select (Master Mode only), in SCK periods.

000: 1/2

001: 1

010: 1.5

...

111:4

TLead XCNT[2:0]

Lead Delay Count. Specifies the minimum interval between the Master Chip Select low assertion and the first edge of SCK (Master Mode only), in SCK periods.

000: 1/2

001: 1

010: 1.5

...

111:4

Table 9.3. SPI Control 1

SPICR1								0x55
Bit	7	6	5	4	3	2	1	0
Name	SPE	WKUPEN_USER	WKUPEN_CFG	TXEDGE		(Rese	rved)	
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	_	_	_	_

Note: A write to this register causes the SPI core to reset.

SPE

This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state.

0: SPI disabled.

1: SPI enabled, port pins are dedicated to SPI functions.

WKUPEN_USER

Wake-up Enable via User. Enables the SPI core to send a wake-up signal to the onchip Power Controller to wake the part from Standby mode when the User slave SPI chip select (spi_scsn) is driven low.

0: Wakeup disabled.

1: Wakeup enabled.

WKUPEN CFG

Wake-up Enable Configuration. Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration slave SPI chip select (ufm_sn) is driven low.

0: Wakeup disabled.

1: Wakeup enabled.

TXEDGE

Data Transmit Edge. Enables Lattice proprietary extension to the SPI protocol. Selects which clock edge to transmit SPI data. Refer to Figure 12.1 to Figure 12.4.

0: Transmit data on the MCLK/CCLK edge defined by SPICR2[CPOL] and SPICR2[CPHA].

1: Transmit data ½ MCLK/CCLK edge earlier than defined by SPICR2[CPOL] and SPICR2[CPHA].

Table 9.4. SPI Control 2

SPICR2								0x56
Bit	7	6	5	4	3	2	1	0
Name	MSTR	MCSH	SDBRE	(Reserved)	(Reserved)	CPOL	СРНА	LSBF
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	_	_	R/W	R/W	R/W

Note: A write to this register causes the SPI core to reset.

MSTR SPI

Master/Slave Mode. Selects the Master/Slave operation mode of the SPI core.

Changing this bit forces the SPI system into idle state.

0: SPI is in Slave mode

1: SPI is in Master mode

MCSH

SPI Master CSSPIN Hold. Holds the Master chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the WISHBONE clock has been divided by a value greater than four (4) (greater than six (6) for R1 devices). For more details on the R1 to Standard migration refer to Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices (FPGA-AN-02012).

0: Master running as normal

SDBRE

1: Master holds chip select low even if there is no data to be transmitted Slave Dummy Byte Response Enable. Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (for example, WISHBONE host) cannot respond with initial data within the time required, and to make the slave read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes are transmitted in response to a SPI slave read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the WISHBONE host, a single byte of 0x00 is transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI master should scan for the initial 0x00 byte when reading the SPI slave to indicate the beginning of actual data. Refer to Figure 11.2.

0: Normal Slave SPI operation

1: Lattice proprietary Slave Dummy Byte Response Enabled Note: This mechanism only applies for the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

CPOL

SPI Clock Polarity. Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In master mode, a change of this bit aborts a transmission in progress and force the SPI system into idle state. Refer to Figure 12.1 to Figure 12.4.

- 0: Active-high clocks selected.
- 1: Active-low clocks selected.

CPHA

SPI Clock Phase. Selects the SPI clock format. In master mode, a change of this bit aborts a transmission in progress and force the SPI system into idle state. Refer to Figure 12.1 to Figure 12.4.

- 0: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.
- 1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge*.

Note: When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily. Slave SPI Configuration mode supports default setting only for CPOL, CPHA.

LSB-First. LSB appears first on the SPI interface. In master mode, a change of this bit aborts a transmission in progress and force the SPI system into idle state. Refer to Figure 12.1 to Figure 12.4.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7.

- 0: Data is transferred, most significant bit (MSB) first.
- 1: Data is transferred, least significant bit (LSB) first.

Table 9.5. SPI Clock Prescale

SPIBR								0x57		
Bit	7	6	5	4	3	2	1	0		
Name	(Rese	rved)		DIVIDER[5:0]						
Default ¹	0	0	0	0	0	0	0	0		
Access	-	_	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

DIVIDER[5:0]

SPI Clock Prescale value. The WISHBONE clock frequency is divided by

(DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register causes a SPI core reset. DIVIDER must be >= 1.

Note: The digital value is calculated by IPexpress when the SPI core is configured in the SPI tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the SPI Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO2 device during device programming. After power-up or device reconfiguration, the data is loaded onto the SPIBR register. Register SPIBR has Read/Write access from the WISHBONE interface. Designers

can update the clock pre-scale register dynamically during device operation.

LSBF

32

Table 9.6. SPI Master Chip Select

SPICSR								
Bit	7	6	5	4	3	2	1	0
Name	CSN_7	CSN_6	CSN_5	CSN_4	CSN_3	CSN_2	CSN_1	CSN_0
Default	0	0	0	0	0	0	0	0
Access	R/W							

CSN_[7:0]

SPI Master Chip Selects. Used in master mode for asserting a specific Master Chip Select (MCSN) line. The register has eight bits, enabling the SPI core to control up to eight external SPI slave devices Each bit represents one master chip select line (Active-Low). Bits [7:1] may be connected to any I/O pin via the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the WISHBONE interface. A write operation on this register causes the SPI core to reset.

Table 9.7. SPI Transmit Data Register

SPITXDR		_						0x59
Bit	7	6	5	4	3	2	1	0
Name				SPI_Transm	it_Data[7:0]			
Default	_	_	_	_	_	_	_	_
Access	W	W	W	W	W	W	W	W

SPI_Transmit_Data[7:0]

SPI Transmit Data. This register holds the byte to be transmitted on the SPI bus.

Bit 0 in this register is LSB, and it is transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1.

Note: When operating as a Slave, SPITXDR must be written when SPISR[TRDY] is '1' and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 16.1. This timing requires at least one protocol dummy byte be included for all slave SPI read operations.

Table 9.8. SPI Status

SPISR	SPISR								
Bit	7	6	5	4	3	2	1	0	
Name	TIP	(Rese	erved)	TRDY	RRDY	(Reserved)	ROE	MDF	
Default	0	_	_	0	0	-	0	0	
Access	R	_	_	R	R	_	R	R	

TIP

SPI Transmitting In Progress. Indicates the SPI port is actively transmitting/receiving data.

0: SPI Transmitting complete

1: SPI Transmitting in progress*

Note: This bit is non-functional in R1 devices. For more details on the R1 to Standard migration refer to Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices (FPGA-AN-02012).

TRDY

SPI Transmit Ready. Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to SPITXDR. This bit is capable of generating an interrupt.

0: SPITXDR is not empty

1: SPITXDR is empty

RRDY SPI Receive Ready. Indicates the receive data register (SPIRXDR) contains valid

receive data. This bit is cleared by a read access to SPIRXDR. This bit is capable of

generating an interrupt.

0: SPIRXDR does not contain data

1: SPIRXDR contains valid receive data

ROE Receive Overrun Error. Indicates SPIRXDR received new data before the previous

data is read. The previous data is lost. This bit is capable of generating an interrupt.

0: Normal

1: Receiver Overrun detected

MDF Mode Fault. Indicates the Slave SPI chip select (spi_scsn) is driven low while

SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2.

This bit is capable of generating an interrupt.

0: Normal

1: Mode Fault detected

Table 9.9. SPI Receive Data Register

SPIRXDR									
Bit	7	6	5	4	3	2	1	0	
Name		SPI_Receive_Data[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

SPI_Receive_Data[7:0]

SPI Receive Data. This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and is received last when LSBF=0 or first when LSBF=1.

Table 9.10. SPI Interrupt Status

SPIIRQ 0x5								
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)		IRQTRDY	IRQRRDY	(Reserved)	IRQROE	IRQMDF
Default	_	_	_	0	0	_	0	0
Access	_	_	_	R/W	R/W	_	R/W	R/W

IRQTRDY Interrupt Status for SPI Transmit Ready.

When enabled, indicates SPISR[TRDY] is asserted. Write a '1' to this bit to clear the

interrupt.

1: SPI Transmit Ready Interrupt

0: No interrupt

IRQRRDY Interrupt Status for SPI Receive Ready.

When enabled, indicates SPISR[RRDY] is asserted. Write a '1' to this bit to clear

the interrupt.

1: SPI Receive Ready Interrupt

0: No interrupt

34

IRQROE Interrupt Status for Receive Overrun Error.

When enabled, indicates ROE is asserted. Write a $\ensuremath{^{\prime}1^{\prime}}$ to this bit to clear the

interrupt.

1: Receive Overrun Error Interrupt

0: No interrupt

IRQMDF Interrupt Status for Mode Fault.

When enabled, indicates MDF is asserted. Write a '1' to this bit to clear the $\,$

interrupt.

1: Mode Fault Interrupt

0: No interrupt

Table 9.11. SPI Interrupt Enable

SPIIRQEN								0x5D
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)		IRQTRDYEN	IRQRRDYEN	(Reserved)	IRQROEEN	IRQMDFEN
Default	0	0	0	0	0	0	0	0
Access	_	_	_	R/W	R/W	_	R/W	R/W

IRQTRDYEN Interrupt Enable for SPI Transmit Ready.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRRDYEN Interrupt Enable for SPI Receive Ready

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQROEEN Interrupt Enable for Receive Overrun Error

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQMDFEN Interrupt Enable for Mode Fault

1: Interrupt generation enabled

0: Interrupt generation disabled

Figure 9.1. shows a flow diagram for controlling Master SPI reads and writes initiated via the WISHBONE interface.

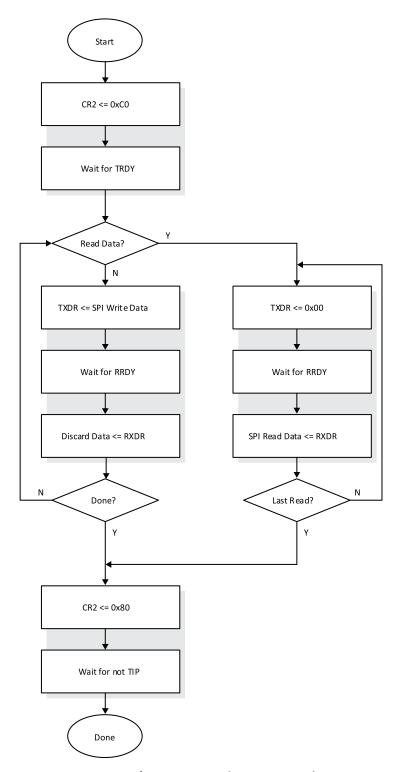


Figure 9.1. SPI Master Read/Write Example (via WISHBONE) – Production Silicon

Note:

Assumes CR2 register, MSCH = '1'. The algorithm when MSCH = '0' is application dependent and not provided. See Figure 11.1 for guidance.

36

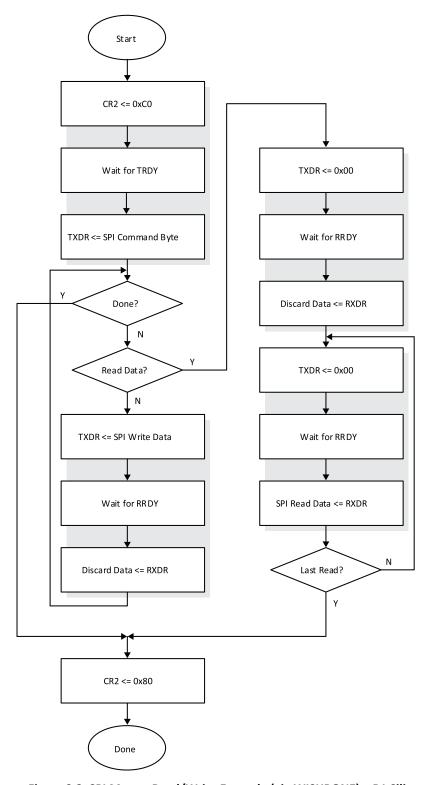


Figure 9.2. SPI Master Read/Write Example (via WISHBONE) - R1 Silicon

Note:

For more details on the R1 to Standard migration refer to Designing for Migration from MachXO2- 1200-R1 to Standard (Non-R1) Devices (FPGA-AN-02012).

