= LATTICE

Introduction

Design Planning

FPGA design planning is done in two different phases of the FPGA design
process:

When you start your FPGA project — this is where you need to define your
design’s functionality and the architecture, choose an FPGA device, and
start writing the HDL code.

During the FPGA implementation process — this is where you, as an
FPGA engineer, target your design to the chosen FPGA device and
decide how you want to utilize the chosen device

Although these are two separate phases, refining one of them can
significantly affect the other. For example, a design architecture change could
include new functional blocks such as DSP or SERDES, which might require
a new target device, and this can partially or completely invalidate the result of
the second phase. On the other hand, in order to close timing, making some
architecture or source code changes might be the quickest and easiest way to
perform the second phase.

This chapter focuses on the second phase and explains how you can fully
utilize the functionality and features provided by Diamond to complete your
design using Lattice FPGAs.

The second phase also involves HDL coding and logic synthesis, which are
explained in detail in separate documents.

Copyright © October 2013 Lattice Semiconductor Corporation.

Design Planning in Diamond

Design Planning in Diamond

Design planning in Diamond is not mandatory for all designs, but it will be
beneficial to most designs. This is especially true if the design is of medium or
large size with high resource utilization or with a tight timing requirement. For
these designs, design planning can help reduce potential timing issues or
placement and routing problems, and it can increase the possibilities of
design reuse and migration.

In Diamond, design planning should start as soon as possible, usually at the
time when the logic synthesis has been completed successfully and the MAP
process is ready.

The diagram in Figure 1 illustrates the design planning flow within Diamond. It
shows the places in the flow for design planning, the available planning tools,
the tasks that can be performed, as well as the design data involved. From the
diagram, notice the following important points:

The LPF, or logical preference file (with the file extension “.Ipf”), holds all
design planning constraints (called preferences) that drive the MAP and
PAR processes (the engine).

Synthesis tools can optionally write out an LPF, which carries design
constraints from the synthesis process. This LPF can optionally be used
as your starting point.

After any design planning changes, which means LPF changes, the
design flow is reset to the pre-MAP stage. This behavior suggests that
although you can do design planning at any time, you should do it as early
as possible, since MAP and PAR processes usually take most of the
runtime in a complete flow iteration.

The MAP process maps the design component names, and certain design
planning constraints/preferences defined in the LPF, from the logical
domain to the physical domain. In the process, it automatically generates
a PREF, or physical preference file. The PRF is used to drive the PAR
process and its timing engine.

Preference Flow in Diamond

As illustrated in the diagram, in Diamond, all design constraints that drive the
MAP and PAR processes are called preferences and are stored in a user-
defined logical preference file (LPF), thus the implementation process is also
called the preference flow.

The Diamond preference flow is designed to allow you to work with the FPGA
design in terms of high-level logical elements, such as ports, nets, registers,
instances, and any other special Lattice Semiconductor blocks derived from
the RTL source through logic synthesis. The LPF is the primary interface for
defining design-planning constraints, such as timing and location, in terms of
logical elements.

Design Planning

Design Planning in Diamond

Figure 1: Design Planning Tools and Tasks

Design Constraints i
in SDC —> Synthesis & Translation («— VHDUVerilog J
7
v ¢
Design Constraints o Design Planning Tasks:
in LPF | Before MAP (NGD) | ' , ,
& * PinPlanning
e Clock Assignment
iy _ A J * Timing Budget
A — - MAE kb IRSCE s Floor Planning
I L
. v Design Planning Tools/Views:
! Design Planning | | —
; | After MAP (NCD) | | s Spreadsheet View
v l *» Package View
Design Constraints i * Devi.ceView
in PRE P PAR with TRACE + Netlist View
& . * Floorplan View
v | * Logic Block View
| Design Planning | I - » Physical View (after PAR)
Afier PAR (NCD) e NCD View (after PAR)
BITGEN
=== Optional mandator
> r— Planning tasks, tools,
— > automatic i min flow — actions and data flow

After the logic synthesis and translation process, your design is contained in
an NGD file, or native generic database file, which represents the logical
design information of your design. To view the list of all logical elements in
your design in Diamond, use Netlist View.

MAP takes the LPF preferences that are written in terms of logical elements,
interprets and converts them, when necessary, into physical preferences
using physical element names, such as PIOs, slices, and ASIC blocks. These
new preferences are written to a Physical Preference File (PRF), which is
used by the placement and routing (PAR) and static timing analysis (TRACE)
tools. The PRF always stores preferences that refer to physical elements. To
view the list of all physical elements in your design, use NCD View.

It is strongly recommended that you should not modify the PRF directly.
Instead, always use the Diamond design-planning tools to modify your
constraints and save the changes to the LPF. If you are an advanced user,
certainly, you can text edit the PRF and rerun PAR without going back to
MAP; but you should observe the following important points if you do so:

There will be mismatches between the LPF and the PRF.

If you rerun MAP, the PRF will be overwritten, and your changes will be
lost.

Design Planning

Design Planning in Diamond

There is no graphical view for modifying the PRF. You must use a text
editor.

You need to fully understand the physical design data and the chosen
device in order to make correct changes. All illegal constraints will be
ignored by PAR, or they will cause PAR problems such as increased
runtime and difficulties in fitting and routing the design. lllegal constraints
might also stop the PAR process

Design Planning in the HDL

You can define certain design planning constraints in your HDL code using

Lattice HDL Attributes and Directives. For definitions and explanations of all
the attributes and directives supported by Diamond refer to the section “HDL
Attributes” in the Constraints Reference Guide” of the Diamond online Help.

After logic synthesis, attributes and directives defined in your HDL code are
written into the synthesis output database, usually in EDIF format. When the
Diamond NGDBuild process translates the synthesis output and builds the
Lattice design database (NGD, or Native Generic Database file), these
attributes and directives are carried over into the NGD file, which will become
part of your design planning constraints to drive the MAP and PAR processes.
These constraints are visible in Lattice design-planning views, such as
Spreadsheet View and Package View, but they are not present in the user-
defined LPF. You have the opportunity to modify or overwrite these constraints
in the design-planning views. After the changes in these views are saved, the
new constraints will be written into the LPF, and they will overwrite those
defined in the NGD.

Preferences and Processes

The MAP and PAR processes require effective constraints in order to optimize
the usage of FPGA resources. For MAP and PAR, the design constraints, or
preferences, are provided in an LPF file. You can set and edit design
preferences at multiple points in the FPGA design flow.

Understanding Preferences (LPF)

The LPF contains all the design constraints, including timing preferences that
you specify for driving MAP and PAR using Diamond’s preference language.
Although you can add or modify preferences before MAP, after MAP, or after
PAR, the after-MAP or after-PAR changes effectively reset the flow, and
changes must be implemented by rerunning the MAP and PAR processes

Design constraints can also be set by using attributes and directives in the
HDL code. As explained previously, they are converted to EDIF properties by
logic synthesis, and then carried over into the NGD database. They can then
be viewed in Spreadsheet View or Package View. If the constraints are
modified in these views, they will be included in the LPF, and these modified
preferences will take precedence over the attributes in the HDL.

Design Planning

Design Planning in Diamond

MAP and LPF

The MAP process reads the LPF to map the logical elements. By default, the
MAP process filters the preference file by ignoring any syntax errors or invalid
preferences. Invalid preferences are preferences that do not correspond to
any logical elements that are in the design. Invalid preferences are often
caused by a typographical error in the element name; if you encounter such
an error, use Netlist View as a reference to correct any error.

You can change the Map behavior so that it terminates and issues an error
message whenever it encounters preference errors. To accomplish this, set
the "Ignore Preference Errors" option to "False" in the Map Design section of
the active strategy or use the -pe option from the command line.

The MAP process generates a physical preference file (or PRF, with file
extension .prf), which carries all of the valid preferences contained in the LPF
as well as all of the attributes that were included in the NGD through the HDL
code (if they were not explicitly overwritten by the LPF). This PRF is used to
drive MAP TRACE, PAR and PAR TRACE.

MAP TRACE, PAR TRACE and PRF

After MAP or PAR, you have the option of performing static timing analysis on
the physical design file (or NCD file, with file extension .ncd), which was
generated by either MAP or PAR. Diamond’s static timing analysis tool,
TRACE (Timing Reporter and Circuit Evaluator), takes the NCD and PRF as
inputs and uses the timing constraints contained in PRF to produce a report
file.

The MAP TRACE report file uses the file extension .tw1, it can be viewed in
Diamond’s Report View or any text editor.

The PAR TRACE report file uses the file extension .twr, it can be viewed in
Diamond’s Report View or any text editor.

PAR and PRF

The PAR process uses both location and timing preferences in the PRF to
drive the placement and routing of the design. The output of PAR is a placed
and routed design (an NCD file that is different from the NCD file generated by
MAP), as well as a PAR report and an 1/O pinout report file (PAD).

Recommendations for Creating and Editing the LPF

Creating design preferences is a process that continuously evolves
throughout the design process. Certain preferences are used during the MAP
phase, and others are applied during PAR. Preferences are also used by
reporting tools such as TRACE for static timing analysis to provide important
information on the final design. It is very important to use appropriate and
sufficient preferences.

Consider the following recommendations.

Design Planning

Design Planning in Diamond

Always Use Design Planning Tools

Use Diamond’s Design Planning Tools to create, remove or modify your
constraints to ensure the correctness. After changes are made and saved in
these tools, your constraints will be written into the LPF automatically.

Text editing the LPF is only recommended for advanced users for
reorganizing preferences in a user-friendly order, as explained in the following
section. If you choose to text edit the LPF, you should also follow these
recommendations to avoid potential problems.

Ensure a Clean Error-free LPF

LPF is a “loose” language with very limited restrictions. It is able to
accommodate human errors such as unrecognized preferences, syntax errors
or semantic errors. Although there are certain DRC tools in Diamond such as
P10 DRC that can prevent many of the 1/O-related issues, some of the errors
present in an LPF will only be caught by the MAP or PAR process. Most of
time such an error will produce a warning message that the preference is
being ignored, but there are times where the problematic preference will
cause the engine to spend more time on unrealistic requirements or stop
working. You should carefully examine any warning or error messages related
to your LPF, and make sure that you correct problematic preferences as early
as possible.

Preferences also constrain your design and the engine by using your design
data, such as ports, nets, modules and instances. If your design’s source
code has been changed and your design has been resynthesized, you should
verify the correct use of your design data in your LPF to avoid semantic
errors.

Ensure a Well-Organized LPF

The LPF written by design planning tools might not be well organized,
depending on how you use these tools to create or change constraints. The
general assumption is “first-created-and-saved, first-written.” You can
reorganize the sequence of the preferences, as explained below.

An LPF can contain any number of preferences and any number of comments
in any order. As your design process moves on, your LPF can become
lengthy and less organized. Although this might not be a problem to the
processing tools, it will get harder for you to manage and understand. Most
importantly, it will get more difficult for you to correlate your constraints with
the processing or analysis results. Here are some suggestions:

Create multiple sections, with each section covering one specific
requirement area. For example, specific areas might include pin
assignment, timing requirements, grouping, region assignments, IP-
related.

Each specific area can be further divided into small groups. For example,
for timing requirement, you might have groups such as clock-related,
multi-cycle, and input setup.

Use comments to organize each section or group with descriptive
information. You can use the pound sign (#) or double slashes (//) to start
a comment line.

Design Planning

Design Planning in Diamond

Avoid conflicting preferences. Usually this is not a problem for Diamond
(see Understand Precedence Rules for Preferences), but it could waste
your time when you are debugging your design.

Put less specific preferences in front of more specific preferences in the
LPF. For example, place global preferences before group preferences.
This not only improves the preference coverage, but also helps constrain
the items you really care about (see Understand Precedence Rules for
Preferences).

Understand Precedence Rules for Preferences
Observe the following general precedence rules when setting preferences:

Preferences defined in an LPF take precedence over attributes and
directives defined in the HDL code.

When IOBUF attributes exist in the .Ipf file and in the HDL for the same
port or port group, those in the .Ipf file will completely override those in the
HDL. Two exceptions to this rule are IO_TYPE and the placement
constraint LOC.

All IOBUF attributes that exist in the HDL will get overridden by the Map
process when the ALLPORTS attribute is used in the .Ipf file.

Preferences that are more specific take precedence over less specific
ones. For example, individual net or path preferences supersede group
(bus) preferences, and group preferences supersede global preferences.

Preferences defined later in the LPF take precedence over those defined
earlier, if these preferences are at the same level and are in conflict.

