LatticeMico8 Developer User
Guide

s=LATTICE

June 2012

Copyright

Copyright © 2012 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Movile Device,
DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCEA40, iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog,
iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL,
ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA,
PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD,
TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in
the United States and/or other countries. ISP, Bringing the Best Together, and More of
the Best are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico8 Developer User Guide

Type Conventions Used in This Document

Convention Meaning or Use

Bold

<Italic>
Ctrl+L

Courier

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

LatticeMico8 Developer User Guide

LatticeMico8 Developer User Guide

= LATTICE

Contents

Chapter 1 LatticeMico System Overview 1

LatticeMico System Design Flow 1
Device Support 3
Design Flow Steps 3

Related Documentation 4

Chapter 2 Using the LatticeMico System Software 7

LatticeMico System Software Overview 7
About the LatticeMico System Tools 7
LatticeMico System Requirements 8
Running LatticeMico System 8
LatticeMico System Perspectives 8

Setting Up Diamond for a LatticeMico8 Platform 13
Creating a New Diamond Project 13
Recommended IP Design Flow 14

Creating the LatticeMico8 Platform in MSB 15
Starting MSB 15
Creating a Platform Description in MSB 18
Connecting Master and Slave Ports 21
Changing Master Port Arbitration Priorities 25
Assigning Component Addresses 26
Assigning Component Interrupt Priorities 28
Performing Design Rule Checks 29
Saving the Microcontroller Platform 29
Generating the Microcontroller Platform 29
Synthesizing the Platform to Create an EDIF File (Linux Only) 31
Design Guidance for Platform Performance 32
Generating the Microcontroller Bitstream 32
Downloading Hardware Bitstream to the FPGA 35

Using C/C++ SPE to Develop Your Software 35
Starting C/C++ SPE 36
Creating Software Projects 38

LatticeMico8 Developer User Guide

CONTENTS

Basic Project Operations 41
Understanding the Build Process 46
Building Your Software Project 47
Setting Project Properties 48
Rebuilding Your Software Project 51
Performing Builds Automatically 52

Deploying Your Software to LatticeMico8 Platform 52
On-Chip Memory Deployment 52
Non-Volatile Memory Deployment 56

Performing HDL Functional Simulation of LatticeMico8 63
Configuring the Platform with LatticeMico System Builder 64
Preparing for HDL Functional Simulation 65
Performing HDL Functional Simulation with Aldec Active-HDL 68
Performing HDL Functional Simulation with Mentor Graphics

ModelSim 68

Chapter 3 LatticeMico8 Run-Time Environment 71
Build/Compilation Utilities 71
Device Drivers and Services 71

Basic Program Structure 74
Creating a Blank Project 75
Adding a Source File to the Project 77
Adding Source to the Source File 79
Building the Application 80

Boot Sequence 82
Reset Address 84
Boot Code Sequence Flow 85

Interrupt Handling Sequence 86
Interrupt Handlers 86
Interrupt Handling Sequence Flow 88

Chapter 4 Managed Build Process and Directory Structure 91
Creating Managed Build Applications 91

LatticeMico8 C/C++ Project Build Flow 92
The Build Process 93
Build Directory Structure 94

Platform Library-Generated Source Files 101
DDsStructs.h File 103
DDsStructs.c File 105
DDlInit.c File 107
System_Conf.h File 108
Component Software Elements 113

Chapter 5 Tips on Developing Software for LatticeMico8 119
GNU Toolchain 119
Limitations 119
Built-in Functions 120
Built-in Macros 130
Using I/O (Peripheral) Instructions 130
Programming Model 130

Vi LatticeMico8 Developer User Guide

CONTENTS

Chapter 6 Software Development Utilities 137
Build Tools 137

Im8-elf-ar 137
Im8-elf-as 139
Im8-elf-gcc 141
Im8-elf-Ild 143
Im8-elf-nm 148
Im8-elf-objcopy 150
Im8-elf-objdump 152
Im8-elf-size 154

Glossary 157

Index 163

LatticeMico8 Developer User Guide

Vii

CONTENTS

viii LatticeMico8 Developer User Guide

= LATTICE Chapterl

LatticeMico System Overview

This software developer's guide describes the flow that is used to create and
deploy software application code for the LatticeMico8 microcontroller. In
addition, it familiarizes the reader with the LatticeMico8 run time environment,
the managed build environment, and it's associated directory structure. This
guide is targeted to software programmers who are interested in learning the
fundamentals of programming the embedded soft core microcontroller. For a
list of related documents on the LatticeMico8 microcontroller, refer to
"“Related Documentation” on page 4.

LatticeMico System Design Flow

This section lists the major steps involved in designing for the LatticeMico8
microcontroller. In addition to running the FPGA flow in Diamond, you will use
the integrated LatticeMico System software to build both hardware and
software features of the embedded soft core microcontroller.

The LatticeMico System software is composed of three bundled applications:
Mico System Builder (MSB)
C/C++ Software Project Environment (C/C++ SPE)
Deployment

These applications work in the background through the user interface and can
be accessed through different “perspectives” in the LatticeMico System
software. Perspectives are a prearranged and predefined set of user
functions that can be accessed within the software user interface. You toggle
different perspectives on and off by clicking on perspective tabs. Perspectives
are described in more detail in “LatticeMico System Perspectives” on page 8.

MSB is used by hardware designers to create the microcontroller platform for
both hardware and software development. A platform generically refers to the

LatticeMico8 Developer User Guide 1

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

hardware microcontroller configuration, the CPU, its peripherals, and how
these components are interconnected. This functionality in the LatticeMico8
System software can be accessed by using the MSB perspective in the
interface. The default MSB perspective is completely separate in terms of
function from the other two perspectives.

You can use the C/C++ Software Project Environment (SPE) to develop the
software application code that drives the platform. There is no debugger
support for LatticeMico8.

Figure 1 shows the interaction of the three LatticeMico8 System applications
with Lattice Diamond in the microcontroller development design flow.

Figure 1: LatticeMico8 System Development Software Tool Flow

Mico System Builder

Diamond

C SPE B

111¥111

FPGA

TTTTTTI

i

TTTTTTT

LatticeMico System Software Diamond Software

As noted earlier, you can learn more about perspectives in “LatticeMico
System Perspectives” on page 8. In addition, the LatticeMico8 Tutorial gives
step-by-step instructions on creating a sample microprocessor platform,
downloading hardware images to your device, creating your application code,
and deploying your application code to on-chip or flash memory. It covers all
relevant topics to enable you to run through a complete LatticeMico8 design
flow. It is highly recommended that you start out with the tutorial.

2 LatticeMico8 Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

Device Support

The Lattice FPGA devices that are currently supported in this design flow are
the following:

MachX02

Design Flow Steps

The major steps involved in designing a LatticeMico8 soft-core microcontroller
are the following:

1.
2.

Create a project in Diamond that targets the desired device family.

Use the Lattice Mico System Builder (MSB) in the LatticeMico8 System
software to create and develop a microcontroller platform. You access this
in the MSB perspective. Creating a platform involves generating an .msb
file, selecting component peripherals, and connecting them to the
LatticeMico8 platform.

In the MSB perspective, designate and develop drivers as necessary for
available peripherals and add them to the platform you created.

In the MSB perspective, generate a platform build, which automatically
creates a build structure with associated makefiles and an appropriate
linker script. This process involves the device drivers and any other
software components other than the user application.

In C/C++ SPE, use the C perspective to write the C user application
software, build the application, and created deployment images for on-
chip memory or non-volatile memory.

In Diamond, download the executable code to either on-chip memory or
non-volatile memory. In case of non-volatile memory, LatticeMico8
contains a hardware boot loader that can execute from non-volatile
memory or optionally load the application from non-volatile memory to on-
chip memory.

Repeat steps 3 through 6 for any new application development or
modification to the platform in step 2.

LatticeMico8 Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

Figure 2 shows the LatticeMico8 System design flow.

Figure 2: LatticeMico8 System Design Flow

Program the Bitstream
to Configuration
PROM

— P!

Iﬁ Y]

Create a CPU Platform - Platform Create a C SPE gl

in MSB | I| Description Managed Project g :
1

Y

m

[y

19!

“ 21

1§

1z,

Build Application 1= '

Using C SPE by
1

1
1

el

Y r

o

Create Deployment g

Images of Application [

Using C SPE Utility g

O |

“ o

]

y— 18

Generate On-Chip Mem » || Flash Image ,Ié Program the Application| 12y

FPGA Bitstream | Data/Code | | Data/Code Image into FLASH 191

N \/ / 1S

13

z

=

LI |

Y i

LI

[

LR |

R |

L

I 4

Related Documentation

You can access the LatticeMico System online Help and manuals by choosing
Help > Help Contents in the LatticeMico System interface. These manuals
include the following:

LatticeMico8 Processor Reference Manual, which contains information on
the architecture of the LatticeMico8 microprocessor chip, including
configuration options, pipeline architecture, register architecture, and
details about the instruction set

MachXO2 Development Board User Guide, which describes the features
and functionality of the MachXO2 development board. This board is
designed as a hardware platform for design and development with the
LatticeMico8 microprocessor and for various DSP functions.

Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench.

LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

4 LatticeMico8 Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

LatticeMico Master Passthrough, which describes the features and
functionality of the LatticeMico master passthrough.