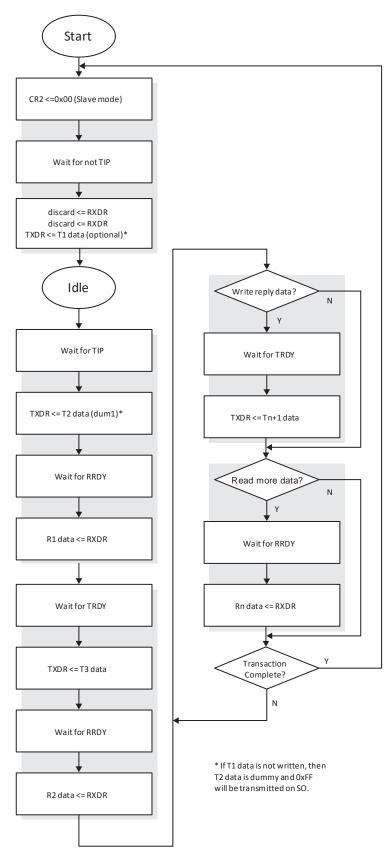


Figure 9.3. SPI Slave Read/Write Example (via WISHBONE) - Production Silicon

10. Typical SPI Transactions

Figure 10.1, Figure 10.2, and Figure 10.3 illustrate typical User SPI bus protocol transactions that are supported by the Master and Slave flows shown in Figure 9.1, Figure 9.2, and Figure 9.3. Additionally, the figures below reference typical sysConfig Configuration commands structures.



Figure 10.3. SPI Command w/ Read Data (for example, LSC_READ_STATUS)

11. SPI Functional Waveforms

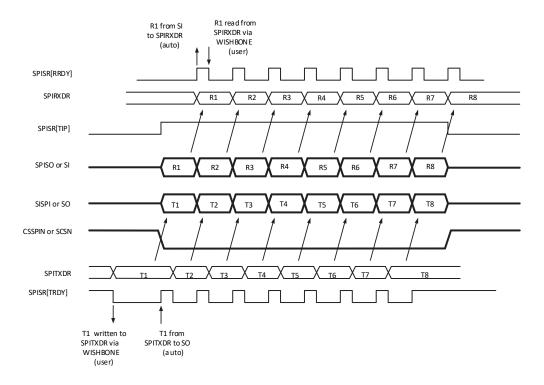


Figure 11.1. Fully Specified SPI Transaction (MachXO2 as SPI Master or Slave)

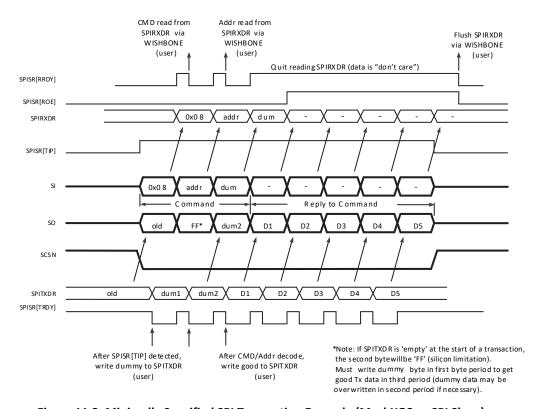


Figure 11.2. Minimally Specified SPI Transaction Example (MachXO2 as SPI Slave)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12. SPI Timing Diagrams

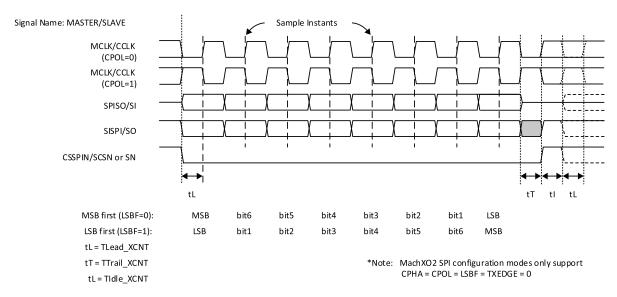


Figure 12.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

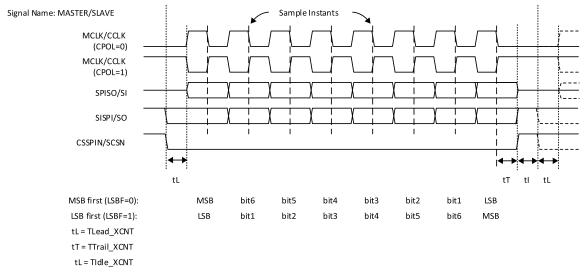


Figure 12.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)

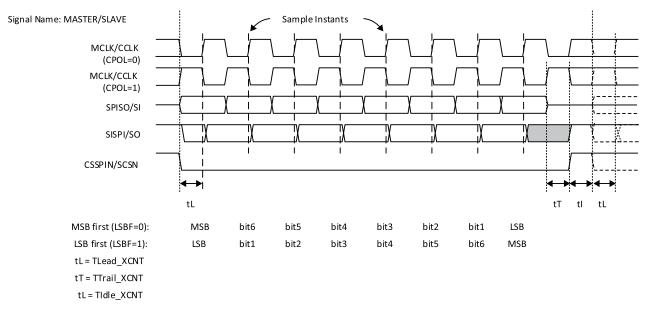


Figure 12.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)

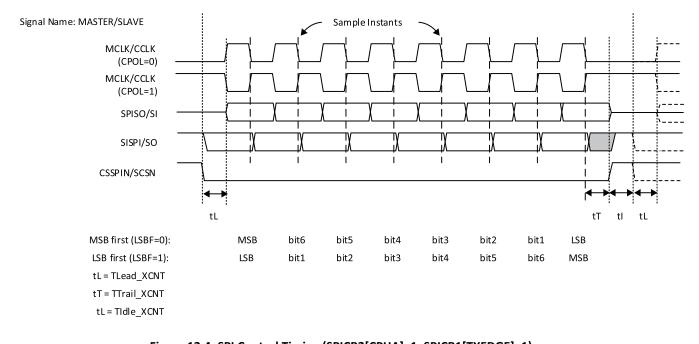


Figure 12.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)

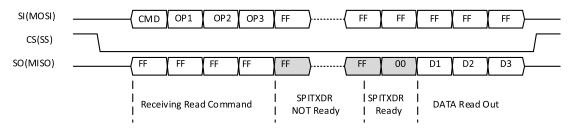


Figure 12.5. Slave SPI Dummy Byte Response (SPICR2[SDBRE]) Timing

13. SPI Simulation Model

The SPI EFB Register Map translation to the MachXO2 EFB software simulation model is provided below.

Table 13.1. SPI Simulation Model

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
SPICR0	[7:0]	Control Register 0	0x54	Read/Write	spicr0[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
Tidle_XCNT[1:0]	[7:6]	-	_	-	spicr0[7:6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TTrail_XCNT[2:0]	[5:3]	_	_	-	spicr0[5:3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TLead_XCNT[2:0]	[2:0]	ı	_	1	spicr0[2:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICR1	[7:0]	Control Register 1	0x55	Read/Write	spicr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPE	7	-	_	_	spi_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
WKUPEN_USER	6	-	_	-	spi_wkup_usr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
WKUPEN_CFG	5	ı	_	1	spi_wkup_cfg	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TXEDGE	4	ı	_	-	spi_tx_edge	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICR2	[7:0]	Control Register 2	0x56	Read/Write	spicr2[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MSTR	7	-	_	-	spi_mstr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MCSH	6	-	_	-	spi_mcsh	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SDBRE	5	ı	_	1	spi_srme	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CPOL	2	-	_	_	spi_cpol	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
СРНА	1	-	_	-	spi_cpha	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
LSBF	0	1	_	-	spi_lsbf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIBR	[7:0]	Clock Pre-scale	0x57	Read/Write	spibr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
DIVIDER[5:0]	[5:0]	-	_	_	spibr[5:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICSR	[7:0]	Master Chip Select	0x58	Read/Write	spicsr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_7	7	ı	_	_	spicsr[7]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_6	6	_	_	_	spicsr[6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_5	5	_	_	_	spicsr[5]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_4	4	-	_	_	spicsr[4]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_3	3	_	_	_	spicsr[3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_2	2	_	_	_	spicsr[2]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_1	1	_	_	_	spicsr[1]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_0	0	_	_	_	spicsr[0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPITXDR	[7:0]	Transmit Data	0x59	Write	spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPI_Transmit_Data[7: 0]	[7:0]	-	_	_	spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
SPISR	[7:0]	Status	0x5A	Read	spisr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TIP	7	_	_	_	spi_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TRDY	4	_	-	-	spi_trdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
RRDY	3	_	-	ı	spi_rrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
ROE	1	_	_	-	spi_roe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MDF	0	_	-	-	spi_mdf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIRXDR	[7:0]	Receive Data	0x5B	Read	spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPI_Receive_Data[7:0]	[7:0]	-	_	-	spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIIRQ	[7:0]	Interrupt Request	0x5C	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqsts_4, spisr_irqsts_3, spisr_irqsts_2, spisr_irqsts_1, spisr_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDY	4	-	_	_	spisr_irqsts_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDY	3	-	_	_	spisr_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROE	1	_	_	_	spisr_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQMDF	0	_	_	_	spisr_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
SPIIRQEN	[7:0]	Interrupt Request Enable	0x5D	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqena_4, spisr_irqena_3, spisr_irqena_2, spisr_irqena_1, spisr_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDYEN	4	_	_	_	spisr_irqena_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDYEN	3	_	_	_	spisr_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROEEN	1	_	_	-	spisr_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQMDFEN	0	_	_	_	spisr_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

14. Hardened Timer/Counter PWM

The MachXO2 EFB contains a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit Timer/Counter module with independent output compare units and PWM support.

14.1. Timer/Counter Registers

The Timer/Counter communicates with the FPGA logic through the WISHBONE interface, by utilizing a set of control, status and data registers. Table 14.1 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

44

Table 14.1. Timer/Counter Registers

Timer/Counter Register Name	Register Function	Address	Access
TCCR0	Control Register 0	0x5E	Read/Write
TCCR1	Control Register 1	0x5F	Read/Write
TCTOPSET0	Set Top Counter Value [7:0]	0x60	Write
TCTOPSET1	Set Top Counter Value [15:8]	0x61	Write
TCOCRSET0	Set Compare Counter Value [7:0]	0x62	Write
TCOCRSET1	Set Compare Counter Value [15:8]	0x63	Write
TCCR2	Control Register 2	0x64	Read/Write
TCCNT0	Counter Value [7:0]	0x65	Read
TCCNT1	Counter Value [15:8]	0x66	Read
ТСТОРО	Current Top Counter Value [7:0]	0x67	Read
TCTOP1	Current Top Counter Value [15:8]	0x68	Read
TCOCR0	Current Compare Counter Value [7:0]	0x69	Read
TCOCR1	Current Compare Top Counter Value [15:8]	0x6A	Read
TCICR0	Current Capture Counter Value [7:0]	0x6B	Read
TCICR1	Current Capture Counter Value [15:8]	0x6C	Read
TCSR0	Status Register	0x6D	Read/Write
TCIRQ	Interrupt Request	0x6E	Read/Write
TCIRQEN	Interrupt Request Enable	0x6F	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written '0'.

Table 14.2. Timer/Counter Control 0

TCCR0								0x5E
Bit	7	6	5	4	3	2	1	0
Name	RSTEN	(Reserved)	PRE	PRESCALE[2:0]				(Reserved)
Default	0	0		0			0	0
Access	R/W	_		R/W		R/W	R/W	R/W

RSTEN Enables the reset signal (tc_rstn) to enter the Timer/Counter core from the PLD logic.