For timing preferences, different preferences have different precedence
order. See the Timing Closure chapter for more details.

To illustrate, suppose that the LPF contains the following preferences:

MAXDELAY NET W 10 NS;

MAXDELAY ALLNETS 30 NS;

DEFINE BUS B NET Y NET Z;
DEFINE BUS A NET Y NET X NET W;
MAXDELAY BUS B 20 NS;

MAXDELAY BUS A 25 NS;

MAXDELAY NET W 15 NS;

Net W gets 15 ns because this preference is more specific than BUS A or
ALLNETS, and it comes after the 10 ns preference. As a good practice,
you should remove the 10 ns preference.

Net X gets 25 ns because the BUS A preference is more specific than
ALLNETS.

Net Y gets 25 ns because the BUS A preference comes after the Bus B
preference. As a good practice, you should not assign net Y to two
different buses.

Net Z gets 20 ns because the BUS B preference is more specific than
ALLNETS.

All other nets get 30 nanoseconds.

Design Planning

Design Planning in Diamond

For more details and examples of precedence rules, see the “Preference
Conflict Resolution” section of Applying Design Constraints in the Diamond
online Help.

Design Planning Tools

Diamond provides various tools for design planning. You should fully utilize
the functions provided. These design-planning tools enable you to do the
following:

View the design elements, in logical or physical domain, that you can
manage

View the hardware resources that are available for the chosen device,
such as pins, sites, and slices

Assign design elements to FPGA resources
View and modify your assignments

Examine how the resources are planned to be used (your constraints) and
how the resources are actually used by your design (after PAR)

Identify any potential assignment problems, through the automated real-
time P10 DRC check or the on-demand PIO DRC

Cross probe between different views. Cross-probing is very helpful for
locating an assignment in different views and mapping logic elements to
their physical counterparts.

Drag and drop between certain views to define constraints

Design Data Loaded

All design-planning views work directly on one, some, or all of the following
types of design data:

Logical Preferences File (LPF) — This is where all of your constraints are
written to drive the MAP and PAR processes. All constraint changes are
written to this file, and whenever a change is saved, the flow is reset to
pre-MAP stage.

Design data, which includes the following:

NGD file — The NGD file is only available and valid after a successful
logic synthesis and translation process. This design data will be
loaded before and after MAP. This implies that all design-planning
tools are only available after a successful synthesis and translation
process.

NCD database — There are two types of NCD databases: a mapped
NCD and a placed and routed NCD. A successful MAP process
produces the mapped NCD data, while a successful PAR process
produces the placed and routed NCD data.

In Diamond, the mapped NCD is not loaded into the GUI. All design-
planning tools load the placed and routed NCD data after the PAR
processes finishes successfully.

Design Planning

Design Planning in Diamond

Design Views

Spreadsheet View

Spreadsheet View is a tabular format, multiple-sheet tool for viewing, creating
and editing design preferences in the logical domain. Spreadsheet View is the
primary tool for pin planning and most other design constraining tasks.
Spreadsheet View supports all preferences, including those editable in other
views. The following sheets are available in Spreadsheet View:

Pin and Port assignments for assigning pin locations and other attributes
such as 10 type (IO standard), slew rate, and drive

Related preferences include LOCATE, IOBUF, BANK, and PROHIBIT.

Note

In Diamond, all user inputs and outputs are called ports and are listed in
Spreadsheet View and Netlist View.

Clock Resource for applying primary and secondary clock resources to
clock domains in your design

Related preferences include USE PRIMARY (PURE/DCS), USE
SECONDARY, PROHIBIT PRIMARY, and PROHIBIT SECONDARY.

Route Priority for assigning a PRIORITIZE preference to a net or bus with
a weighted importance value (range from 0 to 100)

Cell Mapping for setting cell preferences of flip-flops in your design.
Related preferences include USE DIN and USE DOUT.

Global Preferences for setting preferences that affect the entire design.

Related preferences include BLOCK, USERCODE, SYSCONFIG,
SYSTEM_JITTER, TEMPERATURE, VOLTAGE, TRACEID, GSR_NET,

Timing Preferences for defining timing constraints, including BLOCK,
FREQUENCY, PERIOD, INPUT_SETUP, CLOCK_TO_OUTPUT,
MULTICYCLE, MAXDELAY, CLCKSKEWDIFF

Group for group definitions, including DEFINE GROUP and UGROUP

Miscellaneous Preferences for reserving resources, defining regions,
setting Vref locations

Preferences include PROHIBIT SITE, REGION, LOCATE VREF.

Spreadsheet View also provides the following useful features:
Built-in real time PIO DRC that immediately validates your 10 assignment

On-demand PIO DRC that validates your IO assignments and generates a
DRC report

SSO analysis, based on your |0 assignments

Pin migration display option that allows you to turn on or off the display of
incompatible pins for pin migration purposes

Ability to export pin assignments to a pin layout file and exchange the
assignment information with a third-party tool or PCB designers

Design Planning

Design Planning in Diamond

Ability to import a modified pin layout file and update with assignments
from an exported pin layout file

Ability to export a pinout file, which includes pinout information that is
usually available from the Lattice website

Ability to add custom columns to the Pin or Port Assignments sheet and
input user information related to a specific pin or port

Ability to include the custom column in an exported pin layout file

Ability to back annotate pin assignments produced by PAR to your LPF.

Note

The flow will be reset back to the pre-MAP stage if the back annotated
assignments are saved.

Figure 2 illustrates Spreadsheet View with a design loaded and with the Port
Assignment sheet activated.

Figure 2: Spreadsheet View Port Assignments Sheet

i Spreadsheet View i e ._ : 3 L :
Edit = Desig =l
B ¥mI
Type Name Grot].pby Pin Bank Bank _VCCIO Vref I0_TYPE PULLMODE DRIVE SLEWRATE CLAMP OPE ~ |8
1 2 AllPorts /A MNIA MNIA MNIA MNIA MNIA MIA
2 @ InputPort | data_ 2 MN/A /A MNIA LVCMOS25 DOWN MNA /A oM OFF|
me || 3 | # InputPort data 1 NIA /A /A LVCMOS25 DOWN MA /A oM OFF|
=l 4 B InputPort data 0 MN/A /A /A LVCMOS25 DOWN MNA /A oM OFF]
w || 5 E¥ Clockinput clk /A MNIA /A LVCMOS25 DOWN MA /A oM OFF! 3
6 &% InputPort clm MNIA MNIA /A LVCMOS25 DOWN MNA MNIA oM OFF]
7 | mputport |ena | NIVRE Auto A LVDS25 NONE NA NA OFF OFF,
t;g«. & & InputPort Id /A /A MNIA LVCMOS25 DOWN MNA MNIA oM OFF
[9 Output Port count 2 /A MN/A MN/A LVCMOS25 DOWN g SLOW OFF OFF —
~ |10 Output Port count_ 1 [/A MNIA /A LVCMOS25 DOWN 8 SLOW OFF OFF -
B — — I '
¥ Port Assignments Pin Assignments I Clock Resource I Route Priority I Cell Mapping Global Preferences Timing Preferences I Group I Misc Preferences

Architecture: MachX02 Device: LCMXO2-7000HC Package: CABGA256

i = R T

For more details about using Spreadsheet View, refer to “Using Diamond’s
Preference Views”->"Spreadsheet View” in the Applying Design Constraints
section of the Diamond online Help

For detailed descriptions of all preferences, refer to the “Preferences” section
of the Constraints Reference Guide in the Diamond online Help.

Package View

Package View, shown in Figure 3, displays the color-coded pin layout of the
selected device. It allows you to view, create, and modify pin location
assignments. The color-coded layout indicates the types of pins, banks and
other useful pin information.

Related preferences supported by Package View are LOCATE, PROHIBIT.

10 Design Planning

Design Planning in Diamond

Package View also provides the following features:
On-demand PIO DRC to check your pin assignments
SSO analysis

Display of incompatible pins for pin migration purpose

Figure 3: Package View

Package View llEI _EE |
I
Qaede
@ Bottom View : LCMXOZ-TOMHC-CABCAZSS -
.-.'rr,
(‘x: 16 15 14 13 12 11 10 & &8 7 &6 5 4 3 2 1
B PN]])) e e e e) e o [
B e i i = EE
N] = e) @)]) e = = = EEE
e | [OOOEESOO0OCCEa000
3 []] e e e] e) [=) e)
R S EEEEEEEEEEEE |
& =] =]l [[[] [o] e e e e =1l
o R] =] el o) o e)) e o o e) [l
| =z | 1 [DOOEEOEEEECOOOs I
| Y 1|] [[] [] It
(0T I]] e] e . e o)) e o] |
rot | QDD EEOOCDODEEEDDS g
oes |~ [O0OEEODE0EEE=EDDD |
R = = = = = = =) = = =] == e
S]] e e) o o o) e o e [) L
(B =]) =)] = = = E EE A
4 L 2

For details about using Package View, refer to “Using Diamond’s Preference
Views”-> “Package View” in the Applying Design Constraints section of the
Diamond online Help.

For detailed description of all preferences, refer to the “Preferences” section
of the Constraints Reference Guide in the Diamond online Help.

Device View

Device View, shown in Figure 4 lists the hardware resources available for the
chosen device. Based on the target device, the types of resources listed
include PIOs and IOLOGIC sites, banks, DCS blocks, PFF and PFU slices,
DQS, PCS, sysDSP, sysMEM, PLL/DLL and other embedded ASIC blocks.

Preferences supported by Device View include PROHIBIT.

Device View also provides the following feature:
On-demand PIO DRC, which generates a DRC report

Design Planning

11

Design Planning in Diamond

Figure 4: Device View

i} Device View
R A
File Edit View Design Window

% | 4al Find... W Filter...

Design
4 5. Device MachX02: LCMX02-7000HC-CABGA256
o APIO: 0
= DCC/DCS: &
=7 DQS:2
=7 10L: 336
= Others E Y
=7 PCS5Blocks: 0
=7 PFF Slices: 0
=7 PFU Slices: 3432
=7 PIO Cells: 336
=7 PLL/DLL: 2
= sysDSP Blocks: 0
=7 sysMEM Blocks: 26
& EBR_R13C1
B EBR_R13C10 i
& eer R13C13 -t

iii}

A

h V7 OV W W

For details about using Device View, refer to the “Using Diamond’s Preference
Views”> “Device View” in the Applying Design Constraints section of the
Diamond online Help.

For detailed descriptions of all preferences, refer to the “Preferences” section
of the Constraints Reference Guide in the Diamond online Help .

Netlist View

Netlist View lists all of the logic design elements from the NGD database. The
logic design elements are categorized and included in category trees of ports,
instances or nets.

In the ports tree, you can assign ports to pins, create port groups, and define
timing preferences. Related preferences include LOCATE, DEFINE GROUP,
INPUT_SETUP, CLOCK_TO_OUT, FREQUENCY, PERIOD, MULTICYCLE
and MAXDELAY.

In the instances tree, you can view logical instances in your design define
GROUPs, and create UGROUPs.

In the nets tree, you can define timing constraints such as PERIOD,
FREQUENCY and BLOCK preferences.

The images in Figure 5 show examples of Netlist View.
For details about using Netlist View, refer to “Using Diamond’s Preference

Views” > “Netlist View” in the Applying Design Constraints section of the
Diamond online Help.

12

Design Planning

Design Planning in Diamond

Figure 5: Netlist View — Port, Instances, and Nets Trees

£ Netlist View i = B Netist View =
File Edit View Wi Window Help E File Edit View Window Help E
. %< 20 "L, 42) Find... Filter... 0 g || % B "l | 48) And... | T Filer...
Ports i Instances Nets
4 il Design Name: pie_dre_1001 4 ik Design Name: pie_dre 1001 4 U Design Name: pio_dre 1001 HR | |
4 Ports 4 "L Nets: 17 1
4 Input |4 4 177 Register: 3 4 77 Clock |
» 51 Clock |15 3 tmp_count 0 "L clk_c |
cm i tmp_count 1 "l. COD J
data(2:0) H tmp_count 2 i " CO1
ena (114) =7 ASIC Block: 0 I "l VCC
Id i "L cm_c
@ Bidir *la clm_ci
] Output “La count_c 0
M £2:m 1 - e

For detailed description of all preferences, refer to the “Preferences” section
of the Constraints Reference Guide in the Diamond online Help.

Floorplan View

Floorplan View displays the hardware resource locations of the chosen
devices, including PIOs/IOLOGICs, sites and slices, and other types of
resources such as sysDSP, sysMEM, depending on the chosen device.

