
LatticeMico8 Tutorial

Lattice Semiconductor Corporation
5555 NE Moore Court
Hillsboro, OR 97124
(503) 268-8000

December 2011

LatticeMico8 Tutorial ii

Copyright
Copyright © 2011 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior written consent from Lattice Semiconductor
Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation
(logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, E2CMOS,
Extreme Performance, FlashBAK, FlexiClock, flexiFlash, flexiMAC, flexiPCS,
FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress,
ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV,
ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI,
ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM,
ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC,
LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP,
LatticeXP2, MACH, MachXO, MachXO2, MACO, ORCA, PAC, PAC-
Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG,
sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design,
TraceID, TransFR, UltraMOS, and specific product designations are either
registered trademarks or trademarks of Lattice Semiconductor Corporation or
its subsidiaries in the United States and/or other countries. ISP, Bringing the
Best Together, and More of the Best are service marks of Lattice
Semiconductor Corporation.

Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT
IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY
KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS,
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL
PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL LATTICE SEMICONDUCTOR CORPORATION (LSC) OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL,
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED
IN THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS
PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or
to the products described herein, at any time without notice. LSC makes no
commitment to update this documentation. LSC reserves the right to
discontinue any product or service without notice and assumes no obligation

LatticeMico8 Tutorial iii

to correct any errors contained herein or to advise any user of this document
of any correction if such be made. LSC recommends its customers obtain the
latest version of the relevant information to establish, before ordering, that the
information being relied upon is current.

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

LatticeMico8 Tutorial iv

LatticeMico8 Tutorial v

Contents

LatticeMico8 Tutorial 1

Introduction 1
Learning Objectives 2
Time to Complete This Tutorial 2
System Requirements 2
Accessing Online Help 3
About the Tutorial Design 3
Tutorial Data Flow 4

Task 1: Create a New Lattice Diamond Project 7

Task 2: Create LatticeMico8 Platform 11
Create a New MSB Platform 11
Add the Microcontroller Core 15
Add the Peripheral Components 18
Specify the Connections Between Master and Slave Ports 20
Assign Component Addresses 23
Assign Interrupt Request Priorities 24
Perform a Design Rule Check 25
Generate the LatticeMico8 Platform 25
Create a User Top-Level Module 27

Task 3: Create Software Application Code 28
Create a New C/C++ SPE Project 30
Build the Project 32

Task 4: Deploy Software Application Code to LatticeMico8 33

Task 5: Generate Platform Bitstream 37
Import the MSB Output File 37
Connect the Microcontroller to the FPGA Pins 38
Perform Functional Simulation 39
Perform Timing Simulation 40
Generate the Bitstream 40

Task 6: Download Platform Bitstream to FPGA 40

Summary 42

Contents

LatticeMico8 Tutorial vi

LatticeMico8 Tutorial 1

LatticeMico8 Tutorial

Introduction

This tutorial steps you through the basic process involved in using the
LatticeMico System software to implement an instance of the LatticeMico8
microcontroller and other attached components in a Lattice Semiconductor
device for the MachXO2 Control Board. LatticeMico System encompasses
three tools: the Mico System Builder (MSB), the C/C++ Software Project
Environment (C/C++ SPE), and the Debugger. The MSB and the C/C++ SPE
together enable you to build an embedded microcontroller system on a single
FPGA device and to write and debug the software that drives it. Such a
microcontroller lowers cost by saving board space and increases
performance by reducing the number of external wires.

The LatticeMico System interface is based on the Eclipse environment, which
is an open-source development and application framework for building
software.

Although you can install LatticeMico System as a stand-alone tool, this tutorial
assumes that you have installed Lattice Diamond before installing LatticeMico
System. After you have created a project in Lattice Diamond, the tutorial
shows you how to use MSB to choose a Lattice Semiconductor 8-bit
microcontroller, attach components to it, and generate a top-level design,
including the microcontroller and the chosen components. Next you will use
Lattice Diamond to synthesize, map, place, and route the design and
generate a bitstream for it. You will then download this bitstream to the FPGA
on the board. The tutorial then changes to the Lattice Software Project
Environment (C/C++ SPE) and shows how to use C/C++ SPE to write and
compile the software application code that exercises the microcontroller and
components. Finally, it shows how to deploy the code to the microcontroller.

LatticeMico8 Tutorial Introduction

LatticeMico8 Tutorial 2

This tutorial is intended for a new or infrequent user of the LatticeMico System
software and covers only the basic aspects of it. For more detailed information
on the LatticeMico System software, see the sources listed in “Recommended
References”.

Learning Objectives

When you have completed this tutorial, you should be able to do the following:

 Use MSB to configure a Lattice Semiconductor 8-bit microcontroller for
your design, select the desired components, and connect the selected
components to the microcontroller with a shared-bus arbitration scheme,
which is the default.

 Use The Lattice Software Project Environment to create the C/C++
software application code that drives the microcontroller and components.

 Compile and deploy the software application code to the microcontroller.

 Import the Verilog or Verilog/VHDL files generated by MSB into the Lattice
Diamond development tools.

 Import an .lpf file containing the pinout.

 Synthesize, map, place, and route the design.

 Generate a bitstream of the microcontroller and download it to an FPGA
on the board.

Time to Complete This Tutorial

The time to complete this tutorial is about two hours.

System Requirements

You can run this tutorial on Windows or Linux.

Windows

If you will be running this tutorial on Windows on a PC, your system must
meet the following minimum system requirements:

 Pentium IV PC running at 2 GHz or faster

 Microsoft Windows XP® Professional, or Windows Vista®, or Windows 7.

 Available USB 2.0 port

The following software is required to complete the tutorial:

 Lattice Diamond version 1.3 or later

 LatticeMico System version 1.3 or later

See the Lattice Diamond Installation Notice for Windows for the current
release for information on installing software on the Windows platform.

LatticeMico8 Tutorial Introduction

LatticeMico8 Tutorial 3

Linux

If you will be running this tutorial on Linux on a PC, your system must meet
the following minimum system requirements:

 Red Hat Enterprise Linux operating system Version 4.0 or 5.0

 Lattice Diamond version 1.3 or later

 Linux system with USB port

See the Lattice Diamond Installation Notice for Linux for the current release
for information on installing software on the Linux platform.

Hardware

This tutorial requires the following hardware:

 A MachXO2 Control Board for Lattice MachXO2 FPGA.

 USB cable

 AC adapter cord

Accessing Online Help

You can access the online Help for MSB, C/C++ SPE, the Debugger, or
Eclipse Workbench by choosing Help > Help Contents in the LatticeMico
System graphical user interface.

