- Fail-Safe Startup Sequencing During
#LATTICE g Upgrades with Platform Manager

June 2012 Application Note AN6088

Introduction

The Platform Manager™ device family is a single-chip, fully-integrated solution for supervisory and control designs
encountered when implementing on-board power conversion and distribution systems. It provides several types of
on-chip resources which can be used to meet the requirements of an application. A Platform Manager device is a
combination of FPGA LUTs, CPLD logic cells and analog features for voltage monitoring, power supply trimming,
reset generation, I/O control and more. This document focuses on ensuring reliable startup of the Platform Manger
device that supports in-system programming. See Table 1 for the Platform Manager devices applicable to this appli-
cation note.

Table 1. Applicable Platform Manager Devices Summary

Digital Open Drain | Trim DAC Digital CPLD FPGA
Device VMONSs| Inputs | HVOUTs Outputs Outputs 110 Macrocells| LUTs Package
LPTM10-1247 12 4 4 12 6 31 48 640 | 128-pin TQFP
LPTM10-12107| 12 4 4 12 8 91 48 640 [208-ball ftBGA

Lattice provides Windows-based, PAC-Designer® software, which can be used to generate JEDEC or SVF pro-
gramming files for the Platform Manager device. LogiBuilder is a design environment within PAC-Designer that can
be used to design and simulate the CPLD with a custom state machine based on the specific requirements of the
application. To design the FPGA portion of a Platform Manager device, either LogiBuilder or Lattice Diamond® soft-
ware can be used.

The CPLD section is normally used for sequencing and monitoring of power supplies. The FPGA section can be
used to implement enhanced power management functions like VID or Fault Logging. The FPGA section can also
be used to sequence digital control functions like resets and Power Good signals, or used to control very complex
power sequences. Executing the power sequencing and monitoring from the FPGA section provides the possibility
to execute background updates to the FPGA configuration in-system (i.e. field upgrades).

Background Programming and the Need for Fail-Safe Startup Sequencing

Board power management functions such as supply sequencing and reset generation controlled by the FPGA por-
tion of the device are very critical in nature and any interruption in FPGA start-up or FPGA operation can be fatal to
the system.

The FPGA configuration is stored in SRAM during runtime. A non-volatile map of the configuration is stored in
Flash memory and loaded during power-up. This provides the possibility to re-program the FPGA Flash in-system
in the background (without interrupting FPGA operation from the SRAM). The next time the FPGA is powered up, it
will be configured according to the new image inside the Flash memory. See “Demonstrating the Concept” on
page 5 for more details on this process.

During background programming, the configuration Flash needs to be erased before it can be re-programmed.
Power failures or other interruptions during these programming steps can result in incomplete or incorrect configu-
ration of the FPGA. This application note provides a framework for safe background programming with a fall-back
startup sequence in the CPLD of the Platform Manager to increase the reliability of field programming.

Fail-Safe Architecture Concept

In order to implement in-system upgradable sequencing and monitoring in the FPGA section of the Platform Man-
ager, a dedicated communication link between the FPGA and CPLD sections must be established. This is accom-
plished using an external serial interface, consisting of six wires, which is implemented as a logic block in both the

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 an6088_01.2

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

CPLD and the FPGA. Under this concept, the primary sequence resides in the FPGA, while the CPLD contains a
fall-back sequence. Figure 1 shows the system partitioning.

Figure 1. Fail-Safe Block Diagram

Platform Manager
VMON 1-12
CPLD

Fail-Safe Power Management Control:
Sequence DC-DC Converters, HVOUTs,

Supervisory Signals, etc.

External Serial

Interface 6
FPGA JTAG Programming and In-System Update
Full Featured
Sequence N
& Monitoring > Other Digital /0

CPLD Design Description

Two designs are implemented within the CPLD:

e The fail-safe startup sequence
* A serializer-deserializer to allow the FPGA to control the outputs and monitor the inputs

In order to ensure safe operation, the CPLD includes the fail-safe startup sequence. This sequence begins with a
short delay at power-up to allow the FPGA time to initialize and start up the serial interface. Next, the sequence will
check the status of the FPGA Present node. This node is set true if the serial interface is operating properly and
data packet is valid. If the FPGA node is not set then the CPLD fail-safe sequence takes control, as shown in
Figure 2.

Figure 2. Fail-safe Startup Sequence

Power Up & Wait for AGOOD
(+10 ms for FPGA)

l

Is FPGA
Present?

