
www.latticesemi.com 1 RD1125_1.3

January 2015 Reference Design RD1125

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand 
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
Microprocessors often have a limited number of general purpose I/O (GPIO) ports to reduce pin count and shrink 
package size. To overcome this limitation, port expanders are often employed to provide I/O expansion capabilities. 
Most generic GPIO expanders use low pin count serial protocols, such as I2C or SPI, as the interface to the master. 
They allow designers to save the GPIO ports on the microprocessor for other critical tasks.

This design provides a programmable solution for serial expansion of GPIOs. It uses a Serial Peripheral Interface 
(SPI) bus between the microprocessor and the GPIOs. The design provides additional control and monitoring 
capabilities for the microprocessor when it does not have sufficient GPIOs to do the job.

Apart from the GPIO expander, this design also provides a memory interface to the microprocessor. This memory 
is accessible via the SPI Interface. The SPI memory command interface is similar to those commonly found in dis-
crete SPI memory devices.

This reference design is intended to provide a familiar and intuitive interface extension to the MachXO2™ and 
MachXO3L Embedded Function Block (EFB). The EFB SPI module supports the major features of SPI bus. Users 
can take advantage of the MachXO2 and MachXO3L hardened SPI port to provide a port expansion or a memory 
extension. The user is spared from learning operational details of the SPI protocol, the WISHBONE bus or the EFB 
block. 

Interface
Figure 1. SPI to GPIO Memory Interface

CCLK

SCSN

SI

SO

INTQ

RST_N

MEM_ADDR[7:0]

MEM_WD[7:0]

MEM_RD[7:0]

MEM_WR

MEM_CLK

CLK

GPI_0 [7:0] 

GPI_1 [7:0]

GPI_2 [7:0] 

GPI_3 [7:0]

GPO_0 [7:0]

GPO_1 [7:0]

GPO_2 [7:0]

GPO_3 [7:0]

Enable

IRQ[3:0]

SPI – GPIO Memory
Interface 

SPI Slave Peripheral Using the 
Embedded Function Block



2

SPI Slave Peripheral 
Using the Embedded Function Block

Functional Description
This design provides a default eight bytes of I/O port and memory interface, which is controlled through the SPI-
slave interface. There are four single-byte input ports and four single-byte output ports. The interrupt generation 
block generates an interrupt signal to the master when at least one of the interrupts pins has transitioned high. This 
design interfaces with a general purpose memory block, typically Embedded Block RAM (EBR) in the device fabric. 
The memory is accessed via SPI Master commands. 

The internal state machine is designed according to TN1246, Using User Flash Memory and Hardened Control 
Functions in MachXO2 Devices. and TN1294, Using Hardened Control Functions in MachXO3 Devices Reference 
Guide. It responds to the commands issued by an external SPI master. The design is robust and will appropriately 
tolerate erroneous commands.

Figure 2. Functional Block Diagram

Table 1. SPI GPIO Expander I/O Interface Descriptions 

Signal I/O Description

SPI Interface

CCLK Input SPI serial clock

SI Input SPI serial input data

SO Output SPI serial output data

SCSN Input SPI chip-select (asserted low)

INTQ Output External Interrupt, asserted low. Asserted low when any IRQ status register bit is set (open 
drain output).

General Signal

CLK Input Master clock 

INTQ

SI

SO

CLK RST_N Enable

IRQ[3:0]