1: External reset enabled

0: External reset disabled

PRESCALE[2:0] Used to divide the clock input to the Timer/Counter.

000: Static (clock disabled)

001: Divide by 1 010: Divide by 8 011: Divide by 64 100: Divide by 256 101: Divide by 1024 110: (Reserved setting) 111: (Reserved setting)

CLKEDGE Used to select the edge of the input clock source. The Timer/Counter updates

states on the edge of the input clock source.

0: Rising Edge1: Falling Edge

CLKSEL Defines the source of the input clock.

0: Clock Tree

1: On-chip Oscillator

Table 14.3. Timer/Counter Control 1

TCCR1	TCCR1 0x5F										
Bit	7	6	5	4	3	2	1	0			
Name	(Reserved)	SOVFEN	ICEN	TSEL	OCM	[1:0]	TCM[1:0]				
Default	0	0	0	0	0 0						
Access	_	R/W	R/W	R/W	R/W R/W						

SOVFEN

Enables the overflow flag to be used with the interrupt output signal. It is set when the Timer/Counter is standalone, with no WISHBONE interface.

0: Disabled

1: Enabled

Note: When this bit is set, other flags such as the OCRF and ICRF are not routed to the interrupt output signal.

ICEN

Enables the ability to perform a capture operation of the counter value. Users can assert the "tc_ic" signal and load the counter value onto the TCICRO/1 registers. The captured value can serve as a timer stamp for a specific event.

0: Disabled

1: Enabled

TSEL

Enables the auto-load of the counter with the value from TCTOPSETO/1. When disabled, the value 0xFFFF is auto-loaded.

0: Disabled

1: Enabled

OCM[1:0]

Select the function of the output signal of the Timer/Counter. The available functions are Static, Toggle, Set/Clear and Clear/Set.

All Timer/Counter modes:

00: The output is static low

In non-PWM modes:

01: Toggle on TOP match

In Fast PWM mode:

10: Clear on TOP match, Set on OCR match

11: Set on TOP match, Clear on OCR match

In Phase and Frequency Correct PWM mode:

10: Clear on OCR match when the counter is incrementing

Set on OCR match when counter is decrementing

11: Set on OCR match when the counter is incrementing

Clear on OCR match when the counter is decrementing

TCM[1:0]

Timer Counter Mode. Defines the mode of operation for the Timer/Counter.

00: Watchdog Timer Mode

01: Clear Timer on Compare Match Mode

10: Fast PWM Mode

11: Phase and Frequency Correct PWM Mode

Table 14.4. Timer/Counter Set Top Counter Value 0

TCTOPSET0								0x60		
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[7:0]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

Table 14.5. Timer/Counter Set Top Counter Value 1

TCTOPSET1								0x61		
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[15:8]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCTOPSETO/1 is loaded to the TCTOPO/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOPSET0 register holds the lower eight bits [7:0] of the top value. TCTOPSET1 register holds the upper eight bits [15:8] of the top value.

Table 14.6. Timer/Counter Set Compare Counter Value 0

TCOCRSET0								0x62		
Bit	7	6	5	4	3	2	1	0		
Name		TCOCRSET[7:0]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

Table 14.7. Timer/Counter Set Compare Counter Value 1

TCOCRSET1								0x63		
Bit	7	6	5	4	3	2	1	0		
Name		TCOCRSET[15:8]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCOCRSETO/1 is loaded to the TCOCRO/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCRSET0 register holds the lower 8-bit value [7:0] of the compare value. TCOCRSET1 register holds the upper 8-bit value[15:8] of the compare value.

Table 14.8. Timer/Counter Control 2

TCCR2									
Bit	7	6	5	4	3	2	1	0	
Name			(Reserved)			WBFORCE	WBRESET	WBPAUSE	
Default	0	0 0 0 0					0	0	
Access	_	_	_	_	_	R/W	R/W	R/W	

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Note: WBFORCE and WBRESET are only set to 1 when wb_we_i and wb_cvc_i are asserted. This means that once these signals are de-asserted, WBFORCE and WBRESET revert to 0. This also implies that when reading these bits, their values are always 0.

WBFORCE

In non-PWM modes, forces the output of the counter, as if the counter value matched the compare (TCOCR) value or it matched the top value (TCTOP).

0: Disabled
1: Enabled

WBRESET

Reset the counter from the WISHBONE interface by writing a '1' to this bit. Manually reset to '0'. The rising edge is detected in the WISHBONE clock domain, and the counter is reset synchronously on the next tc_clki. Due to the clock domain crossing, there is a one-clock uncertainty when the reset is effective. This bit has higher priority then WBPAUSE.

0: Disabled
1: Enabled

WBPAUSE

Pause the 16-bit counter

1: Pause 0: Normal

Table 14.9. Timer/Counter Counter Value 0

TCCNT0								0x65		
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[7:0]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Table 14.10. Timer/Counter Counter Value 1

TCCNT1								0x66	
Bit	7	6	5	4	3	2	1	0	
Name		TCCNT[15:8]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold the counter value. The WISHBONE host has read-only access to these registers.

TCCNT0 register holds the lower 8-bit value [7:0] of the counter value. TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

Table 14.11. Timer/Counter Current Top Counter Value 0

ТСТОРО								0x67	
Bit	7	6	5	4	3	2	1	0	
Name		TCTOP[7:0]							
Default	1	1 1 1 1 1 1 1							
Access	R	R	R	R	R	R	R	R	

48

Table 14.12. Timer/Counter Current Top Counter Value 1

TCTOP1								0x68	
Bit	7	6	5	4	3	2	1	0	
Name		TCTOP[15:8]							
Default	1	1 1 1 1 1 1 1							
Access	R	R	R	R	R	R	R	R	

Registers TCTOP0 and TCTOP1 are 8-bit registers, which combined, receive a 16-bit value from the TCTOPSET0/ 1. The data stored in these registers represents the top value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1 register holds the upper 8-bit value [15:8] of the top value.

Table 14.13. Timer/Counter Current Compare Counter Value 0

TCOCR0								0x69
Bit	7	6	5	4	3	2	1	0
Name		TCOCR[7:0]						
Default	1	1 1 1 1 1 1 1						
Access	R	R	R	R	R	R	R	R

Table 14.14. Timer/Counter Current Compare Counter Value 1

TCOCR1								0x6A	
Bit	7	6	5	4	3	2	1	0	
Name		TCOCR[15:8]							
Default	1	1	1	1	1	1	1	1	
Access	R	R	R	R	R	R	R	R	

Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined, receive a 16-bit value from the TCOCRSETO/ 1. The data stored in these registers represents the compare value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCR0 register holds the lower 8-bit value [7:0] of the compare value. TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Table 14.15. Timer/Counter Current Capture Counter Value 0

TCICR0								0x6B	
Bit	7	6	5	4	3	2	1	0	
Name		TCICR[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Table 14.16. Timer/Counter Current Capture Counter Value 1

TCICR1								0x6C
Bit	7	6	5	4	3	2	1	0
Name		TCICR[15:8]						
Default	0	0 0 0 0 0 0 0						
Access	R	R	R	R	R	R	R	R

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Registers TCICRO and TCICR1 are 8-bit registers, which combined, can hold the counter value. The counter value is loaded onto these registers once a trigger event, tc_ic IP signal, is asserted. The capture value is commonly used as a time-stamp for a specific system event. The WISHBONE host has read-only access to these registers.

TCICR0 register holds the lower 8-bit value [7:0] of the counter value. TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Table 14.17. Timer/Counter Status Register

TCSR0							0x6D	
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)				ICRF	OCRF	OVF
Default	-					0	0	0
Access	-	_	_	_	R	R	R	R

BTF Bottom Flag. Asserted when the counter reaches value zero. A write operation to this

register clears this flag.

1: Counter reached zero value

0: Counter has not reached zero

ICRF Capture Counter Flag. Asserted when the user asserts the TC_IC input signal. The

counter value is captured into the TCICR0/1 registers. A write operation to this register $\,$

clears this flag. This bit is capable of generating an interrupt.

1: TC IC signal asserted.

0: Normal

OCRF Compare Match Flag. Asserted when counter matches the TCOCR0/1 register value.

A write operation to this register clears this flag. This bit is capable of generating an

interrupt.

1: Counter match

0: Normal

Overflow Flag. Asserted when the counter matches the TCTOP0/1 register value. A

write operation to this register clears this flag. This bit is capable of generating an

interrupt.

1: Counter match

0: Normal

Table 14.18. Timer/Counter Interrupt Status

TCIRQ								0x6E
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)					IRQOCRF	IRQOVF
Default	0	0 0 0 0					0	0
Access	_	-	1	_	_	R/W	R/W	R/W

IRQICRF Interrupt Status for Capture Counter Flag.

When enabled, indicates ICRF is asserted. Write a '1' to this bit to clear the interrupt.

1: Capture Counter Flag Interrupt

0: No interrupt

IRQOCRF Interrupt Status for Compare Match Flag.

When enabled, indicates OCRF is asserted. Write a '1' to this bit to clear the interrupt.

1: Compare Match Flag Interrupt

OVF

0: No interrupt

IRQOVF Interrupt Status for Overflow Flag.

When enabled, indicates OVF is asserted. Write a '1' to this bit to clear the interrupt.

1: Overflow Flag Interrupt

0: No interrupt

Table 14.19. Timer/Counter Interrupt Enable

TCIRQEN	TCIRQEN 0x								
Bit	7	6	5	4	3	2	1	0	
Name		(Reserved)					IRQOCRFEN	IRQOVFEN	
Default	0	0 0 0 0 0					0	0	
Access	_	_	_	_	_	R/W	R/W	R/W	

IRQICRFEN Interrupt Enable for Capture Counter Flag.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQOCRFEN Interrupt Enable for Compare Match Flag.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQOVFEN Interrupt Enable for Overflow Flag.

1: Interrupt generation enabled

0: Interrupt generation disabled

15. Timer Counter Simulation Model

The Timer Counter EFB Register Map translation to the MachXO2 EFB software simulation model is provided below.

