= LATTICE

MachX02 Master SPI/I’°C Demo Using ‘C’ and LatticeMico8

User Guide

March 2015
UG54_1.1

2
= L ATTICE MachX02 Master SPI/I°‘C Demo

Using ‘C’ and LatticeMico8

Introduction

The MachXO2™ LatticeMico8™ Temperature Logging Demo uses a MachXO2 Pico Evaluation Board to read the
temperature and display it on the LCD screen and also in a terminal window on a PC. The temperature is obtained
from an I°C temperature sensor device on the evaluation board. The temperature readings can also be logged into
SPI Flash memory for later recall.

Figure 1. Demonstration Setup

Temperature Display

USB Serial Port Cable
for Menus

MachX02 Pico
Evaluation Board

The purpose of the demo is to:

1. Demonstrate use of the MachXO2 Embedded Function Block (EFB) I1°C and SPI Master controllers
2. Demonstrate I°C and SPI drivers written in ‘C’

3. Demonstrate LatticeMico8 application software written in ‘C’

The serial port from the MachXO2 Pico Evaluation Board provides the user interface. The RS232 serial port is
implemented using a USB connection. A mini-USB cable connects the evaluation board to a PC. The PC runs a
USB to virtual COM port program that allows the HyperTerminal to connect to the board over the USB cable.

The LatticeMico8 soft microcontroller in the MachXO2 device provides the menu software and temperature acquisi-
tion and display routines. To see the temperature change, place a finger on the temperature sensor chip. Note that
the temperature reading measures the board temperature and not the ambient air temperature, so do not expect
the reported temperature to match the room temperature.

Note: This demo assumes the reader is familiar with Lattice Mico8 projects and ‘C’ programming. Please refer to
the Lattice Mico System documentation for information regarding importing platforms, ‘C’ projects, compiling,
deploying, etc.

am MachXO2 Master SPI/I’C Demo
s=LATTICE Using ‘C’ and LatticeMico8

Figure 2. MachXO2 Pico Evaluation Board Components

MachX02 Pico Board

Temperature Display
in°C

=

MachXO2 Device

12C Temperature SPI Flash

Sensor

Using menu options, the temperature data can be logged to the SPI Flash device. Up to 32,000 temperature sam-
ples can be recorded. The readings can then be recalled and displayed.

The temperature display on the LCD is in degrees C (Celsius), with 72 degree resolution for positive temperature
readings. When displaying negative temperatures, a leading minus sign is added, and the fractional digit is no lon-
ger present. Temperature display on the serial port terminal is always full resolution.

Setup

This section describes how to connect and set up the demo.

General Warnings
Please observe the following important safety items:

e Follow ESD precautions.

* Do not expose to extreme temperatures in an attempt to get full range temperature +/- 128 °C readings. Operate
within the commercial temperature range.

Required Demo Components
e MachXO2 Pico Evaluation Board
e Mini USB cable to power MachXO2 and provide terminal connection

* Terminal emulation software (HyperTerminal or PuTTY)

Project Setup
Unzip the demo design package.

The demo bitstream that needs to be loaded into the evaluation board is located in the Bitstreams directory.

Start Diamond Programmer to download the bitstream. Use the XO2_Pico.xcf programmer configuration file to load
the bitstream into the MachXO2 device.

Note: You may need to browse to locate the JEDEC file as Diamond Programmer only stores absolute paths.

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

MachXO2 Pico Evaluation Board Installation
Connect the USB cable to the PC for power, bitstream programming and serial port menu access.

Download the demo bitstream into the MachXO2 device (if first time).

After successful programming, temperature readings should be displayed on the LCD indicating the design is func-
tioning.

FTDI Communications Port Driver Installation

The next step is to set up the serial port that will provide the connection to the menus on the MachXO2 Pico Evalu-
ation Board. You may need to install a driver provided by FTDI (the manufacturer of the FT232RL device used on
the evaluation board that converts the RS-232 UART output to USB). The driver converts the PC USB port to a
communications port so that a serial terminal program (HyperTerminal) can open the USB port and communicate
over it as if it were an RS-232 port. The FTDI driver installation program can be downloaded from
www.ftdichip.com/Drivers/VCP.htm.

Note: Windows Vista and Windows 7 no longer ship with HyperTerminal. These users will need to install a suitable
serial port terminal emulator like PUTTY 0.60 (or newer) or the XP version of HyperTerminal.

Once the driver is installed, power up the MachXO2 Pico Evaluation Board by connecting the USB cable.

To determine which communications port the USB serial device is mapped to, open My Computer > Properties >
Hardware > Device Manager. Select Ports to see available serial ports and choose the one that is the USB Serial
Port. See Figure 3 as an example.

Figure 3. Locate New COM Port
=k

File Action Wiew Help
= H PSS D20 A =ma

& Display adapters ;I
b DVDJCD-ROM drives

--& Humnan Interface Devices
[+ IDE ATAJATAPI controllers

Metwork adapters

- EE 1394 Met Adapter #2

----- B8 Cisco Systems VPN Adapter

----- B InkeliR) 82567LM Gigabit Metwork Connection
8 Intel(R) WiFi Link 5300 AGN

B 5 Ports (COM &LPT)

o 5 Intel(R) Acti
R I il o
-4 Processors
]--% SCST and RAID controllers —
+-- 4, Secure Digital host controllers

]--@ Smart card readers

1@, Sound, video and game controllers LI

agement Technology - SOL {COM4)
14

M e e W

Open HyperTerminal or PUTTY and select the new USB Serial Port. Set the communication settings to: 115000
baud, 8 data bits, No Parity, 1 stop bit (115000,8,N,1). Figures 5 and 6 show these settings for a PUuTTY session.