No Yes

CPLD Fail-Safe FPGA Main
Sequence Sequence

If the FPGA Present node is set then normal operation is in control. During normal operation, the CPLD portion
transfers the VMON status to the FPGA portion, which implements the main sequence. The FPGA portion sends
output control signals back to the CPLD. The serial link is implemented in supervisory equations in LogiBuilder
(shown in “Appendix A. Listing of CPLD Supervisory Equations” on page 9). The serial link is presented in detalil
later in this document.

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Implementation of the fail-safe sequence is application specific. The outputs can be controlled by both the CPLD
fail safe sequence and the serial interface from the FPGA. The implementation is shown in Figure 3.

Figure 3. Control of the Outputs
Controlled by FPGA

Controlled by CPLD OUTx

CLK

Controlled by FPGA

FPGA Design Description

The FPGA design includes the serial-deserializer block for communication to the CPLD and a power management
sequence. The FPGA receives the VMON and input status from the deserializer as inputs to its power manage-
ment sequence. The power management sequence provides output control bits to the serializer which are sent to
the CPLD for control of the outputs. The concept is shown in Figure 4.

The Verilog code for the serializer/deserializer logic is shown in “Appendix B. Listing of FPGA Code” on page 11.
The power management sequence in the FPGA is application-specific and not discussed in this application note.

Figure 4. FPGA Section of the Power Management Design

FPGA Section
Deserialized
Verilog Module VMON
Bits
Serial Data Input from CPLD Section: /
« Status_A and Status_B Signals (VMON) o) .
- Start of Packet Signal Deserializer :>
» 250 kHz Clock I
. . Power
Serial Data Oquut from FPGA Section: Management
+ Data Strobe Signal - L
. Output Control Sianal Serializer Sequence
utput Control Signa JT
Output
Bits

Serial Protocol

The logic required to implement the serial link is contained in the Supervisory equations section of the CPLD. The
serial link sends the VMON status bits and internal AGOOD signal to the FPGA over two status signals. The Super-
visory equations in the CPLD also decode the control signal received from the FPGA to turn on or off the power
supplies. The data is communicated in 14 clock packets.

The supervisory section of the CPLD implements a 4-bit counter that controls the 28 bits sent in each data trans-
mission frame (two status lines times 14 clocks). The counter begins at 8 then counts up to 15, rolls over, and con-
tinues counting from 0 to 6. When the counter reaches 6 it resets to 8. The rising edge of the Start signal is used to
indicate the beginning of a new data frame. Start is set to the counter's most significant bit so that when the count

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

is between 8 and 15 the Start is high. The FPGA Verilog module also implements a counter that counts from 0 to
13 and the rising edge of the Start signal resets this FPGA counter to ‘0’ and synchronizes it to the CPLD.

Figure 5. Serial Protocol Implementation

CPD Supervisory Logic

Internal Cnt=8 Cnt=9 Cnt=10 Cnt=11 . o Cnt=5 Cnt=6 Cnt=8
Counter

[28-Bit Data Transfer from CPLD to FPGA>

12 R s S s e R
Start | —
Status_A XXX VMON1A><VMON2A><VMON3A™> o o <UMON12A><AGOOD >><AGOOD
Status_B XXX VMON1B><_VMON2B><VMON3B> * o <VMON12B>< AGOOD > AGOOD
<1 4-Bit Data Transfer from FPGA to CPLD |
Strobe [[[[[[[
Control FPGA PO><FPGA_P1T><HVOUT1 ><HVOUTZ2> ¢ ¢ < _OUT11 ouT12 ><FPGAPQ

Initialization of the protocol occurs when the counter is at 8 with CPLD supervisory logic outputting high on the
Start signal. In the FPGA portion, serializer/deserializer logic will output the send data on the Control signal along
with a strobe signal. The Control data packet has a logic ‘1’ for the first bit and logic ‘0’ for the second bit and this bit
combination is used by the CPLD to determine whether the FPGA is present. The remaining bits in the data stream
are the output control bits. FPGA logic uses an 8 MHz clock along with a 250 kHz clock to generate 0.5 us pulses
at the falling edge of the 250 kHz clock signal. This generated pulse is sent out as the strobe bit.

During the next 13 counts, the CPLD section outputs values corresponding to VMON1A through VMON12B along
with the CPLD internal AGOOD status bit though the Status_A and Status_B lines. At the same time, the FPGA
portion outputs the strobe and control of the HYOUT1 through OUT12 signals as determined by the power man-
agement sequence. Waveforms describing this protocol are shown in Figure 5.