Floorplan View allows you to view, create and modify certain design-planning
constraints such as REGIONSs, bounding boxes for UGROUPs and clock
regions.

When PAR finishes successfully, you can also use Floorplan View to examine
how your design is actually placed on the chosen device in term of pin
assignments, slice utilization, etc. Floorplan View also supports the following
features:

On-demand PIO DRC, with a generated report

Back annotation to the LPF file of various assignments made by PAR,
including pins, syslO buffer configuration, sysMEM EBR, sysDSP, and
sysClock (PLL/DLL)

Access to Logic Block View after PAR, which displays the configuration
and utilization of device resources

The images in Figure 6 show examples of Floorplan View after PAR.

For details about using Floorplan View, refer to “Using Diamond’s Preference
Views->Floorplan View” in the Applying Design Constraints section of the
Diamond online Help..

For detailed descriptions of all preferences, refer to the “Preferences” section
of the Constraints Reference Guide in the Diamond online Help.

Logic Block View

Logic Block View is a read-only view that displays the logic details of any
placed and/or routed design component. Depending on the type of
component selected, the view displays a tabular or schematic format.

Logic Block View is accessible from Floorplan View, Physical View and NCD
View.

Design Planning

13

Design Planning in Diamond

Figure 6: Floorplan View

File Edit View Design Window Help

1R/ 8

Floorplan View R

EEIEER

=
|

EEEETI-FEIEEE]

CREEET)

(& Fioorplan View e
File Edit View Design Window Help =
= RA S
x . : .
) = = = — =
= m- .
ol 1 1 e
E ALUZ4_RIGCH ALUSL_RZCTE
AR— war o
- - . -
I
i

1

Other features supported by Logic Block View:

The ability to export a Logic Block View to a graphics file in a commonly
used format, such as BMP and PNG.

The ability to use equations to view a block’s implemented logic

The images in Figure 7 show examples of Logic Block View after PAR.

Figure 7: Logic Block Views

24 Logic Block View: uL jr_mid_ent/ul_jr_core_ent/u0_client_top_e...|

File View | Window | Help

aaq

scale: 0.556338

x,y:(606, 9318)

L8 ASIC View: ul_jr_mid_ent/u0_jr_core_ent/ul2_rot_ram_ent/wr_rot_ev/rr_lat 512x3_0_0_0 (8=]

m

File Window Help

Modes

i}

Properties “ || Site Pins PortNames Port Types *
|DATAWIDTH_A| 9 ofjcea cea power |=
DATA_WIDTH_B 9 OCEA OCEA power .

z CLKA signal

REGMODEA OUTREG WEA WEA ground
REGMODEE OUTREG CSAD CSAQ ground
CSDECODEA 0b000 CSAL CSAL ground
CSDECODE B 0b000 CsA2 C5A2 ground
WRITEMODE_A NORMAL RSTA RSTA signal
WRITEMODE_B NORMAL CEB CEB power
GSR DISABLED OCEB OCEE power
INITVAL 00 0»000000000000000000 | |Z CLKB signal |
INITVAL 01 0:000000000000000000 | |WEB WEB signal I
< i ») 4 . L3 i é

For details about using Logic Block View, refer to “Using Diamond’s
Preference Views > Logic Block View” in the Applying Design Constraints
section of the Diamond online Help .

14

Design Planning

Design Planning in Diamond

Figure 8: Physical View

ysical View

QFI\E Edit View Window Help

B e
{aaqa

i e EE0EE

scale: 0.00139301

x,y:(-160487, 125036)

Physical View

Physical View is a read-only view that displays the detailed layout of your
placed and routed design, including switch boxes and physical wire
connections.

Physical View enables you to view various device elements and examine how
your design was implemented by PAR. It also allows you to open Logic Block
View for selected components to view the detailed implementations.

You can export the contents of a displayed Physical View to a graphics file in
a commonly used format such as PNG and BMP.

The images in Figure 8 show examples of Physical View after PAR.

Window Help

v «

scale: 0.556314 %,y:(-37520, -10218)

For details about using Physical View, refer to “Using Diamond’s Preference
Views > Physical View” in the Applying Design Constraints section of the
Diamond online Help.

NCD View

NCD View is a post-PAR read-only view that provides an index of design
elements for the chosen device, as well as resources that are used by the
placed and routed design. All design elements are categorized in one of the
two design trees: nets and instances.

NCD View enables you to select assigned sites for defining a UGROUP and
takes you to Spreadsheet View for the definition. NCD View also allows you to
open Logic Block View for a selected element.

Figure 9 shows an example of NCD View after PAR.
For details about using NCD View, refer to Using Diamond’s Preference

Views > NCD View in the Applying Design Constraints section of the Diamond
online Help.

Design Planning

15

Design Planning in Diamond

Figure 9: NCD View

File View | Window | Help
= "L | 4] Find...|

Instances
4 i Design Name: jr_top_ent
4 7 Instances: 5572
» 0 10L:30
=7 PCSBlocks:0
> 0 PFF Slices: 5014
> 7 PFU Slices: 372
> 7 User PI: 110

4 7 PLL/DLL: 3
2E ul_jr_mid_ent/ul_jr_misc_ent/a_ccvr_clk_pll/PLLInst 0 @PLL_R35C70
$E ul_jr_mid_ent/ul_jr_misc_ent/b_xcvr_clk_pll/PLLInst 0 @PLL_RS3CT70
$E ul_jr_mid_ent/ul_jr_misc_ent/ref_clk_pll/PLLInst 0 @PLL_R53C5
7 sysDSP Blocks: 0
> 0 sysMEM Blocks: 32
> 0 Others

Cross-Probing between Views

Cross-probing between design-planning views allows you to cross-reference
a logical or physical design element or device element from one view to
another. It very helpful for understanding the resources available in the
chosen device, and it enables you to view, create, and define constraints,
map a logic element to its physical counterpart, and examine the resource
usage related to your design constraints.

When using the cross-probing feature, you can split or undock selected
design-planning views and place them side-by-side for better viewing.

The following examples describe some of the usages.

Pin/Port Cross Probing

To cross-probe a pin or port between different views, right-click a selected pin
or port, and then choose Show In from the context menu.

This is useful for finding out where an assigned pin is located on the device.
Figure 10 shows an example of the context menu in Spreadsheet View’s Port
Assignments sheet. From here, you can cross-probe to Package View, Device
View, Netlist View, NCD View (if after PAR) and Floorplan View.

Net Cross-Probing

Net cross-probing, which is available after PAR, enables you to cross-probe a
net between Netlist View, Floorplan View and Physical View. To cross-probe a
net between different views, select a net and choose Show In from the
context menu. The net will be highlighted automatically in the selected view.

Net cross-probing enables you to examine a net’s connections in Floorplan
View and Physical View, and it shows how a net travels through switch boxes
in Physical View. For example, in Netlist View, right-click a net, and choose
Show In from the context menu, as shown in Figure 11.

16

Design Planning

Design Planning in Diamond

Figure 10: Pin/Port Cross-Probing

Window Help

‘e? Spreadsheet View *

File Edit View Design
'_" = ‘\;: RE
Type Name Pin Bank Bank VCCIO Vref 1I0.TYPE [+
1 & AllPors MNiA | NIA MNIA | &
2 Clock Input clk 1 NIA LvDs25 | |
3 Input Port reset 5 1 LVDS25
4 i Input Port busa_3 |ﬁ- Clear Del SSTL1&_I
:"‘5 5 | @ Input Port busa_2 Show In » f P lz
6 & Input Port busa_1 . . |
[. Inentt Port N 0 Assign Pins... Heaceliiany “: -
o fnoutBodzs nsa Netlist View [
¥ | PortAssignments | Pin Assignments | Clock Resource | Route Priority i DL »

Clear user value for the selection and use default value

Figure 11: Cross-Probing from Netl

ist View

Floorplan View

= Netlist View =
File Edit View Window Help
! "la 4] Find... Filter...
MNets o
*la VCC_net
"La busa_c 0
"Lla busa_c_1
Set BLOCK Preference...
Set UGROUP Preference...
Show in H Floorplan View
. Physical View
Then you can cross-probe to Floorplan View or Physical View, as shown in
Figure 12.

Figure 12: Cross-Probing to Floorplan View and Physical View

Floorplan View -] Physical View
File Edit View Design Window Help = Bl bl ot
BT T QRAAR
=l | L 1 S S = =
RECZ1A -
59
outab_
busb_
outab_

RADZZ1D

e 5 -

scale: 0.0378861

Window Help

m

x%,y:(24837, -3417)

Design Planning

17

Design Planning in Diamond

Figure 13: Cross-Probing Instances from Netlist View to NCD View

T

Instance Cross-Probing

Instance cross-probing, which is available after PAR, enables you to cross-
probe an instance between Netlist View, Floorplan View, NCD View and
Physical View. To cross-probe an instance between different views, right-click
the instance and choose Show In from the context menu The instance will be
highlighted automatically in the selected view.

Cross-Probing Between Logical and Physical Domains
Instance cross-probing is very useful for matching element names between

logical and physical domains. Select an element in Netlist View and cross-
probe to NCD view, or vice versa.

Instance cross-probing also enables you to find out what logical elements
were packed into a slice or a group of slices. Select one or more slices in
NCD View and cross-probe to Netlist View. To find out where a logical
element was packaged into which slice, select the logical element in Netlist
View and cross-probe to NCD View, as illustrated in Figure 13.

= Neﬂist\l';lew. 625 NCD View e S

: : File View Window Help E
=0 "L 45 Find... T Filter..

| Instances Instances -

IE i1

4 7 PFU Slices: 4

e e
Set UGROUP Preference... J

{E SLICED @RIC2C
1E SLICE_1 @RIC21R

m

| Show in v Flootplan View IE SLICE 2 @R9C21D
PETPY 7 TGE AT Phvsical View i 1E SLICE 3 ®R10C21A
IE 2.3 ¥ =7 User PIO: 16
12_3 lut . = 0 User :
IE 2.3 lut d lut A =7 PLL/DLL: 0
IF i2.4 lut " sysDSP Blocks: 0 -

You can also cross-probe to Floorplan View or Physical View to locate the
instance on the device, and then open Logic Block View to examine the
details of the implementation.

For further information about supported cross-probing features, refer to
“Using Diamond’s Preference Views > Cross-Probing Between Views in the
Applying Design Constraints section of the Diamond online help.

Auto-Highlight
Logic Block View and Physical View support auto-highlighting between the

two views. To highlight an element, simply select it in one view and it will be
highlighted in the other view automatically, as shown in Figure 14.

18

Design Planning

Pin Planning

Figure 14: Auto-Highlighting in Logic Block View and Physical View

I8 Logic Block View: SLICE 3

S| [#] Physical View

Eile View Window Help

i, =) L

oty
EQU

e

E File Edit View Window Help E

.

scale: 0.444494 X,y (444, 9454)

Pin Planning

«) - |- ¢

scale: 1 %,¥:(29918, -10545)

Common Database

In general, all the design-planning views share the same common database,
such as LPF, NGD, or NCD, if they are relevant. Assignment changes in one
design view are loaded immediately into the other open related views, and
they will be loaded into other related views as soon as you open them.

If changes have been made but not saved, all relevant open and non-read-
only views will indicate this status with an asterisk in the title bar. Even when
all views are closed, the changes are still in the common database loaded in
memory. The changes will only be written into the LPF file when you use the
Save command.

Introduction

Pin planning is the process of defining your FPGA I/O protocols and locations
on the chosen device. It is based on your actual design and the chosen
device. In Diamond, the pin planning process involves the following tasks:

1. Assign your design ports to I/O locations on the chosen FPGA device.

2. Define the I/O protocol, (10 Standards, or IO TYPE in Diamond) and other
I/O characteristics, such as slew rate, based on your design requirements.

3. Check your assignments for legal usage of the target device’s pins.

4. Validate and review your constraints and the actual usage through the
MAP and PAR processes, and then refine the assignments.

5. Exchange your pin assignments with other parties, such as PCB
schematic and layout designers for system integration.

Design Planning

19

Pin Planning

6. Document your final assignments.

PIC, PIO, IOLOGIC and sysIO

A Lattice FPGA contains multiple programmable interface cells, or PICs. For
ECP3 devices, each PIC contains two programmable I/O cells, or PIO cells,

namely PIOA and PIOB. For different devices, each PIC may have different

number of PIO cells.