LatticeMico Slave Passthrough, which describes the features and
functionality of the LatticeMico slave passthrough

LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico serial peripheral interface (SPI) flash memory controller

LatticeMico UART, which describes the features and functionality of the
LatticeMico Universal asynchronous receiver-transmitter (UART)

Lattice Diamond Installation Notice, which explains how to install the
LatticeMico System software for the current release

Lattice MachXO2 FPGA Family Handbook, which is a collection of the
data sheets and application notes on Lattice MachXO2 devices

Lattice MachXO2 Family Data Sheet

LatticeMico8 Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

6 LatticeMico8 Developer User Guide

= LATTICE Chapter 2

Using the LatticeMico System
Software

This chapter introduces you to the LatticeMico System software, describes
portions of its software user interface, and provides in-depth procedures for
performing common and advanced user tasks. The instructions for performing
key operations are presented in the order that they occur in the design flow,
and the user interface is introduced appropriately. See the LatticeMico
System online Help for more details on the user interface.

This chapter assumes that you have read “LatticeMico System Overview” on
page 1 and are familiar with the general high-level steps in this product flow.
This chapter also assumes that you have not customized the user interface.

LatticeMico System Software Overview

This section provides a brief synopsis of the functional tools included in the
software and teaches you the basic concept of user “perspectives” in the
software that are designed to simplify access to command functionality.

About the LatticeMico System Tools

As noted in “LatticeMico System Overview” on page 1, the LatticeMico
System software is composed of the following bundled, functional software
tools:

Mico System Builder (MSB), which is used to create the microcontroller
platform

C/C++ Software Project Environment (C/C++ SPE), which is used to
create the software application code (written in C, Assembly, or C with
inlined-assembly) that drives the microcontroller platform.

Deployment

LatticeMico8 Developer User Guide 7

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

The LatticeMico tools share the same Eclipse workbench, which provides a
unified graphical user interface for the software and hardware development
flows. You use MSB to define the structure of your microcontroller or your
hardware platform. C/C++ SPE enables you to develop and compile your
code in a managed and well-structured build environment. You will learn more
about how these functions are encountered in the software throughout this
chapter. This chapter assumes that you have installed all of the necessary
software and have not modified your default perspectives in any way.

LatticeMico System Requirements

System requirements for installing Lattice Diamond, LatticeMico System, and
Stand-Alone Programmer, are included in the Lattice Diamond Installation
Notice, available on the Lattice Web site for Windows and Linux.

Refer to the “Installing LatticeMico Development Tools” chapter for
information about LatticeMico System'’s system requirements and installation.

Refer to the “Installing Stand-Alone Programmer” section for information
about Stand-Alone iProgrammer’s installation.

Running LatticeMico System

Now you will run the software so that you can take a quick survey of the user
interface to understand its basic structure.

To run the LatticeMico System from your PC desktop:

From the Windows desktop Start menu, choose Programs > Lattice
Diamond > Accessories > LatticeMico System.

The LatticeMico System interface initially opens with the MSB perspective
active by default. After that, the software opens to the last opened
perspective.

LatticeMico System Perspectives

Note

The Debugger perspective is visible with LatticeMico8, but Debugger is not supported
for LatticeMico8 microcontroller.

Before you begin learning about the basic tasks that you can perform in the
LatticeMico System software to design hardware platforms and software
applications for the LatticeMico8 microcontroller, it is important to understand
the concept of “perspectives” in the software and how to access the three
integrated functional tools, MSB, C/C++ SPE, and the Debugger, within the

8 LatticeMico8 Developer User Guide

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-00-25&source=sidebar
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-00-25&source=sidebar

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

user interface. Do not confuse the underlying functional tools in the
LatticeMico System software with the various perspectives in the user
interface.

There are three default perspectives in the LatticeMico System software:
MSB perspective

For complete information about using the MSB perspective to configure
the microcontroller hardware platform and peripherals, refer to the
LatticeMico System Hardware Developer User Guide.

C/C++ SPE perspective, shown on Figure 13 on page 37

Debug perspective.

Within the Eclipse framework, the three functional tools appear as different
user interfaces or “perspectives” integrated into the same framework. A
“perspective” in the LatticeMico System software is a separate combination of
views, menus, commands, and toolbars in a given graphical user interface
window that enables you to perform a set of particular, predefined tasks. For
example, the Debug perspective has views that enable you to debug the
programs that you developed using the C++ SPE tool. For an overview on
Eclipse workbench concept and terminologies, refer to the Eclipse Reference
Manual.

When you first open LatticeMico System, the MSB perspective is the active
perspective by default. After working in the interface, the software defaults to
the last opened perspective. The Eclipse workbench that is integrated into the
LatticeMico System software has three activation buttons for quickly toggling
back and forth between the MSB, C/C++, and Debug perspectives. These
buttons are shown in Figure 3. They enable you to switch between
perspectives by clicking on them. Figure 3 also shows the activated C/C++
perspective. The current active perspective is displayed in the upper left of the
window’s title bar.

Figure 3: Perspective Activation Buttons

& CI/C++ - LEDTest.c - Eclipse Platform

File Edit Mavigate Project Tools Search RBun Window Help
!=<_‘-I‘v & | @ I ﬁvﬁﬁ, cﬁv@}v f;vﬁv
5| B mse |[g cjc++ | %% Debug

Only two perspectives - the MSB and the C/C++ SPE - are used for designing
hardware platforms and software applications for the LatticeMico8
microcontroller. The Debug perspective, though visible, is not used. The MSB
and C/C++ SPE perspectives include tool functions that the developer can
access through various commands and interactive views, as illustrated in

LatticeMico8 Developer User Guide 9

http://help.eclipse.org/help30/

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

Figure 4. You can find more information on these commands and views later
in this document and in the online Help.

Figure 4: Tool Functions Accessed in Perspectives

" Commands Accessed
Mico System Builder B ===
(MSB) BEEESS0ES MSB Perspective
CIC#++ Software Project = .
[Environment (SPE)]_’ CIC#++ Perspective

Note

Particular views and options within a given perspective are described in more detail
throughout this chapter as they are encountered in the design flow. More information
on the graphical user interface, views, windows, dialog boxes, and so forth are
described in more detail in the LatticeMico online Help.

The LatticeMico System software enables you to customize existing default
perspectives, create your own perspectives, and control what views are open
in a given perspective. The following procedures tell you how to customize,
define, and reset perspectives. These procedures assume that you have not
changed the default perspective settings.

Customizing Default Perspectives

It is possible to customize existing default perspectives in LatticeMico System
by changing the existing set of commands ascribed to each perspective.

To customize an existing perspective:

1. From within a given perspective, choose Window > Customize
Perspective.

2. Inthe Customize Perspective dialog box, select shortcut options in the
Shortcuts tab and command options in the Commands tab.

3. Click OK.

You should see the results of any changes in the interface.

10

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

Creating Custom Perspectives

In addition to the three existing default perspectives, you can also add your
own custom perspective with custom options to the user interface.

To create a new perspective:

1.

From within a given perspective, choose Window > Save Perspective
As.

In the Save Perspective As dialog box, rename an existing default
perspective in the Name text box and click OK to save it.

Choose Window > Customize Perspective to customize the new
perspective that you created.

Deleting Custom Perspectives
You can delete perspectives that you defined yourself, but you cannot delete
the default perspectives that are delivered with the software workbench
environment.

To delete a custom perspective:

1.

From within a given perspective, choose Window > Preferences.
The Preferences window opens.

From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

From the Available perspectives list, select the desired perspective and
click Delete.

Click OK.

Changing Default Perspectives

After you create a new perspective, you may want to make the new
perspective a default perspective that will automatically be available when
you return to the program.

To change the default perspective:

1.
2,

From within a given perspective, choose Window > Preferences.

From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

Select the perspective that you want to define as the default and click
Make Default.

The default indicator moves to the perspective that you selected.

LatticeMico8 Developer User Guide

11

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

4. Click OK.

Resetting Default Perspectives

After customizing default perspectives, you can revert back to the original set
of command options for a given perspective by resetting them in the software.

To reset your default perspectives:
1. From within a given perspective, choose Window > Reset Perspective.
2. Inthe Reset Perspective pop-up dialog box, click OK.

This action returns all default perspectives back to their original option
settings.

Closing and Opening Views in Perspectives

In each perspective, views are defined for each perspective that allow you to
interactively perform a task. These views are described later in this chapter
for each perspective.

At times, you may want to close views to make more space for working in a
desired view. For example, after you add all of the components that you need
in your platform, you may opt to close the Available Components view in the
MSB perspective.

To close aview in a given perspective:

In a given perspective, click on the Close icon that appears as an “X” at
the upper right corner of the view that you wish to close.

The view closes. In some cases where the two views did not overlap, an
adjacent view moves into the vacated area in the interface, making the
adjacent view larger.

To reopen a view that you previously closed:

In a given perspective, choose Window > Show View and select the view
that you wish to reopen from the submenu.

The view is reopened in its original area in the interface.

12

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico8 Platform

Setting Up Diamond for a LatticeMico8 Platform

Before you create your microcontroller project in LatticeMico System, set up a
project in the Lattice Diamond software that targets the device family that will
serve as the fabric in which to embed the microcontroller. You do not add your
source HDL at this point, because your Verilog or VHDL source will be
generated by the LatticeMico System software later in the flow.