Supervisory logic equations are used to perform de-serialization functions in the CPLD section. This equation cap-
tures the status of the Control signal into the corresponding nodes when the counter value is reached. For exam-
ple, when the counter value is 8, the Control value is used to set/reset the FPGA_Prsnt node. When the counter
value is 10, the Control value is used to set/reset the HYOUT1 macrocell. The Control value is shown as DatalN in
the code listing which is provided in “Appendix A. Listing of CPLD Supervisory Equations” on page 9. The logic
implemented in the FPGA portion captures the CPLD outputs on the Status_A and Status_B lines and assigns
them to nodes according to the count value. The Control signal is named data in the Verilog code shown in “Appen-
dix B. Listing of FPGA Code” on page 11.

Guidelines for Background Programming

The fail-safe startup concept presented in this application note is designed to ensure a reliable system restart in
case of a failure during re-programming. In order to implement this concept in a field re-programming scenario, a
power cycle operation on the Platform Manager device is required. This will require that the entire system is shut
down before the Platform Manager device is restarted with the new program.

The system is programmed with the combined FPGA/CPLD JEDEC prior to deployment in the field. This file should
include the FPGA based sequence, the serial links, and a fail-safe sequence in the CPLD. Download this file during
production using ispVM™ System or another programming tool.

After deployment in the field, upgrades are sometimes required. The Diamond portion of the design flow outputs an
independent FPGA JEDEC which can be used to upgrade only the FPGA portion of the device. “Demonstrating the

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Concept” on page 5 gives more details on generating an FPGA JEDEC only.
The procedure for background programming in field is shown below.

* Phase1: Execute the remote Background Flash Programming step for the FPGA only. The Demos/LPTM10-
12107/ LPTM10_12107_FPGA_Background_Program.xcf file provided with the demo files gives a starting point
for accessing the FPGA and bypassing the CPLD in Platform Manager. The FPGA and CPLD will continue oper-
ating normally during this step, with no interruptions.

e Phase2: Once background programming completes, the Platform Manager device and the system will need to
be powered down. This can be accomplished either remotely in hardware or based on manual user intervention.
This mechanism for system power-down and restart is application specific.

* Phase3: Power is restored to the Platform Manager device. The FPGA configuration stored in Flash is trans-
ferred to SRAM for operation.

* Phase4: After the power-on reset, the Platform Manager CPLD will confirm that the Platform Manager FPGA is
transmitting properly. If the FPGA is properly configured, the upgraded sequence in the FPGA will be in control of
the system.

If the FPGA is not properly configured, the CPLD fail-safe sequence will take over. This fail-safe sequencing can
support the re-programming hardware, in order to execute the field upgrade procedure again (restarting at step

1),
Demonstrating the Concept

This application note is provided with a set of design files which are available on the Lattice web site. A demo proj-
ect can be found in the AN6088/Demos/LPTM10_12107 directory of the zip file. This demo project is separated
into a PAC-Project directory and a Diamond Project directory.

The PAC-Project includes the CPLD Control receiver and VMON Status transmitter, a demonstration fail-safe
sequence and the analog configuration data. The Diamond project includes a set of directories with Verilog files
and project files used to build the FPGA JEDEC file inside Diamond. This information together is used to build the
Platform Manager JEDEC file.

The serial link used in the demo is comprised of the connections below. These are all present on the Platform Man-
ager Evaluation Board so no hardware updates are required for this demo.

Figure 6. Connections Used in Demonstration

PB4D Zontgo' > IN3
PB6C trobe »| N4
PB7A | Dstart OUT15
FPGA . Status_B CPLD
Vo PBOD | ouT14 Vo
Status_A
PBOA | 0UT13
= P 250 KHz Clk POLK
PT5B |« 8 MHz Clk MCLK

To use this demo with the Platform Manager Evaluation Board, follow the steps listed below.

1. Move both slider pots to the lower end of their range (toward the DIP switches)

2. Using ispVM System, download the Demos/LPTM10_12107/PAC_Project/Demo_AN6088_LPTM10-
1207.JED file.

3. The evaluation board should now be operating under an FPGA controlled sequence. Try moving the slider
pots up and down. The LEDs on both sections of the board (D3-6 and D21-24) should be flashing in sync.
LEDs D3-6 are controlled directly by the FPGA, while D21-24 are controlled by the CPLD via the serial link.

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

4. Open the .xcf configuration file Demos/LPTM10_12107/LPTM_12107_FPGA_Background_Erase.xcf.
Click GO and this configuration file will background erase the Platform Manager FPGA.