GPO0

GPO1

GPO2

GPO3

GPI0

GPI1

GPI2

GPI3

WISHBONE
Bus

SPI Master 

SPI GPIO Memory Interface

EFB SPI Port

Interrupt
Generation

State Machine and
Command Decoding

Memory
Interface

Memory

GPIO
Port

CCLK
SCSN

www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512


3

SPI Slave Peripheral 
Using the Embedded Function Block

SPI Interface 
This design is controlled by a set of instructions that are sent from an external SPI Master. The SPI Master commu-
nicates with the design via the SPI bus comprised of four signals: Chip Select (SCSN), Serial Clock (CCLK), Serial 
Input (SI), and Serial Output (SO). The SCSN must first be asserted low prior to a valid instruction or operation. 
After the SCSN pin is asserted, the SPI Master clocks out a valid 8-bit Command on the SPI bus (see Table 2). 
Subsequent operands and data are exchanged per the command as described in Table 3. All commands, address, 
and data bytes are transferred with the most significant bit (MSB) first. The SPI Master Data is captured on a lead-
ing (first) clock edge, and propagated on the opposite clock edge. Operations are terminated by de-asserting the 
SCSN pin.

RST_N Input Active low reset 

Enable Output General purpose enable signal

GPIO Interface

GPO_0[7:0] Output General purpose output byte port

GPO_1[7:0] Output General purpose output byte port

GPO_2[7:0] Output General purpose output byte port

GPO_3[7:0] Output General purpose output byte port

GPI_0[7:0] Input General purpose input byte port

GPI_1[7:0] Input General purpose input byte port

GPI_2[7:0] Input General purpose input byte port

GPI_0[7:0] Input General purpose input byte port

IRQ[3:0] Input Input interrupt

Memory Interface

MEM_CLK Output Clock port for memory

MEM_WR Output Memory write signal

MEM_ADDR[7:0] Output Memory address

MEM_WD[7:0] Output Memory write data

MEM_RD[7:0] Input Memory read data

Table 1. SPI GPIO Expander I/O Interface Descriptions (Continued)

Signal I/O Description

SPI Interface



4

SPI Slave Peripheral 
Using the Embedded Function Block

HDL Parameter Descriptions
This design uses a number of parameters to control various aspects of the design. This allows the user to specify 
the interfaces to meet custom requirements without modifying the underlying Verilog RTL code. Table 2 provides 
descriptions of the parameters used in the SPI GPIO Memory Expander.

Table 2. Parameter Descriptions

Operation Description Value

GPI_PORT_NUM Specifies the number of general purpose input ports 1|7

GPI_DATA_WIDTH Specifies the width of general purpose input ports 1|8

GPO_PORT_NUM Specifies the number of general purpose output ports 1|7

GPO_DATA_WIDTH Specifies the width of general purpose output ports 1|8

MEM_ADDR_WIDTH Specifies the width of memory address 1|8

IRQ_NUM Specifies the number of input interrupt pin 1|8

REVISION_ID Specifies the revision id 0x00|FF

MAX_MEM_BURST_NUM Specifies the burst width for memory operation 1|255

INTQ_OPENDRAIN Specify whether INTQ output will be open drain or not ON/OFF



5

SPI Slave Peripheral 
Using the Embedded Function Block

Commands
Table 3 lists the SPI bus commands support by the SPI GPIO Memory Interface reference design.

Table 3. SPI Master Command Structure

Enable/Disable Command
The enable command will set the enable output port of the design. This enable port may be used for any general-
purpose control function. No circuitry internal to the reference design is dependent upon the state of enable. 
Figure 3 shows the enable command operation. The disable command has the same structure except for the com-
mand value.

Figure 3. Enable Command Operation

Interrupt Commands
This design support input interrupts (default 4). Based upon the IRQ status and enable bits they may generate an 
output interrupt INTQ. These inputs can be enabled/disabled by the SPI master. The INTQ output signal is 
asserted (active low) whenever an IRQ input transitions high while its corresponding interrupt enable bit is set. The 
SPI master can read the status of the interrupts and enable settings by issuing a read command.

The design maintains two registers to hold the values of interrupt enable and interrupt status. The interrupt enable 
register holds the current enable state. The SPI master can read and write this register directly. The interrupt status 
register latches the status of each interrupt. Interrupt status bits indicate that the corresponding IRQ bit has transi-
tioned ‘0’ to ‘1’. The status register bits are cleared by writing the IRQ clear command and setting the correspond-
ing bit to ‘1’. Table 4 shows the structure of the interrupt enable and status register.