Note

Different devices might have different PIO characteristics. For detailed and accurate
technical specification of I/Os for each device, refer to the related device handbook,
datasheet, white papers and technical notes.

/0 Banks

The syslO buffers on a device, and PIOs connected to them, are arranged in
groups, or I/O banks. Different devices have different numbers of I/O banks
and might arrange 1/O banks differently on the device.

Usually a device provides a number of user |/O banks and, optionally,
configuration 1/0 banks. User I/O banks contain user I/Os (or user pins) for
your design’s input and output usage (in Diamond, your design’s inputs and
outputs are called ports). While the configuration 1/0 bank has dedicated and
shared package pins for configuration, these shared pins become available
as user I/Os when they are not used for configuration.

Each 1/0 bank has its own 1/O supply voltage (or VCCIO) through a dedicated
pin. In addition, user I/O banks usually provide voltage reference pins, also
called VREF pins. These pins are completely independent from each other. A
VREF pin is required for reference voltage in banks that contain 1/O
assignments of certain types, such as HSTL or SSTL.. If a reference voltage
is not required, you can use these VERF pins as regular user 1/Os.

Banking Scheme

Banking scheme refers to how 1/O banks are arranged on a specific device,
and it refers to each I/O bank’s characteristics and features. Different devices
usually have different banking schemes. Refer to the device’s documents for
complete information.

/10 TYPE

Different devices often support different 1/O types, and you should check the
devices documents for complete information. Commonly supported 1/O types
include:

Single ended: LVTTL 3.3V, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V
Single ended requiring VREF: SSTL and HSTL

20

Design Planning

Pin Planning

Differential: such as LVDS, BLVDS, LVPECL, MLVDS, RSDS, differential
SSTL, differential HSTL, etc.

True and Emulated LVDS 1/Os

Certain devices, such as LatticeECP3 devices, support both “true” LVDS 1/O
and “emulated” LVDS 1I/O. You can use both directly as LVDS inputs, and you
can use true LVDS I/O as LVDS outputs. If you use emulated LVDS I/O as
LVDS outputs, you need to pay additional attention and add external
termination resistors. See the technical note TN1177 “LatticeECP3 syslO
Usage Guide” for additional information.”

Dedicated Hardware Circuit Pins

SERDES/PCS

A SERDES, or serializer and deserializer, is an integrated circuit transceiver
that converts serial data to parallel data and parallel data to serial data. In
Diamond, PCS SERDES, or physical coding sub layer SERDES, is the same
as SERDES.

Certain high-end devices might include one or more dedicated on-chip
SERDES circuits, or channels. Each SERDES channel has its dedicated
transmit and receive pins as well as the clock pin.

PLL/DLL

Lattice FPGAs include dedicated PLL and/or DLL circuits on chip. These
circuits have their dedicated pins, which can be used as regular 1/Os if not
used for PLL/DLL purposes.

DQS

Some Lattice FPGAs include pins that are DQS-capable. DQS is a
bidirectional data strobe signal used by the DDR interface in an SDRAM for
high-speed operation. These pins can be used as regular I/Os as well.

Design Planning

21

http://www.latticesemi.com/documents/tn1177.pdf

Pin Planning

Preferences for Pin Planning

Table 1 lists all preferences related to pin planning. These preferences can be
defined in Diamond’s Spreadsheet View or by text editing the LPF file.

Table 1: Pin Planning Preferences

Type Name Purpose

BANK Set a bank’s VCCIO value; Only
compatible and unassigned ports
will be assigned to the bank by PAR
using the 1/O placer algorithm.

Locations

LOCATE VREF Assign a voltage reference to a
VREF pin.

PROHIBIT Prevent a pin from being assigned

by PAR.

IOBUF Set a port or a port group or all
ports’ I/O attributes such as
IO_TYPE, DRIVE, SLEWRATE.

1/0 Attributes

SYSCONFIG Defines system configuration
settings for sysCONFIG ports,

DEFINE Create a port group for group
Misc. GROUP assignment; for example, assign a
port group to a bank.

LOCATE Assign a port to a pin.

Example

BANK 2 VCCIO 2.5V;

LOCATE COMP “clk” SITE “Al”;

LOCATE VREF “vrefl bank3” SITE
“N21” IOTYPE “SSTL18 I”;

PROHIBIT SITE “Al”

IOBUF PORT clk IO _TYPE=LVTTL33
DRIVE=8;

SYSCONFIG CONFIG_MODE =
SLAVE SERIAL PERSISTENT = OFF
DONE_OD = ONj;

DEFINE PORT GROUP “mybus”
w a_2 72 a_l ”oow a_o "

Design Views for Pin Planning

The pin planning task involves various design views. Spreadsheet View is the
most commonly used editor for this task, because it covers all pin-related
preferences. Other views that can be used for pin planning are Package View,
Netlist View, Device View, and Floorplan View.

The following design view features can help you with pin planning:

Display of default values in Spreadsheet View

Default values are the default I/0 attributes used by Diamond when
values are not provided by the user. For example, if you do not define an I/
O Type for a port, Diamond uses the default “LVCOMS25” for most Lattice

devices.

By default, default values are shown in the Port Assignments sheet of
Spreadsheet View. You can use the View menu to turn the display of
default values on or off. Default values are show in the default blue color,
and you can change this by using the Tools > Options dialog box.

NGD and LPF locked value

22

Design Planning

Pin Planning

An NGD locked value is an 1/O attribute that has been defined in your HDL
code using Lattice Attributes or Directives (as explained in the sections
“Design Planning in the HDL” on page 4 and “Understand Precedence
Rules for Preferences” on page 7). The attribute is then carried over to the
NGD database after logic synthesis and translation.

An LPF locked value is an I/O attribute that was defined in the LPF file, or
that was defined using Diamond’s design views and tools and then saved
in the LPF file.

In Spreadsheet View, an NGD locked value is displayed in dark green by
default, and an LPF locked value is displayed in black.; You can use the
Tools > Options dialog box to change these default colors.

Display of differential pin pairs, banks, etc, in Package View.

Package View allows you to view pin locations and other information such
as differential pairs, banks, DQS group and SSO. You can turn the display
of these features on or turn off for easy planning.

Pin migration

Pin migration information in Spreadsheet View and Package View enables
you to examine pins that are incompatible between different devices of the
same package type and device family. This can assist you in making pin
assignment decisions. Large devices (with more LUTs) usually have more
user-assignable pins then small ones. If you need to migrate to a large or
small device in the future, this feature will help you avoid using
incompatible pins. See the section “Pin Assignment Exchange” on

page 30 for more details.

Pin Assignment

Pin assignment is an important aspect of design planning, especially for large
designs that use large amount of I/Os with complex I/O banking rules,
clocking, and special hardware features such as SERDES, and PLL.

General Considerations

You should consider various facts before making any pin assignments.
Assuming that the target device has been selected and that the available pins
are sufficient for your design, your considerations should include, but not be
limited to the following:

General 1/0 assignment, including pin locations (left, top, right, bottom,)
and distances to the driving/driven logic related to your floor plan, if there
is any

PCB board design and the surrounding components to which the FPGA
connects

Availability of general PIO features such as 10 Standards, banking rules,
clocking resource, dual function pins, and dedicated pins

Specific silicon features and related pins such as SERDES, PLL/DLL, if
applicable

Design Planning

23

Pin Planning

Common Practice
The general steps toward successful pin assignment include the following:

Make sure that all or most of your design 1/Os are defined at the front.
Complete design I/O definition helps foresee the big pin-planning picture,
and it will limit unnecessary replanning tasks and reduce core processing
iterations in the future.

Plan ahead with board designs to lock down approximate /O locations
based on the board layout. Use a Diamond pin layout file to exchange pin
assignment information.

If device migration needs to be considered for the future, use the Diamond
pin migration features provided in Spreadsheet View and Package View.

Pre-assign all the resource-dedicated pins such as clock, PLL, DDR, and
SERDES.

If possible, lock general-purpose I/Os to banks instead of specific pins.
This gives the MPAR engine the most flexibility in placing and optimizing
design logic.

Run PIO DRC in Spreadsheet View and Package View to identify any
potential issues as early as possible.

Optionally, use the I/O Assistant strategy for a quick 1/O validation.

Optionally, run 1/0O Timing Analysis, examine the 1/O timing report, and
make appropriate adjustments.

Optionally, back annotate pin assignments to the LPF as constraints for
driving MPAR when the design logic is complete.

Port-Centric Assignment

The port centric pin assignment approach is a method in which you first select
a port or a group of ports (your design’s inputs and/or outputs), and then you
complete one or both of the following tasks:

Task1: assign the ports to device pins

Task2: define port attributes, such as IO TYPE, bank location, slew rate,
and drive

The port-centric approach is recommended for Task2, defining port attribute,
because most of a design’s I/O features and attributes need to be defined
through ports. This can be accomplished in the Port Assignment sheet of
Spreadsheet View.

For details about using Spreadsheet View, refer to “Working with Preference
Sheets” in the Applying Design Constraints section of the Diamond online
Help.

For Task 1, to assign ports to device pins using the port-centric approach, you
can use Spreadsheet View and Netlist View. Simply select a port or a group of
ports, right-click, and choose Assign Pins from the context menu. This opens
the Assign Pins dialog box for assigning ports to pins.

24

Design Planning

Pin Planning

Handling Differential Ports
Diamond supports two methods for defining a differential port in your design:

1.

Directly instantiate a differential 1/0 buffer in your HDL code.

For example, ILVDS buffer. With this method, you need to define a
differential pair using two 1/Os in your HDL, and connect them to the
buffer. Spreadsheet View will then show the signal connected to the
positive pin of the buffer, and you will see that the I/O Type has been
assigned to the differential type automatically. The negative signal of the
pair will not be listed. The following VHDL example includes a port
definition (clk and clk_n in this case). It is illustrated in Spreadsheet View
in Figure 15 .

ILVDS INST: ILVDS port map (AN=>clk n, A=>clk, Z=>clk o);

Figure 15: 1/0 Type in Spreadsheet View

Spreadsheet View * T B |- B B
File Edit View Design Window Help E
o 1= :Q‘; "':- &;
s‘z_ Type 3 Name Group by Pin Bank Bank VCCIO Vref I0_TYPE PL
~@ 1 g= AllPorts MNIA NI NIA TNIA TNIA
2 Clock Input clk MNIA MNIA TNIA LvDs25 NE

This demonstrates that a pin assignment to a differential pair is made to
the positive port. A pin assignment to the negative port is not allowed; this
will be done automatically by the MAP and PAR processes. If you have a
negative port assignment to a pin in your LPF, it will be flagged as an error
and ignored by Diamond. In addition, if the positive port is assigned to a
pin and the negative complementary pin is occupied by another port, this
will be flagged as an error by PIO DRC.

Assign a differential 1/0 Type to the port listed in the Port Assignments
sheet of Spreadsheet View. The Port Assignment sheet lists all of the
design’s inputs and outputs that are defined in your HDL code (except the
negative port of a differential pair defined using an instance of a
differential buffer, as explained previously). If you need to define a port as
differential, assign a differential IO Type to the port in Spreadsheet View.

Pin-Centric Assignment

The pin-centric assignment approach is a method in which you first select a
pin, and then you assign the pin to an input or output port of your design. The
pin-centric approach only allows you to assign a selected pin to a port. To
define a pin’s characteristics, such as I/O Type, you need to assign the pin to
a port, and then define those characteristics for the port using the Port
Assignments sheet in Spreadsheet View, as explained in “Port-Centric
Assignment” on page 24.

Pin-centric assignments can be made in the Pin Assignment sheet in
Spreadsheet View.

Design Planning

25

Pin Planning

Other Pin Assignment Methods

Besides the port-centric and pin-centric approach, you can also use the
following methods to make or change a pin assignment:

In Package View, drag a pin (source pin) that has been assigned and drop
it to another assignable pin (target pin) to make a change. If the target pin
has not been assigned, the port assigned to the source pin will be
reassigned to the target pin, and the source pin will be released. If the
target pin has been assigned, a dialog box will open that enables you to
confirm the assignment swap or cancel the operation.

Drag a port from Netlist View and drop it to an assignable pin in Package
View, or drop it to a pin in the Pin Assignments sheet of Spreadsheet View

To remove a pin assignment in Package View or Netlist View, right-click
an assigned pin or port, and then select Unlock from the context menu. To
remove a pin assignment in Floorplan View, right-click the assigned site
and clear the Set Locate Preference selection from the context menu. To
remove a pin assignment in Spreadsheet View, right-click the assignment
and select Clear from the context menu. Note that the “Clear” command in
Spreadsheet View not only removes the pin assignment, but also clears
all other user-assigned attributes.