5. The FPGA controlled sequence should still be running, with LEDs D3-6 in sync with LEDs D21-24. Power-
down the evaluation board by removing the USB cable or external power source.

6. The FPGA SRAM is empty since the non-volatile Flash image was erased. LEDs D3-6 will not blink, how-
ever LEDs D21-D23 will be counting up. This is demonstrating a limited fail-safe sequence.

7. Open the .xcf configuration file
Demos/LPTM10_12107/LPTM_12107_FPGA_Background_Program.xcf. You will need to update the
FPGA background program operation to use the upgraded FPGA JEDEC. You can find this file at
Demos/LPTM10_12107/Diamond_Project/AN6088_implEnhanced.JED. Click GO and this configura-
tion file will background program the Platform Manager FPGA."

8. Cycle the power again on the evaluation board. The evaluation board will now be operating under an
enhanced sequence in the FPGA. Try moving the slide pots up and down again. Notice that D3-6 and D21-
24 are now operating in complementary fashion.

Before modifying the demo files, the PAC-Designer project file needs to be updated. The pointer to the Diamond
generated FPGA JEDEC file needs to be updated depending on the installation directory of the files. From the
schematic window of PAC-Designer choose the Options menu, then the FPGA Environment selection. A dialog
box will open as shown in Figure 7. The JEDEC File name should be updated to:

Installation_path\AN6088\demos\LPTM_12107\Diamond_Project\impl1\Demo_AN6088_FPGA_impl1.jed

To update only the FPGA portion of the Platform Manager, use the LPTM_12107_FPGA_Background_Program.xcf
configuration, with the above FPGA JEDEC file used as the data file. This will update the FPGA Flash configura-
tion, which will be copied to SRAM on the next power cycle, while leaving the CPLD configuration untouched.

Figure 7. Updating the FPGA JEDEC Pointer in PAC-Designer

Environment Settings
FPGA LogiBuilder Generate HDL Cancsl

(* Verilog HOL

Synthesis Tool

(* Synplify synthesis " Lattice LSE synthesis

Path [C:¥scc\DiamondP0302_2.0.0_PreRe Browse

HDL Simulator Tool path [C:VYscc\DiamondP0302_2.0.0_PreRe Browse

Project Settings
Preferred Design Tool
" PAC-Designer
o €

(¥ PAC-Designer and Diamond

JEDEC File Name(full path) [';:‘.LSCC\ANGD&B@

Closed Loop Trim

DAC Update Delay (For all Trim outputs) 580 us -

1. Note: The Platform Manager evaluation board includes an FTDI USB-to-serial converter IC on-board, which is used for programming opera-
tions with the standard USB cable. This interface will issue a reset command to the CPLD, even when a bypass is requested. This might
result in the CPLD LEDs blinking or dropping out during background FPGA operations. This will not occur when programming the FPGA
through a dedicated programming cable or using ispVM embedded with a microcontroller in the field.

6

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Working with the Design Templates

The Design Templates are provided as building blocks for user projects. Project elements like voltage thresholds,
sequence steps and output assignments are always specific to the application. The design templates use default
values to support configuration by the user.

The design templates are device specific and the Platform Manager design templates are provided in two separate
directories (PAC_Files and Diamond_Project). The Platform Manager template uses the design flow of PAC-
Designer plus Diamond. This means the FPGA 1/O and logic are all handled in Diamond. The combined JEDEC is
built in PAC-Designer, based on a path reference to the FPGA JEDEC file which is generated by Diamond. The full
path is required for this file and it is left blank in the design template (for details on how to update this path, see
“Demonstrating the Concept” on page 5). You will need to build your Diamond JEDEC before starting in PAC-
Designer.

The Diamond_Project directory contains the minimum set of files to get started with building a design for the FPGA.
Full descriptions of these files are found in the docs/readme.txt included with the files. Inside the
Diamond_Project/impl1/source directory are the two Verilog source files: DT6088_FPGA_Top.v and
DT6088_FPGA_250kSERDES.v.

The DT6088_FPGA_250kSERDES.v contains the serial link sub-module. This sub-module should not be modified.
DT6088_FPGA_Top.V is the top module. It instantiates the 250k serial sub-module and the minimum number of 1/0
ports in order to work with the serial link. It also includes a placeholder for the sequence inclusion. These two files
are included in the Diamond Project as a starting point. For additional details on designing in Diamond, see the Lat-
tice Diamond Tutorial found on the Lattice Diamond start page. The Diamond project needs to be completed and
compiled to create a JEDEC file before working with PAC-Designer.