About the Tutorial Design
This tutorial uses a MachXO2 device, and all references are based on the
MachXO2 device. The tutorial design consists of the LatticeMico8 embedded
microcontroller, a GPIO, and a UART. After you add these components, you
will specify the connections between the master and slave ports on these
components, as shown in Figure 1.

Figure 1: Desired Connections Between Master and Slave Ports

In this design, the instruction port and the data port of the LatticeMico8
microcontroller are the master ports. All other ports are slave ports. The

GPIO slave
device (for
controlling LEDs)

UART slave
device (for
controlling host
communication)LM8 CPU

(master ports)

Data port

LatticeMico8 Tutorial Introduction

LatticeMico8 Tutorial 4

LatticeMico8 data port accesses the LatticeMico GPIO and the LatticeMico
UART.

Tutorial Data Flow

You will perform the following major steps to create an embedded
microcontroller system:

1. Create a new project in Lattice Diamond.

2. Create a microcontroller platform for the LatticeMico8 microcontroller in
MSB with a shared-bus arbitration scheme, which is the default.

3. Write the software application code for the microcontroller platform in C/
C++ SPE.

4. Deploy the software application code to the microcontroller’s internal
PROM and Scratchpad.

5. Generate a bitstream of the microcontroller platform in Diamond.

6. Download the hardware bitstream to the FPGA using Diamond
Programmer.

This tutorial supports both Verilog and mixed Verilog/VHDL design flows in
Diamond for Windows and Linux users. The Windows Verilog design flow for
using LatticeMico System to create an embedded microcontroller and the
software code for it is shown in Figure 2. The Windows mixed Verilog/VHDL
design flow is shown in Figure 3. The difference between the two methods is
that mixed verilog/VHDL designs have a VHDL wrapper as an output from
MSB. The VHDL wrapper is an input to Synthesis and Functional Simulation
in the Diamond flow.

Functional and timing simulation are performed in third-party and simulation
tools outside of Diamond.

LatticeMico8 Tutorial Introduction

LatticeMico8 Tutorial 5

Figure 2: Design Flow for Windows Verilog Users

Create/Edit Application
with C/C++

.elf
File

Linker
Script

System
Definition

(Header) File
Deploy
.elf to

On-chip
Memory

Create Platforms

RTL (.v)
Files

Test
Fixture
(.v) File

.msb
File

Incorporate
Platform

Synthesize, Map,
Place & Route

Generate
Bitstream

.bit
File

Reveal (for
Hardware)

Download Bitstream
with ispVM

Run/Debug Hardware
and Software on Board

Improve Hardware Improve Software

Perform
Functional
Simulation

Perform
Timing

Simulation

Mico System Builder Software Project Environment

Diamond

LatticeMico8 Tutorial Introduction

LatticeMico8 Tutorial 6

Figure 3: Design Flow for Windows VHDL Users, Using Mixed Verilog/VHDL Design Entry

Create/Edit Application
with C/C++

.elf
File

Linker
Script

System
Definition

(Header) File
Deploy
.elf to

On-chip
Memory

Create Platforms

RTL (.v)
Files

Test
Bench
(.vhd)

.msb
File

Incorporate
Platform

Synthesize, Map,
Place & Route

Generate
Bitstream

.bit
File

Reveal (for
Hardware)

Download Bitstream
with ispVM

Run/Debug Hardware
and Software on Board

Improve Hardware Improve Software

Perform Functional
Simulation

Perform
Timing

Simulation

VHDL
Wrapper

(_vhd.vhd)

Mico System Builder Software Project Environment

Diamond

LatticeMico8 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico8 Tutorial 7

Task 1: Create a New Lattice Diamond Project

As a first step, you will create a new project in Diamond.

To create a new Lattice Diamond project:

1. Create a folder called lm8_tutor in the following directory:

 For Windows, <Diamond_install_path>\examples

 For Linux, ~/LatticeMico

2. Start Lattice Diamond:

 On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

 On the Linux command line, run the following script:
<Diamond_install_path>/bin/lin/diamond.

3. Choose File > New > Project, and then click Next in the New Project
wizard.

4. In the New Project wizard dialog box, shown in Figure 4, select or specify
the following:

a. In the Project Name box, enter platform1.

b. In the Location box, enter the path for the lm8_tutor directory:

 For Windows, <Diamond_install_path>\examples\lm8_tutor

 For Linux, ~/LatticeMico/lm8_tutor

By default, Diamond uses the Project name and location for the
implementation and fills in this information. Although you can change to a
different name and directory for the first implementation, you will use the
default settings for this tutorial.

LatticeMico8 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico8 Tutorial 8

Figure 4: New Project Wizard

5. Click Next to proceed to the Add Source dialog box, and then click Next.
You will add the source later.

6. In Select Device dialog box, shown in Figure 5, make the following
selections:

a. In the Family box, select MachXO2.

b. In the Device box, select LCMXO2-1200HC.

c. In the Speed grade box, select 5.

d. In the Package Type box, select CSBGA132.

e. In the Operating Conditions box, select Commercial.

The dialog box should now resemble the illustration in Figure 5.

LatticeMico8 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico8 Tutorial 9

Figure 5: New Project Wizard – Select a Device Dialog Box

7. Click Next, and then click Finish.

In the File List, shown in Figure 6, the project name is shown at the top.
The implementation name, which has the same name as the project
name, is displayed in bold type, with the implementation icon . The

project is assigned a default strategy, Strategy1, which is also displayed in
bold type with the strategy icon . A strategy is a collection of settings

for logic synthesis, place, and route. You can view these settings by
double-clicking the strategy name. The platform1 project is also assigned
a logical preference file, platform1.lpf.

LatticeMico8 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico8 Tutorial 10

Figure 6: Diamond File List

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 11

Task 2: Create LatticeMico8 Platform

In Task 1, you created a blank Diamond project. The Diamond project is a
placeholder for the LatticeMico8 microcontroller platform. You use LatticeMico
System Builder (MSB) to create the microcontroller platform. MSB allows you
to select components to attach to the microcontroller. Additionally, MSB allows
you to customize each of the attached components. After all components are
attached to the microcontroller, you use MSB to generate Verilog or VHDL
source code that describes a microcontroller–based System-on-a-Chip
(SOC). You then enter the HDL source code into the Diamond project in order
to create the bitstream used to configure the FPGA.

The steps in this section describe how to build a LatticeMico8 microcontroller
SOC that is intended for developing and debugging LatticeMico8-based
systems. During system development, the FPGA resources and the firmware
are in a state of flux, undergoing many changes. When you deploy a
LatticeMico8 microcontroller, as described here, you reduce the impact of the
on-going changes in the development environment.