Note

If you are going to use LatticeMico System on the Linux platform, you must install a
stand-alone synthesis tool, such as Synpli(:ity® Synplify Pro®, before you create an
Diamond project.

In addition, your Linux system must meet the minimum system requirements outlined
in the Diamond <release_number> Installation Guide for Linux.

Creating a New Diamond Project

After you create a new Diamond project, you can import a LatticeMico8
platform into the design. If your design includes a platform with IP cores, you
should also follow the guidelines in “Recommended IP Design Flow” on
page 14.

To create a new Diamond project for use with a LatticeMico project:
1. Start the Lattice Diamond software:

On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

On the Linux command line, run the following script:
<install_path>/diamond/<version_number>/bin/lin/diamond &
Choose File > New > Project.
In the New Project wizard, click Next.

Type a name for the project in the Name box.

o M 0N

Click the Browse button and navigate to the directory where you would
like the project to be stored.

6. Under Implementation, the project name and location are automatically
filled in. If you prefer a different name for the design’s first implementation,
type a new name in the Implementation name box.

7. Click Next.

8. Click Next in the Add Source dialog box. You will be adding the source
files later.

9. Inthe Select Device dialog box, select the desired family, device, speed
grade, package type, operating conditions, and part name from the drop-
down menus. Leave the Show Obsolete Devices box unselected.

10. Click Next and review the project information. Use the Back button, if
needed, to make any modifications.

LatticeMico8 Developer User Guide 13

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico8 Platform

11. Click Finish.

The name of the new project appears in the File List pane. The initial
strategy and implementation for the project are displayed in bold type. For
more information about working with design implementations and
strategies, see the “Managing Projects” section of the Lattice Diamond
online Help.

Recommended IP Design Flow

The following design flow and guidelines will ensure that the proper data gets
passed between Diamond and LatticeMico for platforms that contain IP cores.
This procedure assumes that you are creating a new project and platform and
that you will be generating an IP core from the IPexpress interface within
LatticeMico System.

1.

From the Windows Start Menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

LatticeMico System opens with the Mico System Builder (MSB)
perspective. MSB displays the last platform that was opened. If you
closed the platform before exiting MSB in the previous session, it displays
no platform.

Choose File > New Platform.

The New Platform Wizard opens. In the Directory text box, it displays the
path and directory of your Diamond project.

Give the new platform a name and specify the settings, as described in
“Creating a Platform Description in MSB” on page 18. To keep the
platform within the Diamond project you just created, do not change the
directory location.

Add the LatticeMico8 microcontroller to the platform and any desired
memory and peripheral components, as described in “Adding
Microcontroller and Peripherals to Your Platform” on page 20.

From the Available Components window, double-click the desired IP core
component—for example, MachXO2 EFB—to open the Add<IP_core>
dialog box.

As in the New Platform Wizard, this dialog box remembers the path and
directory of your Diamond design project, and it displays this path and
directory in the “Diamond Project” text box in the “IPexpress Interface”
section.

When you generate the IP core, the software places a copy of the IP
core’s .ngo or .rtl file—for example, efb.v—inside the project directory. If
you click Browse and change the location, any future changes that you
make to the IP core will not be applied to the current project.

Specify the desired settings in the top part of the Add<IP_core> dialog
box. In the IPexpress Interface section, do not change to a different
Diamond project directory.

14

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

This is important for your current project. Maintaining the Diamond project
directory will ensure that future changes to the IP will be applied to the
current design project.

7. Inthe IPexpress Interface section, click Launch IPexpress.

8. Inthe Lattice IP Core interface, specify the desired parameters, and then
click Generate.

IPexpress generates the IP core. When the process has finished, it
displays a log, which shows the output directory and path and the files
generated.

9. Click Close to return to the Add<IP_core> dialog box.

The Generated NGO or RTL File text box is how populated with the
location of the .ngo or .v file inside the Diamond project directory.

10. Click OK to add the newly generated IP core to your project’s platform.

11. Follow the remaining instructions in the section “Creating the LatticeMico8
Platform in MSB” on page 15 to connect master and slave ports, assign
addresses and interrupt priorities, and generate the platform.

Creating the LatticeMico8 Platform in MSB

After you have created a new project in Diamond using your target FPGA
device, you must create a new microcontroller platform in Mico System
Builder (MSB). A platform generically refers to the hardware microcontroller
configuration, the CPU, its peripherals, and how these components are
interconnected.

Starting MSB

Note

If you are going to be using LatticeMico System on the Linux platform, set up
the environment to point to the location where the stand-alone synthesis tool
is installed before starting LatticeMico System, as in this example:

setenv IPEXPRESS SYN PATH /install/synplify/fpga 89/bin/
synplify pro

To start MSB:

1. If you have not yet opened the software, as described in “Running
LatticeMico System” on page 8, choose Start > Programs > Lattice
Diamond > Accessories > LatticeMico System.

During its launch process, the LatticeMico System software creates an
Eclipse workspace file. This file is created in your home directory. On the
Windows operating systems, it is in the Documents and Settings directory.
On the Linux operating system, itis in ~.

LatticeMico8 Developer User Guide 15

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Eclipse uses the workspace file to store information about your Eclipse
environment and the projects that you have been working on. You can
switch workspaces by selecting the File > Switch Workspace command.

2. Inthe upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

The MSB perspective is active by default, as shown in Figure 5.

Figure 5: MSB Perspective

File Edit Mavigate Search Project Platform Tools Tools Run Window Help
G-HE B0 @-if Gri@g-f-ocr-a- IO ADRE
& [M8 | B@ C/C++ %5 Debug

@Avanab\e Components i = [[@ LEDTest.c @*tenb B3 =&
S1P2EZAE Name Wishbone Connection Base End Size(Bytes) lock RQ Disable
= emo O
7 @g SDR’;E\:;?EHUDHH 3.5 - LWData port »—Jl
-$& On-Chip Memory 3.3) Seratchpad 000000000 Ox000000FF 000000100 B
8 On-Chip Dual-Port Memory (31)| || = LED .
- DDR SDRAM Controller (v6.7) GPLO Port — % 0:B0000800 0¥B000080F ooo000010 Editor
Available g 2;“;2‘:5:"(;?: Comatlernen i) @ SPIF;E;:n — ¢ 001000000 OOIFFFFFF ooto00000 O view
arallel Flash (3. o — O
Components g Z;W:L \S:M\: glljj CPort 0x80000000 OxB00007FF 000000800
i ot
VIEW g (gltllljrargatji (v6.1)
$ DMA(3.3)
~§¢ UART 3.5
s Tri Speed MAC (v3.3)
4D Timer G.0)
-9 SPIG1L)
§t slave_passthru (3.1)
§ master_passthru (3.2)
Q OPENCORES 12C Master (3.1)
F GPIO (33)
$t EFE(1.0)
=40 CPU (0/2)
-t LatticeMico8 (3.2)
A9 LatticeMico32 (3.7)
Console [l P——
. spi_flash B3 <« n]
view onsole [§ SPIFlash Controller &% < B ¥ 3 T 0|8 Component Attributes 2 =0
Address C:\lscc\diamond\l.2\micosystem\componentsispi_flash\document\spi_flash.htm ||| Atiribute Value Software Constants =
Component . o [e o0 E
Help view LatticeMico SPI Flash Controller 54 " [oetmce e L
h The LatticeMico Serial Peripheral Interface (SPI) flash Controller is o ||| Base Address 080000800 LED_ BASE ADDRESS
(S OWn) o = | . Size 0:00000010 LED_SIZE N
Component Attributes view
The MSB perspective consists of the following views:
Available Components view, which displays all the available components
that you can use to create the design:
List of hardware components: microprocessors, memories,
peripherals, and bus interfaces. Bus interfaces can be masters or
slaves. The component list shown in Figure 5 on page 16 is the
standard list that is given for each new platform.
16

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

You can double-click on a component to open a dialog box that allows
you to customize the component before it is added to the design. The
component is then shown in the Editor view.

Note

The Available Components view shows all the hardware components that are part
of the installer. This does not mean that all these components are available for a
given combination of processor (LatticeMico8 and LatticeMico32), FPGA family
and part number. The components that are not available are marked with a &

Editor view, which is a table that displays the current platform definition
from the components that you have chosen in the Available Components
view. It includes the following columns:

Name, which displays the names of the chosen component and their
ports

Connection, which displays the connectivity between master and
slave ports

Base, which displays the start addresses for components with slave
ports. This field is editable.

End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

Size, which displays the number of addresses available for
component access. This field is editable for the LatticeMico on-chip
memory controller and LatticeMico asynchronous SRAM controller
components only.

Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

IRQ, which displays the interrupt request priorities of all components
that have an interrupt line connected to the microcontroller. It is not
applicable to memories.

Disable, which excludes a component from a platform definition. It can
be toggled on and off.

Component Help view, which displays information about the component
that you selected in the Available Components view. This view is also
called “About <Component_name>,” for example, “About Timer” or “About
UART.”

Console view, which displays informational and error messages output by
MSB

Component Attributes view, which displays the features, parameters, and
values of the selected component. This view is read-only.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation of the available
views, refer to the LatticeMico online Help.

