- SPI Slave Peripheral Using the
s LATTICE Embedded Function Block

January 2015 Reference Design RD1125

Introduction

Microprocessors often have a limited number of general purpose 1/0 (GPIO) ports to reduce pin count and shrink
package size. To overcome this limitation, port expanders are often employed to provide 1/0O expansion capabilities.
Most generic GPIO expanders use low pin count serial protocols, such as I1°C or SPI, as the interface to the master.
They allow designers to save the GPIO ports on the microprocessor for other critical tasks.

This design provides a programmable solution for serial expansion of GPIOs. It uses a Serial Peripheral Interface
(SPI) bus between the microprocessor and the GPIOs. The design provides additional control and monitoring
capabilities for the microprocessor when it does not have sufficient GPIOs to do the job.

Apart from the GPIO expander, this design also provides a memory interface to the microprocessor. This memory
is accessible via the SPI Interface. The SPI memory command interface is similar to those commonly found in dis-
crete SPI memory devices.

This reference design is intended to provide a familiar and intuitive interface extension to the MachXO2™ and
MachXO3L Embedded Function Block (EFB). The EFB SPI module supports the major features of SPI bus. Users
can take advantage of the MachXO2 and MachXOS3L hardened SPI port to provide a port expansion or a memory
extension. The user is spared from learning operational details of the SPI protocol, the WISHBONE bus or the EFB
block.

Interface
Figure 1. SPI to GPIO Memory Interface
CCLK CLK
Lotk
SCSN GPI_0[7:0]
——— -—
Sl GPI_1[7:0]
BN P U
SO GPI_2[7:0]
«— ——
INTQ GPI_3[7:0]
SPI — GPIO Memory
RST_N T s GPO_0 [7:0]
MEM_ADDR([7:0] GPO_1[7:0]
MEM_WD[7:0] GPO_2[7:0]
— —
MEM_RD[7:0] GPO_3[7:0]
— > —
MEM_WR Enable
MEM_CLK IRQ[3:0]

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 RD1125_1.3

= ATTICE SPI Slave Peripheral

Using the Embedded Function Block

Functional Description

This design provides a default eight bytes of 1/0 port and memory interface, which is controlled through the SPI-
slave interface. There are four single-byte input ports and four single-byte output ports. The interrupt generation
block generates an interrupt signal to the master when at least one of the interrupts pins has transitioned high. This
design interfaces with a general purpose memory block, typically Embedded Block RAM (EBR) in the device fabric.
The memory is accessed via SPI Master commands.

The internal state machine is designed according to TN1246, Using User Flash Memory and Hardened Control
Functions in MachXO2 Devices. and TN1294, Using Hardened Control Functions in MachXO3 Devices Reference
Guide. It responds to the commands issued by an external SPI master. The design is robust and will appropriately
tolerate erroneous commands.

Figure 2. Functional Block Diagram

|_| IRQ[3:0]

N

SPI GPIO Memory Interface

INTQ

Interrupt GPOO0
Generation
GPO1
GPO2
SPI Master
GPO3
CCLK GPIO
%
\l—

SCSN
State Machine and
Port
Sl EFB SPI Port <:::> Command Decoding <:::>

SO

WISHBONE

Bus @

Memory
Interface

GPIO
GPI1

GPI2
GPI3

7aN
ICLK IF{STN {} Enable

v

Memory

Table 1. SPI GPIO Expander I/O Interface Descriptions

Signal /0 Description
SPI Interface
CCLK Input | SPI serial clock
Sl Input |SPI serial input data
SO Output |SPI serial output data
SCSN Input | SPI chip-select (asserted low)
INTQ Output Egﬁ]rréilt;)rlltte).rrupt, asserted low. Asserted low when any IRQ status register bit is set (open
General Signal
CLK Input |Master clock

www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512

= LATTICE

SPI Slave Peripheral
Using the Embedded Function Block

Table 1. SPI GPIO Expander I/O Interface Descriptions (Continued)

Signal ‘ /0 ‘ Description
SPI Interface
RST_N Input |Active low reset
Enable Output |General purpose enable signal
GPIO Interface
GPO_0[7:0] Output |General purpose output byte port
GPO_1[7:0] Output |General purpose output byte port
GPO_2[7:0] Output |General purpose output byte port
GPO_3[7:0] Output |General purpose output byte port
GPI_0[7:0] Input |General purpose input byte port
GPI_1[7:0] Input |General purpose input byte port
GPI_2[7:0] Input |General purpose input byte port
GPI_0[7:0] Input |General purpose input byte port
IRQ[3:0] Input |Input interrupt
Memory Interface
MEM_CLK Output |Clock port for memory
MEM_WR Output [Memory write signal
MEM_ADDR][7:0]| Output |Memory address
MEM_WD][7:0] Output [Memory write data
MEM_RDI7:0] Input |Memory read data