Table 15.1. Timer/Counter Simulation Mode

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCCR0	[7:0]	Control Register 0	0x5E	Read/Write	{tc_rstn_ena, tc_gsrn_dis, tc_cclk_sel[2:0], tc_sclk_sel[2:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
RSTEN	7	_	_	_	tc_rstn_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
PRESCALE[2:0]	[5:3]		-	_	tc_cclk_sel[2:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKEDGE	2	_	_	_	tc_sclk_sel[2]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKSEL	1	_	_	_	tc_sclk_sel[1]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR1	[7:0]	Control Register 1	0x5F	Read/Write	{1'b0, tc_ovf_ena, tc_ic_ena, tc_top_sel, tc_oc_mode[1:0], tc_mode[1:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
SOVFEN	6		-	_	tc_ivf_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICEN	5		-	_	tc_ic_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
TSEL	4	_	_	_	tc_top_sel	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCM[1:0]	[3:2]	_	_	_	tc_oc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCM[1:0]	[1:0]	_	_	_	tc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET0	[7:0]	Set Top Counter Value [7:0]	0x60	Write	{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[7:0]	[7:0]	-	-	-	{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET1	[7:0]	Set Top Counter Value [15:8]	0x61	Write	{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[15:8]	[7:0]	-	-	_	{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET0	[7:0]	Set Compare Counter Value [7:0]	0x62	Write	{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET[7:0]	[7:0]	-	_	_	{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET1	[7:0]	Set Compare Counter Value [15:8]	0x63	Write	{tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET[15:8]	[7:0]	-	_	_	{tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR2	[7:0]	Control Register 2	0x64	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_oc_force, tc_cnt_reset, tc_cnt_pause}	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBFORCE	2		_	_	tc_oc_force	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBRESET	1		_	_	tc_cnt_reset	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBPAUSE	0	ı	_	_	tc_cnt_pause	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT0	[7:0]	Counter Value [7:0]	0x65	Read	tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[7:0]	[7:0]	_	_	_	tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT1	[7:0]	Counter Value [15:8]	0x66	Read	tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[15:8]	[7:0]	_	_	_	tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
ТСТОРО	[7:0]	Current Top Counter Value [7:0]	0x67	Read	tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCTOP[7:0]	[7:0]	_	_	_	tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP1	[7:0]	Current Top Counter Value [15:8]	0x68	Read	tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP[15:8]	[7:0]	-	_	_	tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR0	[7:0]	Current Compare Counter Value [7:0]	0x69	Read	tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR[7:0]	[7:0]	-	_	_	tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR1	[7:0]	Current Compare Top Counter Value [15:8]	0x6A	Read	tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR[15:8]	[7:0]	-	_	_	tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR0	[7:0]	Current Capture Counter Value [7:0]	0x6B	Read	tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[7:0]	[7:0]	-	_	_	tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR1	[7:0]	Current Capture Counter Value [15:8]	0x6C	Read	tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[15:8]	[7:0]	-	_	_	tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCSR0	[7:0]	Status Register	0x6D	Read	{1'b0, 1'b0, 1'b0, 1'b0, tc_btf_sts, tc_icrf_sts, tc_ocrf_sts, tc_ovf_sts}	/efb_top/efb_pll_sci_inst/u_efb_sci/
BTF	3	_	_	_	tc_btf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICRF	2	_	_	_	tc_icrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCRF	1	_	_	_	tc_ocrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OVF	0	_	_	_	tc_ovf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQ	[7:0]	Interrupt Request	0x6E	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqsts, tc_ocrf_irqsts, tc_ovf_irqsts}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRF	2	_	_	_	tc_icrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRF	1	-	_	_	tc_ocrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOVF	0	-	_	_	tc_ovf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQEN	[7:0]	Interrupt Request Enable	0x6F	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqena, tc_ocrf_irqena, tc_ovf_irqena}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRFEN	2	-	_	_	tc_icrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRFEN	1	_	_	_	tc_ocrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOVFEN	0	_	_	_	tc_ovf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/

16. Flash Memory (UFM/Configuration) Access

Designers can access the Flash Memory Configuration Logic interface using the JTAG, SPI, I2C, or WISHBONE interfaces. The MachXO2 Flash Memory consists of two sectors:

- User Flash Memory (UFM)
 - MachXO2-640 and higher density devices provide one sector of User Flash Memory (UFM).
- Configuration
 - Configuration consists of two sectors Configuration Flash and the Feature Row.

The UFM is a Flash sector which is organized in pages. The UFM is not byte addressable. Each page has 128 bits (16 bytes).

16.1. Flash Memory (UFM/Configuration) Access Ports

Designers can access the UFM Sector via JTAG port (compliant with the IEEE 1149.1 and IEEE 1532 specifications), external Slave SPI port and external I2C Primary port and the internal WISHBONE interface of the EFB module. Figure 16.1 illustrates the interfaces to the UFM and Configuration Memory sectors.

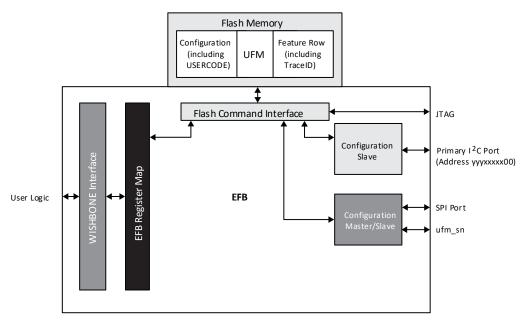


Figure 16.1. Interfaces to the UFM/Configuration Sectors

The configuration logic arbitrates access from the interfaces by the following priority. When higher priority ports are enabled Flash Memory access by lower priority ports is blocked.

- 1. JTAG Port
- 2. Slave SPI Port
- 3. I2C Primary Port
- 4. WISHBONE Slave Interface

Note:

Enabling Flash Memory (UFM/Configuration) Interface using Enable Configuration Interface command 0x74 Transparent Mode temporarily disables certain features of the device including:

- Power Controller
- GSR
- Hardened User SPI port
- Hardened User Primary I2C port

Functionality is restored after the Flash Memory (UFM/Configuration) Interface is disabled using Disable Configuration Interface command 0x26 followed by Bypass command 0xFF.

16.2. Flash Memory (UFM/Configuration) Access through WISHBONE Slave Interface

The WISHBONE Slave interface of the EFB module enables designers to access the Flash Memory (UFM/Configuration) directly from the FPGA core logic. The WISHBONE bus signals, described earlier in this document, are utilized by a WISHBONE host that designers can implement using the general purpose FPGA resources. In addition to the WISHBONE bus signals, an interrupt request output signal is brought to the FPGA fabric. The IP signal is "wbc_ufm_irq", and it functions as an interrupt request to the internal WISHBONE host, based on the data Read/Write FIFO status or arbitration error.

Note:

To access the Flash Memory (UFM/Configuration) via WISHBONE in R1 devices, the hard SPI port or the primary I2C port must be enabled. For more details, refer to Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices (FPGA-AN-02012).

The WISHBONE Interface communicates to the Configuration Logic through a set of data, control and status registers. Table 16.1 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

Table 16.1. WISHBONE to Flash Memory (CFG) Logic Registers

WISHBONE to CFG Register Name	Register Function	Address	Access
CFGCR	Control	0x70	Read/Write
CFGTXDR	Transmit Data	0x71	Write
CFGSR	Status	0x72	Read
CFGRXDR	Receive Data	0x73	Read
CFGIRQ	Interrupt Request	0x74	Read/Write
CFGIRQEN	Interrupt Request Enable	0x75	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written '0'.

Table 16.2. Flash Memory (UFM/Configuration) Control

	,	1- / 6	, ,					
CFGCR								0x70
Bit	7	6	5	4	3	2	1	0
Name	WBCE	RSTE	(Reserved)					
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	_	_	_	_	_	_

WBCE

WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write connection to the Flash Memory (UFM/Configuration) logic. This bit must be set prior to executing any command through the WISHBONE port. Likewise, this bit must be cleared to terminate the command. Refer to the Command and Data Transfers to Flash Memory (UFM/Configuration) Space section for more information on framing WISHBONE commands.

1: Enabled

0: Disabled

RSTE WISHBONE

Connection Reset. Resets the input/output FIFO logic. The reset logic is

level sensitive. After setting this bit to '1' it must be cleared to '0' for normal operation.

1: Reset

0: Normal operation

Table 16.3. Flash Memory (UFM/Configuration) Transmit Data

CFGTXDR								0x71	
Bit	7	6	5	4	3	2	1	0	
Name		CFG_Transmit_Data[7:0]							
Default	0	0 0 0 0 0 0 0						0	
Access	W	W	W	W	W	W	W	W	

CFG_Transmit_Data[7:0] CFG Transmit Data. This register holds the byte that is written to the Flash Memory (UFM/Configuration) logic. Bit 0 is LSB.

Table 16.4. Flash Memory (UFM/Configuration) Status

CFGSR								0x72
Bit	7	6	5	4	3	2	1	0
Name	WBCACT	(Reserved)	TXFE	TXFF	RXFE	RXFF	SSPIACT	I2CACT

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

CFGSR								0x72
Default	0	0	0	0	0	0	0	0
Access	R	_	R	R	R	R	R	R

WBCACT WISHBONE Bus to Configuration Logic Active. Indicates that the WISHBONE to configuration

interface is active and the connection is established.

1: WISHBONE Active

0: WISHBONE not Active

TXFE Transmit FIFO Empty. Indicates that the Transmit Data register is empty. This bit is

capable of generating an interrupt.

1: FIFO empty

0: FIFO not empty

TXFF Transmit FIFO Full. Indicates that the Transmit Data register is full. This bit is capable

of generating an interrupt.

1: FIFO full

0: FIFO not full

RXFE Receive FIFO Empty. Indicates that the Receive Data register is empty. This bit is

capable of generating an interrupt.

1: FIFO empty

0: FIFO not empty

RXFF Receive FIFO Full. Indicates that the Transmit Data register is full. This bit is capable

of generating an interrupt.

1: FIFO full

0: FIFO not full

SSPIACT Slave SPI Active. Indicates the Slave SPI port has started actively communicating with

the Configuration Logic while WBCE is enabled. This port has priority over the I2C and WISHBONE ports and preempts any existing, and prohibit any new, lower priority

transaction. This bit is capable of generating an interrupt.

1: Slave SPI port active

0: Slave SPI port not active

12CACT 12C Active. Indicates the I2C port has started actively communicating with the Configuration

Logic while WBCE is enabled. This port has priority over the WISHBONE

ports and preempts any existing, and prohibits any new WISHBONE transaction.

This bit is capable of generating an interrupt.

1: I2C port active

0: I2C port not active

Table 16.5. Flash Memory (UFM/Configuration) Receive Data

CFGRXDR								0x73
Bit	7	6	5	4	3	2	1	0
Name		CFG_Receive_Data[7:0]						
Default	0	0 0 0 0 0 0 0						0
Access	R	R	R	R	R	R	R	R

CFG Receive Data[7:0]

CFG Receive Data. This register holds the byte read from the Flash Memory (UFM/Configuration) logic. Bit 0 in this register is LSB.

Table 16.6. Flash Memory (UFM/Configuration) Interrupt Status

CFGIRQ 0x7-								
Bit	7	6	5	4	3	2	1	0
Name	(Rese	rved)	IRQTXFE	IRQTXFF	IRQRXFE	IRQRXFF	IRQSSPIACT	IRQI2CACT
Default	0	0	0	0	0	0	0	0
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W

IRQTXFE Interrupt Status for Transmit FIFO Empty.

When enabled, indicates TXFE is asserted. Write a '1' to this bit to clear the interrupt.

1: Transmit FIFO Empty Interrupt

0: No interrupt

IRQTXFF Interrupt Status for Transmit FIFO Full.

When enabled, indicates TXFF is asserted. Write a '1' to this bit to clear the interrupt.

1: Transmit FIFO Full Interrupt

0: No interrupt

IRQRXFE Interrupt Status for Receive FIFO Empty.

When enabled, indicates RXFE is asserted. Write a '1' to this bit to clear the interrupt.

1: Receive FIFO Empty Interrupt

0: No interrupt

IRQRXFF Interrupt Status for Receive FIFO Full.

When enabled, indicates RXFF is asserted. Write a '1' to this bit to clear the interrupt.

1: Receive FIFO Full Interrupt

0: No interrupt

IRQSSPIACT Interrupt Status for Slave SPI Active.

When enabled, indicates SSPIACT is asserted. Write a '1' to this bit to clear the

interrupt.

1: Slave SPI Active Interrupt

0: No interrupt

IRQI2CACT Interrupt Status for I2C Active.

When enabled, indicates I2CACT is asserted. Write a '1' to this bit to clear the interrupt.