Dedicated Hardware Resource Pin Assignment

More advanced FPGA devices, such as the LatticeECP3, provide dedicated
hardware resources. For example, PLL, SERDES, and DDR2/DDR3
interface.

Dedicated hardware features are required to be locked down to certain
locations on the device. If you have not locked down the locations, usually
PAR will automatically assign the locations and generate a pinout file (the
PAD file). Because there are multiple dedicated hardware locations,
sometimes making these assignments can improve your design’s
performance.

For a dedicated hardware resource, instead of assigning its pins, you usually
assign the hardware resource instance to a dedicated resource location by
text editing the LPF file. For example, the following LOCATE preference
assigns a PLL instance to a PLL resource that is available on an ECP3
device:

LOCATE COMP “PLL 0/PLLInst 0” SITE “PLL_R35C70”;

The dedicated pins for this particular PLL resource will be used and assigned
automatically by PAR, according to this PLL resource assignment.

The example below shows how a PCS instance is assigned to a PCS
resource available on an ECP3 device:
LOCATE COMP "pcs_ inst name" SITE "PCSB";

Again, PAR will automatically assign this PCS resource’s pins to this PCS
instance.

26 Design Planning

Pin Planning

On the other hand, you are certainly allowed to specify pin locations for some
of the hardware resource instances, but special attention must be paid. For
example, LatticeECP3 devices have the following limitations for designs that
include DDR:

ECP3 devices do not provide DDR functions for the pins on the bottom
edge of the device, so you should not assign a DDR interface to the pins
on the bottom.

ECP3 devices do not allow 2x gearing ODDR on the top edge, so you
should not assign a DDR3 interface to the pins on the top.

Since different FPGA architectures have different hardware resources, you
should refer to the related datasheet, application note, or technical note for
details on how to assign these resources.

Identify hardware resources used in your design

The first step in assigning a hardware resource location is to find out which
hardware feature is used in your design. You can easily do this by viewing the
“ASIC Block” in Netlist View. In the sample design shown in Figure 16, a PLL
is used.

Figure 16: ASIC Block in Netlist View

-
= Netlist View

File Edit View Window Help E

@3] Find... T Filter...

Instances
4 ph Design Name: case?
7 Instances: 221
" Register: 0
4 7 ASIC Block:1
ZE i_my_pll/PLLInst 0

i_my_pll/PLLInst 0

To capture the instance name accurately, you can simply select the instance
in Netlist View and use the Ctrl+C keyboard shortcut. This will copy the
complete name, in this case “i_my_pll/PLLInst_0". Paste it into the LPF to
create a LOCATE preference.

Identify hardware resources available on the target device
The second step in assigning a hardware resource location is to find out the
available hardware resources on your chosen device, their identities, and
locations.

You can identify available hardware resources in Device View. The example in
Figure 17 shows that the target device has four PLLs built in.

You can use the cross-probing feature to view the locations of these PLLs on
the device, as shown in the Floorplan View image.

Design Planning

27

Pin Planning

Figure 17: PLL Resource in Device View and Floorplan View

1} Device View

Design

— S o
gy i o ——— @Elﬂ—hJ Floorplan View @M
et Do Helg | File Edit View Design Window Help =
A 4a] Find... Filter... = :1 .—. : —q}l - :\1 e H
e =l = I S S =
4 {} Device LatticeECP3: LFE3-35EA-FTBGA56 e ————
- =7 APIO: 18 [B
=7 DCC/DCS: 32 & | SR e
DS 21
7 10L: 328 .
=7 Others
T PCSBlocks: 1 L
=7 PFF Slices: 12360 /
=7 PFU Slices: 4272 |
= PIO Cells: 328 3 e b
= PLL/DLL:6 ;
T Clock Dividers
=7 DLLDELA
=7 PLLREFCS
M DLL_R35C15
i DLL_R35CE0
i PLL_R35C5
M PLLR35CT0 Prohibit
4 PLL_RS3CS
@ PLL_RS3CT0 R
7 sysDSP Blocks: 16 Showin » | Floorplan View | | AL —)

=

Physical View i

To capture the hardware resource name accurately, select it in Device View,
use the Ctrl+C keyboard to copy it, and then paste it into the LPF to create a
LOCATE preference.

Pin Migration

Often when you start pin planning, you want to consider the possibility of
retargeting your design to a device with larger or smaller capacity of the same
package and device family. There are various reasons for considering this.
You might want to reduce cost by choosing a small device, or you might want
to migrate to a large device for future function expansion. The pin
assignments, though, should stay the same or require minimum changes in
order to avoid PCB redesign.

Diamond provides a pin migration feature that allows you ensure the pin
assignment compatibility between different devices of the same package in
the same device family. This feature enables you to do the following:

View incompatible pins in Spreadsheet View and Package View
Disable incompatible pin assignment in both views

Prevent MAP and PAR from using incompatible pins by adding a
PROHIBIT preferences to those pins, using Spreadsheet View or
Package View

Export pin migration information to a Pin Layout File, a CSV-formatted file
that includes all package pins and their related usage information

For details about using the Diamond pin migration feature, refer to “Migrating
Pin Assignments” in the Applying Design Constraints section of the Diamond
online Help.

For more information about the pin layout file, refer to the section “Pin
Assignment Exchange” on page 30.

28

Design Planning

Pin Planning

PIO DRC

Diamond provides PIO design rule checking (DRC), which enables you to
validate 1/0 placements and attribute assignments.

PIO DRC works in two modes: real time check and on-demand check.
Real-time check

Real-time check is performed each time you make pin-related
assignments or modifications in the Port Assignments or Pin Assignments
sheets of Spreadsheet View. Any unconditional error will be rejected,
while a conditional error will be accepted but flagged. Appropriate error or
warning messages are displayed immediately in the Output window. An
unconditional error is caused by an illegal assignment, where the
assignment cannot be corrected by making any other related modification.
For example, if you assign a port to a non-existing pin or to a non-user pin
such as an NC (Not-Connect) pin, the error is unconditional.

A conditional error is caused by an assignment that makes the current
combination of a port’s attribute definitions illegal, but where the illegal
combination state can be corrected by making some other related
modifications. Most legal combination rules are defined in the Legal
Combination Table, which is predefined by the target device.

On-demand check

On-demand check is performed whenever you use the Preference PIO
DRC command. It is also performed automatically by Diamond when you
save your pin assignment changes. On-demand check covers most of the
same checks that are performed by real time check, but it looks at the
overall picture, examining all pin-related constraints for the chosen device,
and making sure that there are no conflicts or errors. For example, it will
catch an illegal mixing of VCCIO voltage requirements for a single bank.

You can run on-demand check from Spreadsheet View, Package View,
Floorplan View and Device View.

P10 DRC can catch many common errors and prevent wrong pin usage at the
early stage of the design process before you spend time running MAP and
PAR, whose runtimes are usually very long.

To tape out your final pin assignment, you should use the results from a
successful PAR, or use the I/O assistant strategy and flow, as explained in the
section 1/0 Assistant Strategy.

/0 Assistant Strategy

The 1/O Assistant strategy is a pre-defined strategy that allows you to run
through MAP and PAR quickly to place 1/Os and verify that your pin
constraints, if any are legal. When the PAR process finishes successfully
without any error or warning messages related to your pin assignments, the
final I/O placement is assumed to be legal, whether constrained by you or
auto-placed by the MAP and PAR processes.

Design Planning

29

Pin Planning

The 1/0 Assistant flow runs the logic synthesis, translation and MAP
processes normally. For PAR, it only runs I/O placement, which avoids the
long PAR runtime for placing and routing your whole design. When using the
I/O Assistant strategy, note that the final NCD file generated by PAR will be
incomplete and should not be used for generating the bit stream file or
exporting a JEDEC file.

To use 1/O assistant strategy, simply set it as the active strategy for an
implementation.

I/0 Assistant Strategy with Incomplete Design

The I/O Assistant strategy can be used with a design that is not fully
completed. This is very useful during the early pin planning process, where
you only need to define the top-level inputs and outputs; for example, the top-
level VHDL Entity only.

When using the 1/0O Assistant strategy with an incomplete design, you should
make sure that the top-level ports will not be “optimized” away by the logic
synthesis process. Where only top-level ports are defined, you should use the
appropriate synthesis attributes and head files. For detailed information, refer
to “I/O Assistant Design Entry” in the Diamond online Help.

Pin Assignment Exchange

Exchanging pin assignment information with a third-party person or a third-
party tool is a common practice in FPGA design. For example, you might
need to export your pin assignments to a file and hand it over to a board
designer for schematic capture or PCB layout. The board designer can then
modifies the pin assignments, update the file, and hand it back to you to
update the pin assignments in Diamond.

You can export a pin layout file in Diamond. A pin layout file is a text file that
contains all the pins of your target device and -- depending on the process
stage the pin usage information, such as port assignments and attributes
definition such as 10 Type and slew rate.

For detailed information about the pin layout file, refer to application note
AN8087, which is available on the Lattice website.

Export Final Pin Assignments

In typical usage, the final pin assignments are exported for the PCB design.
This is done after PAR has finished successfully. To export the final pin
assignments, open Spreadsheet View and choose File > Export > Pin
Layout File. The Pin Layout Export dialog box opens, as shown in Figure 18.

All the fields that can be exported are optional, and you can select those that
you want included in the pin layout file. You can also change the order in
which the fields are displayed, select the delimiter and specify a name for the

30

Design Planning

http://www.latticesemi.com/documents/AN8087.pdf

Pin Planning

Figure 18: Pin Layout Export Dialog Box
+ Export Pin Layout File el M1

Column Setting

[Al Columns

[¥] Pin_Number

[¥] Pad_MName

[¥] Function

[¥] 10_Bank_Mumber
] Trace_Length

B DIFF_Polarity

[] TvPE

[Signal_Mame

[¥] Direction

[¥] DIFF_Pair

[¥] 10_TYPE Up
[] PULLMODE
[7] DRIVE Daown
[] SLEWRATE
] cLamp

[] OPEMDRAIN
[] DIFFRESISTOR
[] DIFFDRIVE
[] BANK_VCCIO
[] HYSTERESIS
[] PCS_SERDES
[vref

[Vecio

[Pin Migration

Value Separator

@ Comma () Semicolon () Space () Tab

Export Default value

File Browse
File Name Browse

OK] [Cancel | [Help I

exported file. Note that all pins, including non-user pins such as NC pins, are
exported.

For PCB design purposes, you should at least include the following fields: pin
number, signal name, and direction.

You can also include any custom columns that were created in the Port
Assignment or Pin Assignment sheets of Spreadsheet View. Custom columns
are helpful for entering design-specific pin information. For example, you
could give all pins that would be on one schematic symbol the same value
under a custom column called “symbol.”

Import Pin Assignment Changes

PCB designers can make pin assignment changes directly to an exported Pin
Layout File. Certain PCB design tools, such as Mentor Graphics PADS, can
also export pin assignment to a CSV-formatted file. The changes can then be
imported into Diamond through the File > Import > Pin Layout File command,
which opens the dialog box shown in Figure 19.

When importing a modified pin layout file, make sure that the file header and
column names are not changed. The following example shows the header
and column names from an exported pin layout file.

Design Planning

31

Pin Planning

Figure 19: Import Pin Layout File Dialog Box

Import Pin Laycut File ? 2
Value Separator
@ Comma () Semicolon () Space) Tab
File Browse
File Mame
Il (o)1 l [Cancel l [Help]

#Pin Layout Report file generated by Lattice Diamond Version
1.4

#Generated at Mon Oct 31 15:03:17 2011

#DESIGN = diff d

#DEVICE = LCMX02-1200HC

#PACKAGE = TQFP144

#SPEEDGRADE = 6

Pin Number, Pad Name, Function, IO Bank Number,Signal Name,Directi
on

Similarly, when importing a CSV file exported by a third-party PCB design
tool, it is recommended that you include the header and column names in the
file, as shown in the example. At a minimum:

The column names should follow the naming convention used in the pin
layout file.

The Pin_Number and Signal_Name columns must be included in the file
in order for the pin assignment changes to be imported.

Examine the Final Pin Assignment

If PAR finishes successfully, you will have the final pinout of the design. There
are a few ways to examine the final pinout in Diamond:

In Spreadsheet View, select Display 10 Placement from the View menu.
This command displays the final pin placements in parentheses, as
illustrated in Figure 20.