LatticeMico8 Developer User Guide

17

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Creating a Platform Description in MSB

After you have created a new project in Lattice Diamond, you must create a
new microcontroller platform description in Mico System Builder (MSB). A
platform generically refers to the hardware microcontroller configuration that
includes the CPU component, its peripheral components, and the
interconnectivity between them.

You must perform two major steps in MSB to create a new platform: create an
.msb file and add your components to the file.

Creating a Platform Description File

The first step in creating a new platform is to use MSB to create an .msb file.
This file will eventually contain a complete definition of your microcontroller
platform.

To create a new microcontroller .msb file:
1. Inthe MSB perspective, choose File > New Platform.
The New Platform Wizard dialog box now appears, as shown in Figure 6.

2. Inthe New Platform Wizard dialog box, enter the name of the platform in
the Platform Name box.

3. Inthe Directory box, browse to the folder in which you want to store your
platform files and click OK.

4. If the design that will incorporate this platform is in pure Verilog code,
leave Create VHDL Wrapper unselected.

If the design that will incorporate this platform is in mixed Verilog/VHDL,
do the following.

a. Select Create VHDL Wrapper.

b. If you want to continue using the NGO flow, select Create VHDL NGO
File. Otherwise, leave this option cleared.

5. Inthe Board Frequency box, enter the board frequency.
6. Inthe Processor box, select LM8 from the pull-down menu.

7. Inthe Arbitration Scheme box, select the desired arbitration scheme from
the pull-down menu.

8. Inthe Device Family section, select a Lattice family and a device from the
pull-down menus.

9. If you want to duplicate the platform, select Clone Platform, and then
browse to the platform description (.msb file) that you want to duplicate.

The Clone Platform option is useful if your platform contains several
peripherals and you want to retain them but experiment by modifying their
settings. When you select this option, the Platform Templates and the

18

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 6: New Platform Wizard Dialog Box

New Platform Wizard

This wizard creates a new platform.

Platform name: Platforml Ovenwrite existing platform. k
Directory: :chdiamondil 4\examplesiim@_tutor | | Browse...

Clone Platform

[7] Clone Platform :|ect Platf Brows

VHDL Setting
[T Create VHDL Wrapper Create VHDL NGO file.

Processor Frequency Setting Arbitration Scheme

Processon: Board Frequency(MHz): 25.0 Scheme: [Shared Bus (Default) v]

Part Selection

Family: [MachXOZ V] Device: [AII - | Performance: [AII V] Package: [AII V]

Platform Templates

Mew platform without any components,
LM& Platform.
LM& Platform
LM8 Platform

Description boxes are no longer available, but the Select Platform option
becomes available.

Warning!

If you are cloning a platform that contains IPs and you select a different device
family, you will need to rerun IPexpress for the IPs in the platform. If you do not
rerun IPexpress, you might encounter problems during synthesis.

10. If you have not selected Clone Platform, select the desired template from
the Platform Templates list; or select Blank for a new template.

11. Click Finish.

You now have created an .msb file. This file will hold the contents of your
platform: a CPU, its peripherals, and the interconnections between them.
Currently, the platform description contains no components. You will add
components in the following procedures.

LatticeMico8 Developer User Guide 19

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Adding Microcontroller and Peripherals to Your

Platform

In the MSB perspective, you can add CPU and peripheral component
definitions to your hardware platform. These definitions are added to the .msb
file, which is currently empty if you did not select a template or duplicate a
platform. The microcontroller and its peripherals are called components
throughout this document.

Note

If you installed LatticeMico System without installing Diamond, you cannot include in
the platform any PLLs or any IPs, which are components that you download from
IPexpress. In addition, you cannot generate a VHDL wrapper for the platform. If you
want to perform these functions, you must install LatticeMico with the Diamond
software. See the references given in “LatticeMico System Requirements” on page 8
for information on installing Diamond and LatticeMico System.

To add the LatticeMico8 microcontroller to the design:

1. Double-click on the LatticeMico8 component listed under CPU in the
Available Components view. If you want to see information about it before
you place it in the Editor view, click it once.

2. Set the options in the Add LatticeMico8 dialog box and click OK.

LatticeMico System provides several peripheral components, I/Os, and
memories that you can add to your microcontroller design structure. For
example, some available peripherals include UART, a timer, an asynchronous
SRAM controller, a GPIO, and a parallel flash component. In the MSB
perspective, you can view all of the component types that you can add in the
Available Components view. To aid in selection and option settings, you can
view a complete description of each available component type. See
“Accessing Component Help and Data Sheets” on page 20 for instructions.

To add a peripheral component to the design:

1. Double-click on the component in the Available Components view, set any
options in the dialog box that appears, and click OK.

2. After you have added the last peripheral, specify the connections between
the master and slave ports by clicking on the appropriate rounded
endpoints in the Connection column, as described in “Connecting Master
and Slave Ports” on page 21.

Accessing Component Help and Data Sheets

For each component that you can add to your platform, LatticeMico System
provides a short online Help topic that describes its user-configurable
parameters, as well as a complete data sheet that describes the detailed
features and operations of the component. The Show View command enables
you to view the appropriate Help topic in a separate view each time that you
select a component in the Available Components view.

20

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

To view the online Help for a particular component:

1. Inthe MSB perspective, choose Window > Show View > Component
Help.

The Component Help view opens in a separate window.
2. Inthe Available Components view, select the desired component.

The appropriate component topic appears in the Component Help view.

To view the data sheet for a component:

In the Component Help view, click on the document icon @ to view a
complete description of a given component.

To quickly maximize the Component Help view, press Ctrl+M. Press Ctrl+M
again to return to the previous size.

Connecting Master and Slave Ports

The LatticeMico8 CPU component acts as the master to the peripheral slave
components that are attached to the bus structure, allowing it to have
unidirectional control over those devices.

Only certain components, such as the LatticeMico8 microcontroller and the
LatticeMico DMA controller, have master ports. A master port can initiate read
and write transactions. A slave port cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

A master port can be connected to one or more slave ports.

A component can have one or more master ports, one or more slave
ports, or both.

Attached to one or more slave ports, master port signals initiate read and
write transactions that are communicated to the targeted slave device, which
in turn responds appropriately. Generally, a component can have one or more
master ports, one or more slave ports, or both.

Arbitration Schemes

The connections that MSB makes depend on which arbitration scheme you
choose while creating the platform.

Shared-Bus Arbitration MSB automatically generates a central arbiter
when it generates the microcontroller platform to allow multiple master ports
access to multiple slave ports over a single shared bus.

Figure 7 shows the connections made by MSB when the shared-bus
arbitration scheme is chosen.

LatticeMico8 Developer User Guide 21

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 7: Connections Made by MSB for Shared-Bus Arbitration

| pm! Peripheral 1

Instruction
port
(Optional) .
| > —»{ Peripheral 2
Shared bus
Data port | arbiter
—P

LM8 CPU (Master)

— p» Peripheral 3

+—p»| Peripheral 4

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the bus. Master ports
have default priorities assigned in their components' .xml files when you add
the components to the platform. The master ports of the LatticeMico8
microcontroller have defaults of 0 and 1. The master ports of the DMA
controller have defaults of 2 and 3. However, you can change these priorities
by selecting Platform Tools > Edit Arbitration Priorities and changing the
priorities in the Edit Arbitration Priorities dialog box. When you perform a DRC
check, MSB checks the validity of the priorities that you have changed.

Slave-Side Arbitration Figure 8 shows the connections made by MSB
when the slave-side arbitration scheme is chosen.

Two types of slave-side arbitration are available: slave-side and round-robin.

Slave-Side Fixed Arbitration The slave-side fixed arbitration scheme
enables multiple masters to access multiple slaves at the same time. In this
scheme, each multi-master slave has one arbiter. Arbitration between
different master ports occurs at the slave side. This scheme enables multiple
master ports to obtain access to multiple slave ports, as long as they do not
try to access the same slave at the same time.

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the slave. Master ports
have default priorities assigned in their components' .xml files when you add
the components to the platform. Since each multi-master slave has its own
arbiter in this scheme, arbitration priorities are assigned per slave. However,
you can change these priorities by selecting Platform Tools > Edit Arbitration
Priorities and changing the priorities in the Edit Arbitration Priorities dialog

22

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 8: Connections Made by MSB for Slave-Side Arbitration

. p Peripheral 1
Instruction

LM8 CPU (Master)

port
(Optional)

-t ® |
Data port Arbiter 1 -4 Peripheral 2
- P

® = Peripheral 3

Arbiter 2 -¢—p| Peripheral 4

box. When you perform a DRC check, MSB checks the validity of the priorities
that you have changed.

Slave-Side Round-Robin Arbitration The slave-side round robin
arbitration scheme is similar to the slave-side fixed arbitration scheme in that
each multi-master slave has one arbiter, but all masters have the same
priority. The arbiter grants access to all the masters that request a slave in a
round-robin, or circular, fashion. Once the requesting master is finished with
its transfer, the next master obtains access to the slave.

In the slave-side round-robin scheme, the Platform Tools > Edit Arbitration
Priorities command is not available.

Comparing the Arbitration Schemes

The difference between the slave-side fixed arbitration scheme and the slave-
side round-robin arbitration scheme is how the arbiter grants requesting
masters access to the bus. The slave-side fixed scheme always gives the
highest-priority master access to the bus if that master requests it. The slave-
side round-robin scheme grants masters access to the bus in a round-robin
fashion.