Create a New MSB Platform

Now you will create a new platform in MSB.

To create a new platform:

1. In Windows, from the Start menu, choose Programs > Lattice Diamond
> Accessories > LatticeMico System.

For Linux, on the Linux command line, run the following script:

<Diamond_install_path>/micosystem/LatticeMicoLauncher

The Workspace Launcher dialog box, shown in Figure 7, displays a
default workspace location for the platform.

Figure 7: Workspace Launcher Dialog Box

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 12

2. Accept the default location, or click the Browse button to select a different
location. To keep the same workspace for future sessions, select the “Use
this as the default and do not ask again” option.

3. Click OK. The LatticeMico System interface now appears, as shown in
Figure 8.

Figure 8: LatticeMico System Interface

4. In the upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

5. Choose File > New Platform.

6. In the New Platform Wizard dialog box, make the following selections:

a. In the Platform Name box, enter platform1.

b. In the Directory box, browse to the lm8_tutor directory and click OK:

 For Windows, <Diamond_install_path>\examples\lm8_tutor

 For Linux, ~/LatticeMico/lm8_tutor

c. Do one of the following:

 If you are generating a platform in Verilog, leave the Create VHDL
Wrapper unselected.

 If you are generating a platform in mixed Verilog/VHDL, select only
Create VHDL Wrapper.

d. In the Arbitration scheme box, select Shared Bus (Default) from the
drop-down menu, if it is not already selected.

e. In the Processor box, select LM8.

f. In the Device Family section, select MachXO2 from the Family menu
and All from the Device menu.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 13

g. In the Platform Templates box, select blank.

The New Platform Wizard dialog box should look like the illustration in
Figure 9.

Figure 9: New Platform Wizard Dialog Box

7. Click Finish.

The MSB perspective now appears, as shown in Figure 10.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 14

Figure 10: MSB Perspective

The MSB perspective consists of the following views:

 Available Components view, which displays all the available components
that you can use to create the design:

 A list of hardware components: CPUs, memories, components,
and bus interfaces. Bus interfaces can be masters or slaves (see
“Specify the Connections Between Master and Slave Ports” on
page 20 for more information on masters and slaves). The
component list shown in Figure 10 is the standard list that is given
for each new platform.

 You can double-click on a component to open a dialog box that
enables you to customize the component before it is added to the
design. The component is then shown in the Editor view.

 Editor view, which is a table that displays the components that you have
chosen in the Available Components view. It includes the following
columns:

 Name, which displays the names of the chosen components and their
ports

 Wishbone Connection, which displays the connectivity between
master and slave ports

 Base, which displays the start addresses for components with slave
ports. This field is editable.

Available
Components
view

Editor
view

Component
Attributes
view

Console
view or
Component
Help view

Note

Not all components are available for each FPGA device and/or CPU. Depending
on the selection made for the Processor and Device Family in Figure 9, some
components are disabled. All disabled components are marked in red, as shown in
Figure 10.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 15

 End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

 Size (Bytes), which displays the number of addresses available for
component access.

 Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

 IRQ, which displays the interrupt priorities of all components that have
interrupt lines connected to the LatticeMico8 microcontroller. The
LatticeMico8 microcontroller can accept up to 8 external interrupt
lines.

 Disable, which indicates whether components are temporarily
excluded from the design

 Component Help view, which displays information about the component
that you selected in the Available Components view. The Help page
displays the name of the component—for example, “LatticeMico Timer” or
“LatticeMico UART—and gives a brief description of the function of the
component. It also provides a list and explanation of the parameters that
appear in the dialog box when you double-click the component. If you
click the icon next to the component name, you can view a complete
description of the component in a PDF file.

 Console view, which displays informational and error messages output by
MSB

Component Attributes view, which displays the name, parameters, and values
of the component selected in the Available Components view or the Editor
view. This view is read-only

Add the Microcontroller Core

The first step in building the platform is to add the CPU. In this release, the
LatticeMico8 and LatticeMico32 CPUs are available. To add the LatticeMico8
microcontroller core:

1. Under CPU in the Available Components view, click LatticeMico8 to view
the information available about the LatticeMico8 microcontroller.

Information about the LatticeMico8 microcontroller, including the
parameters that you can set for it, now appears in the Component Help
view and in the Component Attributes view in the lower third of the screen.
If you click the icon in the Component Help view, you can view the
LatticeMico8 Reference Manual, which provides a complete description of
the microcontroller.

2. Double-click LatticeMico8 to open the Add LatticeMico8 dialog box.
Alternatively, you can select LatticeMico8, and then click the Add
Component button .
The parameters in the dialog box, shown in Figure 11, correspond to
those in the table in the Component Help view.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 16

3. In the Add LatticeMico8 dialog box, do the following:

a. Set the “Number of Registers” to 32.

b. Set the “Call Stack Depth” to 16.

c. Set the address ranges for the Scratchpad and Peripheral (I/O)
regions of LatticeMico8.

 The maximum size of the two regions is defined by the contents of
the field “Data and I/O Addressable Range”. Set this value to
64Kbytes for the tutorial.

 The base address of the Scratchpad region is identified by the
value in the field “Scratchpad Base Address”. Set this value to
0x00000000 for the tutorial. The software developer can use
LatticeMico8 instructions – lsp, lspi, ssp, and sspi – to access this
region. The LatticeMico8 compiler will map all of the software
application’s data in to this region by default.

 The base address of the Peripheral (I/O) region is identified by the
value in the field “I/O Base Address”. Set this value to 0x80000000
for the tutorial. This software developer can use LatticeMico8
instructions – import, importi, export, and exporti – or compiler-
provided builtin functions –__builtin_export, and __builtin_import –
to access this region. Since the LatticeMico8 compiler does not
map data accesses in to this region by default, the software
developer must explicitly use the aforementioned instructions or
functions to direct the compiler to access this region.

d. The LatticeMico8 PROM is either internal to the microcontroller, or
located in a non-volatile memory. The following settings determine the
PROM settings.

 The size of the PROM is defined in the “PROM Size” box and it
determines the maximum number of LatticeMico8 instructions that
can be stored in it. The size is required regardless of whether the
PROM is internal or external. Set this value to 2048 (i.e. 2048
LatticeMico8 assembly instructions).

 We need to provide a PROM initialization file that contains the
software application’s code image when the PROM is internal. The
field “Initialization File Name” will be set up in Task 4.

e. The LatticeMico8 Scratchpad is either internal to the microcontroller,
or located in any other volatile memory. The following settings
determine the Scratchpad settings.