Figure 20: 10 Placement in Spreadsheet View

‘;’:f Spreadsheet View o
Eile Edit Yiew Design Window Help
=¥
-@? Type Name Group by Pin Bank
o |t < All Ports MIA MNIA MNIA
#2112 B Clockinput clk MIA P2(PZ) B
me || 3 & Input Port Id1 MNIA M1y (6)
= 41--’9 Input Port [mz I ia (LS) (6)

32

Design Planning

Pin Planning

Figure 22: Pin Usage in

Similarly, in Package View, select Display 10 Placement from the View

menu to display the final pin placement, as shown in Figure 21.

Figure 21: 10 Placement in Package View

Package View

ek |

Eile

(%]

Wh

o]

o

Edit View Design

Window Help E

FEEEEEE

EOGITIE

| [| | |

] i o]

| ¥ || | & |0

|
|
|
J
!

- BEEEEE

Tl 3

The final pinout can also be viewed in NCD View, Floorplan View and
Physical View.

A PAD file is automatically generated after PAR. This file includes all the I/

O usage information, it can be viewed in Report View.

If you need to examine a specific pin’s usage, you can open Logic Block
View for the selected pin, as shown in Figure 22. Logic Block View of a
specific pin is available in NCD View, Floorplan View and Physical View.

Logic Block View

3}] Logic Block View: clk

File View Window Help

R Q
E] 10_TYPE
JU
o BLVCMOS525
2 Owemosi2
CILVCMOS15
EQU Owvcmosis
CILVCMOS33
[E Owvos25

Opwvos2s
OssTL15
OgsTLig |

OmiNLvDs
OVREF1_DRIVER
OVREF2_DRIVER

scale: 0.759366

ORrsDsE

ooooono

x,y:(51, 10009)

Design Planning

33

Clock Assignment

In addition, a final pinout can be exported to a pin layout file for
documentation purposes.

Clock Assignment

Lattice FPGAs have dedicated clock resources that are optimized for fast
clocking and have minimum skews. The use of dedicated clock resources
helps avoid timing or other issues, and it frees general routing resources for
other design purposes.

Clock Resources

Depending on the target device, Lattice FPGAs provide one, some, or all of
the following types of clock resources:

Primary clock resources -- These are the global clocks with dedicated
routing resources distributed across the whole chip. Primary clock
resources are also quadrant-based.

Secondary clock resources -- These are flexible clock resources and are
optimized for large fan-outs and minimum skew. The secondary clock can
be used as a clock, a clock enable, or a set/reset that requires large fan-
outs.

Edge clock resources -- These clocks span through part or all of the 1/0
rings on the left, right, top or bottom side of a device. Edge clock
resources have low injection time and skew, and they are used to clock I/
O registers. Edge clocks are designed for high-speed I/O interfaces with
high fanout capability. They can directly drive the secondary clock
resources and general routing resources, and they might drive the primary
clock resources through other blocks such as CLKDIV.

Quadrant clocks -- A primary clock can be split into four quadrant clocks.
A quadrant clock can be used as a clock residing in the quadrant on the
device. Each quadrant clock can be independent from other quadrant
clocks or tied to other quadrant clocks in the adjacent quadrants. Some
quadrant clocks also provide the Dynamic Clock Selection (DCS) feature.

Secondary region clocks -- These are clocks that are optimized locally for
local regions where secondary region clocks operate. Using a region
clock can minimize the clock skew in the region.

In addition to these clock resources, Lattice FPGAs can also include clock
input pins, PLLs, DLLs, DCSs, and clock dividers.

Some Lattice FPGAs support the use of general routing resources for clocks.
General routing resources are optimized for data routing and will not have the
same performance and low skew as the dedicated clocking resources, so
they are not recommended for routing clocks.

For detailed information about the clock resources available in your chosen
device, refer to the related sysCLOCK design guide, application note, or
technical note.

34 Design Planning

Clock Assignment

Using Clock Resources

General Considerations

When doing clock planning, speed (or clock frequency) and clock fan-out
loads are the main concerns. An FPGA’s total number of available clock
resources is also a deciding factor.

To ensure a successful clock assignment, you need to understand the
requirements and clock resources available. Consider the following numbers
before clock planning:

The total number of clocks required for your design and the number of
loads for each clock

One way to find out these two numbers is to examine the Design
Information section of the MAP report. For example:

Design Information

Number of clocks: 2

Net clkok c: 17 loads, 17 rising, 0 falling (Driver:
i my pll/PLLInst 0)

Net clkop c: 17 loads, 17 rising, 0 falling (Driver:
i my pll/PLLInst 0)

The total number of clock resources available from the target device

The frequency requirement for each clock

When there is no user preference, the engine uses clock loads as the criteria
for automatic clock resource assignment. This behavior can be overwritten by
user constraints. Consider the following when defining clock constraints:

In general, use the primary clock resource for the clock that runs at the
highest speed and/or has the highest fan-outs.

When more primary clock resources are required than are available on
the target device, consider using a quadrant clock if the fanout and the
placement of these clock resources are practicable. This might require a
few processing iterations to yield an optimal quadrant clock assignment.
Note that using quadrant clocks will effectively constrain the placement of
certain sequential elements driven by the quadrant clock, which can
stress the placement and routing. Therefore, it could affect the timing
result of your design, especially with the cross-domain elements that are
related to the clock.

If more secondary clocks resources are required than are available on the
target device, consider using secondary region clock resources. Consider
that the secondary regional clock resources differ between different
devices. For some device families, the secondary regional clock is
unavailable or not fully supported. Make sure that you understand your
target device’s capability.

Design Planning

35

Clock Assignment

Use edge clock resources for high speed I/O interfaces. Also, if CLKDIV is
used in your design, it should be driven by an edge clock to ensure a
synchronous transfer in the 1/O logic.

Dedicated Clock Resources vs. General Routing

Resources

In rare cases, you might use the general routing resources for a clock; for
example, for a very small clock domain. Because general routing requires a
large number of connections to allow flexible data routing, these connections
will increase the skew if they are implemented for clocks. For this reason, the
general routing should only be used if the number of clock loads is very
limited.

The dedicated resources, in general, give better timing results because of the
minimized skew. They also ease the routing congestions for highly congested
designs.

The timing-driven engine yields optimized results based on timing
preferences such as FREQUENCY, INPUT_SETUP, CLOCK_TO_OUT and
MAXDELAY. During the PAR process, the engine optimizes the results, based
on the setup requirement using the worst-case scenario. After the design is
placed and routed, you should perform hold analysis, especially if there are
many clock domains in your design and even if a setup time score of 0 has
been reached and reported by PAR. Hold analysis uses the best-case
scenario to ensure that there are no hold time violations. When you have
many clocks that are routed through the general routing resources, your
design is more likely to have hold violations compared with cases where the
dedicated clock resources are used.

Other Considerations

Using a Primary Clock Resource

When using a primary clock resource for a clock input of your design, you
should decide how to reach the clock network through the available dedicated
resource.

If a clock in your design goes directly into the chip, you should assign this
clock to a dedicated clock pin that can drive the clock network directly.

If the clock goes to the input of a PLL and the output of the PLL is intended to

drive the clock network, you should assign the clock to a pin that can directly

drive the PLL’s input and make sure that the output of the PLL drives the clock
network. You should also use the LOCATE preference to assign the PLL to a

specific PLL resource close to the clock pin. This is helpful for the overall chip-
level timing, because the clock delays are minimized.

36

Design Planning

Clock Assignment

Primary Pure and Primary DCS

In some Lattice FPGAs, such as LatticeECP3 devices, some primary clock
networks provide the Dynamic Clock Selection (DCS) feature. To use the
primary clock networks with the DCS feature, you can specify USE PRIMARY
DCS for the clock net in your design. Otherwise, specify USE PRIMARY
PURE for the clock net. You can do this in the Clock Resource sheet of
Spreadsheet View, as shown in Figure 23.

Figure 23: Dynamic Clock Selection (DCS)

% Spreadsheet View *

Edit View Design Window Help

File

Clock Type Clock Name Selection Quadrant DCS/Pure

1 |Clock Net {cK133_keep |Primary

Clock Net CK38A_c Primary GLis
Clock Met CK38B_c Primary

Clock Met CKEE_keep Primary
Clock Met CK_155_keep Primary
Clock Net CK_38A_N MNIA NIA

¥ | Port Assignments Pin Assignments Clock Resource Route Priority I Cell Mapping Global Pret
Architecture: LatticeECP3 Device: LFE3-T0EA Package: FPEGA484

Routed Clock

A routed clock is a clock that is “routed,” which means that it does not use a
dedicated clock pin or PLL to drive the clock network. A routed clock can be a
clock input that is assigned to a non-clock dedicated pin, or it can be a derived
or gated clock that is internally generated.

When using a routed clock, make sure that you minimize the distance to the
clock network from the input pin assigned to the clock or from the clock-
generating source. You can do this by locating the clock to the pin, or by
locating the internal clock-generating component to the place that is closer to
the entry of the clock network.

Secondary Regional Clock Resources

The PAR engine does not automatically assign secondary regional clocks.
You need to assign a clock to the region clock using a preference. After the
regional clock is assigned, the engine will honor the assignment.

When you use a secondary region clock, the placement done by PAR will be
stressed. Therefore, you should examine the PAR results to ensure not only
that the clock result is desirable, but also that the secondary regional clock
does not skew the overall timing of your design.

Clock Resource Assignments in
Diamond

Clock resources can be assigned in Spreadsheet View, as shown in the
following image.

Design Planning

37

Timing Constraints

Figure 24: Clock Resources in Spreadsheet View

i Spreadsheet View "A’g e |ﬂ%‘
File Edit View Design | Window | Help E
H =2 ¥ __'-1-i g
d:- 'Clock Type 'Clock MName | Selection Quadrant DCS/Pure
¢ Itlciock et fokic | Primary . Pure
|2 Clock Met clk2_c Primary DCs
e [z cemLsr et rst_c Secondary .
g: Port Assignments | Pin Assignments | Clock Resource | Route Priority | cell Mapping Global Preferences | Timing J'HI
Architecture: LatticeECP3 Device: LFE3-35EA Package: FTBGA2S6 :

The table is automatically populated with the clock nets and sets/resets
available in your design. Here you can specify whether a clock net should be
primary or secondary, and select the quadrant (and location) and DCS/PURE.
These will be saved to the LPF.

Timing Constraints

Diamond’s design planning views allow you to specify timing constraints, such
as FREQUENCY, INPUT_SETUP, CLOCK_TO_OUTPUT, MULTICYCLE, and
MAXDELAY. These preferences are usually set in Spreadsheet View, but you
can define certain preferences in other views as well, as explained in the
section “Design Views” on page 9.

Defining timing constraints is a very important aspect of the design planning
process. For detailed information, refer to the Timing Closure chapter.

Floorplanning

Introduction

Floorplanning Definition

Floorplanning is the logical partitioning of design elements, which results in a
change in the design’s physical placement or implementation. Floorplanning
is accomplished by specifying FPGA location preferences.

With Lattice Semiconductor FPGAs, floorplanning is an optional method for
improving the performance and density of a fully and automatically placed and
routed design. Floorplanning is particularly useful in structured designs and
data path logic. Design floorplanning is very powerful and provides a
combination of automation and user control for design reuse and modular,
hierarchical, and incremental design flows.

38 Design Planning

Floorplanning

Hardware Resources

General Hardware Resources

PFU and PFF

A PFU, a programmable function unit, is a block within Lattice FPGA devices
that implements combinatorial logic, memory and registers. You can use
PFUs for combinatorial logic, distributed RAM or distributed ROM. A PFU
includes 4 SLICEs. Figure 25 shows eight PFUs within a LatticeECP3 device
in Floorplan View.

Figure 25: Programmable Function Units in Floorplan View

Floorplan View * - — =R = %
= O o
o o e -] -]
-
My
sl R RE Rin (=5
= = =
R [R [
[Rice Rane Ricse
=3
RICH I RED] RICD] I L=
mce R [[
[mcn o [
[mice rie [
¥ |4 4

A PFF, a programmable function unit fast, is a PFU without RAM.