1: I2C Active Interrupt

0: No interrupt

Table 16.7. Flash Memory (UFM/Configuration) Interrupt Enable

CFGIRQEN	GIRQEN 0x75								
Bit	7	6	5	4	3	2	1	0	
Name	(Rese	rved)	IRQTXFEEN	IRQTXFFEN	IRQRXFEEN	IRQRXFFEN	IRQSSPIACTEN	IRQI2CACTEN	
Default	0	0	0	0	0	0	0	0	
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

IRQTXFEEN Interrupt Enable for Transmit FIFO Empty

1: Interrupt generation enabled

0: Interrupt generation disabled

FPGA-TN-02163-2.9

IRQTXFFEN Interrupt Enable for Transmit FIFO Full

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRXFEEN Interrupt Enable for Receive FIFO Empty

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRXFFEN Interrupt Enable for Receive FIFO Full

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQSSPIACTEN Interrupt Enable for Slave SPI Active

1: Interrupt generation enabled0: Interrupt generation disabled

IRQI2CACTEN Interrupt Enable for I2C Active

1: Interrupt generation enabled0: Interrupt generation disabled

Table 16.8. Unused (Reserved) Register

UNUSED								0x76	
Bit	7	6	5	4	3	2	1	0	
Name		(Reserved)							
Default	0	0 0 0 0 0 0 0						0	
Access	_	_	_	_	_	_	_	_	

Table 16.9. EFB Interrupt Source

EFBIRQ								0x77
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)			UFMCFG_INT	TC_INT	SPI_INT	I2C2_INT	I2C1_INT
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

UFMCFG_INT Flash Memory (UFM/Configuration) Interrupt Source. Indicates EFB interrupt source

is from the UFM/Configuration Block. Use CFGIRQ for further source resolution.

1: A bit is set in register CFGIRQ

0: No interrupt

TC INT Timer/Counter Interrupt Source. Indicates EFB interrupt source is from the

Timer/Counter Block. Use TCIRQ for further source resolution.

1: A bit is set in register TCIRQ

0: No interrupt

SPI_INT SPI Interrupt Source. Indicates EFB interrupt source is from the SPI Block. Use SPIIRQ

for further source resolution.

1: A bit is set in register SPIIRQ

0: No interrupt

12C2_INT 12C2 Interrupt Source. Indicates EFB interrupt source is from the Secondary I2C

Block. Use I2C_2_ IRQ for further source resolution.

1: A bit is set in register I2C_2_ IRQ

58

0: No interrupt

I2C1_INT

I2C1 Interrupt Source. Indicates EFB interrupt source is from the Primary I2C Block. Use I2C_1_ IRQ for further source resolution.

1: A bit is set in register I2C_1_ IRQ

0: No interrupt

16.3. Command and Data Transfers to Flash Memory (UFM/Configuration) Space

The command and data transfers to the Flash Memory (UFM/Configuration) are identical for all the access ports, regardless of their different physical interfaces. The Flash Memory (UFM/Configuration) is organized in pages. Therefore, users address a specific page for Read or Write operations to that page. Each page has 128 bits (16 bytes). The transfers are based on a set of instructions and page addresses. The Flash memory is composed of two sectors, Configuration Memory (sector 0) and UFM (sector 1). The Erase operations are sector based.

16.4. Command Summary by Application

Table 16.10. UFM (Sector 1) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.
Check Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent UFM access – All user I/Os (except the hardened user SPI and primary user I ² C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline UFM access – All user I/Os (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, UFM remains accessible, and the device enters 'Offline' access mode. (The subsequent commands in this table require the interface to be enabled.)
Disable Configuration Interface	0x26	ISC_DISABLE	Disable the configuration (UFM) access.
Set Address	0xB4	LSC_WRITE_ADDRESS	Set the UFM sector 14-bit Address Register.
Reset UFM Address	0x47	LSC_INIT_ADDR_UFM	Reset the address to point to Sector 1, Page 0 of the UFM.
Read UFM	0xCA	LSC_READ_TAG	Read the UFM data. Operand specifies number of pages to read. Address Register is post-incremented.
Erase UFM	0xCB	LSC_ERASE_TAG	Erase the UFM sector only.
Program UFM Page	0xC9	LSC_PROG_TAG	Write one page of data to the UFM. Address Register is post-incremented.

Table 16.11. Configuration Flash (Sector 0) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Device ID	0xE0	IDCODE_PUB	Read the 4-byte Device ID (0x01 2b 20 43).
Read USERCODE	0xC0	USERCODE	Read 32-bit USERCODE.
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.
Read Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Refresh ¹	0x79	LSC_REFRESH	Launch boot sequence (same as toggling PRO-GRAMN pin).
STANDBY	0x7D	LSC_DEVICE_CTRL	Triggers the Power Controller to enter or wake from standby mode.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent Configuration Flash access – All user I/Os (except the hardened user SPI and primary user I ² C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline Configuration Flash access – All user I/Os (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, UFM remains accessible, and the device enters 'Offline' access mode. (The subsequent commands in this table require the interface to be enabled.)
Disable Configuration Interface	0x26	ISC_DISABLE	Exit access mode.
Set Configuration Flash Address	0xB4	LSC_WRITE_ADDRESS	Set the Configuration Flash 14-bit Page Address.
Verify Device ID	0xE2	VERIFY_ID	Verify device ID with 32-bit input, set Fail flag if mismatched.
Reset Configuration Flash Address	0x46	LSC_INIT_ADDRESS	Reset the address to point to Sector 0, Page 0 of the Configuration Flash.
Read Flash	0x73	LSC_READ_INCR_NV	Read the Flash data. Operand specifies number of pages to read. Address Register is post-incremented.
Erase	0x0E	ISC_ERASE	Erase the Config Flash, FEATURE Row, FEABITs, Done bit, Security bits and USER-CODE.
Program Page	0x70	LSC_PROG_INCR_NV	Write 1 page of data to the Flash Memory (Configuration/UFM). Address Register is post-incremented.
Program DONE	0x5E	ISC_PROGRAM_DONE	Program the Done bit.
Program SECURITY	0xCE	ISC_PROGRAM_SECURITY	Program the Security bit (Secures CFG Flash sector).
Program SECURITY PLUS	0xCF	ISC_PROGRAM_SECPLUS	Program the Security Plus bit (Secures CFG and UFM Sectors). Note: SECURITY and SECURITY PLUS commands are mutually exclusive.
Program USERCODE	0xC2	ISC_PROGRAM_USERCODE	Program 32-bit USERCODE.
Read Feature Row	0xE7	LSC_READ_FEATURE	Read Feature Row.
Program Feature Row	0xE4	LSC_PROG_FEATURE	Program Feature Row.
Read FEABITS	0xFB	LSC_READ_FEABITS	Read FEA bits.

Command Name	Command MSB LSB	SVF Command Name	Description
Program FEABITs	0xF8	LSC_PROG_FEABITS	Program the FEA bits.

Note: The Refresh commands are not supported by the software simulation model.

Table 16.12. Non-Volatile Register (NVR) Commands

Command Name	Command msb lsb	SVF Command Name	Description
Read Trace ID code	0x19	UIDCODE_PUB	Read 64-bit TraceID.

When using the WISHBONE bus interface, the commands, operand and data are written to the CFGTXDR Register. The Slave SPI or I²C interface shift the most significant bit (MSB) first into the MachXO2 device. This is required only when communicating with the configuration logic inside the MachXO2 device.

In order to perform a Write, Read or Erase operation with the UFM or Configuration Flash, it is required that the interface is enabled using Command 0x74. Affected commands are noted in the Command Description as EN Required. Once the modification operations are completed, the interface can be disabled using commands 0x26 and 0xFF.

16.5. Command Descriptions by Command Code

Table 16.13. Erase Flash (0x0E)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	Х	_	Υ	0E	See below	_	_	_

Operand: 0000 ucfs 0000 0000 0000 0000 (binary)

where: u: Erase UFM sector

0: No action 1: Erase

c: Erase CFG sector (Config Flash, DONE, security bits, USERCODE)

0: No action 1: Erase

f: Erase Feature sector (Slave I2C address, sysCONFIG port persistence, Boot

mode, etc.)

0: No action

1: Erase

s: Erase SRAM

0: No action

1: Erase

Notes: Poll the BUSY bit (or wait, see Table 18.3) after issuing this command for erasure to

complete before issuing a subsequent command other than Read Status or Check Busy.

Erased condition for Flash bits = 0

Examples: 0x0E 04 00 00

Erase CFG sector 0x0E 08 00 00 Erase UFM sector 0x0E 0C 00 00

Erase UFM and CFG sectors

Table 16.14. Read TraceID Code (0x19)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	_	x	N	19	00 00 00	R	8B	_

Example: 0x19 00 00 00

Read 8-byte TraceID

Note: First byte read is user portion. Next seven bytes are unique to each silicon die.

Table 16.15. Disable Configuration Interface (0x26)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x	х	_	_	26	00 00	_		_

Example: 0x26 00 00

Disable Flash Memory (UFM/configuration) interface for change access.

Notes: Must have only two operands.

The interface cannot be disabled while the Configuration Status Register Busy bit is asserted. After commands (for example, Erase, Program) verify Busy is clear before

issuing the Disable command.

This command should be followed by Command 0xFF (BYPASS) to complete the Disable

operation. The BYPASS command is required to restore Power Controller, GSR,

Hardened User SPI and I2C port operation.

SRAM must be erased before exiting Offline (0xC6) Mode

Table 16.16. Read Status Register (0x3C)

EEE

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	_	N	3C	00 00 00	R	4B	xxxx IxEE Exxx xxxx xxFB xxCD xxxx xxxx

Data Format: Most significant byte of SR is received first, LSB last.

D bit 8 Flash or SRAM Done Flag

When C = 0 SRAM Done bit has been programmed

- D = 1 Successful Flash to SRAM transfer
- D = 0 Failure in the Flash to SRAM transfer

When C=1 Flash Done bit has been programed

- D = 1 Programmed
- D = 0 Not Programmed

C bit 9 Enable Configuration Interface (1=Enable, 0=Disable)

B bit 12: Busy Flag (1 = busy)

F bit 13: Fail Flag (1 = operation failed)

I I=0 Device verified correct, I=1 Device failed to verify

bits[25:23]: Configuration Check Status

000: No Error 001: ID ERR 010: CMD ERR 011: CRC ERR 100: Preamble ERR

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

101: Abort ERR 110: Overflow ERR 111: SDM EOF

(all other bits reserved)

Usage: The BUSY bit should be checked following all Enable, Erase or Program operations.

Note: Wait at least 1 us after power-up or asserting wb_rst_i before accessing the EFB.

Example: 0x3C 00 00 00

Read 4-byte Status Register for example, 0x00 00 20 00 (fail flag set).

Table 16.17. Reset CFG Address (0x46)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	-	Υ	46	00 00 00	_	-	_

Example: 0x46 00 00 00

Set Address register to Configuration Sector 0, page 0.

Table 16.18. Reset UFM Address (0x47)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	_	_	Υ	47	00 00 00	_	-	_

Example: 0x47 00 00 00

Set Address register to UFM Sector 1, page 0.

Table 16.19. Program DONE (0x5E)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х		Υ	5E	00 00 00	_	_	_

Example: 0x5E 00 00 00

Set the DONE bit.

Note: Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

Table 16.20. Program Configuration Flash (0x70)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	70	00 00 00	W	16B	16 bytes UFM write data

Example: 0x70 00 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Write one page of data, pointed to by Address Register.

Notes: 16 data bytes must be written following the command and operand bytes to ensure

proper data alignment. The Address Register is auto-incremented following the page

write.

Use 0x0E to erase CFG sector prior to executing this command.

Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

63

before issuing a subsequent command other than Read Status or Check Busy.

Table 16.21. Read Configuration Flash (0x73) (SPI)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration Flash is read through SPI.

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when num pages > 1

**Data Size: (num_pages * 16) bytes

Note: Read CFG may be aborted at any time. Any data remaining in the read FIFO is

discarded. Any read data beyond the prescribed read size is indeterminate. The

Address Register is auto-incremented after each page read.

***Examples: 0x73 10 00 01

0 bytes dummy followed by one page of CFG data (16 bytes total).

0x73 10 00 04

Read 1 page dummy followed by three pages of CFG data (four pages total).

Table 16.22. Read Configuration Flash (0x73) (I²C/SPI)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	-	Υ	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration Flash is read through I²C or SPI.

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when num_pages > 1

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num pages) * (16 + 4) bytes when num pages>1

Note: Read CFG may be aborted at any time. Any data remaining in the read FIFO is

discarded. Any read data beyond the prescribed read size is indeterminate. The

Address Register is auto-incremented after each page read.