 Select the “Internal Scratchpad” option to locate the Scratchpad
within the microcontroller.

 The size of the Scratchpad is defined in the “Scratchpad Size”.
The size is required regardless of whether the Scratchpad is

Note

In this tutorial the LatticeMico8 PROM is internal. If the developer wants
the PROM to reside in non-volatile memory such as SPI flash, he must
enable the “Images in Non-Volatile Memory” and “Execute-In-Place”
options in the LatticeMico8 configuration GUI.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 17

internal or external since the LatticeMico8 compiler uses this value
to determine the maximum number of bytes that can be within the
software application’s data. Set this value to 0x00000800 (i.e.
2046 bytes).

 We need to provide a Scratchpad initialization file that contains the
software application’s data image when the Scratchpad is internal.
The field “Initialization File Name” will be set up in Task 4.

f. Click OK to accept the default settings for the rest of the options.
Figure 11 shows the settings that are used for LatticeMico8 within the
tutorial.

Figure 11: LatticeMico8 Microcontroller Core Dialog Box

Once you click OK, information about the microcontroller now appears in the
Name, Wishbone Connection, Base, End, and Size columns of the table in
the Editor view.

The MSB perspective now shows the LatticeMico8 Microcontroller in the
Editor View, as shown in Figure 12.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 18

Figure 12: MSB Perspective with Microcontroller

The Wishbone Connection column graphically displays the types of ports and
connections. Black horizontal lines with outbound arrows indicate master
ports, whereas blue horizontal lines with inbound arrows indicate slave ports.
The vertical lines are associated with master ports, and the filled circles
indicate connections between master and slave ports.

Add the Peripheral Components

Now you will add the peripheral components to the platform.

Add the GPIO

The first peripheral component that you will add is the LatticeMico GPIO
component, which provides a memory-mapped interface between a
WISHBONE port and general-purpose I/O ports. The I/O ports connect either
to on-chip user logic or to I/O pins that connect to devices external to the
FPGA.

To add the GPIO to the platform:

1. Under IO in the Available Components view, double-click GPIO.
Alternatively, you can select GPIO, then click the Add Component button

.

2. In the Add GPIO dialog box, shown in Figure 13, do the following:

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 19

a. In the Instance Name box, change the name of the GPIO to LED. For
this tutorial, the GPIO block must be named LED. Failure to name the
GPIO block LED will cause mismatches in the FPGA I/O pin names.
The example C source code uses this instance name to access the
GPIO registers.

b. Change the setting of the Data Width option to 4.

c. Change the setting of the WISHBONE Data Bus Width to 8.

d. Click OK to accept the default settings for the rest of the options.

Figure 13: Add GPIO Dialog Box

Add the UART

The final component that you will add is a LatticeMico universal asynchronous
receiver-transmitter (UART), a core that contains a receiver and a transmitter.
The receiver performs serial-to-parallel conversion of the asynchronous data
frame received at its serial data input pin. The transmitter performs parallel-to-
serial conversion on the 8-bit data received from the CPU.

To add the UART to the platform:

1. Under IO in the Available Components view, double-click UART to open
the dialog box. Alternatively, you can select UART, and then click the Add
Component button .

2. In the Add UART dialog box, shown in Figure 14, click OK to accept the
default settings.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 20

Figure 14: Add UART Dialog Box.

Specify the Connections Between Master and
Slave Ports

The MSB perspective now resembles the illustration in Figure 15.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 21

Figure 15: MSB Perspective After Addition Components

The connections that you will make between the master and slave ports in the
Editor view will reflect the access scheme shown in Figure 1 on page 3. The
following information applies to master and slave ports in the Editor view:

 There are two types of ports: master ports and slave ports.

 A master port can initiate read and write transactions.

 A slave port cannot initiate transactions but can respond to
transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

 A master port can be connected to one or more slave ports.

 A component can have one or more master ports, one or more slave
ports, or both.

 Horizontal lines with outbound arrows sourced from a component port
indicate a master port.

 Horizontal lines with inbound arrows targeting a component port indicate a
slave port.

 The vertical lines are associated with horizontal lines with outbound
arrows (that is, master ports) to facilitate “connectivity” from a master port
to a slave port. A circle represents the intersection of the vertical line and
a horizontal line associated with a slave port.

 A filled circle indicates a connection between the master port represented
by the vertical line and the slave port represented by the horizontal line
associated with the filled circle.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 22

 A hollow circle indicates an absence of connection between the master
port represented by the vertical line and the slave port represented by the
horizontal line associated with the hollow circle. This can be seen in
Figure 16.

 The numbers next to the lines representing the master ports are the
priorities in which the master ports can access the slave ports. You can
change the priority of these connections by following the instructions in
the online Help for LatticeMico System.

To specify the connections between master and slave ports:

1. Connect the data port of the LatticeMico8 microcontroller to the
LatticeMico GPIO slave port by clicking the circle in the WISHBONE
Connection column of the GPIO Port row.

2. Connect the data port of the LatticeMico8 microcontroller to the
LatticeMico UART slave port by clicking the circle in the WISHBONE
Connection column of the UART Port row.

Figure 16 shows the resulting connections in the Editor view. This tutorial
example uses the shared-bus arbitration scheme. For information about bus
arbitration schemes, refer to the “LatticeMico8 Developer's User Guide.”

MSB automatically generates the arbiter, depending on which arbitration
scheme is selected. In the case of the shared-bus arbitration scheme, it
generates the microcontroller platform to allow multiple master ports access
to multiple slave ports over a single shared bus. In the diagram, the data port
accesses the LatticeMico GPIO and the LatticeMico UART.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 23

Figure 16: Resulting Connections

Assign Component Addresses

The next step is for MSB to generate an address for each component with
slave ports. Addresses are specified in hexadecimal notation. Components
with master ports are not assigned addresses.

You will not assign individual addresses. To automatically assign component
addresses:

 Choose Platform Tools > Generate Address, or click the Generate
Base Address button , or right-click in the Editor view and choose
Generate Address from the pop-up menu. The addresses now appear in
the Base and End columns in the Editor view, in hexadecimal notation.
Slave components that are not memories are assigned addresses within
the 0x80000000-0xFFFFFFFF memory range. The Generate Address
command sets A31 of each of the I/O components to ‘1

Note

You can only edit the addresses in the Base column in the Editor View. You
cannot edit the addresses in the End column. The value of the end address is
equivalent to the value of the base address plus the value of the size.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 24

Your MSB perspective should now resemble the example shown in Figure 17.
The base addresses that you see in your Editor view might be different from
those shown.