MachXO02 Master SPI/I°C Demo
Using ‘C’ and LatticeMico8

= LATTICE

Figure 4. Select COM Port in Terminal Emulator

2 PuTTY Configuration x|
Cateqgory:
B+ S_ession | Basic options for your PuT T seszion |
- L.oglglng r~ Specify the destination you want to connect to
- Temina
- Keyboard Senial line Speed
- Bel [Conid {115000
- Features Connection type:
=) window " Baw { Telnet © Rlogn © SSH % Serial
- Appearance - i
. Behaviour Load, save or delete a stored session
. Translation Saved Sessions
- Selection uzh_comld
- Colours -
Default Settings - Load |
[=1- Connection ush_ 9 i
- Data ush_coml1 5
- Prasy ush_com12 il
uzh_coml3 |
Telnx.et ush_com14 Delete
- Rlogin w_com2 =l
- 55H
e Cloze window on exit:
 dlways © Newver * Only on clean exit
About | Open I Lancel

Figure 5. Serial Port Settings

2 PUTTY Reconfiguration x|
Cateqgory:
B S_ession | Optionz controlling local serial ines |
P L.ogglng Configure the serial line
[=1- Terminal
Keyboard Speed [baud] |1 15000
= ol Dt bits E
- Features)
- Windaw Stop bits |1
: Appea.ranc:e Parity lm
Behaviour
Translation Elew control INone vl
Selection
- Colours

=1~ Connection
ial

Apply I

Lancel |

After the serial port settings are configured and power is applied to the evaluation board, the current temperature in
Celsius will be reported. Use any key to access the menu.

Hardware Settings

For demo operation, there is no hardware configuration necessary, other than connecting the USB cable. This sec-
tion is provided strictly for reference, or in cases where the board has been used in other applications and the cur-
rent configuration is in doubt.

MachX02 Pico Evaluation Board
The LCD is used to indicate the current temperature. There are no other indicators, such as blinking LEDs, or
switches or jumpers for control.

MachXO2 output pin Enl2CSPI is set to ‘1’ in the top level so that power is applied to the I’C and SPI devices.

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Demo Operation

All user interaction and demo control is handled through the text menus provided by the LatticeMico8 soft micro-
controller. This section discusses the available menu options that demonstrate the MachX02 EFB I2C and SPI
accesses to the Temperature Sensor and SPI Flash devices.

Initial Temperature Display

At power-up the demo begins reading and displaying the current temperature twice a second. The temperature is
displayed on the LCD and in the terminal window. Pressing any key will exit Temperature Display mode and enter
the Main Menu.

Figure 6. Example Temperature Display

COM11 - PuTTY

Menu Screen

The Menu screen allows the user to select the temperature display resolution and save and recall temperature data
to the SPI Flash. Simply enter the letter of the operation to execute.

Figure 7. Main Menu

2 COM11 - PuTTY

Precision

The I2C Temperature Sensor can be configured to report the temperature in 9, 10, 11 or 12 bits of accuracy. This
menu option allows changing the precision of the reported temperature. This will affect the fractional part of the
temperature reading. The whole number portion remains unchanged, and is still 7 bits of range plus a sign bit (+/-
127 °C).

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

* For 9-bit precision, a single bit is used for the fractional part to indicate 1/2 degree resolution
* For 10-bit precision, two bits are used for the fractional part to indicate 1/4 degree resolution
* For 11-bit precision, three bits are used for the fractional part to indicate 1/8 degree resolution

* For 12 bit precision, four bits are used for the fractional part to indicate 1/16 degree resolution

Pressing the P key toggles through the available precision settings

Figure 8. Temperature Resolution Selections

22 COM11 - PuTTY

Note that while the terminal output might show temperature readings in 1/16th degree resolution, the LCD screen
only shows 0.5 degree resolution to make the LCD software display routines simpler. The LCD also drops the frac-
tional portion when the temperature becomes negative to make room for the ‘-’ (minus sign).

Temperature Display

To return to the real-time display of the temperature data, press the T key. This will cause the software to read the
I*C temperature sensor, convert the value for display, pause for 0.5 seconds and check for a key press. If the user
does not press a key then the temperature acquisition, conversion and display will continue two times per second.

1] MachXO02 Master SPI/I°C Demo
s=LATTICE Using ‘C’ and LatticeMico8

Figure 9. Return to Temperature Display
-0l x|

Log Temperature Readings to SPI Flash

The ‘L selection enables logging the temperature data to the SPI Flash. Pressing the L key will return to the Tem-
perature Display mode and will indicate that each reading is being written to the SPI Flash by the *->Log’ indicator
on the terminal screen, and the display of the “.” (colon) character on the LCD.

Press the L key again to turn off logging.

Each time logging is enabled, the Flash sector is erased in preparation for storage of the new readings. All previ-
ously stored data will be lost. This means that you cannot start logging, pause logging (press ‘L to turn it off), then
resume logging at a later time.