PAC-Designer projects are provided for both the Platform Manager and the POWR1220AT8 (for use in the 36-rail
design described in AN6089, Scalable Centralized Power Management with Field Upgrade Support). In the .PAC
files, the CPLD LogiBuilder code contains the supervisory equations for the serial link. The templates also assign
the inputs and outputs used by the serial link. The only modification which should be made to these equations are
the input and output pins used by the serial link. The output assignments can be modified in equations 8-10 (see
“Appendix A. Listing of CPLD Supervisory Equations” on page 9), while the input assignments can be modified in
equations 11-12.

The sequencer state machines contain a NOP placeholder at step 4. This can be replaced with the fail-safe
sequence. All the analog settings and additional I/O assignments will need to be made before the file is usable.

Implementation
Table 2. Performance and Resource Utilization’
FPGA CPLD CPLD CPLD Product CPLD
Device FPGA LUTs Slices FPGA 1/0s | Macrocells Timers Terms 1/0s VMONSs
LPTM-12107 70 39 16 32 1 141 18 12

1. These results were obtained using PAC-Designer 6.2 and Diamond 1.4 with the PAC-Designer and Diamond design tool setting in PAC-
Designer. PAC-Designer LogiBuilder options were set to defaults. Utilization numbers include demo program in addition to serial link logic.

Summary

This application note has provided a framework for implementing a fall-back startup sequence in the CPLD
sequence of the Platform Manager to increase the reliability of field programming. The primary power management
sequence is implemented in the FPGA while the analog data is shared between the CPLD and FPGA via serial
link. A procedure for background programming has also been discussed. Supervisory code in the CPLD and serial-
izer/deserializer Verilog module of the FPGA portion is provided in the appendices.

www.latticesemi.com/dynamic/view_document.cfm?document_id=45359

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

References
e DS1036, Platform Manager Data Sheet

¢ ANG6089, Scalable Centralized Power Management with Field Upgrade Support

e TN1223, Using the Platform Manager Successfully

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Revision History

Date Version Change Summary
May 2012 01.0 Initial release.
May 2012 01.1 Updated with instructions for working with the design files.
June 2012 01.2 Clarifications on working with the design files. New section on guide-
lines for background programming.

www.latticesemi.com/dynamic/view_document.cfm?document_id=38587
http://www.latticesemi.com/
www.latticesemi.com/dynamic/view_document.cfm?document_id=45359
www.latticesemi.com/dynamic/view_document.cfm?document_id=39814

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Appendix A. Listing of CPLD Supervisory Equations

// Logic for Generating Counter

Eg 0: Cntr0.D = NOT Cntr0

Eg 1: Cntrl.D = (NOT Cntrl AND CntrO) OR (Cntrl AND NOT Cntr0O)

Eg 2: Cntr2.D = (NOT Cntr2 AND Cntrl AND CntrO) OR (Cntr2 AND NOT (Cntrl AND Cntr0))
Eg 3: Cntr3.D = (NOT Cntr3 AND Cntr2 AND Cntrl AND Cntr0O) OR (Cntr3 AND NOT (Cntr2

AND Cntrl AND Cntr0O))

Eq 4: Cntr0O.ar = NOT Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0
Eg 5: Cntrl.ar = NOT Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0
Eg 6: Cntr2.ar = NOT Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0
Eg 7: Cntr3.ap = NOT Cntr3 AND Cntr2 AND Cntrl AND NOT CntrO0

//VMONA Status Output Logic

Eg 8: OUT13 = (VMONliA AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (
VMONZ_A AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND CntrO) OR (VMON3_A AND Cntr3 AND NOT
Cntr2 AND Cntrl AND NOT Cntr0O) OR (VMON4 A AND Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0O)
OR (VMON5_A AND Cntr3 AND Cntr2 AND NOT Cntrl AND NOT Cntr0) OR (VMON6_A AND Cntr3 AND
Cntr2 AND NOT Cntrl AND Cntr0O) OR (VMON7 A AND Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0)
OR (VMONS_A AND Cntr3 AND Cntr2 AND Cntrl AND Cntr0O) OR (VMON9_A AND NOT Cntr3 AND NOT
Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (VMONlOiA AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl
AND Cntr0) OR (VMON11 A AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND NOT CntrO) OR (
VMON12_A AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0O) OR (AGOOD AND NOT Cntr3 AND
Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (AGOOD AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND
Cntr0)