SLICE

A SLICE is an architectural element within an FPGA that consists of two LUT4
lookup tables. The LUT4s feed two registers (programmed to be in FF or latch
mode) and some associated logic that allows the LUTs to be combined to
perform functions such as LUT5, LUT6, LUT7, and LUT8. A SLICE also
includes control logic for performing set/reset functions (programmable as
synchronous/ asynchronous), clock select, chip select, and wider RAM/ROM
functions. The registers in a SLICE can be configured for positive or negative
and edge or level clocks. There are four interconnected SLICEs per PFU
block. Each SLICE in a PFU is capable of four modes of operation: logic,
ripple, RAM, and ROM. Each SLICE in the PFF is capable of all modes
except RAM.

Dedicated Hardware Resources

Certain Lattice FPGA families include dedicated hardware resources, such as
DSP blocks, embedded block RAMs, PLLs, and SERDES. These resources
are located at specific places on the device. For detailed information about
these resources and their dedicated locations on your target device, refer to
the related datasheet, application note or technical note.

Design Planning

39

Floorplanning

When to Use Floorplanning

Floorplanning methods are for users who require some degree of
handcrafting of their designs. It is important to understand both the details of
the device architectures and the ways that floorplanning can be used to refine
a design. Successful floorplanning is an iterative process, and it can take time
to develop a floorplan that outperforms an automatically processed design.
Because of the nature of floorplanning and its interaction with the automatic
MAP and PAR processes, there are several prerequisites for successful
floorplanning:

Detailed knowledge of the specific characteristics of the target
architecture and device

Detailed knowledge of the specific characteristics of the design being
implemented

A willingness to iterate a floor plan to achieve the desired results

Realistic performance and density goals

For Lattice Semiconductor FPGAs, the general rule of thumb is that floor
planning should be considered when the desired performance cannot be met
and when routing delays account for over 60 percent of the critical path
delays. This can be a problem with large designs in high-density FPGAs
because of the possibilities of long-distance routes. As programmable logic
design densities continue to escalate, traditional design flow -- from design
entry to synthesis to placement and routing-- sometimes does not yield
predictable, timely, and optimized results.

Note

Path delays in programmable devices are made up of two parts: logical delays and

routing delays. Logical delays in this context are delays through components, such as
a PFU, a PIO, and a SLICE; or through an embedded function, such as a block RAM,
PLL, or FPSC ASIC. The routing delay is the interconnect delay between components.

Properly applied, design floorplanning not only preserves but also improves
design performance. You can use floorplanning to place modules, entities, or
any group of logic into regions in a device’s floorplan. Because floorplanning
assignments can be hierarchical, you can have more control over the
placement and performance of modules and groups of modules. For example,
the following PAR report shows a path’s detail with over 80% routing delay.
Floorplanning might be able to bring the registers closer:

Logical Details: Cell type Pin type Cell name (clock net +/-
)

Source: FF Q ibuf/reg_init start (from clk ib+)

Destination: FF Data in ibuf/sd/reg new_state (to clk ib +)
Delay: 8.062ns (18.2% logic, 81.8% route), 2 logic levels.

Floor planning is not needed for the following example because the routing is
efficient:

Logical Details: Cell type Pin type Cell name (clock net +/-
)

Source: FF Q mem if tx address 8 (from clk c +)

Destination: FF Data in mem if tx address 17 (to clk _c +)

40

Design Planning

Floorplanning

Delay: 7.358ns (61.2% logic, 38.8% route), 4 logic levels.

In addition to floorplanning hierarchical blocks, such as a group consisting of
an entire VHDL entity or Verilog module, you can floorplan individual nodes.
For example, you can instantiate a library element for a function in the critical
path and then group the library element. This technique is useful if the critical
path spans multiple design blocks.

Note that although floorplanning can increase performance, it might also
degrade performance if it is not applied correctly within software limitations.

Floorplan to Preserve Module Performance

Floorplanning with design preferences maintains design performance by
grouping the placement of nodes in a device, which ensures that the relative
placement of logic within a grouped region remains constant. The Diamond
software then places the grouped region into the top-level design with these
preferences. When placing logic in a region, the Diamond software does not
preserve the routing information. This approach provides more flexibility when
the software imports the region into the top-level design, and it helps fitting.

Floorplanning Preferences

Floor planning preferences, such as logic groups and regions, can be set in
the HDL code using HDL attributes, set in the LPF using Diamond design
planning views, or set through a combination of both methods.

The Diamond design planning views such as Spreadsheet View, and
Floorplan View, can be very useful for establishing floorplan preferences such
as logical groups, regions, and device site assignments. It is a common
practice, in timing closure tasks, to iterate between these views and the PAR
process to arrive at a superior implementation.

The Diamond software supports a logic grouping mechanism that enables you
to direct the placement algorithm of the PAR program to pack logic elements
in proximity to each other and, optionally, to place them within a particular
region of the FPGA array.

Using HDL Attributes and Directives

Two main floorplanning group attributes are available in the HDL:
HGROUP (hierarchical group)

An HGROUP’s logical identifier is prepended with text that describes the
identifier’s hierarchy. During the MAP process, the HGROUP is expanded
into individual placement groups (PGROUPSs) in terms of physical
components (SLICEs, for example) for the placement and routing
process.

UGROUP (universal group).

Design Planning

41

Floorplanning

Top level
of hierarchy

Second level
of hierarchy

Third level
of hierarchy

—
—
—

Prepending the hierarchy on the block instance identifier does not change
a UGROUP’s logical identifier. In other words, an HGROUP enforces strict
hierarchical control, but a UGROUP allows for a grouping of blocks in
different hierarchies or a grouping of blocks with no hierarchy at all. During
the MAP process, the UGROUP is translated into individual placement
groups (PGROUPs)

The HGROUP attribute can be placed on multiple instantiations of modules—
for example, VHDL generate statements—and each instantiation has its own
HGROUP. A UGROUP does not work in this case.

HGROUP

In the following diagram, the thin arrows represent control and data paths
where there is interaction between different levels of hierarchy. The thick
arrow represents the critical path where the design fails to make performance.

TOP

l
CONTROLLER REGISTER_FILE
r'y -~

Y | I v A,
COUNTER A— STATE_MACHINE

critical
path

The diagram illustrates a design hierarchy where the failing paths are the
connections between COUNTER and STATE_MACHINE design blocks. The
easiest implementation for this example is to HGROUP the CONTROLLER,
which is the module in which the COUNTER and STATE_MACHINE are
instantiated.

For example, the synthesis attribute is used in the Verilog code:

module CONTROLLER (<port lists>) /* synthesis
hgroup="CONTROL_ GROUP” *x/;

In VHDL:

attribute HGROUP of struct: architecture is "
CONTROL_GROUP" ;

The COUNTER and STATE_MACHINE will be grouped in the FPGA inside a
bounding box.

Diamond automatically expands HGROUPs into UGROUPs and presents the
UGROUPs in the Group sheet of Spreadsheet View. If you modify them and
save the changes, they will be written to the LPF and take precedence over
those defined in the HDL.

42

Design Planning

Floorplanning

Top level
of hierarchy

Second level
of hierarchy

Third level
of hierarchy

—
—

—

Now assume that the COUNTER is mapped into PFU_0 and PFU_1 and that
the STATE_MACHINE is mapped into PFU_2. The resulting group generated
by MAP and written to the PRF will be the following PGROUP:

PGROUP “TOP/CONTROLLER/CONTROL_ GROUP”
COMP “PFU_0"

COMP “PFU_ 1"

COMP “PFU_2";

Notice that the TOP hierarchy is prepended to the PGROUP CONTROLLER

_GROUP.

UGROUP

The following diagram shows an example design hierarchy where the failing
paths are the connections between the REGISTER_FILE and
STATE_MACHINE modules.

TOP

CONTROLLER REGISTER_FILE

F 9 Y
critical
path
A4 v

STATE_MACHINE

h 4

Fy
v

COUNTER

The simplest solution is to UGROUP the REGISTER_FILE and
STATE_MACHINE together. For example, use the synthesis attributes in the
Verilog code:

module REGISTER FILE (<port list>) /*synthesis
ugroup="CRITICAL GROUP” */;

and

module STATE MACHINE (<port list>) /*synthesis
ugroup="CRITICAL GROUP” */;

The REGISTER_FILE and STATE_MACHINE will be grouped in the FPGA
inside a default boundary box.

Diamond automatically presents HDL-defined UGROUPs in the Group sheet
of Spreadsheet View. If you modify them and save the changes, they will be
written to the LPF and take precedence over those defined in the HDL.

Now assume that the REGISTER _FILE is mapped into PFU_4 and PFU_5
and that the STATE_MACHINE is mapped into PFU_3. The resulting group
generated by MAP and written to the PRF will be the following PGROUP:

Design Planning

43

Floorplanning

PGROUP “CRITICAL_ GROUP”
COMP “PFU_3”

COMP “PFU_ 4"

COMP “PFU_5";

Note that the TOP hierarchy is not appended to the PGROUP identifier
CRITICAL_GROUP.

If HGROUP attributes instead of UGROUP attributes had been used, as in the
following example:

module REGISTER FILE (<port lists>) /*synthesis
hgroup="CRITICAL_ GROUP” */;

and

module STATE MACHINE (<port list>) /*synthesis
hgroup="CRITICAL_ GROUP” */;

The resulting groups generated by MAP and written to the PRF would be the
following PGROUP:

PGROUP “TOP/CONTROLLER/STATE MACHINE/CRITICAL GROUP”
COMP “PFU_3"

PGROUP “TOP/REGISTER FILE/CRITICAL GROUP”

COMP “PFU_ 4"

COMP “PFU_5";

If HGROUP attributes were used, the STATE_MACHINE module would be
grouped together in one bounding box, and the REGISTER_FILE module
would be grouped together separately in another bounding box. The critical
path shown would not be optimized.

Using Design Planning Views

Diamond’s design planning views, such as Spreadsheet View, Netlist View,
and NCD View, allow you to graphically view and modify any group
preferences that were set in the HDL and to create additional UGROUPs from
design components in the logical domain. In addition, you can assign a
defined UGROUP to a REGION and view the resources such as LUTs, REGs
and EBRs in the assigned REGION.

For detailed information about using these views to assign UGROUPs, refer
to the Diamond online Help.

Floorplan preferences set from within the HDL or Diamond design planning
views are validated and translated by MAP into physical preferences in terms
of post-map physical components. Both HGROUPs and UGROUPs refer to
logical block references that you can easily recognize from the HDL source.
MAP produces the native physical database (NCD) and converts UGROUPs
into placement groups (PGROUPSs), which refer to post-map physical
components of the NCD file.

44

Design Planning

Floorplanning

Netlist View and UGROUPs

In Netlist View, logical components can be combined into UGROUPSs. Netlist
View also displays individual UGROUPs that were expanded from HGROUPs
in the HDL. Modified or newly created UGROUPSs are written to the LPF with
the Save command.

Floorplan View and UGROUPs

You can view and edit UGROUPs and regions in Floorplan View. You can also
draw new regions in Floorplan View. This feature is especially useful for
reserving areas of the floorplan for other modules.

NCD View and UGROUP

You can use NCD View to select slices for a UGROUP. NCD View is only
available after PAR and lists your design elements in the physical domain
using SLICEs, etc. When several SLICEs are selected to create a UGROUP,
all of the instances that are packed into the selected SLICEs are included in
the UGROUP, and the logical domain names of these instances are used.

Saving Preferences

Design changes made in the graphical design views are written to the LPF
when the design is saved. HGROUP and UGROUP attributes from the HDL
are not written to the LPF until they are modified, after which the LPF
preferences take precedence. When the LPF is saved, the flow is reset to the
pre-MAP stage.

Handling UGROUP Conflicts

Multiple definitions of the same group name can sometimes appear in the
LPF file because of changes in the design or semantic errors. This is
problematic, and should be handled carefully. See “Recommendations for
Creating and Editing the LPF” on page 5.

When Diamond encounters UGROUP conflicts in the LPF, it produces
warnings and processes the groups using the following rules:

Only one group definition is recognized for each UGROUP name. When
two UGROUPs with the same name appear in the LPF file, only the first
one is recognized.

UGROUPs cannot share the same members. When two UGROUPs with
different names include some of the same elements, only non-conflicting
elements are assigned to each group. When each group contains identical
members, the first group is ignored.

Assigning Locations
You can assign a location to a design element or a UGROUP in Diamond’s

design planning views, or you can set a LOCATE preference by editing the
LPF directly.

Design Planning

45

Floorplanning

Assigning a Design Element to a Device Site

The simplest floorplanning technique in Diamond is to anchor a logic design
element or block to a particular device site, using the LOCATE preference.
Logic design elements can be anchored independently of a group/region floor
plan. The most common type of logic design elements to assign is a PIO (see
“Pin Planning” on page 19).