Figure 17: MSB Perspective with Component Addresses Assigned

Assign Interrupt Request Priorities

The interrupt request priority is the order in which hardware components
request computing time from the CPU. Now you will assign an interrupt
request priority (IRQ) to all components that feature a dash in the IRQ column
of the Editor view. You cannot assign interrupt priorities to components lacking
this dash in the IRQ column, such as memories and CPUs.

Note

Address and size values that appear in italic font in the Editor view cannot be
changed.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 25

To assign interrupt priorities for all components providing interrupt
functionality:

 Choose Platform Tools > Generate IRQ, or click the Generate IRQ
button , or right-click in the Editor view and choose Generate IRQ from
the pop-up menu.

If you accidentally assign duplicate priorities, MSB will issue an error
message in the Console view when you select Platform Tools > Generate
IRQ.

Perform a Design Rule Check

You will want to perform a design rule check to verify that components in the
platform have valid base addresses, interrupt request values, and other
fundamental properties.

To perform a design rule check:

 Choose Platform Tools > Run DRC, or click the Run DRC button , or
right-click in the Editor view and choose Run DRC from the pop-up menu.

In the Console view, MSB shows that there are no errors in the platform.

Generate the LatticeMico8 Platform

You are now ready to generate the microcontroller platform. During the
generation process, MSB creates the following files in the
“lm8_tutor\platform1\soc” directory:

 A platform1.msb file, which describes the platform. It is in XML format and
contains the configurable parameters and bus interface information for the
components.

 A platform1.v (Verilog) file, which is used by both Verilog and mixed
Verilog/VHDL users:

 For Verilog users, the platform1.v file is used in both simulation
and implementation. It instantiates all the selected components
and the interconnect described in the MSB graphical user
interface. This file is the top-level simulation and synthesis RTL file
passed to Diamond. It includes the .v files for each component in
the design. These .v files are used to synthesize and generate a
bitstream to be downloaded to the FPGA. The first time Generate
is run, the Verilog source for each component in the platform,

Note

To reassign an interrupt priority for a specific component, go to the IRQ
column in the row for the component, click on the current interrupt priority
number, and choose the new priority number from the drop-down menu.
Explicitly assigned interrupt priorities will not be overridden by the interrupt
generator tool. The Lock control does not affect IRQ assignment; it only
prevents auto-assignment of the Base Address.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 26

which is located in “<Diamond_install_path>/micosystem/
components/<component>”, is copied into a subdirectory called
“components”. The components subdirectory is a sibling to the
“soc” subdirectory.

 For mixed Verilog/VHDL users, the platform1.v file is used in
simulation only. A mixed-mode Verilog and VHDL simulator, such
as Aldec® Active-HDL™, is needed for functional simulation.

 A platform1_vhd.vhd (VHDL) file is created if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
mixed Verilog/VHDL design. The platform1_vhd.vhd contains the top-level
design used for synthesis. This top-level design file instantiates the
platform1 component.

 A platform1.ngo file, if you selected both the Create VHDL Wrapper and
the Create VHDL NGO File options in the New Platform Wizard dialog
box. The .ngo file is required for Linux Verilog/VHDL users. It is a
synthesized version of platform1.v.

The contents of the platform1.msb file are used by the C/C++ development
tools. The C/C++ source code build process extracts the base address
information and the size of each component and uses the information to build
GNU LD linker files. Each time the Generate function is run, it causes the C/
C++ compiler to consider the C/C++ source code to be out of date. This
means that the source code will be rebuilt from scratch after each Generate
process.

To generate the microprocessor platform:

 Click anywhere in the Editor view and choose Platform Tools > Run
Generator, or click the Run Generator button , or right-click and
choose Run Generator from the pop-up menu.

The Console view displays the output as MSB processes the design. If you
are using Verilog, you will see Finish Generator in the Console view when the
generator is finished. If the project was created with the “Create VHDL
Wrapper” option selected, the project is a mixed Verilog/VHDL flow and the
generator silently launches Synplify synthesis and Diamond to create the
wrapper. If you are using mixed Verilog/VHDL, you must wait for the Finish
VHDL Wrapper message to appear in the Console view.T

he MSB perspective now looks like the illustration in Figure 18. The assigned
addresses for the components might differ. As shown in Figure 19, MSB
generates a platform1_inst.v file, which contains the Verilog instantiation
template for use in a design where the platform is not the top-level module.
For a mixed Verilog/VHDL project, no equivalent file is generated.

LatticeMico8 Tutorial Task 2: Create LatticeMico8 Platform

LatticeMico8 Tutorial 27

Figure 18: MSB Perspective

Create a User Top-Level Module

As mentioned in the previous section, the platform that is generated by MSB
may not be the top-level module. In this scenario, you can use the contents of
platform1_inst.v, as shown in Figure 19, within your top-level module. This
instantiates the platform generated by MSB within your top-level module.

You must now create a top level file name platform1_top.v to instantiate the
MSB-generated platform. Create the file as follows:

1. Copy and paste the contents of Figure 20 into a text editor.

Figure 19: platform1_inst.v file

`include "../components/lm8/rtl/verilog/lm8_include_all.v"
`include "../components/gpio/rtl/verilog/gpio.v"
`include "../components/gpio/rtl/verilog/tpio.v"
`include "../components/uart_core/rtl/verilog/uart_core.v"
platform1 platform1_u (
.clk_i(clk_i),
.reset_n(reset_n)
, .LEDPIO_OUT(LEDPIO_OUT) // [4-1:0]
, .uartSIN(uartSIN) //
, .uartSOUT(uartSOUT) //
);

LatticeMico8 Tutorial Task 3: Create Software Application Code

LatticeMico8 Tutorial 28

2. Name the file platform1_top.v, and save the file in the following directory:

 For Windows,
<Diamond_install_path>\examples\lm8_tutor\platform1\soc

 For Linux, ~/LatticeMico/lm8_tutor/platform1/soc

You will import this file into your Diamond project, in the section ““Importing
the Source Files” on page 37.

Task 3: Create Software Application Code

In this task, you create the software application by using C/C++ in the
LatticeMico System Software Project Environment (C/C++ SPE). The
software application is the code that runs on the LatticeMico8 microcontroller
to control the components, the bus, and the memories. The application is
written in C.

C/C++ SPE is based on the Eclipse environment and provides an integrated
development environment for developing, debugging, and deploying C/C++
applications. C/C++ SPE uses the GNU C tool chain (compiler, assembler,
linker, debugger, and other necessary utilities) that has been customized for
the LatticeMico8 microcontroller. C/C++ SPE uses the same LatticeMico
System interface as MSB, but it uses a different perspective called the C/C++
perspective.