Both the slave-side fixed and the slave-side round-robin arbitration schemes
use separate arbiters for each multi-master slave, so the area of the platforms
generated with these schemes is slightly larger than that resulting from the
shared-bus arbitration scheme. For example, for a typical system consisting
of four multi-master slaves, the slave-side fixed and the slave-side round-
robin schemes require four arbiters, but the shared-bus scheme requires only
one arbiter. The area required by the system with the slave-side arbitration
schemes is approximately three times more than the area required by the
system with the shared-bus arbitration scheme.

LatticeMico8 Developer User Guide 23

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

The slave-side arbitration schemes offer better performance than the shared-
bus arbitration scheme. For example, the SoC used in this topic (a CPU with a
DMA controller) yields better performance with a slave-side arbitration
scheme than with a shared-bus arbitration scheme. When a slave-side
arbitration scheme is used in this SoC, the DMA controller's read and write
ports can work in parallel and transfer the data from the external SRAM
memory to on-chip memory. When a shared-bus arbitration scheme is used in
the SoC, data cannot be transferred in parallel because there is a single
arbiter for both memories.

Whether you select a slave-side fixed or slave-side round robin arbitration
scheme depends on the application. If the application requires each master to
have equal access to a slave, the slave-side round-robin scheme is a better
option. If the application requires a certain master to have access to a slave
as soon as the current master is finished with the data transfer, the slave-side
fixed scheme is the best option.

Specifying Connections Between Master and Slave

Ports

You interactively make your master/slave connections between these ports in
the Editor view by clicking on those connection line endpoints and then by
saving your project. The .msb file is updated with this information. Figure 9 on
page 25 illustrates the basic structure of this connection between the master
and the slave.

To specify the connections between master and slave ports:

1. Ensure that you have first added your desired components and that they
appear in the Editor view in the MSB perspective.

2. If you want to select a different arbitration scheme, choose Platform
Tools > Properties, select the desired arbitration scheme from the pull-
down menu in the Arbitration Scheme box, and click OK.

3. Inthe Editor view’s Connection column, for each listed slave component,
click on the blue-outlined, rounded endpoint to complete the connection to
the CPU's master ports. The rounded endpoint now appears filled in; that
is, it turns solid blue, indicating that the slave is “connected” to the master
port.

Connection points occur at the intersection of the vertical lines down from
the master at the slave horizontal lines and coincide with a desired
connection to master instruction, data ports, or both. You may or may not
wish to connect to both master ports, depending on the necessary input
on a given slave component.

For example, suppose that a CPU's master ports are composed of an
instruction port and a data port. You want to connect the CPU's instruction
port, but not its data port, to a UART's slave port. You would go to the
Connection column in the UART row and click on the outline circle linked
to the instruction port to fill it in, but not on the outlined circle linked to the
data port.

4. Choose File > Save or click the Save toolbar button.

24

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

The connections that you made are saved in the .msb file.
Figure 9 shows an example of the connections that result in the Editor view
when:
The shared-bus arbitration scheme is used.
The slave-side fixed and slave-side round-robin arbitration schemes are
used.

All master signal connection lines are represented in black, and all slave
connection lines are represented in blue.

Figure 9: Connecting Master/Slave Ports in Editor View

Mame ‘Wishbone Connection Base End Size(Bytes) Lock IRQ Disable
e Slave Ports m|
Data port 1
Scratchpad 1) OO NN
[= ebr [=]
EER Pork 0000800 ST 000000800 O
= wart gk
UART Port + 4 0xB0000000 OxBOSAEIE OxPOPNTE 0
= LED [i]
GP IjO Port - 0xB0000010 OxBOSC00IF X000
(= dma [=]
Read Master Part 4
Wirite Master P S
Contral Part 0xB0000080 RBIOLAE REOACO8E O 1

Master Ports

In the slave-side fixed arbitration scheme, you can change the priorities of the
master ports, so the Edit Arbitration Priorities command is available on the
Platform Tools menu, as shown in Figure 10. However, in the slave-side
round-robin arbitration scheme, you cannot change the priorities of the master
ports because the arbitration between the master ports occurs in a round-
robin fashion. The Edit Arbitration Priorities command on the Platform Tools
menu is therefore disabled when you use the slave-side round-robin
arbitration scheme, as shown in Figure 11.

Figure 10 shows the Platform Tools menu with the Edit Arbitration Priorities
command enabled in the MSB perspective after all components have been
added in a slave-side fixed arbitration scheme.

Changing Master Port Arbitration
Priorities

When you first generate your platform, LatticeMico System automatically
assigns priorities through the shared-bus and slave-side fixed arbitration
schemes to the master ports to determine in which order they can access the
slave ports through the arbiter. You can change these priorities only for the

shared-bus and slave-side fixed arbitration schemes. This option is disabled
for the slave-side round-robin arbitration scheme, since it is not applicable.

LatticeMico8 Developer User Guide 25

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 10: MSB Perspective After Adding All Components in a Slave-Side Fixed Arbitration Scheme

& MSB - Platform - Eclipse Platform

File Edit MNavigate Project BEERGEEARGGEEN Window Help

o m ¢ O @ Generate Address . i X < @ m @ @
mr‘l EMEE_i EI CiCH+ 133 m Generate IRG

@) Available Components 24 @ Run DRC

0 3 @ @ R Generatar Mame Wishbone Connection Base End SizelBytes) Lock, IRG Disable
| = Memory (0j9) Properties : L]
| Edit Arbitration Priorities |t
© SDRAM Canfralier| Fatchpad 0x00000000 OO0 ovoooooree [
Ft on-Chip Memary (3.3 o ebr 0
@ On-Chip DushFort Memary (3.1) EBR Port . 0x00000800 OO0 oxoooooeoo [
9 DDR 5DRAM Cantraller (v6.7) g at 0
© ©oRz ZDRAM Contraller (+6.7) UART Port PR [xE0000NND OxBOOOIN ovopoere [0
Ft SPIFlash (3.3) o LED O
@ Paralel Flash (3.1} GP 1O Port “— 4 0%80000010 RBOO0IE ovooeoasie [
@ fsync SRAM (3.1) o dma O
EET RGN Read Master Port
Q PCI_Target 33 (va. 1) ‘Write Master Port
R DMA (3.3 Contral Park 0x&0000030 = O 1
R UART (3.5
& Tri-Speed Ethernet MAC (v3.3)
@& Timer (3.0)
© srria

$t slave_passthru (3.1)
i ﬁ master_passthru (3.2)
& OPENCORES 12C Master (3.1)
R EPIOE.)
EFE(1.0)
=30k cpugoyz
F LatticeMicaB (3.2
@ LatticeMicnzz (3.7)

To change master port arbitration priorities:

1. Inthe MSB perspective, click in the Editor view to make it active and
choose Platform Tools > Edit Arbitration Priorities from the menu, or
right-click in the Editor view and choose Edit Arbitration Priorities.

2. Inthe Edit Arbitration Priorities dialog box, click in the Priority column
next to the master port whose priority you wish to change.

3. Type in the new priority number.

4. Click OK and choose File > Save to save this in the .msb file.

When you perform a DRC check, MSB checks the validity of the priorities that
you have changed.

When you assign arbitration priorities to the master port of a slave in the
slave-side fixed arbitration scheme, the number of priorities should not be
greater than the total number of master ports for that slave. For example, if a
slave has three master port values, the arbitration priorities would be 0, 1, and
2. An example is shown in Figure 11.

Assigning Component Addresses

After you add your components to your microcontroller platform, you must
ensure that you assign unique address locations to each.

If you look in the Editor view in the Base column, you will notice that the
components, after initial setup, all are assigned to the same default address
location on creation, unless you actively assign a unique base address in a

26 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 11: Edit Arbitration Priorities Error Message

& Edit Arbitration Priorities

. Marne Priarity
=
LM&-Data port il |
dma-Read Master Port 1
dma-Write Master Port: b
Ok] [Cancel

component dialog box when you first add the component to the platform. Any
duplicate address locations of any component are, of course, not viable. This
section provides procedures for assigning these unique address locations.

MSB can automatically generate an address in hexadecimal notation for each
component with slave ports. Or, you can assign a component an individual
address. Components with master ports are not assigned addresses.

Before you generate addresses, you can lock the base addresses of
individual components so that MSB will not assign them new addresses. See
“Locking Component Addresses” on page 28 for details.

Note

Address and size values that appear in italic font in the Editor view cannot be changed.

Automatically Assigning Component Addresses

Initially, you may want the software to automatically generate assigned
address locations for the components in your platform and edit them as
necessary later.

To automatically assign component addresses:

1. Inthe MSB perspective, choose Platform Tools > Generate Address or
click the Generate Address toolbar button |&]j. You can also right-click in
the Editor view and choose Generate Address from the pop-up menu.

Address locations for all of the existing components that you have created
in your MSB session are now automatically generated.

2. Choose File > Save.

The assigned component addresses are now saved in the .msb file.

LatticeMico8 Developer User Guide 27

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Locking Component Addresses

Locking a component address prohibits the software from changing it after
you automatically assign component addresses.