SPI Interface

This design is controlled by a set of instructions that are sent from an external SPI Master. The SPI Master commu-
nicates with the design via the SPI bus comprised of four signals: Chip Select (SCSN), Serial Clock (CCLK), Serial
Input (SI), and Serial Output (SO). The SCSN must first be asserted low prior to a valid instruction or operation.
After the SCSN pin is asserted, the SPI Master clocks out a valid 8-bit Command on the SPI bus (see Table 2).
Subsequent operands and data are exchanged per the command as described in Table 3. All commands, address,
and data bytes are transferred with the most significant bit (MSB) first. The SPI Master Data is captured on a lead-
ing (first) clock edge, and propagated on the opposite clock edge. Operations are terminated by de-asserting the

SCSN pin.

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

HDL Parameter Descriptions

This design uses a number of parameters to control various aspects of the design. This allows the user to specify
the interfaces to meet custom requirements without modifying the underlying Verilog RTL code. Table 2 provides
descriptions of the parameters used in the SPI GPIO Memory Expander.

Table 2. Parameter Descriptions

Operation Description Value
GPI_PORT_NUM Specifies the number of general purpose input ports 1|7
GPI_DATA_WIDTH Specifies the width of general purpose input ports 1]8
GPO_PORT_NUM Specifies the number of general purpose output ports 1|7
GPO_DATA_WIDTH Specifies the width of general purpose output ports 1|8
MEM_ADDR_WIDTH Specifies the width of memory address 18
IRQ_NUM Specifies the number of input interrupt pin 18
REVISION_ID Specifies the revision id 0x00|FF
MAX_MEM_BURST_NUM | Specifies the burst width for memory operation 1255
INTQ_OPENDRAIN Specify whether INTQ output will be open drain or not ON/OFF

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Commands

Table 3 lists the SPI bus commands support by the SPI GPIO Memory Interface reference design.

Table 3. SPI Master Command Structure

Operation Command Address Byte Dummy Byte Data Bytes
Enable 0x06 — — —
Disable 0x04 — — —
Write GPO 0x01 1 — 1
Latch GPI 0x03 — — 1
Read GPI 0x05 1 1 1
Write Memory 0x02 1 — 1+
Read Memory 0x0B 1 1 1+
IRQ Enable Write 0x66 — _ 1
IRQ Enable Read Ox6A — 1 1
IRQ Status 0x65 — 1 1
IRQ Clear 0x61 — _ 1
Revision ID Ox9F — 1 1

Enable/Disable Command

The enable command will set the enable output port of the design. This enable port may be used for any general-
purpose control function. No circuitry internal to the reference design is dependent upon the state of enable.
Figure 3 shows the enable command operation. The disable command has the same structure except for the com-
mand value.

Figure 3. Enable Command Operation

4—Enable——» 4— Disable ——»

ceue M T

sl ———{ o8 0x04 R

SO — —

SCSN N

Interrupt Commands

This design support input interrupts (default 4). Based upon the IRQ status and enable bits they may generate an
output interrupt INTQ. These inputs can be enabled/disabled by the SPI master. The INTQ output signal is
asserted (active low) whenever an IRQ input transitions high while its corresponding interrupt enable bit is set. The
SPI master can read the status of the interrupts and enable settings by issuing a read command.

The design maintains two registers to hold the values of interrupt enable and interrupt status. The interrupt enable
register holds the current enable state. The SPI master can read and write this register directly. The interrupt status
register latches the status of each interrupt. Interrupt status bits indicate that the corresponding IRQ bit has transi-
tioned ‘0’ to ‘1’. The status register bits are cleared by writing the IRQ clear command and setting the correspond-
ing bit to ‘1’. Table 4 shows the structure of the interrupt enable and status register.

= LATTICE

SPI Slave Peripheral
Using the Embedded Function Block

Table 4. Interrupt Enable and Status Register (Default Assignments)

Register

Width

Access

Reset
Value

Bit Definition

Interrupt Enable

R/W

0x00

[7-4] — Reserved for future use
3 — Enable IRQ[3] signal
2 — Enable IRQ[2] signal
1 — Enable IRQ[1] signal
0 — Enable IRQ[O] signal

Interrupt Status

R/W

0x00

[7-4] — Reserved for future use

3 — Set when IRQ[3] goes from 0 to 1
2 — Set when IRQJ[2] goes from 0 to 1
1 — Set when IRQ[1] goes from 0 to 1
0 — Set when IRQJ[0] goes from 0 to 1

[3-0] — Reset when the SPI Master sends IRQ Clear. The correspond-

ing bit will be cleared in the status register.