***Examples: 0x73 00 00 01

0 bytes dummy followed by one page CFG data (16 bytes total).

0x73 00 00 04

Read 2 pages dummy, followed by three sets [1 page CFG data, followed by four bytes

dummy] (five pages and 12 dummy bytes total).

Table 16.23. Read Configuration Flash (0x73) (WISHBONE)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	Х		Υ	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration Flash is read through WISHBONE.

*Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when 1 < num_pages \leq 12

Set to 0x3FFF when num pages > 12

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages) * (16 + 4) bytes when num_pages>1

Note: When reading more than 12 pages, the num_pages argument is intentionally oversized.

It is not necessary to read the extra pages. Read CFG may be aborted at any time. Any data remaining in the read FIFO is discarded. Any read data beyond the prescribed read size is indeterminate. The Address Register is auto-incremented

after each page read.

***Examples: 0x73 00 00 01

0 bytes dummy followed by one page CFG data (16 bytes total)

0x73 10 00 04

Read 1 page dummy followed by three pages of CFG data (four pages total)

0x73 00 00 04

Read 2 pages dummy, followed by three sets [1 page CFG data, followed by four bytes

dummy] (five pages and 12 dummy bytes total)

Note: The maximum speed which one page of data (num_page=1) can be read using

WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are

supported by inserting WB wait states to observe the retrieval delay timing requirement.

For more information, refer to the Reading Flash Pages section of

MachXO2 Programming and Configuration Usage Guide (FPGA-TN-02155).

Table 16.24. Enable Configuration Interface (Transparent) (0x74)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	х	_	_	74	08 00 00 or	_	_	-
					08 00			

Notes: The I²C interface uses only two operands and all other interfaces use three operands. This

command is required to enable modification of the UFM, configuration Flash, or nonvolatile

registers (NVR). Terminate this command with command 0x26 followed by

command 0xFF.

Exercising this command temporarily disables certain features of the device, notably

GSR, user SPI port, primary user I²C port and Power Controller. These features

are restored when the command is terminated.

Poll the BUSY bit (or wait 5 us) after issuing this command for the Flash pumps to fully

charge.

Example: 0x74 08 00 00

Enable UFM/configuration interface for change access through a non-I²C interface.

Table 16.25. Refresh (0x79)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	_	_	79	00 00	_	_	_

Example: 0x79 00 00

Issue Refresh command

Note: The Refresh command launches Boot sequence

Must have only two operands

After completing the Refresh command (for example, SPI SN deassertion or I2C stop), further bus accesses are prohibited for the duration of tREFRESH. Violating this requirement causes the Refresh process to abort and leave the MachXO2 device in an unprogrammed state.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02163-2.9

Occasionally, following a device REFRESH or PROGRAMN pin toggle, the secondary I²C port may be left in an undefined (non-idle) state. The likelihood of this condition is design and route dependent. To positively return the Secondary I2C port to the idle state, write a value of 0x44 to register I2C_2_CMDR via WISHBONE immediately after device reset is released. This causes a short low-pulse on SCK as the hardblock signals a STOP on the bus then returns to the idle state. Failure to manually return the Secondary I²C port to the idle state may result in an I²C bus lock-up condition. Normal I²C activity can be commenced without additional delay.

Table 16.26. STANDBY (0x7D)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	x	_	N	7D	0y 00	_	_	_

Example: 0x7D 0y 00

y:2 Triggers the Power Controller to enter standby mode

y:8 Triggers the Power Controller to wakeup from standby mode

Notes: Must have only two operands.

The MachXO2 Power Controller needs to be included in the design.

Additionally the following can be used to trigger the Power Controller to wakeup from standby mode (if the user logic standby signal has not been enabled):

- 1. I2C has the following ways:
 - a. Primary I2C Configuration port Address match to the I2C Configuration address (No other settings required)
 - b. Primary or Secondary I2C User port Address match the I2C User address. Must have I2C_1_CR[WKUPEN] or I2C_1_CR[WKUPEN] set
 - c. General Call Send the General Call Wakeup command (0xF3). Must have General Calls enabled (I2C_1_CR[GCEN] or I2C_2_CR[GCEN] set) and use the General Call address
- SPI from the assertion of either Slave Configuration (ufm_sn) or User (spi_scsn) chip select, as long as the appropriate control register bit is set:
 - a. Configuration: SPICR1[WKUPEN_CFG]b. User: SPICR[WKUPEN_USER]

For more information on the Power Controller refer to Power Estimation and Management for MachXO2 Devices (FPGA-TN-02161).

Table 16.27. Set Address (0xB4)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	Х		Υ	B4	00 00 00	W	4B	0s00 0000 0000 0000 00aa aaaa aaaa aaaa

Data Format: s: sector

0: Configuration

1: UFM

aa..aa:address14-bit page address

Example: 0xB4 00 00 00 40 00 00 0A

Set Address register to UFM sector, page 10 decimal

Table 16.28. Read USERCODE (0xC0)

UF	М	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
_	-	х	_	Y/N	C0	00 00 00	R	4B	_

0xC0 00 00 00 Example:

> EN Required = Y Read 4-byte USERCODE from CFG sector EN Required = N Read 4-byte USERCODE from SRAM

Table 16.29. Program USERCODE (0xC2)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
-	x	_	Υ	C2	00 00 00	W	4B	_

Example: 0xC2 00 00 00 10 20 30 40

Sets USERCODE with 32-bit input 0x10 20 30 40

Poll the BUSY bit (or wait 200 us) after issuing this command for programming to Note:

complete before issuing a subsequent command other than Read Status or Check Busy.

Table 16.30. Enable Configuration Interface (Offline) (0xC6)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	-	_	C6	0y 00 00	_	-	_

Operand: 08 00 00 - Enable Flash Normal mode. Normal edit mode for Offline configuration.

Used for all offline commands described in this document, including Erase SRAM.

00 00 00 – Enable SRAM mode. Optional edit mode. Supports Erase SRAM command only.

0xC6 08 00 00 Enable Flash Memory (UFM/configuration) interface for offline change access. Example:

Use this command to enable offline modification of the UFM, Configuration Flash, or Notes:

non-volatile registers (NVR). SRAM must be erased exiting Offline mode. When exiting Offline

mode follow the command 0x26 with the command 0xFF. Exercising this command

tri-states all user I/Os (except persisted sysCONFIG ports). User logic ceases to function. UFM

remains accessible.

Poll the BUSY bit (or wait 5 us) after issuing this command for the Flash pumps to fully

Table 16.31. Program UFM (0xC9)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	-	1	Υ	C9	00 00 01	W	16B	16 bytes UFM write data

0xC9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Example:

Write one page of data, pointed to by Address Register

Notes: 16 data bytes must be written following the command and operand bytes to ensure proper

data alignment. The Address Register is auto-incremented following the page write.

Use 0x0E or 0xCB to erase UFM sector prior to executing this command.

Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. FPGA-TN-02163-2.9 67

Table 16.32. Read UFM (0xCA) (SPI)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	_	Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when num pages > 1

**Data Size (num pages * 16) bytes

Note: Read UFM may be aborted at any time. Any data remaining in the read fifo is discarded.

Any read data beyond the prescribed read size is indeterminate. The

Address Register is auto-incremented after each page read.

***Examples: 0xCA 10 00 01

Read 0 bytes dummy followed by one page UFM data (16 bytes total)

0xCA 10 00 04

Read one page dummy followed by three pages UFM data (four pages total)

Table 16.33. Read UFM (0xCA) (I²C/SPI)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	_	Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when num_pages > 1

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num pages * 16 + 4) bytes when num pages>1

Note: Read UFM may be aborted at any time. Any data remaining in the read fifo is discarded.

Any read data beyond the prescribed read size is indeterminate. The Address

Register is auto-incremented after each page read.

***Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page UFM data (16 bytes total)

0xCA 00 00 04

Read two pages dummy followed by three sets [one page UFM data, followed by four

bytes dummy] (five pages total and 12 dummy bytes)

Table 16.34. Read UFM (0xCA) (WISHBONE)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x	_	_	Y	CA	*(below)	R	**(below)	***(below)

*Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of CFG pages to read when num_pages = 1

Number of CFG pages to read +1 when 1 < num_pages \leq

12

Set to 0x3FFF when num_pages > 12

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages * 16 + 4) bytes when num_pages>1

Note: When reading more than 12 pages, the num pages argument is intentionally oversized.

It is not necessary to read the extra pages. Read UFM may be aborted at any time. Any data remaining in the read fifo is discarded. Any read data beyond the prescribed read size is indeterminate. The Address Register is auto-incremented

after each page read.

***Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page UFM data (16 bytes total)

0xCA 10 00 04

Read 1 page dummy followed by three pages of CFG data (four pages total)

0xCA 00 00 04

Read two pages dummy followed by three sets [one page UFM data, followed by four

bytes dummy (five pages total and 12 dummy bytes)

Note: The maximum WISHBONE clock speed with which one page of data (num_page=1)

can be read using WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of

MachXO2 Programming and Configuration Usage Guide (FPGA-TN-02155).

Table 16.35. Erase UFM (0xCB)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	-	-	Υ	СВ	00 00 00	_	_	_

Notes: Erased condition for UFM bits = '0'

Poll the BUSY bit (or wait, see Table 18.3.) after issuing this command for erasure to complete before issuing a subsequent command other than Read Status or Check Busy.

Example: 0xCB 00 00 00

Erase UFM sector

Table 16.36. Program SECURITY (0xCE)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	1	Υ	CE	00 00 00	_	1	-

Example: 0xCE 00 00 00

Set the SECURITY bit

Note: Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 16.37. Program SECURITY PLUS (0xCF)

	-0	- '	- /					
UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	CF	00 00 00	_	_	_

Example: 0xCF 00 00 00

Set the SECURITY PLUS bit

FPGA-TN-02163-2.9 69

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Note: Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 16.38. Read Device ID Code (0xE0)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
_	Х	-	N	EO	00 00 00	R	4B	See Table 16.35.

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 16.39. Device ID Table

Device Name	HE/ZE Devices	HC Devices
MachXO2-256	0x01 2B 00 43	0x01 2B 80 43
MachXO2-640	0x01 2B 10 43	0x01 2B 90 43
MachXO2-1200/MachXO2-640U	0x01 2B 20 43	0x01 2B A0 43
MachXO2-2000/MachXO2-1200U	0x01 2B 30 43	0x01 2B B0 43
MachXO2-4000/MachXO2-2000U	0x01 2B 40 43	0x01 2B C0 43
MachXO2-7000	0x01 2B 50 43	0x01 2B D0 43

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 16.40. Verify Device ID Code (0xE2)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
	Х	ı	Υ	E2	00 00 00	W	4B	See Table 16.39.

Example: 0xE2 00 00 00 01 2B 20 43

Verify device ID with 32-bit input, sets ID Error bit 27 in SR if mismatched.

Table 16.41. Program Feature Row (0xE4)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
_	-	I	Υ	E4	00 00 00	I	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I2C Slave Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Note: It is not recommended to reprogram the Feature Row in system as it should be programmed

ideally once during manufacturing.

Example: 0xE4 00 00 00 00 01 00 00 00 12 34

Program Feature Row with User I²C address set to 1, default user TraceID string, Custom

ID code of 12 34

Table 16.42. Read Feature Row (0xE7)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
_	1	X	Υ	E7	00 00 00	R	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I2C Slave Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Example: 0xE7 00 00 00

Reads the Feature Row

Table 16.43. Check Busy Flag (0xF0)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
Х	х	-	N	F0	00 00 00	R	1B	Bxxx xxxx

Data Format: B: bit 7: Busy Flag (1= busy)

(all other bits reserved)

Example: 0xF0 00 00 00

Read one byte, for example, 0x80 (busy flag set)

Table 16.44. Program FEABITs (0xF8)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
-	-	х	Υ	F8	00 00 00	W	2B	00 bb mi sj di pa 00 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from Configuration Flash

2. If b=00 and m=1 then Dual Boot from Configuration Flash then External if there is a failure

3. If b=01 and m=1 then Single Boot from External Flash

m: Master SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: I2C Port Persistence

0=Enabled (Default), 1=Disabled

s: Slave SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

Note: It is not recommended to reprogram the FEABITs in system as it should be programmed

ideally once during manufacturing.