//VMONB Status Output Logic

Eg 9: 0OUT14 = (VMON1 B AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (
VMONZ_B AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND CntrO) OR (VMON3_B AND Cntr3 AND NOT
Cntr2 AND Cntrl AND NOT Cntr0O) OR (VMON4_B AND Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0)
OR (VMON5_B AND Cntr3 AND Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (VMON6_B AND Cntr3 AND
Cntr2 AND NOT Cntrl AND Cntr0O) OR (VMON7 B AND Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0)
OR (VMON87B AND Cntr3 AND Cntr2 AND Cntrl AND Cntr0) OR (VMON97B AND NOT Cntr3 AND NOT
Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (VMONlO_B AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl
AND Cntr0) OR (VMON11 B AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND NOT CntrO) OR (
VMON12_B AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND CntrO) OR (AGOOD AND NOT Cntr3 AND
Cntr2 AND NOT Cntrl AND NOT Cntr0O) OR (AGOOD AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND
Cntr0)

//Start, DataIN, and Strobe IO Assignments
Eg 10: Start = Cntr3

Eg 11: DataIN = IN3

Eg 12: Strobe = IN4

//Logic for Output Controls

Eg 13: HVOUTl.ap = (Strobe AND DataIN AND Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0O) AND
FPGA prsnt

Eg 14: HVOUTl.ar = (Strobe AND NOT DataIN AND Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0)
AND FPGA prsnt

Eg 15: HVOUT2.ap = (Strobe AND DataIN AND Cntr3 AND Cntr2 AND NOT Cntrl AND NOT Cntr0)
AND FPGA prsnt

Egq 16: HVOUT2.ar = (Strobe AND NOT DataIN AND Cntr3 AND Cntr2 AND NOT Cntrl AND NOT
Cntr0) AND FPGA prsnt

Eg 17: HVOUT3.ap = (Strobe AND DataIN AND Cntr3 AND Cntr2 AND NOT Cntrl AND Cntr0O) AND
FPGA prsnt

Eg 18: HVOUT3.ar = (Strobe AND NOT DataIN AND Cntr3 AND Cntr2 AND NOT Cntrl AND Cntr0)
AND FPGA prsnt

Egq 19: HVOUT4.ap = (Strobe AND DataIN AND Cntr3 AND Cntr2 AND Cntrl AND NOT CntrO) AND
FPGA prsnt

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Eg 20: HVOUT4.ar = (Strobe AND NOT DataIN AND Cntr3 AND Cntr2 AND Cntrl AND NOT Cntr0)
AND FPGA prsnt

Egq 21: OUT5.ap = (Strobe AND DataIN AND Cntr3 AND Cntr2 AND Cntrl AND Cntr0) AND

FPGA prsnt

Eg 22: OUT5.ar = (Strobe AND NOT DataIN AND Cntr3 AND Cntr2 AND Cntrl AND CntrO) AND
FPGA prsnt

Eg 23: OUT6.ap (Strobe AND DataIN AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl AND NOT
Cntr0O) AND FPGA prsnt

Eg 24: OUT6.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl AND
NOT Cntr0) AND FPGA prsnt

Eg 25: OUT7.ap = (Strobe AND DataIN AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl AND Cntr0
) AND FPGA prsnt

Eg 26: OUT7.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND NOT Cntr2 AND NOT Cntrl AND
Cntr0O) AND FPGA prsnt

Eg 27: OUT8.ap = (Strobe AND DataIN AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND NOT Cntr0
) AND FPGA prsnt

Eg 28: OUT8.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND NOT
Cntr0) AND FPGA prsnt

Eg 29: OUT9.ap = (Strobe AND DataIN AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0)
AND FPGA prsnt

Eg 30: OUTY9.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND NOT Cntr2 AND Cntrl AND Cntr0
) AND FPGA prsnt

Eg 31: OUT10.ap = (Strobe AND DataIN AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND NOT
Cntr0) AND FPGA prsnt

Eg 32: OUT10.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND NOT
Cntr0O) AND FPGA prsnt

Eg 33: OUTll.ap = (Strobe AND DataIN AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND Cntr0)
AND FPGA prsnt

Eg 34: OUTll.ar = (Strobe AND NOT DataIN AND NOT Cntr3 AND Cntr2 AND NOT Cntrl AND
Cntr0) AND FPGA prsnt

Eg 35: OUT12.ap = (Strobe AND DataIN AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND NOT
Cntr0O) AND FPGA prsnt

Eg 36: OUT12.ar = (Strobe AND NOT DataIN AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND NOT