Figure 4 shows the interrupt enable, set and clear command.

Figure 4. Interrupt Enable, Set and Clear Operation

IRQO

IRQ1

IRG2

INTQ

SPltransaction

IRQ Register
(internal)

CMD DxB5: rd Ox01 (CMD 0x
/

61:wr 0x01

001

{CMD 0x65: rd 0x02) {CMD 0x61: wr 0x02 } CMD 0x65: rd 0x04
\ \

CMD 0xB1: wr 0x04

002 0x08 004

INTQ is an open drain output by default. Users can change from open drain to drive 0/1 by setting the parameter
INTQ_OPENDRAIN at the top level.

The interrupts commands are shown in the figures below.

Figure 5. Interrupt: Enable Read and Write

M—|RQ Enable Write

- JUUUTIUUEuE

IRG Enable Read ———— ™

4{

Ox6E XEnabIeElns \

/

4{

]
L5 { OxBA
\

o)

o ——
e

X Enable Bits

10

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Figure 6. Interrupt: Clear and Status

* IRG Clear IRG Status »

cet | JUNUULATULNUIIL TSR
Sl ——{ 0xB1 X Clear Bits > %65 X Durmmey X >77
SO ——{ X } X Status Bits >—7

SceN Y e

o ——
e

GPIO Commands

General purpose input and output ports can be controlled by the SPI Master. Read GPI and write GPO commands
are provided to control the input and output ports respectively. The width and number of ports are parameterized so
that users can change them without making any change in code (the vector size definitions of the GPI and GPO
ports may require changes accordingly).

An additional command, latch GPI, provides a common sampling instant among all input ports. All GPI ports are
latched at the same time using this command. The LSB controls the latch. By default (0) the latch is in transparent
mode. A ‘0’ to ‘1’ transition latches all GPI ports simultaneously, and the read data held until the LSB is reset to ‘0’.
GPIO commands are shown in Figures 7 and 8.

Figure 7. Write & Latch GPIO Transaction

+ Wirite GPO > + Latch GPI >

colk | i
| ——{ 0x01 X Port X Write Data > £ { 0x03 X Write Data >—7
o I —

ScsN e

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Figure 8. Read GPI Transaction

Read GPI

Sl 7—< 0x05 X Port# X Dummy X —
SO —4< X X X ReadData r—t———

SCSN

Memory Commands

This reference design provides a port for interfacing to RAM. All memory operations are controlled by the SPI Mas-
ter. By default, burst read and write operations are supported by any number of data, up to 8 bytes. Therefore, the
size of the SPI memory write command varies from 3 to 10 bytes and the read command varies from 4 to 11 bytes.
The burst length may be altered via the parameter MAX_MEM_BURST_NUM. Memory commands are shown in
Figures 9 and 10.

Figure 9. Write Memory

< Write Memory

#——— Optional Write Data ————»

e e
Sl 7—< 0x02 >< 8bit Addr K WR Data 1 WR Data 2 DE}: WR Data N
o — T 10

SCSN | \

Figure 10. Read Memory

Read Memory
4—— Optional Read Data ————»

ceue T IO O A S O A
Si ——\‘ 0B X 8bit Addr / Durnmy \(DEX
SO 7—()(X X RDDatal | RDData2 DE\ RD Data N

SCSN N SS

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Revision ID Commands

This reference design provides a fixed Revision ID read command. It can be used, for example, to maintain a man-
ufacturer and device ID read methodology, or a design revision or time stamp.

Figure 11. Revision ID

+ Revision ID >

ceue T |
g — 4{ OxOF ‘ Dummy X }7
S S I o

SCSN

Erroneous Commands

This design is capable of detecting error transfers like unknown commands, too many bytes, too few bytes etc. and
the design can respond to different error scenarios. If a command is sent to a design without a chip select enable
(SCSN), the design will ignore them. When there are fewer bytes or incorrect commands sent by the master, the
slave design will ignore that command and discard the data.

If there are more than the required number of bytes in a write command transfer, the design will consider the rele-
vant bytes and ignore the extra bytes sent by the master. For an extra read request, the design will respond with
OxFF until SCSN is deasserted.

Test Bench Description

The SPI GPIO Memory Interface design is simulated with the aide of SPI Master Bus Functional modules. The test
bench for this design consists of the following functional blocks, as shown in Figure 12.

e SPI master module
* Memory module
* Design under test (SPI slave)

* Back End Interface (Clock and Reset Generation)

[1] SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Figure 12. Test Bench Architecture

Back End Interface

P INTQ MEM_CLK
MEM_ADDR |
SPI CCLK 5 SPI GPIO >
Master SCSN R Memory MEMWD | Memory
Interface
sl R (DUT) < MEM_RD
SO MEM_WR

The SPI interface variables CLOCK_POLARITY, Transmit Edge, LSB first and CLOCK_PHASE are all set to their
default values (0) for simulation. Users can change settings by changing these values in IPexpress™ or setting a
corresponding EFB register using the WISHBONE interface.