Example: 0xF8 00 00 00 0D 20

Programs the FEABITs

Table 16.45. Read FEABITs (0xFB)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	FB	00 00 00	R	2B	00 bb mi sj di pa 00 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from Configuration Flash

2. If b=00 and m=1 then Dual Boot from Configuration Flash then External if there is a failure

3. If b=01 and m=1 then Single Boot from External Flash

m: Master SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: I2C Port Persistence

0=Enabled (Default), 1=Disabled

s: Slave SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

Table 16.46. Bypass (Null Operation) (0xFF)

UFM	CFG	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
Х	Х	Х	N	FF	FF FF FF	_	_	_

Note: Operands are optional Example: OxFF FF FF Bypass

17. Interface to Configuration Flash

The WISHBONE interface of the EFB module allows a WISHBONE host to access the configuration resources of the MachXO2 devices. This can be particularly useful for reading data from configuration resources such as USERCODE and TraceID. Most importantly, this feature allows users to update the Configuration Flash array of the devices while the device is in operation mode. This is a self-configuration operation. Upon power-up or a configuration refresh operation, the new content of the Configuration Flash is loaded into the Configuration SRAM and the device continues operation with a new configuration.

The data transfer and execution of operations is the same as the one documented in the UFM section of this document. This is due to the fact that the UFM is also a Flash Memory resource and the communication between the

WISHBONE host and the configuration logic is performed through the same command, status and data registers. Please see Table 16.1 to Table 18.3 for information on these registers.

Figure 17.1 shows a basic flow diagram for implementing a Configuration Flash Update initiated via any of the sys-CONFIG ports (I2C, SPI, or WISHBONE).

For detailed information on MachXO2 programming and configuration, see MachXO2 Programming and Configuration Usage Guide (FPGA-TN-02155).

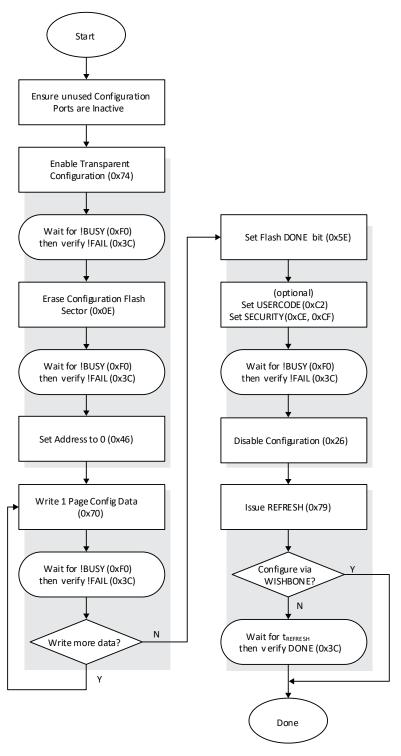


Figure 17.1. Basic Configuration Flash Update Example

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18. Command Framing

18.1. I²C Framing

Each command string sent to the I^2C EFB port must be correctly framed using the protocol defined for each interface. In the case of I^2C , the protocol is well known and defined by the industry as shown below.

Table 18.1. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
I ² C	Start	(Command/Operands/Data)	Stop

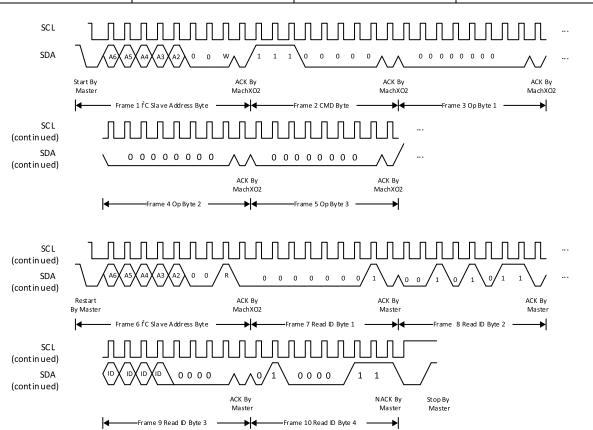


Figure 18.1. I²C Read Device ID Example

18.2. SPI Framing

Each command string sent to the SPI EFB port must be correctly 'framed' using the protocol defined for each interface. In the case of SSPI the protocol is well known and defined by the industry as shown below:

Table 18.2. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
SPI	Assert CS	(Command/Operands/Data)	De-assert CS

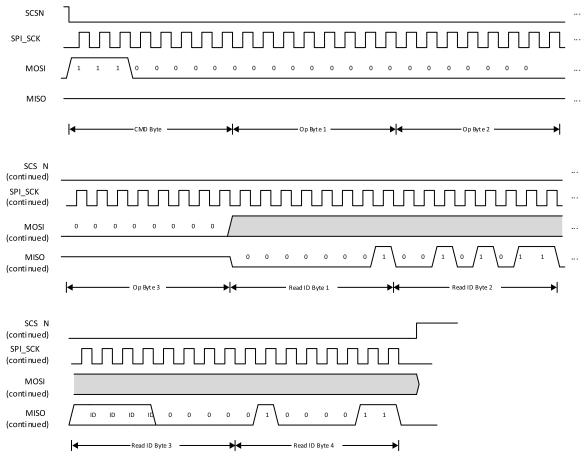


Figure 18.2. SSPI Read Device ID Example

18.3. WISHBONE Framing

To access the Flash Memory (UFM/Configuration) each command string sent to the WISHBONE EFB ports must be correctly framed using the protocol defined for each interface. In the case of the internal WISHBONE port, each command string is preceded by setting CFGCR[WBCE]. Similarly, each command string is followed by clearing the CFGCR[WBCE] bit.

Table 18.3. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)	
WISHBONE	Assert CFGCR[WBCE]	(Command/Operands/Data)	De-assert CFGCR[WBCE]	

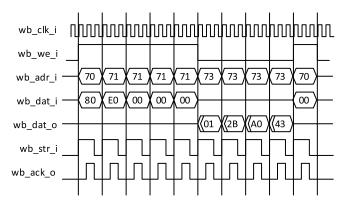


Figure 18.3. WISHBONE Read Device ID Example (-1200 HC Device)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

19. UFM Write and Read Examples

The UFM and Configuration sectors support page-oriented read and write operations while erase operations are sector-based. Consistent with many Flash memory devices, byte-oriented operations are not supported. Also, as typical with Flash memory devices, attempting to modify a previously written location in Flash requires a read-modify-write operation on the smallest erasable Flash unit. In the case of MachXO2, the smallest erasable unit is the entire UFM sector or the entire Configuration Sector.

For example, to arbitrarily modify a byte value in the UFM, the user must:

- 1. Read and save all UFM data to an alternate location (for example, EBR);
- 2. Erase the UFM sector;
- 3. Modify the selected byte; and
- 4. Program the UFM page by page.

In some applications it may be appropriate to keep a working copy of the UFM contents in volatile Embedded Block RAM and update the non-volatile UFM at appropriate intervals. The following examples show the sequence of commands for writing and reading from UFM.

Table 19.1. Write Two UFM Pages

Instruction Number	R/W1	CMD2	Operand	Data	Comment
_	_	+	_	_	Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
_	_	_	_	_	Close frame
_	_	+	_	_	_
2	W	3C	00 00 00	_	Poll Configuration Status Register
_	R	_	_	xx xx bx xx	_
_	_	_	_	_	(Repeat until Busy Flag not set, o wait 5 us if not polling)
_	_	+	_	_	
3	W	47	00 00 00	_	Init UFM Address to 0000
_	_	-	_	_	_
_	_	+	_	_	_
4	W	C9	00 00 01	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F	Write UFM Page 0 Data
_	_	_	_	_	_
_	_	+	_	_	_
5	W	3C	00 00 00	_	Poll Configuration Status Registe
	R	_	_	xx xx bx xx	_
_	_	-	_	_	(Repeat until Busy Flag not set, o wait 200 us if not polling)
_	_	+	_	_	_
6	W	C9	00 00 01	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	Write UFM Page 1 Data (Note: Address automatically incremented)
_	_	-	_	_	_
_	_	+	_	_	_
7	W	3C	00 00 00	_	Poll Configuration Status Registe
_	R	_	_	xx xx bx xx	_

Instruction Number	R/W1	CMD2	Operand	Data	Comment
_	_	ı	_	ı	(poll until Busy Flag clear, or wait 200 us if not polling)
_	_	+	_	_	_
8	W	26	00 00	_	Disable Configuration Interface
_	_	_	_	_	_
_	_	+	_	_	_
9	W	FF	_	ı	Bypass (NOP)
_	_		_		_

Notes:

- 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- 2. '+' and '-' refer to the command framing protocol appropriate for the interface, discussed in the Command Framing section.

Table 19.2. Read One UFM Page (All Devices, WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
_	_	+	_	_	Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
_	_	_	_	_	Close frame
_	_	+	_	_	_
2	W	3C	00 00 00	_	Poll Configuration Status Register
_	R	_	_	xx xx bx xx	_
_	_	_	_	_	(Repeat until Busy Flag not set, or wait 5 us if not polling)
_	_	+	_	_	_
3	W	B4	00 00 00	40 00 00 01	Set UFM Address to 0001
_	_	-	_	_	-
_	_	+	_	_	_
4	W	CA	10 00 01		Read one page UFM (page 1) data
_	R	_	_	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	_
_	_	-	_	_	_
_	_	+	_	_	_
5	W	26	00 00	_	Disable Configuration Interface
_	_	_	_	_	-
_	_	+	_	_	-
6	W	FF	_	_	Bypass (NOP)
_	_	_	_	_	-

Notes:

- 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- 2. '+' and '-' refer to the command framing protocol appropriate for the interface, discussed in the Command Framing section.

Table 19.3. Read Two UFM Pages (WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
_	_	+	_	_	Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
_	_	-	_	_	Close frame
_	_	+	_	_	
2	W	3C	00 00 00	_	Poll Configuration Status Register
_	R	_	_	xx xx bx xx	
_	_	_	_	_	(Repeat until Busy Flag not set, or wait 5 us if not polling)
_	_	+	_	_	_
3	W	47	00 00 00	_	Init UFM address to 0000
_	_	_	_	_	_
_	_	+	_	_	_
4	W	CA	10 00 03	_	Read two pages of UFM data, after one page of dummy bytes.3
_	R	_	_	XX	
_	_	_	_	_	_
_	_	+	_	_	_
5	W	26	00 00	_	Disable Configuration Interface
_	_	_	_	_	_
_	_	+	_	_	_
6	W	FF	_	_	Bypass (NOP)
_	_	_	_	_	_

Notes:

- 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- 2. '+' and '-' refer to the command framing protocol appropriate for the interface.
- 3. num_pages count must include dummy page.

78

20. Flash Memory Erase and Program Performance

Table 20.1. Flash Memory (UFM/Configuration) Performance in MachXO2 Devices¹

		MachXO2								
		-256	-640	-640U	-1200	-1200U	-2000	-2000U	-4000	-7000
CFG Erase	Typ Min.	400	600	800	800	1100	1100	1800	1800	2800
(tEraseCFG)	Тур Мах.	700	1100	1400	1400	1900	1900	3100	3100	4800
CFG Program	All	130	270	500	500	740	740	1400	1400	2200
(tProgramCFG)	1 page	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
UFM Erase	Typ Min.	_	300	400	400	500	500	600	600	900
(tEraseUFM)	Тур Мах.	_	600	700	700	900	900	1000	1000	1600
UFM Program	All	_	40	110	110	140	140	180	180	480
(tProgramUFM)	1 page	_	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tErase (max)	Note 2	9000	12000	15000	15000	15000	15000	30000	30000	30000

Notes:

- 1. All times are averages, in (ms). SRAM erase times are < 0.1 ms.
- 2. tErase (max) is recommended for algorithm based time-outs.