Figure 20: User Top Level File

`include "../soc/platform1.v"

module platform1_top
(

input reset_n,
input uartSIN,
output uartSOUT,
output [3:0] LEDPIO_OUT

);

// MachX02 internal oscillator generates platform clock
wire clk_in;
OSCH OSCH_inst (.OSC(clk_in), .SEDSTDBY(), .STDBY(1'b0));
defparam OSCH_inst.NOM_FREQ = "24.18";

platform1 platform1_u
(

.clk_i (clk_in),

.reset_n (reset_n),

.LEDPIO_OUT (LEDPIO_OUT),

.uartSIN (uartSIN),

.uartSOUT (uartSOUT)
);

endmodule

LatticeMico8 Tutorial Task 3: Create Software Application Code

LatticeMico8 Tutorial 29

To activate the C/C++ perspective select C/C++ in the upper left-hand corner
of MSB graphical user interface. The C/C++ perspective is shown in
Figure 21.

Figure 21: Software Project Environment

The C/C++ perspective consists of the following views:

 C/C++ Projects view, which lists C/C++ SPE projects that have been
created

 Navigator view, which shows all of the file system's files under the
workspace directory

 Editor view, which is similar to the Editor view in the MSB perspective

 Outline view, which displays the structure of the file currently open in the
Editor view

 Problems view, which displays any error, warning, or informational
messages output by C/C++ SPE

 Console view, which displays informational messages output by the C/
C++ SPE build process

 Properties view, which displays the attributes of the item currently
selected in the C/C++ Projects view. This view is read-only.

 Search view, which displays the results of a search when you choose
Search > File.

 Tasks view, which shows the tasks running concurrently in the background

 Make Targets view, which is not used in LatticeMico8 C projects

LatticeMico8 Tutorial Task 3: Create Software Application Code

LatticeMico8 Tutorial 30

Create a New C/C++ SPE Project

You will create a new project in C/C++ SPE, import the platform1.msb file into
the project, select the application code template to use so that you do not
have to write the code yourself, and compile the code.

To create a new C/C++ SPE project:

1. In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

2. In the New Project dialog box, make the following selections:

a. In the Project Name box, enter LEDTest.

b. In the Location box, browse to the following directory:

 For Windows,
<Diamond_install_path>\examples\lm8_tutor\platform1

 For Linux, ~/LatticeMico/lm8_tutor/platform1

c. In the MSB System box, browse to the following location, select the
platform1.msb file in the dialog box, and click Open.

 For Windows, lm8_tutor\platform1\soc\platform1.msb

 For Linux, lm8_tutor/platform1/soc/platform1.msb

d. In the Select Project Templates box, select LM8 LEDTest as the
template for the application code.

The New Project dialog box should resemble the figure shown in Figure 22.

LatticeMico8 Tutorial Task 3: Create Software Application Code

LatticeMico8 Tutorial 31

Figure 22: New Project Dialog Box

3. Click Finish.

Now you see the source code in the middle pane of the C/C++ perspective, as
shown in Figure 23.

Note

The directory shown in the Location box in the Project Contents field is where
the software project directory will be created. Your user files will be placed in
this directory.

LatticeMico8 Tutorial Task 3: Create Software Application Code

LatticeMico8 Tutorial 32

Figure 23: Source Code in C/C++ Perspective

Build the Project

The next step is to build the project, in which C/C++ SPE compiles,
assembles, and links your application code, as well as the system library code
provided by C/C++ SPE.

To compile the project:

 In the C/C++ Projects view (left-hand pane), select LEDTest and choose
Project > Build Project. Do not click on any of the buttons in the Build
Project dialog box.

The compilation process generates the following files, among others, in the
LEDTest\platform1 directory:

 A C header file, DDStructs.h, that describes the device-driver structures
for the applicable devices, in addition to the relevant platform settings,
such as the microcontroller clock frequency.

 A C source file, DDStructs.c, that describes the component instance
parameters required by the device drivers in appropriate structures.

 A C source file, DDInit.c, that invokes specified device initialization
routines for putting the relevant instantiated components in a known state.

 A linker script, linker.ld (in LEDTest\platform1\Release), that contains the
location and size of the memory components and the rules for generating
an executable file image, as required by the GNU linker. C/C++ SPE uses
this information to ensure that the program code and data are located at

LatticeMico8 Tutorial Task 4: Deploy Software Application Code to LatticeMico8

LatticeMico8 Tutorial 33

the correct addresses. Although it is not covered in this tutorial, the
LatticeMico C/C++ SPE enables you to easily specify a custom linker
script to be used in lieu of the generated script for the managed build.

 A LatticeMico8 software executable linked formal file (.elf). The .elf file
contains the LatticeMico8 instructions and information about the pre-
initialized data. This tutorial generates a file called platform1.elf.

These files are included within the directory LEDTest and are generated by
the C/C++ SPE in the background. All the contents of this directory except
user’s C application – in this case it is LEDTest.c – are dynamically
generated, and any changes to them are overwritten from build to build. The
platform1 library directory (LEDTest\platform1\) contains platform-specific
information for the building of an application.

Task 4: Deploy Software Application Code to
LatticeMico8

The LEDTest application is in an executable linked format (ELF) that contains
both, code and data. This ELF file must be converted in to hexadecimal
initialization files, one each for code and data. The initialization file that
contains LEDTest code is called prom_init.hex and is used to initialize the
LatticeMico8 PROM. The initialization file that contains LEDTest data is called
scratchpad_init.hex and is used to initialize the LatticeMico8 Scratchpad.

C/C++ SPE provides an easy-to-use interface for preparing LEDTest for
deployment to the LatticeMico8 PROM and Scratchpad. Consult the
“LatticeMico8 User Guide” for functional details on the deployment utility.

To prepare LEDTest for deployment:

1. In the C/C++ perspective, select LEDTest and choose Tools > Software
Deployment. The Software Deployment Tools dialog box appears, as
shown in Figure 24.

LatticeMico8 Tutorial Task 4: Deploy Software Application Code to LatticeMico8

LatticeMico8 Tutorial 34

Figure 24: Software Deployment Tools Dialog Box

2. Select Mico8 Memory Deployment, and click on New launch
configuration button. The Software Deployment Tools dialog now
displays a Mico8 memory deployment configuration settings pane similar
to that shown in Figure 26.

a. In the Name box, enter the value LEDTest

b. Browse to LEDTest and select it as the value for the Project box

c. Click on the Search Project button and select LEDTest.elf as the value
for the C/C++ Application box

d. Select the folder to which the initialization files are saved.