To lock any addresses from being changed after automatic address
generation:

1. Inthe MSB perspective Editor view, select the box for the desired
component in the Lock column.

This step activates a lock during your session.
2. Choose File > Save.

The locked address is now saved in the .msb file.

Note

To assign an address for only one component, lock all other components.

Manually Editing Component Addresses

You can manually assign an address to an individual component after
automatically assigning an address to it, or you can assign locations as you
wish by manually editing the locations at any time after initial component
creation.

To individually change the addresses of components:

1. Inthe MSB perspective Editor view, click on the desired component’s
address in the Base column.

The address becomes editable.

Note

You can only edit the Base address. You cannot edit the End address. The value
of the end address is equivalent to the value of the base address plus the value of
the size.

2. Manually type in the desired address hexadecimal location.
3. Choose File > Save.

The edited addresses are now saved in the .msb file.

Assigning Component Interrupt
Priorities

Assign an interrupt request priority (IRQ) to all components that feature a
dash in the IRQ column of the Editor view. You cannot assign interrupt

priorities to components lacking this dash in the IRQ column, such as
memories and CPUs.

28

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

To assign interrupt priorities for all components other than memories
and the CPU:

1. Inthe MSB perspective, choose Platform Tools > Generate IRQ or click
the Generate IRQ toolbar buttonm. You can also right-click in the Editor
view and choose Generate IRQ from the pop-up menu.

2. Choose File > Save.

The interrupt priorities are now saved in the .msb file.

Performing Design Rule Checks

You can ensure that your design conforms to the design rules for a given
device by performing a design rule check (DRC).

To perform a design rule check and verify the addressing:

In the MSB perspective, choose Platform Tools > Run DRC or click the
Run DRC toolbar button | j. You can also right-click in the Editor view
and choose Run DRC from the pop-up menu.

Saving the Microcontroller Platform

After you do a number of tasks to set up your microcontroller platform, you
should save your changes.

To save your platform changes in MSB:
In the MSB perspective, choose File > Save.

This operation specifically saves any changes you made to the .msb file
and any option settings you may have applied.

Generating the Microcontroller Platform

Generating the microcontroller platform saves and updates the platform
definition by updating the .msb file. It also does the following:

Assigns addresses to components without locked addresses
Assigns interrupt priorities

Performs design rule checking (DRC)

Generates a platform Verilog structural implementation

Creates hardware and software implementation support files for the
components that are used in the platform

For the Verilog user, creates an instance template for the platform that can
be used to incorporate the platform within a larger design

LatticeMico8 Developer User Guide 29

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

For VHDL user (a user who has selected “Create VHDL Wrapper” in the
New Platform dialog box), creates a VHDL entity/architecture definition
that instantiates the platform as a black box

For the VHDL user who has selected the optional “Create VHDL NGO
File,” synthesizes the platform during the generation step and creates a
series of .ngo files that represent the post-synthesis netlist of the platform.
These files are included in the rest of your VHDL design after it has been
synthesized.

To generate your microcontroller platform in MSB:

In the MSB perspective with the Editor view activated, choose Platform
Tools > Run Generator or click the Run Generator toolbar button % To
activate the Editor view, click on the Editor view tab or anywhere inside
the view. You can also right-click and choose Run Generator from the
pop-up menu.

Note

If you did not set the IPEXPRESS_SYN_PATH environment variable before
starting Synplify Pro, as noted in “Starting MSB” on page 15, or if Synplify Pro
failed to complete the synthesis, MSB may issue the following error message:

ERROR: edif2ngd: Cannot open input file
"<platform name>.edi".

If you receive this error message, verify that the IPEXPRESS_SYN_PATH is set
correctly, and check the synthesis output in the log file or .srr file in the soc/ngo/
rev_1 directory to see if the error is a synthesis syntax error.

If you edit the .msb file after it has been generated, save it by choosing
File > Save As. An asterisk (*) preceding <platform_name>.msb above
the Editor view indicates that the <platform_name>.msb file has been
edited.

During the generation process, MSB creates the following files in the
<Diamond_install_path>\<platform_name>\soc directory:

A <platform_name>.msb file, which describes the platform. It is in XML
format and contains the configurable parameters and bus interface
information for the components. It is passed to C/C++ SPE, which extracts
the platform information (for example, where components reside in the
memory map) required by the software that will run on the platform. It is
used by users of the Verilog flow and the VHDL flow.

A <platform_name>.v (Verilog) file, which is used by both Verilog and
VHDL users:

Flow for Verilog users — The <platform_name>.v file is used in both
simulation and implementation. It instantiates all the selected
components and the interconnect described in the MSB graphical user
interface. This file is the top-level simulation and synthesis RTL file
passed to Diamond. It includes the .v files for each component in the
design, which are used to synthesize and generate a bitstream to be
downloaded to the FPGA. The .v files for each component reside
under the top-level <platform_name>.v file.

30

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Flow for VHDL users — The <platform_name>.v file is used in
simulation and implementation. If “Create VHDL NGO File” has been
selected, the <platform_name>.v file is used for simulation only, and
the <platform_name>_vhd.vhd file is used for implementation. In the
NGO flow, the <platform_name> component is instantiated as a black
box, and this instantiation is then automatically combined with the
<platform_name>.ngo file after synthesis to complete the
implementation netlist.

A mixed-mode Verilog and VHDL simulator is needed for functional
simulation in the flow for VHDL users.

A <platform_name>_vhd.vhd (VHDL) file, if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
VHDL design. The <platform_name>_vhd.vhd file contains the top-level
design used for synthesis. This top-level design file instantiates the
<platform_name> component as a black box. If the optional “Create VHDL
NGO File” has been selected, the <platform_name>_vhd.vhd file is
combined with the <platform_name>.ngo file after synthesis to complete
the post-synthesis netlist. The common name <platform_name> is used to
make this association.

A <platform_name>.ngo file, which is a Diamond database file that is a
synthesized version of <platform_name>.v. This file is created if the
optional “Create VHDL NGO File” has been selected, along with “Create
VHDL Wrapper.” It contains the same design information as
<platform_name>.v. For more information on the .ngo file, see the
“Building Modular Projects Using NGO Flow” topic in the Diamond online
Help.

MSB generates a <platform_name>_inst.v file, which contains the Verilog
instantiation template to use in a design where the platform is not the top-level
module. For the VHDL user, no equivalent file is generated that contains the
component declaration and component instance/portmap template for the
platform wrapper <platform_name>_vhd.vhd. The generated
<platform_name>_vhd.vhd file can be used to create one, if required.

Figure 12 shows the instantiation template for the platform1 platform.

Synthesizing the Platform to Create an
EDIF File (Linux Only)

If you use Linux, you must now synthesize your platform to create an EDIF
file.

Using Synplicity Synplify Pro

To use Synplicity Synplify Pro as your synthesis tool:

Add the <platform_name>.v file into your Synplify Pro project.

LatticeMico8 Developer User Guide 31

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

Figure 12: Verilog Instantiation Template

platforml platforml u (

.clk_i(clk_i),

.reset n(reset n)

, .sramsram_csn(sramsram csn) //

, .sramsram be (sramsram be) // [3:0]

, .flashsram csn(flashsram csn) //

, .flashsram be (flashsram be) // [3:0]

, .flashsram byten(flashsram byten) //

, .flashsram wpn(flashsram wpn) //

, .flashsram rstn(flashsram rstn) //

, .LEDPIO_OUT(LEDPIO_OUT) // [10-1:0]

, .uartSIN(uartSIN) //

, .uartSouT (uartsouT) //

, .sramflashOEN (sramflashOEN)

, .sramflashWEN (sramflashWEN)

, .sramflashADDR (sramflashADDR)// [24:0]
, .sramflashDATA (sramflashDATA)// [31:0]

Design Guidance for Platform
Performance

Setting preferences and performing static timing analysis can help achieve
higher platform design performance or minimize area utilization. The following
documents give instructions and examples for setting design constraints:

Achieving Timing Closure in FPGA Designs — This tutorial provides
techniques for optimizing design performance and demonstrates the
influence of map and place-and-route preferences. It uses a system-on-
chip design that utilizes an OpenRISC 1200 processor and Wishbone on-
chip bus.

FPGA Design Guide — The chapter “Strategies for Timing Closure” gives
instructions for constraining your design, performing static timing analysis,
and floorplanning.

Additionally, see the following sections of the Diamond online Help

Constraints Reference Guide — This section provides syntax and
descriptions for all preferences

Applying Design Constraints — This section consists of guidelines for
setting preferences

Generating the Microcontroller
Bitstream

For Windows, you now return to Diamond to import the platform source files.
You import the Verilog file output by MSB; or for mixed Verilog/VHDL, you
import both the Verilog and VHDL files output by MSB. For Linux, you import
the EDIF file output by the synthesis tool. You also specify the connections

32

LatticeMico8 Developer User Guide

http://www.latticesemi.com/documents/doc17356x21.pdf
http://www.latticesemi.com/lit/docs/manuals/fpga_design_guide.pdf

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

from the microcontroller to the chip pins by importing an .Ipf file. You can
optionally perform functional simulation and timing simulation. Primarily, you
will build the database; map, place, and route the design; and generate the
bitstream in Diamond so that you can download that configuration bitstream to
the chip on a circuit board.