21. Erase/Program/Verify Time Calculation Example

Using the data above, it is possible to roughly calculate the time required to perform an Erase/Program/Verify operation. The calculation assumes nearly 100% bus utilization. Overhead required by bus master processes, if any, is not accounted for in the equation below.

E/P/V time (µs): tEraseProgramVerify = tErase + tProgram + tVerify

where: tErase = tEraseCFG + tEraseUFM¹

tProgram = 0.2 ms * number of Pages to program²

tVerify = (8 * number of Pages programmed) * BusEff * tBUSCLK

Table 21.1. E/P/V Calculation parameters

	BusEff (Single Page Read)	BusEff ³ (Multi Page Read)	tBUSCLK
I ² C	14	>12	2.5 us min
SPI	12	> 8	0.015 us min
WB	5.25	> 3	0.020 us min

Notes:

- 1. Sector erase times are additive. If a sector (for example, CFG) is not erased, its erase time is 0.
- 2. Data transfer time is insignificant to tProgram for high-speed data protocols. To account for slow bus speeds (for example, I2C) multiply tVerify by 2.
- 3. Bus efficiency approaches this value as number of read pages increases.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.

80

Revision History

Revision 2.9, April 2025

Section	Change Summary	
I2C Registers	•	Updated cross reference in SDA_DEL_SEL[1:0] description to Figure 6.1. I2C Bit Transfer Timing.
	•	Updated cross reference in SRW description to Figure 5.2. EFB Master – I2C Read.
Hardened Timer/Counter PWM	Add	ded note on WBFORCE and WBRESET to Table 14.8. Timer/Counter Control 2.

Revision 2.8, February 2023

Section	Change Summary		
Timer Counter Simulation Model	Table 16.20. Program Configuration Flash (0x70):		
	• changed the Operands (Hex) from 00 00 01 to 00 00 00 in the table;		
	updated the example below the table;		
	• removed <i>Operands (0x00 00 00) are equivalent to (0x00 00 01)</i> from the notes.		

Revision 2.7, October 2021

Section	Change Summary
I2C Registers	 Added a note to define tTCL as the I2C clock period. Updated the ***optional: note in Figure 3.1. I2C Master Read/Write Example (via WISHBONE) include 'Where tTCL_period represents the I2C clock period'.
Flash Memory (UFM/Configuration) Access	Updated Table 16.23. Read Configuration Flash (0x73) (WISHBONE) and Table 16.34. Read UFM (0xCA) (WISHBONE) to add option to exclude dummy bytes between frames.
Erase/Program/Verify Time Calculation Example	Changed the equation for tProgram from '0.2 μ s * number of Pages to program ² ' to '0.2 ms * number of Pages to program ² '.

Revision 2.6, August 2021

Section	Change Summary
Flash Memory Erase and Program	Updated Min and Max labels in Table 20.1. Flash Memory (UFM/Configuration) Performance
Performance	in MachXO2 Devices to Typ Min and Typ Max labels respectively.

Revision 2.5, November 2019

Section	Change Summary
All	Changed document number from TN1246 to FPGA-RD-02163.
	Updated document template.
Disclaimers	Added this section.

Revision 2.4, November 2016

Section	Change Summary
I ² C Registers	Corrected figure reference in Table 3.7., I2C Status (Primary/Secondary).
Flash Memory (UFM/Configuration) Access	 Corrected Read UFM description in Table 16.10., UFM (Sector 1) Commands. Corrected Read Flash description in Table 16.11., Configuration Flash (Sector 0) Commands. Updated document per Product Bulletin PB1381. Updated Table 16.22., Read Configuration Flash (0x73) (SPI). Updated Table 16.23., Read Configuration Flash (0x73) (I2C/SPI). Added Table 16.24., Read Configuration Flash (0x73) (WISHBONE). Updated Table 16.33., Read UFM (0xCA) (SPI). Updated Table 16.34., Read UFM (0xCA) (WISHBONE). Added Table 16.35., Read UFM (0xCA) (WISHBONE).

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Revision 2.3, March 2016

Section	Change Summary
WISHBONE Read Cycle	Updated this section. Added information on avoiding simulation mismatch in functional
	simulations.
I2C Registers	Updated this section. Modified Figure 3.1., I2C Master Read/Write Example (via WISHBONE).
Flash Memory Erase and Program	Updated this section. Added tErase (max) values to Table 20.1., Flash Memory
Performance	(UFM/Configuration) Performance in MachXO2 Devices.

Revision 2.2, September 2015

Section	Change Summary
I2C Registers	Updated this section. Modified description of RARC and TROE.
SPI Registers section	Updated this. Modified description of TXEDGE and CPOL.
SPI Timing Diagrams	Updated this section. Corrected the following diagrams:
	Figure 12.1., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)
	Figure 12.2., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)
	Figure 12.3., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)
	Figure 12.4., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)
Flash Memory (UFM/Configuration) Access Ports	Updated this section. Added disabled feature in Note.
Command Framing	Updated this section. Corrected device name in Figure 18.1., I2C Read Device ID Example.
Technical Support Assistance	Updated this section.

Revision 2.1, February 2015

Section	Change Summary
WISBONE Bus Interface	Updated this section. Revised In Table 1.2., WISHBONE Slave Interface Signals of the EFB Module. Added details to the wb_clk_i signal name description.
Hardened I2C IP Cores	Updated this section. Added new EFB instantiation requirement for I2C configuration port access per Product Bulletin PB1412.
I2C Registers	 Updated this section. Changed Figure 3.1., I2C Master Read/Write Example (via WISHBONE). Revised SDA_DEL_SEL[1:0] description.
SPI Registers	Updated this section. Corrected CPOL description.
SPI Timing Diagrams	 Updated this section. Changed the following figures: Figure 12.1., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0) Figure 12.2., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0) Figure 12.3., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1) Figure 12.4., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)

Revision 2.0, November 2014

Section	Change Summary
I2C Registers	Updated this section. Added note to SRW description under Table 3.7., I2C Status (Primary/Secondary).
Flash Memory (UFM/Configuration) Access	 Updated this section. Updated Table 16.11., Configuration Flash (Sector 0) Commands. Updated Erase command description. Updated information on Erase Feature sector under Table 16.14., Erase Flash (0x0E). Updated note under Table 16.42., Program Feature Row (0xE4) Updated note under Table 16.45., Program FEABITS (0xF8).

Revision 1.9, June 2014

Section	Change Summary
SPI Timing Diagrams	Updated the following figures:
	• Figure 12.1., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)
	• Figure 12.2., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)
	• Figure 12.3., SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)
	• Figure 12.4., SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1).

Revision 1.8, February 2014

Section	Change Summary
Flash Memory	Updated Tables 16.22. – 16.24., Read Configuration Flash (0x73) (I2C/WISHBONE/ SPI).
(UFM/Configuration) Access	Revised Data Size formatting when num_pages>1.

Revision 1.7, January 2014

Section	Change Summary
Flash Memory (UFM/Configuration) Access	Updated Table 16.25., Enable Configuration Interface (Transparent) (0x74). Changed Operands (Hex) data and added information to Notes and Example sections.
Flash Memory Erase and Program Performance	Updated Table 20.1., Flash Memory (UFM/Configuration) Performance in MachXO2 Devices.
All	Updated Erase/Program/Verify equation in Erase/Program/Verify Time Calculation Example section.

Revision 1.6, January 2014

Section	Change Summary
SPI Timing Diagrams	• Updated Figure 17-2.
	• Updated Figure 17-4.
	• Updated Figure 17-5.
	• Updated Figure 17-26.
Revision History	Corrected version 1.5.

Revision 1.5, December 2013

Section	Change Summary
SPI Timing Diagrams	Updated Figure 17-2.
Typical I2C Transactions	Added this section.
Command Framing	Added and reorganized this section.
I2C Framing	Moved this section under Command Framing section.
SPI Timing Diagrams	Added Figure 17-18.
Typical SPI Transactions	Added this section.
SPI Framing	Moved this section under Command Framing section.
Flash Memory (UFM/Configuration) Access	Changed Operands (Hex) value in Table 16.30. and added description.
WISHBONE Framing	Moved this section under Command Framing section.
Flash Memory Erase and Program Performance and Erase/Program/ Verify Time Calculation Example	Moved these sections after UFM Write and Read Examples section
SPI Registers	Changed CPOL = 1 description in this section.
SPI Timing Diagrams	 Updated Figure 17-23. Changed second instance of SPISR[TRDY] to SPISR[ROE]. Updated Figure 17-24.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Revision 1.4, September 2013

Section	Change Summary	
SPI Registers	Updated CPOL definition in this section. Changed SCK idle state from low to high.	
SPI Timing Diagrams	Updated SPI Control Timing figures in this section.	
All	Corrected 0xCA num_pages and Data Size.	
	Removed I2C Clock-Stretching feature per PCN #10A-13.	
	Updated the following figures:	
	• I2C Master Read/Write Example (via WISHBONE)	
	12C Slave Read/Write Example (via WISHBONE)	
	EFB Master – I2C Write	
	EFB Master – I2C Read	
I2C Registers	Corrected I2C General Call Data Register (Primary/Secondary) table	
	number.	
Technical Support Assistance	Updated Technical Support Assistance information	

Revision 1.3, April 2013

Section	Change Summary	
Flash Memory (UFM/Configuration) Access	 Read Configuration Flash (0x73) (12C/WISHBONE/SPI) table – Corrected table title. Read Feature Row (0xE7) table – Updated Data Format in the table and description. Updated examples in the Read UFM (0xCA) (WISHBONE/SPI/I2C) table. Added note: SECURITY and SECURITY PLUS commands are mutually exclusive. 	
I2C Registers	Updated information in the I2C Master Read/Write Example (via WISHBONE) figure.	
UFM Write and Read Examples	Corrected BUSY wait times (1000ns -> 200ns) in Write Two UFM Pages table.	
Interface to Configuration Flash	Updated Basic Configuration Flash Update Example, changed "Wait for !BUSY" to "Wait for tREFRESH" in last step.	
All	 Added Wait for tREFRESH caution to Refresh command description. Clarified Secondary I2C non-idle reset issue after REFRESH. Added Erase/Program/Verify time calculation example. Updated (decreased) the maximum WISHBONE clock rate for page reads from 36 MHz to 16.6 MHz. 	

Revision 1.2, October 2012

Section	Change Summary	
All	•	Added restriction: Primary port can be used as Configuration/UFM port or as a user port, but not both. Added restriction: Primary I2C port is unavailable while in ISC_ENABLE_X (transparent) configuration access mode.

Revision 1.1, August 2012

Section	Change Summary
All	Timer/Counter Control 1 table – Corrected names of four LSBs. Updated Timer/Counter Control 0 table and Timer/Counter Control 1 table.
Flash Memory (UFM/Configuration) Access	 Program Feature Row (0xE4) table – Updated Data Size and Data Format (Hex) columns and text below table for ss, uu and cc cc cc cc. Added example. Read Feature Row (0xE7) table – Updated CMD (Hex) column. Read FEABITS (0xFB) table – Removed example below table. Read USERCODE (0xC0) table – Data Size column updated. EN Required" value changed from "N" to "Y/N" and example text updated. Device ID Table – Updated Device Name column. Read Status Register (0x3C) table – Updated Data Format column. Verify Device ID Code (0xE2) table – "EN Required" value changed from "N" to "Y" and example text updated

Section	Change Summary
Interface to Configuration Flash	Updated Basic Configuration Flash Update Example diagram.

Revision 1.0, June 2012

Section	Change Summary
All	Initial release.

www.latticesemi.com