A maximum of 64 kB of data can be logged. This is approximately 16,000 seconds (4.5 hours). Logging is only
done to the first sector in the SPI Flash. Upon filling the sector, the logging will still indicate it is active but not write
any more data into the SPI Flash. No indication is given that the address has reached its maximum.

Figure 10. Logging Temperature to SPI Flash
o x|

+010.
+010

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Recall Temperature Data from Log

The ‘R’ selection reads the temperature data stored in the SPI Flash and displays it in the precision chosen during
the logging. This example shows a read-back of the temperature values that were previously stored in the above
logging example.

Figure 11. Recall Temperature Data

#2 COM11 - PuTTY O] x
&
T

Changing the precision after data values are logged will not change the recalled data display format. The reason is
that the raw 2-byte temperature data is stored in the SPI Flash. If it is stored with 12-bit precision then it will be dis-
played with 12-bit precision because the three least significant bits have data. If it is stored with 9-bit precision, it
cannot be displayed with 12-bit accuracy because the information is not there; those three bits will be zeros.

Demo Hardware Architecture

This section discusses the design and implementation of the RTL logic and operation of the external devices used
in the demo.

Overview

The LatticeMico8 Mico System Builder processor system runs the demo software from on-chip program memory.
The processor system also contains the UART component that provides the serial port communications to the
external PC. The hardened I2C master in the EFB provides access to the I°C temperature sensor device (Burr-
Brown TMP101). The hardened SPI master in the EFB provides access to the SPI Flash device (Atmel
AT25DF041A).

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Figure 12. Demo Hardware Diagram

MachXO2 Pico Evaluation Board
12C
SPI Flash Temperature
Sensor
MachX02
SPI 12C
EFB
y
MSB Platform I-PWISHBONE
r LatticeMico8 1
FTDI UART |« UART WISHBONE__» LCD Logic
I
LCD Display

MachX02 Diamond Project
The MachXO2 project is located in Hardware\Implementation\Diamond_1.4.

The project builds the LatticeMico8 system and wires the EFB 12C master and EFB SPI master to the respective
devices on the MachXO2 Pico Evaluation Board. It also drives the LCD display and has Tx/Rx connections to the
USB UART.

To open the MachXO2 project:
1. In the Diamond software tool, click File > Open > Project.
2. Select the project name X02_Pico.Idf.

Note: After opening the project in Diamond, warnings may be generated in the console situated at the bottom of the
interface. You may ignore these warnings.

10

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Figure 13. Diamond Project and Source

A
E K02 _Pico

> <l LEMROE-1200ZE-1MG132C

B Strategies

% Area

110 Assistant

Quick,

Timing

~|Z=| Strategyl

= [fH x02_pico

=N] Input Files
[t

JSource/PicoLCDDriver/LCDCharMapLiTs.ipx
. JSourcePicolCDDriver/LCDEncoding4tol v
. JSourcePicoLCDDriver Picol CDdriver,y
. JSourcePicol CODriver fpwm, v
. JSourcePicol CDDriverlcdencoding4tolcom, v
. Jmicodsocimicod . v
LJSourcefwb2led, v
wfudSource/X02_top.y

a . JIPCore/myEFEB/myEFE. ipx
- I} Synthesis Constraint Files
[=+ |20 LPF Constraint: Files

: ¥02_Pico,/%02_Pico.lpf
-\ Debug Files
-\ Seript Files
I Analysis Files
[=4- 1) Programming Files

‘- B X02_pico,/%02_Pico.xcf

EEEEEEETS

Building the project is straightforward, although the LatticeMico8 Mico System Builder platform needs to be gener-
ated first and the program memory initialized with the demo code.

Programming the MachXO2 on the evaluation board is accomplished with the included Programmer .XCF file.

MachX0O2 Mico System Builder Platform

The LatticeMico8 platform defines the embedded processor architecture of the system. The Mico System Builder
platform is located in Hardware\mico8\soc. Refer to the Readme.txt file in the Workspace folder for instructions on
importing the Mico platform and C/C++ projects into the Lattice Mico System tool.

Figure 14. LatticeMico8 Platform

& MSB - micod - Eclipse Platform 10l =]
File Edit Mavigate Project Platform Tools - Window Help
| W & /0@ |@-]2-3 -0 - | S (R0 A
B | mse H@cic++ 3% Debug
|£| main, c ﬂ_ i
ame | ‘Wishbone Connection | Base | End | Size(Bytes) | Lock, | IRG | Disable I
Bl LMa O
Data pork 3
Scratchpad 000000000 3 [nrinn
= uart O
UART Part i 080000100 BT NN 2 1]
= slave_LCD O
target i 080000200 B0 000000010 1
= slave_EFEB O
target i 080000000 B 000000100 2
| [v

The platform frequency is selected to be 12 MHz, sourced from the clock device that also drives the FTDI device.

Note: When the MSB platform is opened, a warning message prompts you that the imported components have
mismatched versions (due to the different versions of Lattice Mico System) and asks if you want to update. Select
Update to close the warning message.