LatticeMico8 Tutorial Task 4: Deploy Software Application Code to LatticeMico8

LatticeMico8 Tutorial 35

Figure 25: Mico8 Configuration Options

3. The configuration options within the Mico8 memory deployment
configuration settings pane should look like Figure 26.

Figure 26: Mico8 Memory Deployment Configuration Settings

LatticeMico8 Tutorial Task 4: Deploy Software Application Code to LatticeMico8

LatticeMico8 Tutorial 36

4. Click Apply and then click Start.

5. The two initialization files prom_init.mem and scratchpad_init.mem should
now be saved within the output folder specified in Step 2.d above.

To initialize LatticeMico8 with LEDTest initialization files:

1. Return to the MSB perspective.

2. Double-click on LM8 instance within the platform.

a. Initialize the PROM in the Initialization File Name box in PROM
Settings by browsing to the prom_init.mem file.

b. Initialize the Scratchpad in the Initialization File Name box in
Scratchpad Settings by browsing to the scratchpad_init.mem file.

3. The LM8 instance GUI should look like Figure 27. Click OK.

Figure 27: LatticeMico8 Instance GUI

4. Regenerate the hardware platform by clicking anywhere in the Editor view
and choose Platform Tools > Run Generator, or clicking the Run
Generator button, or right-clicking and choose Run Generator from the
pop-up menu.

LatticeMico8 Tutorial Task 5: Generate Platform Bitstream

LatticeMico8 Tutorial 37

The LatticeMico8 Verilog source code is now configured to use the
prom_init.mem and data_init.mem files that implement LEDTest.

Task 5: Generate Platform Bitstream

The next step in the flow is to generate the microcontroller bitstream file. This
bitstream file is then downloaded to the FPGA on the circuit board. To
generate the bitstream file, return to Diamond.

Import the MSB Output File

First, you must import the Verilog file output by MSB, the Verilog and VHDL
files for mixed Verilog/VHDL, or the EDIF file created by the synthesis tool into
Diamond. The process of importing the generated platform file into Diamond
is the same for Verilog and mixed Verilog/VHDL, except that you must import
the VHDL wrapper file in addition to the Verilog file for mixed Verilog/VHDL.

Configure the Lattice Diamond Environment

The Diamond build process has the ability to operate in two different modes.
One is to copy all HDL source files into the Diamond project directory, and the
other is to reference them in their current directory structure. The LatticeMico8
build requires that the source files remain in the directory structure created by
MSB. The default Diamond behavior is to leave the files where they are, but it
is advisable to verify that Diamond is configured correctly.

1. In Diamond, choose Tools > Options.

2. Under Environment, in the left pane of the Options dialog box, select
General.

3. If the option Copy file to Implementation's Source directory when
adding existing file is selected, clear this option and click OK.

Importing the Source Files

You import the top-level file, platform1_top.v, into Diamond. To import the
Verilog or Verilog/VHDL files for the tutorial example:

1. In Diamond, choose File > Add > Existing File.

2. In the dialog box, browse to the directory containing the top level Verilog
source code.

 For Windows,
<Diamond_install_path>\examples\lm8_tutor\platform1\soc

 For Linux, ~/LatticeMico/lm8_tutor/platform1/soc/

3. Do one of the following:

 Select the platform1_top.v file (Verilog), and click Add.

LatticeMico8 Tutorial Task 5: Generate Platform Bitstream

LatticeMico8 Tutorial 38

 If your design is mixed Verilog/VHDL, select the platform1_top.v, and
the platform1_vhd.vhd files and click Add.

4. If your design is mixed Verilog/VHDL, perform the following additional
steps:

a. Choose Project > Property Pages.

b. In the dialog box, select the project name that appears in bold type
next to the implementation icon .

c. In the right pane, click inside the Value cell for “Top-Level Unit” and
select platform1_top from the drop-down menu.

d. Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

e. In the dialog box, click the New Search Path button , browse to the
<platform1>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

g. Click OK to return to the Diamond main window.

Connect the Microcontroller to the FPGA Pins

You have two options for connecting the microcontroller to the FPGA pins:

 Manually create the pin constraints and import them into Diamond.

 Import a preconfigured preference file into Diamond.

For this tutorial, you will import a preconfigured pin preference file into
Diamond. Create a preconfigured pin preference file named “untitled.lpf” as
follows:

1. Copy and paste the contents of Figure 28 into a text editor.

2. Name the file untitled.lpf, and save the file in the following directory:

 For Windows, <Diamond_install_path>\examples\lm8_tutor

 For Linux, ~/LatticeMico/lm8_tutor/

To import this preconfigured pin preference file:

1. In Diamond, select the File List tab and double-click Strategy1.

2. In the Strategies dialog box, select Translate Design in the left pane.

3. In the right pane, double-click the cell in the Value column for Consistent
Bus Name Conversion.

4. Choose Lattice from the drop-down menu, and click OK.

5. In Diamond, choose File > Add > Existing File.

6. In the Add Existing File dialog box, do the following:

a. Select Constraint Files (*.lpf) from the Files of type menu.

LatticeMico8 Tutorial Task 5: Generate Platform Bitstream

LatticeMico8 Tutorial 39

b. Select the option Copy file to Implementation’s Source directory.

c. Navigate to the directory containing the untitled.lpf file for the File
Name box, and click Add.
Diamond adds the .lpf file to the project and displays file name and
path in the File List.

7. In the File List pane, right-click untitled.lpf and choose Set as Active
Preference File.

8. Diamond displays the untitled.lpf file and path in bold type, indicating that
the untitled.lpf will now be used instead of the platform1.lpf file.

Perform Functional Simulation

You can optionally simulate the functionality of the output top-level platform1.v
or platform1_vhd.vhd module by using a simulator such as Active-HDL in
Diamond. See the Active-HDL online Help in Diamond for more information
on this procedure.

 For Verilog simulation, you use platform1.v and all the Verilog files for
each attached component.

 For mixed Verilog/VHDL simulation, you use platform1_vhd.vhd,
platform1.v, and all the Verilog files for each attached component. You
must use a mixed-language simulator such as ModelSim® SE or Aldec
Active-HDL.