Operation Command Address Byte Dummy Byte Data Bytes

Enable 0x06 — — —

Disable 0x04 — — —

Write GPO 0x01 1 — 1

Latch GPI 0x03 — — 1

Read GPI 0x05 1 1 1

Write Memory 0x02 1 — 1+

Read Memory 0x0B 1 1 1+

IRQ Enable Write 0x66 — — 1

IRQ Enable Read 0x6A — 1 1

IRQ Status 0x65 — 1 1

IRQ Clear 0x61 — — 1

Revision ID 0x9F — 1 1



6

SPI Slave Peripheral 
Using the Embedded Function Block

Table 4. Interrupt Enable and Status Register (Default Assignments)

Figure 4 shows the interrupt enable, set and clear command.

Figure 4. Interrupt Enable, Set and Clear Operation

INTQ is an open drain output by default. Users can change from open drain to drive 0/1 by setting the parameter 
INTQ_OPENDRAIN at the top level.

The interrupts commands are shown in the figures below.

Figure 5. Interrupt: Enable Read and Write

Register Width Access
Reset
Value Bit Definition

Interrupt Enable 8 R/W 0x00

[7-4] – Reserved for future use
3 – Enable IRQ[3] signal
2 – Enable IRQ[2] signal
1 – Enable IRQ[1] signal
0 – Enable IRQ[0] signal

Interrupt Status 8 R/W 0x00

[7-4] – Reserved for future use
3 – Set when IRQ[3] goes from 0 to 1
2 – Set when IRQ[2] goes from 0 to 1
1 – Set when IRQ[1] goes from 0 to 1
0 – Set when IRQ[0] goes from 0 to 1
[3-0] – Reset when the SPI Master sends IRQ Clear. The correspond-
ing bit will be cleared in the status register.



7

SPI Slave Peripheral 
Using the Embedded Function Block

Figure 6. Interrupt: Clear and Status

GPIO Commands
General purpose input and output ports can be controlled by the SPI Master. Read GPI and write GPO commands 
are provided to control the input and output ports respectively. The width and number of ports are parameterized so 
that users can change them without making any change in code (the vector size definitions of the GPI and GPO 
ports may require changes accordingly).

An additional command, latch GPI, provides a common sampling instant among all input ports. All GPI ports are 
latched at the same time using this command. The LSB controls the latch. By default (0) the latch is in transparent 
mode. A ‘0’ to ‘1’ transition latches all GPI ports simultaneously, and the read data held until the LSB is reset to ‘0’. 
GPIO commands are shown in Figures 7 and 8.

Figure 7. Write & Latch GPIO Transaction



8

SPI Slave Peripheral 
Using the Embedded Function Block

Figure 8. Read GPI Transaction 

Memory Commands
This reference design provides a port for interfacing to RAM. All memory operations are controlled by the SPI Mas-
ter. By default, burst read and write operations are supported by any number of data, up to 8 bytes. Therefore, the 
size of the SPI memory write command varies from 3 to 10 bytes and the read command varies from 4 to 11 bytes. 
The burst length may be altered via the parameter MAX_MEM_BURST_NUM. Memory commands are shown in 
Figures 9 and 10.

Figure 9. Write Memory 

Figure 10. Read Memory 



9

SPI Slave Peripheral 
Using the Embedded Function Block

Revision ID Commands
This reference design provides a fixed Revision ID read command. It can be used, for example, to maintain a man-
ufacturer and device ID read methodology, or a design revision or time stamp.

Figure 11. Revision ID

Erroneous Commands
This design is capable of detecting error transfers like unknown commands, too many bytes, too few bytes etc. and 
the design can respond to different error scenarios. If a command is sent to a design without a chip select enable 
(SCSN), the design will ignore them. When there are fewer bytes or incorrect commands sent by the master, the 
slave design will ignore that command and discard the data.