The following procedure describes how to assign a logic design element to a
device site.

Using HDL Attributes and Directives

If you intend to floorplan logic design elements that will be mapped to SLICE,
you must add the “COMP” HDL attribute to each module instance in the HDL
source, as shown in the following Verilog sample:

REG2 REG2inst (<port list>) /* synthesis COMP=regpair */;

During the floorplanning steps that follow, you reference the “regpair” to
assign it to a specific device site. For example, the LPF uses the following
LOCATE preference to assign it to the SLICE R68C2D:

LOCATE COMP '"regpair" SITE "R68C2D";

In this sample, the COMP name “regpair” is applied by MAP to all elements
that can be covered by a single slice. If the logic overflows a single slice, MAP
appends a .<number> to the name for the post-map netlist.

Using Diamond’s Design Planning Views

Design elements such as PIO, EBR, DSP, PLL/DLL, and MACO blocks do not
require the COMP attribute in HDL, because MAP retains the original name
used in the native generic database (NGD).

You can use the Diamond’s design planning views to assign one or more of
these types of instances to device sites. PIOs are typically assigned in
Package View or Spreadsheet View. Embedded blocks such as EBR and
DSP blocks are typically assigned in Floorplan View. Each device element
can be selected and assigned to a specific device site by dragging it from
Netlist View and dropping into Floorplan View. The result of the action is a
LOCATE COMP preference in the LPF file. For example:

LOCATE COMP "FIFOinst/FIFOeab/syn dpram 512x8" SITE
"EBR_R23C5";

Note

SLICE type device elements must be named with the COMP attribute, as described in
Using HDL Attributes and Directives above.

Regional UGROUP

A regional UGROUP is a group that is assigned to a region. To specify a
regional UGROUP, you use the LOCATE UGROUP preference and assign
the UGROUP to a predefined REGION. REGION defines a rectangular area
within which a UGROUP can float, meaning that the UGROUP can be placed
anywhere within the specified region.

46

Design Planning

Floorplanning

Regional UGROUPs have the following characteristics:
The region area is defined with a REGION preference.
The region’s northwestern site defines its anchor point.
The UGROUP is located to float within the defined region area.
No anchor point is defined for the UGROUP.
A bounding box (BBOX) defines the size of the UGROUP.

Components are located relatively in the BBOX definition.

The following example places the UGROUP “ugroup1” within the REGION
“region1”:
REGION "regionl" "R3C3D" 10 10 DEVSIZE;

UGROUP "ugroupl" BBOX 6 6 DEVSIZE;
LOCATE UGROUP “ugroupl" REGION "regionl";

The REGION “region1” is a fixed rectangular area between “R3C3D” and
“R12C12” with the size of 10 rows and 10 columns of contiguous device area
(DEVSIZE). The UGROUP “ugroup1” has a bounding box of 6 rows and 6
columns. Since the region size is larger than the BBOX of the group, the
group can “float” inside the region and can be placed anywhere in the region,
as illustrated in Figure 26.

Figure 26: PGROUP Within a REGION

REGION Northwestem site REGION <width>
yd

R2
R3

RS
RE

R7
R&
R9
R10
RrR11
R12
R13
R14

. REGION <height>

PGROUP

C2 C3 C4 C5C6 C7T C8 C3 C10C11C12C13C14C15C16C1T7

Design Planning

47

Floorplanning

Anchored UGROUP

An anchored UGROUP refers to a logical group that is affixed to a certain row
and column site or anchor point. This fixed site or anchor point is defined at a
specific slice site or PFU device site by a hard LOCATE preference.
Placement of the UGROUP elements is restricted to the dimension of a
bounding box (BBOX).

An anchored UGROUP has the following characteristics:

It is hard located on the device with the LOCATE preference.

Itis located at a slice site by means of an anchor point at the northwestern
corner.

A slice anchor point is made to the D slice of the 4-slice PFU.

A UGROUP’s bounding box (BBOX) defines a fixed area in row and
column dimensions.

A UGROUP commonly contains a mix of slice-based and embedded block
logic.

The example below shows how a UGROUP is anchored:

UGROUP "ugroupl" BBOX 6 6
BLKNAME cl114
BLKNAME c114_15;
LOCATE UGROUP '"ugroupl" SITE "R7C7D";

The UGROUP “ugroup1” is a user-defined group name, with a bounding box
size of 6 rows and 6 columns. The group is anchored at slice R7C7D.

Figure 27: Anchored UGROUP

Northwestern site .

RrR12
R13
R14

- BBOX <width>

- BBOX <height>

C2 C3 C4 C5 C6 C7T C8 C8 C10 C11C12C13C14C15C16C17

48

Design Planning

Floorplanning

Completely Floating UGROUP

A UGROUP can also completely float, meaning that the UGROUP can be
placed anywhere on the device. You can create a floating UGROUP by
omitting the LOCATE UGROUP preference.

The following example creates a floating UGROUP “ugroup1.”

UGROUP "ugroupl" BBOX 6 6 DEVSIZE
BLKNAME c114
BLKNAME cl114 15;

Note

Groups that are composed of both slice-based and embedded block logic, such as
EBR and DSP blocks, must be anchored. Groups composed solely of slice-based
logic, such as LUTs and registers, can float.

Completely Floating UGROUP with Minimum BBOX

The previous UGROUP examples all specify a BBOX in the UGROUP. Since
the BBOX parameter is optional, some UGROUP definitions might not specify
a BBOX. In such cases, a minimally sized BBOX is generated for the
UGROUP internally by default. The following example defines a floating
UGROUP with the default size of 3 rows 3 columns, or minimal BBOX.

UGROUP "ugroupl"
BLKNAME c114
BLKNAME c114 15;

UGROUP Restrictions
There are a few restrictions when creating and anchoring a UGROUP:

Anchors must be on a slice or PFU type of device site. An embedded
block types of device site cannot serve as group anchor points.

Groups that are composed of both slice-based and embedded block logic,
such as EBR and DSP type blocks, must be anchored.

Groups composed solely of slice-based logic, such as LUTs and registers,
can float.

The placement of a UGROUP that contains both slice and embedded
block elements is restricted to the dimensions of a BBOX. The bounding
box should encompass enough resources to accommodate all of the
group elements.

Figure 28 shows an example of both PFU and EBR based logic.

Design Planning

49

Floorplanning

Figure 28: UGROUP with PFUs and EBR

] Occupied EBR Occupied PFU

PFU Anchor_|

BBOX _|

R10
R11
R12
R13
R14

C2 C3 C4 C5 C6 C7T C8 Co9 C10 C11C12C13C14C15C16C17

Design Performance Enhancement
Strategies

The types of design strategies that you use for performance enhancement will
depend on the structure of a particular circuit. They can include the following
floorplanning techniques:

Define regions based on design hierarchy, if the hierarchy closely
resembles the structure of the circuit. Such designs typically consist of
tightly integrated modules, where the logic for each module is self-
contained and the modules communicate through well-defined interfaces.

Define regions based on the critical path, if the critical path is long and
spans multiple modules.

Define regions based on connections by grouping nodes together that
contain high fan-outs and high fan-ins.

Change the existing design hierarchy and structure to make the design
more amenable to floorplanning, especially if modular hierarchy and
structure were not considered at the beginning of design conception.

Optimize modules individually. This enables you to exercise varying
amounts of control over the placement by using different types of regions.
When bounding boxes and location anchors are used selectively, the
Diamond software can automatically determine the best size and location
for a region.

50

Design Planning

Floorplanning

Optimize the top-level design before optimizing individual modules. This
approach allows the Diamond software to place nodes within regions and
move regions across the device. You assign modules to regions, and then
compile the entire design. With this approach, you can place elements
from different modules into a region.

Special Floorplanning Considerations

The following sections describe the use of elements such as embedded block
RAM and certain types of groupings that require special consideration.

Embedded Block RAM Placement

Block RAM can be placed with simple LOCATE preferences. It is not always
necessary to locate block RAMs. Do not group Block RAMs.

Large Module Grouping

Larger groups, those that contain many logical elements, should be anchored
and bounded by LOCATE preferences and BBOX keywords.

The BBOX should be strategically shaped and sized according to the module
to be placed inside the BBOX. If the BBOX shape and size are not specified,
the default BBOX size will be a square that is as small as possible. This is not
the optimal BBOX for typical modules.

You should shape the design with the data path in mind and size the BBOX to
be larger than needed so that PAR can have more flexibility in placing logic
elements inside the BBOX. You can determine the BBOX size by counting the
number of slices from a grouped module that has already been mapped.

Carry Chains and Bus Grouping

Carry chains are used by ripple arithmetic functions such as adders, counters,
and multipliers. Carry chains and logic modules connected by buses can
easily be floorplanned inappropriately if you are not aware of the internal
routing resources available for optimizing these carry chains and bus routes.
Certain groupings can reduce the performance of a design, making it worse
than no floor planning at all.

An example of a broken carry chain is a 9-bit adder that is grouped with no
relative placement on the adder.

Logic elements such as PFUs might give worse performance because the
adder carry-chain is broken.

Design Planning

51

Floorplanning

SLICs in Groups

Supplemental Logic and Interconnect Cells (SLICs), which are contained in
some Lattice Semiconductor FPGA device families, are automatically
removed from groups by the Diamond software unless they are relatively
placed. This is because SLICs are used by the tools for interconnects that you
cannot foresee. If SLIC placement must be controlled for a design, you must
instantiate and locate the SLICS in the preference or HDL files. It is
recommended that you allow the Diamond software to place SLICs
automatically.

52

Design Planning

	Design Planning
	Introduction
	Design Planning in Diamond
	Preference Flow in Diamond
	Design Planning in the HDL
	Preferences and Processes
	Understanding Preferences (LPF)
	MAP and LPF
	MAP TRACE, PAR TRACE and PRF
	PAR and PRF

	Recommendations for Creating and Editing the LPF
	Always Use Design Planning Tools
	Ensure a Clean Error-free LPF
	Ensure a Well-Organized LPF
	Understand Precedence Rules for Preferences

	Design Planning Tools
	Design Data Loaded
	Design Views
	Spreadsheet View
	Package View
	Device View
	Netlist View
	Floorplan View
	Logic Block View
	Physical View
	NCD View

	Cross-Probing between Views
	Pin/Port Cross Probing
	Net Cross-Probing
	Instance Cross-Probing
	Auto-Highlight

	Common Database

	Pin Planning
	Introduction
	PIC, PIO, IOLOGIC and sysIO
	I/O Banks
	Banking Scheme

	I/O TYPE
	True and Emulated LVDS I/Os

	Dedicated Hardware Circuit Pins
	SERDES/PCS
	PLL/DLL
	DQS

	Preferences for Pin Planning
	Design Views for Pin Planning
	Pin Assignment
	General Considerations
	Common Practice

	Port-Centric Assignment
	Handling Differential Ports

	Pin-Centric Assignment
	Other Pin Assignment Methods
	Dedicated Hardware Resource Pin Assignment
	Identify hardware resources used in your design
	Identify hardware resources available on the target device

	Pin Migration
	PIO DRC
	I/O Assistant Strategy
	I/O Assistant Strategy with Incomplete Design

	Pin Assignment Exchange
	Export Final Pin Assignments
	Import Pin Assignment Changes

	Examine the Final Pin Assignment

	Clock Assignment
	Clock Resources
	Using Clock Resources
	General Considerations
	Dedicated Clock Resources vs. General Routing Resources
	Other Considerations
	Using a Primary Clock Resource
	Routed Clock
	Secondary Regional Clock Resources

	Clock Resource Assignments in Diamond

	Timing Constraints
	Floorplanning
	Introduction
	Floorplanning Definition
	Hardware Resources
	General Hardware Resources
	Dedicated Hardware Resources

	When to Use Floorplanning
	Floorplan to Preserve Module Performance

	Floorplanning Preferences
	Using HDL Attributes and Directives
	HGROUP
	UGROUP

	Using Design Planning Views
	Netlist View and UGROUPs
	Floorplan View and UGROUPs
	NCD View and UGROUP
	Saving Preferences

	Handling UGROUP Conflicts
	Assigning Locations
	Assigning a Design Element to a Device Site
	Regional UGROUP
	Anchored UGROUP
	Completely Floating UGROUP
	UGROUP Restrictions

	Design Performance Enhancement Strategies
	Special Floorplanning Considerations
	Embedded Block RAM Placement
	Large Module Grouping
	Carry Chains and Bus Grouping
	SLICs in Groups