Figure 28: Preconfigured Pin Preference File

AUTOMOTIVE ;
BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
BLOCK INTERCLOCKDOMAIN PATHS ;

LOCATE COMP "reset_n" SITE "K2" ;
IOBUF PORT "reset_n" IO_TYPE=LVCMOS18 ;
#---
LEDs assumes the component instance name is LED & has
a width of 4
#---
LOCATE COMP "LEDPIO_OUT_0_" SITE "F1" ;
LOCATE COMP "LEDPIO_OUT_1_" SITE "F2" ;
LOCATE COMP "LEDPIO_OUT_2_" SITE "F3" ;
LOCATE COMP "LEDPIO_OUT_3_" SITE "H2" ;
IOBUF PORT "LEDPIO_OUT_0_" IO_TYPE=LVCMOS18 ;
IOBUF PORT "LEDPIO_OUT_1_" IO_TYPE=LVCMOS18 ;
IOBUF PORT "LEDPIO_OUT_2_" IO_TYPE=LVCMOS18 ;
IOBUF PORT "LEDPIO_OUT_3_" IO_TYPE=LVCMOS18 ;
#---
UART assumes the component instance name is uart
#---
LOCATE COMP "uartSIN" SITE "H1" ;
LOCATE COMP "uartSOUT" SITE "H3" ;
IOBUF PORT "uartSIN" IO_TYPE=LVCMOS18 ;
IOBUF PORT "uartSOUT" IO_TYPE=LVCMOS18 ;
BLOCK JTAGPATHS;

LatticeMico8 Tutorial Task 6: Download Platform Bitstream to FPGA

LatticeMico8 Tutorial 40

Perform Timing Simulation

You can optionally validate the timing of your design by performing timing
simulation. Because timing simulation is a complex topic, it is not addressed
in this tutorial. For information on timing simulation, see the Achieving Timing
Closure in FPGA Designs Tutorial, the “Design Verification” topic in the
Diamond online Help, or the “Strategies for Timing Closure” chapter of the
FPGA Design Guide.

The timing simulation process automatically builds a database and maps,
places, and routes the design.

Generate the Bitstream

Now you will generate a bitstream to download the microprocessor platform to
the FPGA. If you did not perform timing simulation, the bitstream generation
process will automatically synthesize, map, place, and route the design
before it generates the bitstream.

To generate a bitstream (.bit) file:

1. In Diamond, select the Process tab.

2. In the Export Files section, double-click JEDEC File.

Diamond now generates a bitstream data file, platform1_platform1.jed, that is
ready to be downloaded into the device. This process takes several minutes.

Task 6: Download Platform Bitstream to FPGA

The bitstream file generated in the previous section contains all the
information required to program the MachXO2 FPGA. Diamond Programmer
sends the programming bitstream to the FPGA over a parallel port or USB
port communications link.

Now you will use Programmer to download the hardware bitstream that you
generated in the previous section to the FPGA on the board.

To download the bitstream to the FPGA on the board:

1. Remove any Lattice USB Programming cables from your system.

2. Connect the power supply to the development board.

3. Connect a USB cable from your computer to the MachXO2 Control Board.
The USB cable must be connected to the USB target connector adjacent
to the keypad. Give the computer a few seconds to detect the USB device
on the MachXO2 Control board before moving to step 4.

4. In Diamond, choose Tools > Programmer.

5. In the Getting Started dialog box, choose Create a new Blank Project.
and click OK. Leave the Import File to Current Implementation box

LatticeMico8 Tutorial Task 6: Download Platform Bitstream to FPGA

LatticeMico8 Tutorial 41

checked. Programmer scans the device database, and then the
Programmer view displays in Diamond.

6. In the Cable Settings dialog box on the right side of the Programmer
window, do the following:

a. In the Cable box, select USB2.

b. In the Port box, choose the only setting available in the drop-down
menu, FTUSB-0.

7. Double-click the File Name column. Click to display the Open File
dialog box, and browse to the platform1_platform1.jed file in the following
directory:

 For Windows,
<Diamond_install_path>\examples\lm8_tutor\platform1_platform1.
jed

 For Linux, ~/LatticeMico/lm8_tutor/platform1_platform1.jed

8. Click Open.

9. Double-click the Operation column to display the Device Properties dialog
box, as shown in Figure 29, and choose the following settings:

 For Access Mode, choose Flash Programming Mode from the pull-
down menu.

 For Operation, choose Flash, Erase, Program, Verify from the pull-
down menu.

Figure 29: Device Properties Dialog Box.

10. Click OK.

11. The Programmer view should look as shown in Figure 30.

LatticeMico8 Tutorial Summary

LatticeMico8 Tutorial 42

Figure 30: Diamond Programmer

12. Click the Program button on the Programmer toolbar to initiate the
download.

13. Check the Programmer output console to see if the download passed, as
shown in Figure 31. If the programming process succeeded, you will see a
green-shaded PASS in the Programmer Status column.

Figure 31: Programmer Output Console

14. At the end of this process, the FPGA is loaded with the microcontroller
hardware configuration. If the design is successfully downloaded onto the
MachXO2 device, the four LEDs on the MachXO2 Control Board should
blink in sequence and repeat the pattern.

15. In Diamond, choose File > Save. In the Save .xcf File As dialog box, enter
platform1.xcf in the File Name box, and click Save.

Summary

You have finished the LatticeMico8 Tutorial. In this tutorial, you have learned
how to do the following:

 Set up a Lattice Diamond FPGA project.

LatticeMico8 Tutorial Summary

LatticeMico8 Tutorial 43

 Create microcontroller platform for the LatticeMico8 embedded
microcontroller in MSB.

 Create the software application code for the microcontroller platform with
C/C++ SPE.

 Deploy the software application code to the microcontroller’s internal
PROM and Scratchpad.

 Generate a bitstream of the microcontroller platform in Diamond.

 Download the hardware bitstream to the FPGA on the board using
Diamond Programmer.

LatticeMico8 Tutorial Summary

LatticeMico8 Tutorial 44

	LatticeMico8 Tutorial
	Introduction
	Learning Objectives
	Time to Complete This Tutorial
	System Requirements
	Accessing Online Help
	About the Tutorial Design
	Tutorial Data Flow

	Task 1: Create a New Lattice Diamond Project
	Task 2: Create LatticeMico8 Platform
	Create a New MSB Platform
	Add the Microcontroller Core
	Add the Peripheral Components
	Specify the Connections Between Master and Slave Ports
	Assign Component Addresses
	Assign Interrupt Request Priorities
	Perform a Design Rule Check
	Generate the LatticeMico8 Platform
	Create a User Top-Level Module

	Task 3: Create Software Application Code
	Create a New C/C++ SPE Project
	Build the Project

	Task 4: Deploy Software Application Code to LatticeMico8
	Task 5: Generate Platform Bitstream
	Import the MSB Output File
	Connect the Microcontroller to the FPGA Pins
	Perform Functional Simulation
	Perform Timing Simulation
	Generate the Bitstream

	Task 6: Download Platform Bitstream to FPGA
	Summary