Cntr0) AND FPGA prsnt

//FPGA prsnt detection logic
Eq 37: FPGA prsnt.D = FPGA Prsnt

Eq 38: FPGA prsnt.ar = (Strobe AND DataIN AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND
Cntr0)
Eg 39: FPGA prsnt.ap = (Strobe AND NOT DataIN AND Cntr3 AND NOT Cntr2 AND NOT Cntrl AND

Cntr0) OR (Strobe AND DataIN AND Cntr3 AND NOT Cntr2 AND Cntrl AND NOT CntrO)

10

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Appendix B. Listing of FPGA Code

module PtM 12supply(mclk, pclk, resetn, dstart, stathA, statB,
ouTr1, our2, oOUT3, ouT4, OUTS5, OUT6, OUT7, OUT8, OUTY9, OUT10, OUT1ll, OUT12,
Data, Strobe, VMON1lA, VMON2A, VMON3A, VMON4A, VMONS5SA, VMONGA, VMONTA,
VMONS8A, VMON9A, VMON10A, VMON11lA, VMON12A, VMON1B, VMON2B, VMON3B, VMON4B,
VMON5B, VMON6B, VMON7B, VMONS8B, VMONO9B, VMON10B, VMON11B, VMON12B, AGOOD) ;

input mclk, pclk, resetn ; // mclk = 8 MHz, pclk = 250 kHz
input dstart, statA, statB ; // data bus signals from the CPLD

// Inputs from Sequence code for transmission to Power Manager CPLD
input ouTl, OUT2, OUT3, OUT4, OUT5, OUT6 ;
input our7, ouTs, oOUuT9, OUT10, OUT11, OUT12 ;

output Data, Strobe ; // Data & strobe outputs to Power Manager CPLD
output VMON1A, VMON2A, VMON3A, VMON4A, VMONLSA, VMONGA ;

output VMON7A, VMONS8A, VMON9A, VMON10A, VMON11A, VMON12A ;

output VMON1B, VMON2B, VMON3B, VMON4B, VMON5B, VMONG6B ;

output VMON7B, VMON8B, VMON9B, VMON10B, VMON11B, VMON12B, AGOOD ;

reg Data, Strobe ;

reg VMON1A, VMON2A, VMON3A, VMON4A, VMON5A, VMONGA ;

reg VMON7A, VMONS8A, VMONSA, VMON10OA, VMON11A, VMON12A ;

reg VMON1B, VMON2B, VMON3B, VMON4B, VMON5B, VMONG6B ;

reg VMON7B, VMON8B, VMON9B, VMON10B, VMON11B, VMON12B, AGOOD ;

reg [3:0] statecntr ; // state machine counter for data decode
reg [2:0] pulsedelay ; // Pulse delay counter for Pulse output

// internal variables for detecting start of data transmission
reg start, detect ;

reg pm_sparel, pm spare2 ;// spare bits for use with data stream
// Start of data transfer to/from Power Manager device >>>>>>>>>>>>>>>>>

// detect rising edge of dstart signal to reset state counter
always @ (negedge mclk or negedge resetn)

begin
if ('resetn)
start <= 1'b0 ;
else
if (dstart & !detect)
start <= 1'bl ;
else
start <= 1'b0 ;
end

11

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

// latch to insure only the rising edge of dstart is detected
always @ (negedge pclk or negedge resetn)

begin
if ('resetn)
detect <= 1'b0 ;
else
if (dstart & start)
detect <= 1'bl ;
else
if (!'dstart)
detect <= 1'b0 ;
end

// assign state machine counter for data read
always @ (negedge pclk or negedge resetn)

begin
if ('resetn)
statecntr <= 4'b0000 ;
else
if (start)
statecntr <= 4'b0000 ;
else
statecntr <= statecntr + 1 ;
end

// ~capture VMON status data from data bus (statA, statB)

always @ (negedge pclk or negedge resetn)

if ('resetn)
begin
{VMON1A, VMON2A, VMON3A, VMON4A, VMONSA, VMONGA} <= 6'b000000 ;
{VMON7A, VMON8A, VMONS9A, VMON10A, VMON11A, VMON12A, AGOOD} <= 7'b0000000 ;
{VMON1B, VMONZ2B, VMON3B, VMON4B, VMON5B, VMONG6B} <= 6'b000000 ;
{VMON7B, VMON8B, VMON9B, VMON10B, VMON11B, VMON12B} <= 6'b000000 ;
end
else