If there are more than the required number of bytes in a write command transfer, the design will consider the rele-
vant bytes and ignore the extra bytes sent by the master. For an extra read request, the design will respond with 
0xFF until SCSN is deasserted. 

Test Bench Description 
The SPI GPIO Memory Interface design is simulated with the aide of SPI Master Bus Functional modules. The test 
bench for this design consists of the following functional blocks, as shown in Figure 12.

• SPI master module

• Memory module

• Design under test (SPI slave) 

• Back End Interface (Clock and Reset Generation)



10

SPI Slave Peripheral 
Using the Embedded Function Block

Figure 12. Test Bench Architecture

The SPI interface variables CLOCK_POLARITY, Transmit Edge, LSB first and CLOCK_PHASE are all set to their 
default values (0) for simulation. Users can change settings by changing these values in IPexpress™ or setting a 
corresponding EFB register using the WISHBONE interface. 

Figure 13. Enable Disable Command

Figure 14. Set Interrupt Command

Figure 15. Writing GPO Command

Figure 16. Writing into Memory Command

Figure 17. Reading from Memory Command

Back End Interface

SPI GPIO
Memory
Interface

(DUT)

Memory

MEM_CLK

MEM_ADDR

MEM_WD

MEM_RD

INTQ

MEM_WR

SPI 
Master

CCLK

SCSN

SI

SO

G
P

IO



11

SPI Slave Peripheral 
Using the Embedded Function Block

Implementation
This design is implemented in VHDL and Verilog. When using the design in a different device, density, speed, or 
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 5. Performance and Resource Utilization

References
• TN1246, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

• TN1294, Using Hardened Control Functions in MachXO3 Devices Reference Guide

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Family Language Speed Grade Utilization fMAX (MHz) I/Os
Architecture 
Resources

MachXO21

Verilog-LSE –6 307 LUTs >50 102 EFB 

Verilog-Syn –6 246 LUTs >50 102 EFB 

VHDL-LSE –6 308 LUTs >50 102 EFB 

VHDL-Syn –6 242 LUTs >50 102 EFB 

MachXO3L2

Verilog-LSE –6 307 LUTs >50 102 EFB 

Verilog-Syn –6 246 LUTs >50 102 EFB 

VHDL-LSE –6 308 LUTs >50 102 EFB 

VHDL-Syn –6 242 LUTs >50 102 EFB 

1. Performance and utilization characteristics are generated using LCMXO2-2000HC-6BG256C with Lattice Diamond® 3.3 design software 
with LSE (Lattice Synthesis Engine) and Synplify Pro®.

2. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C with Lattice Diamond 3.3 design software with 
LSE and Synplify Pro.

Date Version Change Summary

January 2015 1.3 Updated Introduction section. Added MachXO3L support.

Updated Functional Description section. Revised and added technical 
note references.

Updated Implementation section. Updated Table 5, Performance and 
Resource Utilization. 
— Modified Utilization data for Verilog and VHDL implementation. 
— Provided LSE and Synplify Pro data for MachXO2.
— Changed device, and updated Lattice Diamond software version in 
footnote 1. 
— Changed Lattice Diamond software version in footnote 2.

Updated References section. Modified and added technical note refer-
ences.

February 2014 01.2 Updated for VHDL implementation.

Added support for MachXO3L device family.

Updated Technical Support information.

May 2012 01.1 Corrected USPI to GPIO Memory Interface diagram. 

April 2012 01.0 Initial release.

www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
mailto: techsupport@latticesemi.com
http://www.latticesemi.com
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512

	SPI Slave Peripheral Using the Embedded Function Block
	Introduction
	Interface
	Functional Description
	SPI Interface
	HDL Parameter Descriptions
	Commands
	Enable/Disable Command
	Interrupt Commands
	GPIO Commands
	Memory Commands
	Revision ID Commands
	Erroneous Commands

	Test Bench Description
	Implementation
	References
	Technical Support Assistance
	Revision History