11

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

LatticeMico8

The LatticeMico8 soft microcontroller is configured to have the maximum amount of executable code space avail-
able in the MachXO2 device. The code space is available in power-of-2 sizes. A code size of 2 KB instructions
requires four EBRs. The next size up (4KB instructions) requires eight EBRs, which is greater than the number of
EBRs in a MachXO2 device.

The scratch pad size is set at 0x400 bytes (1 KB, which is 1 EBR). The size is dictated by the fact that the EFB has
a 256-byte address window. In order to include the other components in separate memory mapped windows, the
small memory model cannot be used (8-bit addressing), so the medium memory model is used (16-bit addressing
— which can cause inefficiencies in the resulting executable code).

No interrupts are used to reduce executable code size. Interrupts require interrupt handlers, interrupt stacks and
save/restore context routines. Disabling interrupts eliminates this code with no penalty for this application. Polling is
used to service all the external devices (UART, I°C, SPI).

The program and scratch pad initialization files point to the prom_init.mem and scratchpad_init.mem files in the
Software directory. These files are created when the C/C++ Software Deployment tool is used to create the binary
executable memory image.

Figure 15. LatticeMico8 Configuration
X

~Mumber of Registers

@ 16 3z

r—Call Stack Depth
g ~ 16 i e

~Data and I} Addressable Range
= 256 [ONET 4G

Scratchpad Base Address I 0300000000
1/ Base Address I 080000000

—PROM Settings

PROM Size |2048 'l

Initialization File Mame | ks /%02 _Pico_AE7fSoftwarefprom_init.mem Browse, .. |

File: Format Ihex j

r~Scratchpad Settings

¥ Internal Scratchpad Size I 000000400

Initialization File Mame | Pico_AE7[Softwarescratchpad_init. mem Browse. .. |

File: Format Ihex j

i~ Flash Deployment Settings
™ Images in Mon-Volatile Memory Flash Base Address I 000000000

™| Execute-In-Flace

OF I Cancel | Help |

12

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

UART

The UART component provides the user menu interface to the terminal emulation program. The UART component
also includes the standard LatticeMico8 character drivers, operating in polling mode. These drivers are quite small
and attention was not placed on replacing/rewriting these to save more instruction space.

No interrupts are used to reduce executable code size. Interrupts require interrupt handlers, interrupt stacks and
save/restore context routines. Disabling interrupts eliminates this code with no penalty for this application. Polling is
used to service all the UART Tx/Rx functions.

The UART is set for 115200 baud, 8 data bits, 1 stop bit and no parity or flow control. Ensure that the terminal emu-
lation software matches these settings.

Figure 16. UART Configuration
x

Instance Mame | uart

Base Address | 0x80000100

~UART Configuration

Baud Rate 115200 |
DataBits |5 =l
Stop Bits |1 =l

[Parity Enable I~ GddParity. I Stick Parity:
" sSetBreak

™ TwjrxFIFO

~UART Sideband Signals
™ Receiver Ready ™ Transmitter Ready

—Software settings

I~ Use interrupk
[¥ Block on transmit

¥ Block on receive

Rx Buffer Size l 4 3:
Tz Buffer Size I 4 3:

r~ Transmit Settings For RTL Simulation

[Print Transmit Character

™ Emulate Transmit ©peration

OF I Cancel Help

LCD Driver Slave Passthru

The LCD driver module that produces the electrical signals to drive the 4-digit LCD display on the MachXO2 Pico
Evaluation Board is interfaced to the LatticeMico8 by a slave passthru port. This is a simple way to attach a WISH-
BONE compliant slave to a platform without the need to create a LatticeMico8 custom component.

13

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Figure 17. LCD Access Configuration

x
Instance Mame IM
Base Address 'm
Size IM

"WISHBONE Configuration

Data Bus Width |8 'I

OF I Cancel | Help

EFB Slave Passthru

The EFB in the MachXO2 device is interfaced to the LatticeMico8 by a slave passthru port. This is done to avoid
importing an EFB component into the platform. The EFB component also brings along the default I1°C, SPI and
timer drivers that have more features than are needed and inflate the size of the executable, exceeding the 2,048
instruction limit. By creating the EFB using IPexpress™ and interfacing to it through a slave passthru, specialized,
optimized I2C and SPI drivers can be written to do the bare minimum needed to accomplish this demo.

Note that the address window is 256 bytes wide because the EFB contains nearly this many registers.

Figure 18. EFB Access Configuration

x
Instance Mame IW
Base Address 'M
Size IM

"WISHBONE Configuration

Data Bus Width |8 'I

OF I Cancel | Help

LCD Driver Module

The LCD driver module top level is PicoLCDdriver.v, located in the \Hardware\Source\PicoLCDDriver\ directory.
There are two implementations of the character map look-up table. The original method uses an EBR to hold the
character map (LCDCharMap.v). To save that EBR for program data space, another approach makes a 64-entry, 8-

bit wide memory out of distributed memory (LCDCharMapLUTs.v). This has little impact on the hardware
resources used by this project, and frees up the EBR for software data storage.

* LCDCharMapDecode.txt — The index key to which characters are displayed for which numeric value written to
the index register.

* PicoLCDdriver.v — Top level module

e wb2lcd.v — Interface between the LatticeMico8 WISHBONE bus and the PicoLCDdriver.v, using the Icd_slave
passthru.