Configuring the Diamond Environment

1. In Diamond, choose Tools > Options.
2. Under “Environment” in the pane on the left, select General.

3. Ifthe “Copy file to Implementation's Source directory when adding existing
file" is selected, clear the selection and click OK.

Importing the Verilog or VHDL File on Windows

The process of importing the generated platform file into Diamond is the same
for Verilog and VHDL, except that you must take a few additional steps when
you import a VHDL file.

To import the Verilog (.v) and VHDL (.vhd) files output by MSB on the
Windows platform:

1. Choose File > Add > Existing File.

2. Inthe dialog box, browse to the <platform_name>\soc\ location and do
one of the following:

Select the <platform_name>.v file (Verilog) and click Add.

If your design is mixed Verilog/VHDL, select both the
<platform_name>.v file and the <platform_name>_vhd.vhd file and
click Add.

3. If your design is mixed Verilog/VHDL and you selected the Create VHDL
Wrapper option to generate <platform_name>_vhd.vhd without selecting
the Create VHDL NGO File option, perform these additional steps:

a. Choose Project > Property Pages.
b. In the dialog box, select the project name that appears in bold type
next to the implementation icon |E_E'

c. Inthe right pane, click inside the Value cell for “Top-Level Unit” and
select <platform_name>_vhd from the drop-down menu.

d. Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

e. Inthe dialog box, click the New Search Path button [{E, browse to the
<platform_name>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

LatticeMico8 Developer User Guide 33

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the LatticeMico8 Platform in MSB

g. Click OK to return to the Diamond main window.

Importing the EDIF File on Linux

For Linux, you import the EDIF file generated by the synthesis tool into
Diamond.

To import the EDIF (.edn or .edf) file output by MSB on Linux:
1. Choose File > Add Existing File.

2. Inthe dialog box, browse to the location of your .edn or .edf file, select the
file, and click Open.

Connecting the Microcontroller to FPGA Pins
You have two options for connecting the microcontroller to the FPGA pins:

Manually create the pin constraints and import them into Diamond.

Import a pre-created constraints file that is part of the platform templates
in the LatticeMico System software into Diamond.

For information about pin constraint assignments, see the “Applying Design
Constraints” and “Constraints Reference Guide” in the Lattice Diamond online
Help.

You can import the pin constraints specified for a template platform into
Diamond. When you use a platform template, MSB copies the logical
preference (.Ipf) file associated with it into the ..\soc directory path of your
LatticeMico project.

To import the .Ipf file:
1. In the Diamond, choose File > Add > Existing File.

2. Browse to the .Ipf file and click Open.

Generating the Bitstream

Now you will generate a bitstream file to download the microcontroller to the
FPGA. This process automatically synthesizes, translates, maps, places, and
routes the design before it generates the bitstream file.

To generate a bitstream file:
1. In Diamond, select the Process tab.
2. Inthe Process pane, under Export Files, double-click JEDEC File.

The Diamond software generates the programming file in your project
folder. It is now ready for downloading onto the device.

34

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

Downloading Hardware Bitstream to the
FPGA

After you generate the bitstream file, you can download it to program your
FPGA device on a circuit board. You can use the Diamond Programmer to
accomplish this task.

To download the bitstream to the FPGA on the board:
1. Remove any Lattice USB Programming cables from your system.
2. Connect the power supply to the development board.

3. Connect a USB cable from your computer to the MachX0O2 Control Board.
The USB cable must be connected to the USB target connector adjacent
to the keypad. Give the computer a few seconds to detect the USB device
on the MachX0O2 Control board before moving to step 4.

4. In Diamond, choose Tools > Programmer.

In the Getting Started dialog box, choose Create a new Blank Project.
Leave the Import File to Current Implementation box checked, and
click OK. Programmer scans the device database, and then the
Programmer view displays in Diamond.

6. Double-click the File Name column. Click [...] to display the Open File
dialog box, and browse to the .jed file you generated in the previous
section.

7. Click Open.

8. Double-click the Operation column to display the Device Properties dialog
box, and choose the following settings:

For Access Mode, choose Flash Programming Mode from the pull-
down menu.

For Operation, choose Flash, Erase, Program, Verify from the pull-
down menu.

9. Click the Program button “+ on the Programmer toolbar to initiate the
download. If the programming process succeeded, you will see a green-
shaded PASS in the Programmer Status column.

At the end of this process, the FPGA is loaded with the microcontroller
hardware configuration.

Using C/C++ SPE to Develop Your Software

After creating your hardware microcontroller platform, you must create the
software application code that defines how it processes data. This section
outlines how to use the LatticeMico C/C++ Software Project Environment
(SPE), the primary tool that you use to develop your microcontroller
application code. You do tasks that use C/C++ SPE in the C/C++ perspective
in the user interface.

LatticeMico8 Developer User Guide 35

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

The C/C++ perspective enables you to do the following tasks:

Create and build new LatticeMico8 C, Assembly, and C+Assembly
software projects.

Develop and compile your software application code to create
executables using its workbench.

Starting C/C++ SPE

C/C++ SPE is another functional part of LatticeMico System, and you can
access its commands in the C/C++ perspective. You can also access C/C++
commands from other perspectives. See “LatticeMico System Perspectives”
on page 8 to understand how command options for various functional parts of
the software are accessed in the software.

Before opening the C/C++ perspective, have the software running, as
described in “Running LatticeMico System” on page 8.

To open the C/C++ perspective:

From the default MSB perspective, click the C/C++ activation button
0g Clc++ at the top left.

Alternatively, you can choose Window > Open Perspective >
CIC++.

36 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE Using C/C++ SPE to Develop Your Software

The C/C++ perspective now becomes active and enables you to access
C/C++ SPE commands. The current active perspective is shown in the upper
left of the window's title bar, as shown in Figure 13.

Figure 13: C/C++ Perspective

Editor View

 CIC++ - LEDTest.c - Eclipse Platform E]E]g‘

File Edit Mavigate Project Tools
i =R Gk
B E ek |Fhc/o | %5 Debug
[C/CH++ Projerts 52

4 -

B & LEDTest

= Binaries

- € Archives

i (= platS_gpio

- (= Release

[g LEDTest.c

& [§ MicoBInterrupts.c
=] user.pref

C/C++
Projects
View

S
&

Search Run Window Help
-G -0 @il i Fe
= B | [= 582 outl.. 52 N Mak... | T 8
* * wHE EEAEER A laz \ ‘&S i
#include "DDStructs.h i o oostucsh
#include "MicoUtils.h U wicoltish
#include "MicoGEIO.h" 2 MicoGPIoh
e man
int main{veid) . .
i Outline View
unsigned char ivValue = 0x1; |
unsigned char iShiftLeft = 1;
MicoGPIOCtx t *leds = agpio LED;
if(leds == 0}
return(0);
}
| /* scroll the LEDs, every 100 msscs forever #/
while (1} {
MICC_GPIO WRITE_DATA BYTED (leds->base, ~i°
MillisleepHelper (100} :
if (ishiftleft == 1) {
if {ivalue == 0x80) {
iralua — NwAn- bl
< ?
Problems | B Console 52 Properties & Gl et - =08
C-Build [LECTest]
-lgcc -nostdlib -Wl,--gc-sections ~
ImB-elf-size LEDTest.elf
text data bas dec hex filename
a70 28 512 1419 58b LEDTest.elf
Build complete for project LEDTes [
v
| wricsble | Smartinsert | 2611 g

|
Problems View, Console View (shown),

Properties View, Search View

The C/C++ perspective consists of the following views:

C/C++ Projects view, which lists C/C++ SPE projects that have been
created

Navigator view, which shows all of the file system files under the
workspace folder

Editor view, which displays your editable files in the window. Each file is
displayed within a separate tab within the view.

Outline view, which displays the structure of the file currently open in the
Editor view. See the online Help for more details.

Problems view, which displays error, warning, or informational messages
output related to your build

Console view, which displays informational messages output by the
C/C++ SPE build process

Properties view, which displays the attributes of the item currently
selected in the Projects view. This view is read-only.

LatticeMico8 Developer User Guide

37

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

Search view, which displays the results of a search when you choose the
Search > Search menu command

Tasks view, which shows the tasks running concurrently in the background

Make Targets view, which allows you to create your own custom
makefiles. This ability is not necessary for managed make projects.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation of the available
views, refer to the online Help.

Creating Software Projects

There are three main types of software projects:
LatticeMico8 managed make C project
LatticeMico8 library project

LatticeMico8 standard make C project

A LatticeMico8 managed make C project is the easiest to use for getting
started, because it manages the build environment, including linker scripts,
boot code, sources, header files, and even makefiles. It also extracts
platform-dependent information from the LatticeMico8 microcontroller
platform and creates the appropriate files required for a build.

The LatticeMico8 library project and the LatticeMico8 standard-make project
are described in “Advanced Programming Topics” on page 119. These two
project types enable you to create your own build environment in which you
can provide the desired make structure, as well as make files. This document
refers to the managed-build process for all topics unless explicitly stated
otherwise.

Creating a project is the first step in using C/C++ SPE. You select a target
platform generated by MSB in the .msb file that you already created and
create the software application code that controls the microcontroller and
attached components. At the same time, C/C++ SPE generates system
libraries based on the MSB platform, your selections, or both. Use the File >
New > Mico Managed Make C/C++ Project menu command to create a
software project.