Figure 13. Enable Disable Command

T N = -
w COLK s e O g 15 g S g 5 T oy | | i 0 0 e e e e B e 8 | i
wr 555N — = ——
- 5
T = = ! :
Curr I S 168 pr]
Cursor 2 ——

nnnnnnnnnnnnannnnnnnnnn________nnnnnnnannnnnnnn____1__
[1

1 I | L

I o [B | | I 1 Enp— —
— E— L] ES— t
Figure 15. Writing GPO Command
pooos | nl L X
- CELK e T nnrrnrnrnrrrrrrrnrriririiriririn -
o BCE 1 1 -
L - 1 1 1 [1 L

Figure 16. Writing into Memory Command

CERg i i Uguguguguguguguguguguguyugi Uy Uy Uy NNy Uy NNy Uy g g Ny AUy g Ny Ny g U N Ry Uy Uy gug U U Ui gUgUgUgugUgUgugUgugugh
X
—
n o £ W, D
-7} S v I) I v v et ot e e e e et et e e ot ot e D e e o[o[e[o 8 pe 8 [[[e [T
] 1 [

e 1 1 1 1 1 : 1

Figure 17. Reading from Memory Command

L) 0 W =
uphphyykpybyhyigby g Ryt tg Ry aguyigtyigyiglybglyRpiyRpuytyRytguyigtyigtyiylylylybgbyplyRpuytyuytyuyTytyigtyiylyiylyRglyiphyipuytyuyigtyigtyiyiy
1}

= w W, W W w W W
s M AnnnnnnnnaaannnnnnnnaannnnnnannnnannannannnAnnannnnnnnnn
—

[]

| —
err—— e | e | e el e
L} ! L I /Y gy S S Ay Y ey SN Y] L] Ll

10

[1 SPI Slave Peripheral
= LATTICE Using the Embedded Function Block

Implementation

This design is implemented in VHDL and Verilog. When using the design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 5. Performance and Resource Utilization

Architecture
Family Language Speed Grade Utilization fmax (MHz) 1/0s Resources
Verilog-LSE —6 307 LUTs >50 102 EFB
Verilog-Syn —6 246 LUTs >50 102 EFB
MachXO2'
VHDL-LSE —6 308 LUTs >50 102 EFB
VHDL-Syn —6 242 LUTs >50 102 EFB
Verilog-LSE —6 307 LUTs >50 102 EFB
Verilog-Syn —6 246 LUTs >50 102 EFB
MachXO3L?
VHDL-LSE —6 308 LUTs >50 102 EFB
VHDL-Syn —6 242 LUTs >50 102 EFB

1. Performance and utilization characteristics are generated using LCMX02-2000HC-6BG256C with Lattice Diamond® 3.3 design software
with LSE (Lattice Synthesis Engine) and Synplify Pro®.

2. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C with Lattice Diamond 3.3 design software with
LSE and Synplify Pro.

References

* TN1246, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices
* TN1294, Using Hardened Control Functions in MachXO3 Devices Reference Guide

Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

Revision History

Date Version Change Summary
January 2015 1.3 Updated Introduction section. Added MachXOS3L support.

Updated Functional Description section. Revised and added technical
note references.

Updated Implementation section. Updated Table 5, Performance and
Resource Utilization.

— Modified Utilization data for Verilog and VHDL implementation.

— Provided LSE and Synplify Pro data for MachXO2.

— Changed device, and updated Lattice Diamond software version in
footnote 1.

— Changed Lattice Diamond software version in footnote 2.

Updated References section. Modified and added technical note refer-
ences.

February 2014 01.2 Updated for VHDL implementation.

Added support for MachXO3L device family.
Updated Technical Support information.

May 2012 01.1 Corrected USPI to GPIO Memory Interface diagram.
April 2012 01.0 Initial release.

11

www.latticesemi.com/dynamic/view_document.cfm?document_id=46300
mailto: techsupport@latticesemi.com
http://www.latticesemi.com
www.latticesemi.com/dynamic/view_document.cfm?document_id=50512

	SPI Slave Peripheral Using the Embedded Function Block
	Introduction
	Interface
	Functional Description
	SPI Interface
	HDL Parameter Descriptions
	Commands
	Enable/Disable Command
	Interrupt Commands
	GPIO Commands
	Memory Commands
	Revision ID Commands
	Erroneous Commands

	Test Bench Description
	Implementation
	References
	Technical Support Assistance
	Revision History