14

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

EFB Module

The EFB module is generated with IPexpress. Double-click on the IPCore/myEFB/myEFB.ipx file in Diamond to
launch IPexpress and examine the EFB settings. The I°C #1 Master is enabled and the SPI is enabled for Master
mode.

Note: When you double-click the |PCore/myEFB/myEFB.ipx file, a message informs you that the EFB v1.0 is not
supported and prompts you to regenerate through IPexpress. The regenerate works with defaults but files should
be updated to remove this prompt.

Figure 19. EFB Configuration
=10 x|

Configuration] Generate Log 1

EFB EFB Enables | 12| 51| \ urm Y
—EFB Function Enakbles
—wh_clk_i 12C
—{wh_rst_i vV Primary Configuration
—wh_cye | wh_dat_o[7:0]= I Primary User

st [Secondary User

— wh_we_i 5 Pl
=

S P

. ™ Tirner/Counter
= wh_dat_i[7:0])

— Timer/Counter Use
—{ 5pi_scsh
iZcl_irgo—= & Static seftings only (ne WISHEDNE ascess).

= 21 _scl

. ' Dynamic register changes via WISHBORE.
=< 2] _sda

- spi_clk spi_csn[0:0]j=— ™ PLL {Dynamic access)
&= 5pi_miso —PLL Options
&+ spi_mosi I1 ﬁl

(Eee [PExpress PLL module to st PLL initial settings].

Estimated Resource Usage:
[UserFlash Memory

7 WISHEQKE
WISHBOME Clock
WISHBOMNE Clock Freguency: 12 hHz ‘

Generate Close Help |

15

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

I’C Temperature Sensor

The temperature sensor is a 6-pin Burr-Brown TMP101 I2C slave device. The I?C interface allows reading and writ-
ing the registers in the temperature sensor. The configuration register is written to select the resolution of the tem-
perature reading (9,10,11 or 12-bit accuracy). The temperature register is read to obtain the current temperature.
Temperature is reported in 2 bytes in the following format (see TMP101 data sheet for more details).

Table 1. Conversion to Temperature

Temperature (°C) Digital Output (Binary) Hexadecimal
128 0111 1111 1111 7FF
127.9375 0111 1111 1111 7FF
100 0110 0100 0000 640
80 0101 0000 0000 500
75 0100 1011 0000 4B0
50 0011 0010 0000 320
25 0001 1001 0000 190
0.25 0000 0000 0100 004
0 0000 0000 0000 000
-0.25 1111 1111 1100 FFC
-25 1110 0111 0000 E70
—-55 1100 1001 0000 C90
—128 1000 0000 0000 800

The first byte contains the whole number portion of the temperature, with the most significant bit being the sign indi-
cator. The second byte contains the fractional portion of the temperature, with either 1, 2, 3 or 4 bits of precision.
The lower nibble of the second byte is always 4’b0000. A returned value of 0x09 0xc0 would translate to 9.75 °C.

The TMP101 device also has comparison registers for asserting an alarm output, but this is not used in the demo.

SPI Flash

The SPI Flash is an Atmel AT25DF041A device. The device has numerous sectors, but only the first sector is used
for storage. This is to reduce the erase time and keep the addressing to 16 bits (less software overhead).

The SPI Flash has a Sector Protect register that must be disabled at power-up to allow erasing and writing to the
sector.

Bytes are written to and read from the Flash two at a time, corresponding to the high and low bytes of the tempera-
ture register.
Top Level

The top level of the hardware is in XO2_top.v. A graphical representation of the modules instantiated and input/out-
put signals is shown below.

16

= LATTICE

MachXO02 Master SPI/I°C Demo
Using ‘C’ and LatticeMico8

Figure 20. RTL Hierarchy

Clock and reset

!

top_X0O2

lcd_clk LatticeMico8

\

AN

wb2lcd myEFB
PicoLCD
Driver
\ 4 v v
LCD lines SPI and 12C buses

Demo Software Architecture

P UART tx/rx

The LatticeMico8 platform provides a typical 8-bit embedded processor system for user /O and data acquisition,
conversion and storage. The 8-bit LatticeMico8 soft microcontroller uses on-chip memory (EBR) for program and
data storage. It uses the UART for user 1/O and the I°C master and SPI master EFB components to access the
respective hardware devices. The software operates in a display loop, constantly displaying the currently read tem-
perature until a key is pressed. Then the menu is displayed and the user makes a selection and execution either
returns to displaying the temperature or stays in the menu.

Figure 21. Software Flow

Initialize:
SPI controller
Unlock SPI Flash
>«
Y
Key " Read ’C || Display |, N
Press? Temp. Temp. 4
Y Y
- Store
N Temp.
Menu:
p — Set Precision RTL
L — Turn On/Off Logging
R —— Recall Temperatures
T

17

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Software Modules

The following global optimizations and coding styles have been used in most routines to generate the smallest exe-
cutable size possible:

* Global parameters are used for commonly shared data, instead of passing params or local params, to keep
memory references low

* Use of fixed addresses (i.e., platform #defines) for hardware devices, rather than a pointer variable

* Try to perform all computations and manipulations on a variable in localized area, rather than spread the compu-
tation over stages throughout the function.

e Computational algorithms produce a smaller footprint than look-up type algorithms

I*C Driver

The I?C driver is adapted from the standard LatticeMico8 EFB I°C driver that can be found in the Micosystem EFB
component drivers directory. The source file is MicoEFB_I2C.c. Optimizations were made to reduce the code size
and focus on the minimum required for operation. The optimizations include:

¢ Fixed, compile-time address for the EFB. A pointer to a Mico context is not used.
* Fixed access to I°C #1 only. This reduces code and eliminates a parameter that needs to be passed.
* Operation is master only. All slave mode functionality was removed. This also eliminates a parameter.