case (statecntr)
4'b0000 : {VMON1lA, VMON1B} <= {statA, statB} ;
4'pb0001 : {VMON2A, VMON2B} <= {statA, statB} ;
4'b0010 : {VMON3A, VMON3B} <= {statA, statB} ;
4'b0011 : {VMON4A, VMON4B} <= {statA, statB} ;
4'p0100 : {VMON5A, VMONS5SB} <= {statA, statB} ;
4'p0101 : {VMONG6A, VMON6B} <= {statA, statB} ;
4'pb0110 : {VMON7A, VMON7B} <= {statA, statB} ;
4'b0111 : {VMON8A, VMON8B} <= {statA, statB} ;
4'1000 : {VMON9A, VMONO9B} <= {statA, statB} ;
4'1001 : {VMON10OA, VMON1OB} <= {statA, statB} ;
4'p1010 : {VMON1l1lA, VMON11B} <= {statA, statB} ;
4'p1011 : {VMON12A, VMON12B} <= {statA, statB} ;
4'b1100 : {AGOOD, pm spare2} <= {stathA, statB} ;

12

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

default : {pm sparel, pm spare2} <= {statA, statB} ;
endcase

// send OUTPUT data to Power Manager data out pin
always @ (posedge pclk or negedge resetn)
if ('resetn)
begin
Data <= 1'b0 ;
end
else
case (statecntr)
4'p0000 : Data <= 1'bl ;// FPGA Presnt to Power Manager
4'p0001 : Data <= 1'b0 ;// FPGA Presnt to Power Manager -

// CPLD looks for this bit to toggle.
4'p0010 : Data <= OUT1 ;// OUT1 from FPGA to Power Manager CPLD
4'p0011 : Data <= OUT2 ;// OUT2 from FPGA to Power Manager CPLD
4'p0100 : Data <= OUT3 ;// OUT3 from FPGA to Power Manager CPLD
4'p0101 : Data <= OUT4 ;// OUT4 from FPGA to Power Manager CPLD
4'b0110 : Data <= OUT5 ;// OUT5 from FPGA to Power Manager CPLD
4'b0111 : Data <= OUT6 ;// OUT6 from FPGA to Power Manager CPLD
4'p1000 : Data <= OUT7 ;// OUT7 from FPGA to Power Manager CPLD
4'p1001 : Data <= OUT8 ;// OUT8 from FPGA to Power Manager CPLD
4'p1010 : Data <= OUT9 ;// OUT9 from FPGA to Power Manager CPLD
4'b1011 : Data <= OUT10 ;// OUT10 from FPGA to Power Manager CPLD
4'p1100 : Data <= OUT11l ;// OUT1l1l from FPGA to Power Manager CPLD
4'pb1101 : Data <= OUT12 ;// OUT12 from FPGA to Power Manager CPLD

default : Data <= 1'b0 ;
endcase

// Create pulse delay counter to set width of Strobe output to Power Manager
always @ (posedge mclk or negedge resetn)

begin // reset pulse delay counter when pclk is high

if ('resetn || pclk)
pulsedelay <= 1'b0 ;

else // When pclk is low increment pulse delay counter
if ('pclk && !pulsedelay([2])

pulsedelay <= pulsedelay + 1 ;
else // Stop pulse delay counter when counter value > '100'

pulsedelay <= pulsedelay ;
end

// Send Strobe output signal to Power Manager which will latch the inputs
// when Strobe is high - Strobe will stay high for 0.5 us
always @ (posedge mclk or negedge resetn)

begin

if (!resetn || pclk) // reset Strobe when pclk is high
Strobe <= 1'b0 ;

else // set Strobe high on falling edge of pclk
if ('pclk && !pulsedelay([2])

Strobe <= 1'bl ;
else

13

am Fail-Safe Startup Sequencing During Field Upgrades
=LATTICE with Platform Manager

Strobe <= 1'b0 ;
end

// End of data transfer to/from Power Manager device SESSSSSSSSSS>>>>>>

endmodule

14

	Fail-Safe Startup Sequencing During Field Upgrades with Platform Manager
	Introduction
	Background Programming and the Need for Fail-Safe Startup Sequencing
	Fail-Safe Architecture Concept
	CPLD Design Description
	FPGA Design Description
	Serial Protocol
	Guidelines for Background Programming
	Demonstrating the Concept
	Working with the Design Templates
	Implementation
	Summary
	References
	Technical Support Assistance
	Revision History
	Appendix A. Listing of CPLD Supervisory Equations
	Appendix B. Listing of FPGA Code