* No error checking or state checking. The only checking is to wait until it is not busy with an operation. However,
no timeout is implemented so the operation could wait indefinitely.

* Read/writes can insert start/stops to eliminate further function calls from the main program.

SPI Driver

The SPI driver is adapted from the standard LatticeMico8 EFB SPI driver that can be found in the Micosystem EFB
component drivers directory. The source file is EFB_SPI.c. Optimizations were made to reduce the code size and
focus on the bare minimum required for operation. The optimizations include:

¢ Fixed, compile-time address for the EFB. A pointer to a Mico context is not used

* Operation is master only. All slave mode functionality was removed. This reduces code size and eliminates a
parameter that needs to be passed.

* No error checking or state checking. The only checking is to wait until it is not busy with an operation. However,
no timeout is implemented so the operation could wait indefinitely.

e Only the MicoEFB_SPITransfer() function is called.

Serial Port

The standard LatticeMico8 UART driver routines are used, but in polling mode. The Mico putc() and getc() assem-
bly routines are quite small. Further optimization could be possible by hard-coding the UART base address per the
platform #define rather than using the pointer to a context.

The Mico UART routines are used to print one character at a time to the console, read one character at a time from
the console, and check if a key has been hit (character pending). This provides the low-level user I/O functions for
the menus and temperature displays.

18

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Menu Loop
After initialization, the main() function enters the temperature reading loop or the menu loop. The menu loop shows
the menu and waits for the user to make a selection.

P - Precision — Increments the precision mode and writes the new setting to the I1°C Temperature device using
the setPrecision() function that calls the I°C driver write function.

* T - Get Temperature — Returns to displaying the temperature reading.

* L - Log Temperatures — Erases SPI Flash sector 0, resets the SPI access address to 0x0000, enables logging
and exits to the Temperature display loop.

* R - Recall Temperatures — Resets the SPI access address to 0x0000 to read from the beginning of the sector,
calls SPI_RecallTemp() to read two bytes from SPI Flash current address, loads into RawTempValHi and Raw-
TempValLo, and calls ShowTemp() as long as the two bytes aren’t both 0xff (indicating reading into erased Flash
area).

Temperature Reading

The temperature loop is read from the 12C Temperature device using the readl2CTemp() function. It first sends the
register address to the I?C device, and then sends a read command for two bytes. The returned two bytes are the
raw temperature register values. They are stored in the global variables RawTempValHi and RawTempValLo for
use by other functions, such as showTemp().

Temperature Display

The temperature display routine, showTemp(), takes the 2-byte temperature value in the global variables Raw-
TempValHi and RawTempValLo and converts the upper byte into decimal hundreds, tens and ones values for dis-
play. The fractional temperature value in the low byte indexes a look-up table for the direct text string to display on
the screen. The actual conversion to a decimal number is not done since there are at most only 16 possible values
(in 12-bit precision).

Displaying the digits to the LCD is done by writing the binary value for each digit to the LCD slave registers.

Negative numbers are not quite as straightforward with regard to the fractional byte. A complementary portion of
the lookup table is used for “counting backwards” for negative fractions.

When in Recall mode, the showTemp() function is called after the global variables have been updated by reading
the SPI Flash.

The display routine can be rebuilt to display the 2-byte raw hex value read from the I°C temperature sensor. The
compile time option is:

#define DISPLAY_RAW_HEX_DATA

Temperature Storage
The first time logging is enabled (detected ‘L key pressed) the sector is erased with the SPI_EraseSector0() func-
tion.

Then, after each new temperature value is obtained and displayed, the contents of the global variables RawTempV-
alHi and RawTempValLo are written to the SPI Flash. The function SPI_StoreTemp() first unlocks the SPI Flash
with a Write Enable command, and then writes the two bytes to the current address. Then the address is incre-
mented by two for the next write to the next location.

SPI_UnProtectSector0() is called at initialization time to unlock Sector 0 for access. The SPI Flash has a protection
mechanism that powers up with all sectors locked. Software needs to unlock the sector before erasing and writing
to it.

19

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Temperature Recall

Resets address to 0x0000, and reads two bytes at a time from the SPI Flash, storing them into RawTempValHi and
RawTempValLo until Oxff Oxff is read, indicating unprogrammed Flash values, and an illegal temperature value.
Further reading and displaying is halted. The showTemp() routine is called to display the temperature on the screen
and LCD, same as in normal Temperature Display operation.

Code Generation

This section gives some guidance on building the ‘C’ application code (including tips for keeping it small) and the
steps to building and deploying the LatticeMico8 executable image.

Optimization Tips

¢ Uncalled functions will not be included in the binary executable. The linker checks to see if a function is refer-
enced and excludes it from the build. Removing unused source will not reduce the final execution size.

* Lookup tables may not be the most code-efficient method. Experiment with different methods.
» Keep variable declarations close to where the actual operations on the code are done.

* Try moving the execution order of code around within a function. Sometimes different execution orders produce
smaller code size.

* Watch out for .text size >= 6144 bytes (2048 instructions * 3 bytes per instruction)

* Macros are used to access hardware registers (pointer dereferencing does not work in LatticeMico8):
— #define LM8 READ_MEM_BYTE(X, Y) (Y) = (__builtin_import((size_t)(X)))
— #define LM8_WRITE_MEM_BYTE(X, Y) (__builtin_export((char)(Y), (size_t)(X)))

e The compiler optimization level is set at —O1 for the application code. Experimentation with other settings, includ-
ing size optimization (-Os), did not produce as good a result as —O1.

* Use in-line assembly or call assembly routines from the main C control loop. This approach is effective, but not
used in this demo because the objective was all ‘C’ code.

Building
The ‘C’ project to import (C/C++ > File > Import > Existing Projects into Workspace) is located in
\Software\TempLog.

The LatticeMico8 Mico System Builder platform to reference is located in Hardware\mico8\soc\mico8.msb. Refer to
the Readme.ixt file in the Workspace folder for instructions on importing the Mico platform and C/C++ projects into
the Lattice Mico System tool.

Enable Map File Generation: Add the following -WI,-Map,mem.map to the linker options to produce a memory map
of the linked executable image. This will help to understand which routines are consuming the most instructions
and where to look for optimization.

Software Deployment: After building the ‘C’ source code, be sure to deploy the software to the on-chip memory ini-
tialization files: Software\prom_init. mem and Software\ scratchpad_init.mem.

Use: Tools > Software Deployment > Mico8 Memory Deployment.

Additional MachXO2 Projects

There are two additional LatticeMico8 MachXO2 ‘C’ projects that provide more diagnostics and information about
the 12C operations to the temperature sensor and SPI operations to the SPI Flash device. Both these projects use
the same hardware platform. The source code is optimized for one type of device operation or the other.

 Software\l2C_lite can be used to debug and simulate 1°C accesses. See Appendix A. 12C Driver Test Project.

» Software\spi_rdwr can be used to debug and simulate SPI accesses. See Appendix B. SPI Driver Test Project.

20

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Known Limitations

This section explains some of the limitations of the MachXO2 LatticeMico8 Temperature Logging Demo.

Instruction Code Size

The maximum size is 2,048 LatticeMico8 instructions, which equals 6,144 bytes. The demo design is very close to
the limit. If rebuilding the demo software, pay attention to the .text size. If it grows beyond 6,144 bytes, the linker
stage will fail saying the .text is too large.

This has major implications on the amount of experimenting or customizing that can be done. Even a simple
change might exceed the available number of instructions. See Appendix A or Appendix B for other software proj-
ects that have a little more room left.

Error Checking

No checking for errors is done to save instruction space.

Drivers are Customized

The 12C and SPI drivers are customized to operate in only Master mode and access just the first I’C controller. The
flexibility has been removed to reduce code footprint.

Limited User Display
Menu functions and display format are kept to a minimum.

Temperature conversion to Fahrenheit is not implemented.

Fixed LCD Output Format

To keep the LCD display routine software as simple as possible, a fixed 3 digit plus “.0” or “.5” is used for positive
numbers. Leading zeros are always displayed, for example 002.5. The display routine only looks at the upper bit of
the LSB to determine if a “.5” or “.0” should be displayed; it does not attempt to make intelligent formatting deci-
sions, such as: 1.125 or -11.5, or do rounding to display true 1/10ths precision: 1.0, 1.1, 1.2, 1.3, 1.4, ...

The routines would be too large to fit with all the other tasks that need to be done, so LCD display formatting was
sacrificed.

Rounding is Not Exact

To keep the math as simple as possible (to conserve instruction space), true rounding is not done for the LCD dis-
play. For example, if the temperature is 20.875 °C, the LCD will show 20.5 instead of rounding up to 21.0 (20.875 +
0.5).

Temperature Reading is Not Ambient Air Temperature

The temperature device senses the heat generated by the components surrounding it on the MachXO2 Pico Eval-
uation Board. It will not report the ambient air temperature in the room.

Logging Data

The logging feature starts at the beginning of the sector each time it is enabled. You cannot append to existing
logged data.

Logging is limited to the first 64 kB sector in the SPI Flash. This keeps the software simple and small. 64 kB
addressing only requires two bytes (16 bits). Reading/writing/erasing more sectors would have required use of a
24-bit address (made out of three bytes) which would have increased the instruction count for this math.

21

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

References

e EB61, MachXO2 Pico Development Kit User's Guide

» Digital Temperature Sensor with I1°C Interface (Texas Instruments, Inc.)
* Atmel AT25DF041A SPI Flash Data Sheet

Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

Revision History

Date Version Change Summary

March 2015 1.1 Updated Demo Hardware Architecture section. Added procedure on
how to open a MachXO2 project.

Updated MachXO2 Mico System Builder Platform section. Added note.

Updated EFB Module section.
— Updated Figure 19, EFB Configuration.
— Added note.

Updated Technical Support Assistance information.
April 2012 01.0 Initial release.

22

www.latticesemi.com/dynamic/view_document.cfm?document_id=41110
mailto: techsupport@latticesemi.com
http://www.latticesemi.com

2
l.l.LATTICE MachX02 Master SPI/I'C Demo

Using ‘C’ and LatticeMico8

Appendix A. I°C Driver Test Project

Another software project is also included in this demo. This project is named I2C_lite and was used to develop, test
and debug the customized I°C drivers. A separate project was used to test the I°C driver because of the limited exe-
cutable code space in the LatticeMico8 in a MachXO2 device. Debug and diagnostics would not fit along with the
SPI driver.

This software project can be imported from the Software/ directory into the work space that the TempLog project
resides in. This project also allows simulation. The simulation is done using an I’°C EEPROM model because a
behavioral model for the temperature sensor could not be located.

Simulation allows “seeing” how the I°C read and writes will actually appear on the wires and to debug any issues
with the driver, and verifying the driver is adhering to the I°C protocol. Building for simulation is done by defining
SIMULATION in the GCC compiler. Select the SIM build configuration of the project: Properties > C/C++Build >
Configuration = SIM. This will disable the normal menu code, and build in test code that does specific accesses to
the 1°C EEPROM. The EEPROM does not physically exist on the MachXO2 Pico Evaluation Board. It is used as a
target I°C slave device for access operations during simulation.

For simulation, be sure to build the project configuration SIM, and then deploy the resulting code to the memory ini-
tialization files before running the simulation, so the LatticeMico8 executes the test code for simulation, and not the
full menu code.

The following menu options are available in the 1°C Lite project.

Figure 22. FC Lite Menu

PuTTY

* U - Changes the units. Celsius or Raw Hex format can be selected. This affects the console display format and
the LCD display format. Hex display format shows the values as read directly from the temperature sensor regis-
ters, before conversion to Celsius.

e P — Changes the precision: 9, 10, 11, or 12-bit

* T — Reads and displays the temperature

The purpose of this project is to investigate and optimize operation of the I1?C drivers and temperature device, as
well as formatting and displaying the temperature value.

23

Appendix B. SPI Driver Test Project

A third software project is also included in this demo. This project is named SPI_RdWr and was used to develop,
test and debug the customized SPI drivers. A separate project was used to test the SPI driver because of the lim-
ited executable code space in the LatticeMico8 in a MachXO2 device. Debug and diagnostics would not fit along
with the I2C driver.

This software project can be imported from the Software/ directory into the work space that the TempLog project
resides in. This project also allows simulation. The simulation is done using an Atmel SPI Flash model of the device
on the evaluation board. Note: This model, is not the same as the data sheet for the device on the MachXO2 Pico
Evaluation Board, but works well enough for the basic commands.

Simulation allows the user to see how the SPI read and writes will actually appear on the wires and to debug any
issues with the driver and verify that the driver is adhering to the SPI protocol. Building for simulation is done by
defining SIMUALTION in the GCC compiler. Select the SIM build configuration of the project: Properties >
C/C++Build > Configuration = SIM. This will disable the normal menu code and build in test code that does spe-
cific accesses to the SPI Flash.

For simulation, be sure to build the project configuration SIM, and then deploy the resulting code to the memory ini-
tialization files before running the simulation, so the LatticeMico8 executes the test code for simulation, and not the
full menu code.

The following menu options are available in the SPI only project.

Figure 23. SPI Read Write Menu

22 COM11 - PuTTY

» ‘D’ prints the current status register contents, for example:
— DevID: 1F 44 01 00 00
- S:14

Where ‘DeviID’ is the SPI Flash manufacturer ID in Hex, and ‘S:’ is the status register value in Hex.

* ‘E’ clears Sector 0 contents of the SPI Flash.
» ‘S’ stores 16 bytes into the SPI Flash. The pattern is an incrementing 8-bit value. The address also increments.

* ‘R’ recalls and displays what has been stored in SPI Flash.

	Introduction
	Setup
	General Warnings
	Required Demo Components
	Project Setup
	MachXO2 Pico Evaluation Board Installation
	FTDI Communications Port Driver Installation
	Hardware Settings
	MachXO2 Pico Evaluation Board

	Demo Operation
	Initial Temperature Display
	Menu Screen
	Precision
	Temperature Display
	Log Temperature Readings to SPI Flash
	Recall Temperature Data from Log

	Demo Hardware Architecture
	Overview
	MachXO2 Diamond Project
	MachXO2 Mico System Builder Platform
	LatticeMico8
	UART
	LCD Driver Slave Passthru
	EFB Slave Passthru

	LCD Driver Module
	EFB Module
	I2C Temperature Sensor
	SPI Flash
	Top Level

	Demo Software Architecture
	Software Modules
	I2C Driver
	SPI Driver
	Serial Port
	Menu Loop
	Temperature Reading
	Temperature Display
	Temperature Storage
	Temperature Recall

	Code Generation
	Optimization Tips
	Building

	Additional MachXO2 Projects

	Known Limitations
	Instruction Code Size
	Error Checking
	Drivers are Customized
	Limited User Display
	Fixed LCD Output Format
	Rounding is Not Exact
	Temperature Reading is Not Ambient Air Temperature
	Logging Data

	References
	Technical Support Assistance
	Revision History
	Appendix A. I2C Driver Test Project
	Appendix B. SPI Driver Test Project