Note

The folder in which the C/C++ SPE project is saved cannot reside at the same
directory level as the folder in which the MSB project is saved. The C/C++ SPE folder
can reside at a higher or lower directory level than the MSB project folder.

Before using C/C++ SPE, you must define an MSB platform to select the
drivers and the available memory for the linker. C/C++ SPE references one
and only one MSB platform definition. You can retarget the same software
application code to another MSB platform without having to recreate the
project or without having to rewrite the software application code. The

38

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Using C/C++ SPE to Develop Your Software

components used by the software application code must reside in both
platforms to ensure a successful build.

To facilitate development, you can select a project template to use in creating
the software application code in C/C++ SPE and then modify this code. But
once you create a project, you cannot change the template, because some
templates have platform dependencies.

To create a new software project:

1.

Figure 14: New Project Dialog Box

3.

~ New Project

Mico Managed Make Project Wizard
Mico Managed Make Project Wizard Setting

Project Mame: |
Froject cantents

Location | Cihyscohdiamondyl.2vexamplesyme

Select Target Hardware

MSB System: | CNTEMPALMB_FlatformAlsoc\LMB_Platforma. msh

Select Project Templates

blank project Description
LM3 CMA Test

LMS LECTest

LMg LECTast ASM

LM3 SFI Test

LM3 LIART Test

From the MSB perspective, click the C/C++ button in the upper left.
The C/C++ perspective opens.

The New Project dialog box opens, as shown in Figure 14.

Browse, .

Cancel

In the C/C++ perspective, choose File > New > Mico Managed Make C/
C++ Project.

In the Project Name box, enter the name of your new project.

The Location text box points the top-level project folder where your
software project’s contents will be stored, including your sources as well

LatticeMico8 Developer User Guide

39

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

as the managed build files. The name of your project is automatically
appended to the default folder location. To override the default
assignment, first enter the project name and then enter the desired
location.

4. Inthe MSB System text box, browse to the location of the .msb file, select
the .msb file, and click Open.

This file is located within this MSB platform folder, where there will be an
\soc folder that contains an .msb file.

If you switched to C/C++ after opening an MSB platform or creating a new
MSB platform, the MSB platform selection will, by default, contain the file
name and path of that MSB platform description.

5. Inthe Select Project Templates list box, select the template for the
application code.

This list box allows for selection of available software templates for a quick
start on software development. Software templates provide a collection of
software project files that are copied into your project’s folder. These
provide you a starting point for creating your application. If you intend to
create a blank project that contains no pre-existing files, select the blank
project template. The Templates Description box provides information on
selected platform component requirements and other relevant
information.

6. Click Finish.
Your software project has been created.
Your new project will appear in the C/C++ Projects view.

7. Click on the project name to select it in the C/C++ Projects view on the
left.

8. Choose Project > Build Project.
If you had selected a project template of the “hello world” variety during
project setup, you would get the HelloWorld Projects view, as shown in

Figure 15. The project folder in the view is shown expanded for illustrative
purposes.

Figure 15: Hello World Projects View

) CjC++ Projects 52 m
=
*--4» EBinaries
+-4p archives
[#[*= Platfarm
#-[= Release
[#|c| HelloWarld.c

I+

I .g MicoSInterrupts.c
=| user.pref

40 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

As you can see in Figure 15, this project contains source files copied over as
part of the template specification. Subsequent parts of this document describe
the relevant project files, such as the ones shown here. See “Managed Build
Process and Directory Structure” on page 91 for a discussion of the directory
structure with a special focus on its relevance to the managed build process.

Basic Project Operations

This section describes some of the most commonly used operations for
project development. The C/C++ SPE software enables you to perform a
given operation in various ways, such as selecting from a pop-up menu or
selecting from the application menu. This section describes the most common
ways of performing these operations.

Note

LatticeMico8 C/C++ SPE is derived from Eclipse CDT, so basic project operations that
apply to the Eclipse CDT perspective also apply to LatticeMico8 C/C++. Refer to the
LatticeMico online Help for details on all available project manipulation operations.

Adding New Source Files or Folders

This section describes how to add new source files and folders to your C/C++
SPE project. Source files refer to .c files that contain your C programming
code and are input into the C compiler to generate your object files. Source
folders refer to directories that contain a host of .c files. Adding or creating a
resource file in your project can refer to any file.

To add new source files to your C/C++ project:

1. Inthe C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source File from the
pop-up menu.

3. Inthe New Source File dialog box, browse to your source file and click
Finish.

To add new source folders to your C/C++ project:

1. Inthe C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source Folder from the
pop-up menu.

3. Inthe New Source Folder dialog box, browse to your source folder and
click Finish.

LatticeMico8 Developer User Guide 41

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

To add new file resources to your C/C++ project:

1. Inthe C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source File from the
pop-up menu.

3. Inthe New File dialog box, browse to you source folder and click Finish.
You can create subfolders within your project folder for organizing your source

files. The managed build environment copies in the source files from these
subfolders during the build process.

Deleting Software Project Contents

You can delete selected project contents in the Projects view. Deleting a
project item does not erase the file from your hard disk. It simply deletes the
visible project item in the C/C++ SPE interface.

To delete a C/C++ software project item:

1. Inthe C/C++ perspective, click on the project item in the Projects view to
select it.

2. Right-click on the project it and choose Delete from the pop-up menu.

This deletes the item from project definition, but not from your hard disk.

Renaming Software Project Contents

You can rename selected project contents in the Projects view. This section
describes how to rename project items. Renaming a project item does not
change its name on your hard disk. It simply changes the visible name of the
project item in the C/C++ SPE interface.

To rename a C/C++ project item:

1. Inthe C/C++ perspective, click on the project item in the Projects view to
select it.

2. Right-click on the project it and choose Rename from the pop-up menu.
The project icon’s title box appears highlighted. It is editable.

3. Type the desired new name of the project item and click anywhere outside
of the highlighted field or click Enter.

The new name is established.

Adding Existing Files/Folders to a Project

You can add existing files or folders to your C project using Windows Explorer
by directly copying and pasting or dragging and dropping them into your
project.

42

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

To copy and paste existing files or folders into your software project:

1.

In Windows Explorer, right-click on the files, folders, or both that you wish
to copy into your project and choose Copy in the pop-up menu or use the
Ctrl+C keyboard combination.

This step copies the files, folders, or both to your Windows clipboard.

If you wish to copy multiple files or folders, you can select them by using
the Shift-click or Ctrl-click functionality.

In the C/C++ perspective's Projects view, right-click on the project folder
and choose Paste from the pop-up menu or use the Ctrl+V keyboard
combination.

The file or folder appears in the hierarchy underneath the project folder.

To drag and drop files and folders into your software project:

1.

In Windows Explorer, click on the files or folders or both that you wish to
copy into your project. You can select multiple files for copying at once
using the Shift-click or Ctrl-click functionality.

Drag the files over into your C/C++ perspective's Projects view onto a
project folder until you see a plus sign on a “mouse over” with your cursor.

Release the mouse button.

The selected files or folders are copied into the targeted folder in the
Projects view.

Deleting a Project

If you have created projects in your LatticeMico workspace that you want to
remove, you can delete them from the Projects view.

To delete a software project:

1.

2.

In C/C++ perspective's Projects view, right-click on the folder of the project
that you want to delete.

In the pop-up menu, choose Delete.

LatticeMico8 Developer User Guide

43

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

The Confirm Project Delete dialog box shown in Figure 16 now asks you if
you are certain that you want to delete the project in the event that you
selected this option by accident.

Figure 16: Project Deletion Confirmation Dialog Box

& Confirm Project Delete

&p | Are you sure you want to delste project LECTest'?

() also delste contents under 'C:\mico_platforms\LED Tast!

©pon

3. Click Yes.

If you select the option button to delete the contents of the folder as well,
the project is deleted from your workspace on your hard disk, as well as
from your Projects view.

By default, as shown in Figure 16, the “Do not delete contents” option is
selected. It only removes the folder in the Projects view. If you just remove
the project from the Projects view, you have the option of importing the
project back into your workspace later.

Importing an Existing Project

You can use the Import Wizard to copy a project from a different workspace or
copy a project that previously existed in your workspace and import it into the
LatticeMico8 software workbench. You cannot import a project that has the
same project name as an existing project into the Projects view.

To import an existing project:

1. From within a given perspective, choose File > Import. You can also right-
click on your project icon in the Projects view and select Import from the
pop-up menu.

44 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Using C/C++ SPE to Develop Your Software

The Import dialog box opens in Select mode, as shown in Figure 17.

Figure 17: Import Dialog Box in Select Mode

Select

Choose import source.

Select an impork source:

,

=2

| type Filker text

(SRS Ceneral
5 archive File
gg, Breakpoinks
ﬁ Existing Projects into Workspace
[, File System
EL preferences
B = Cfc++
E CiC++ Executable

Cancel

2. Expand the General folder and select Existing Project into Workspace,

and click Next.

LatticeMico8 Developer User Guide

45

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

The Import dialog box changes to Import Projects mode, as shown in
Figure 18.

Figure 18: Import Dialog Box in Import Projects Mode

Import Projects

Select a direckory ko search For existing Eclipse projects,

() Select rook directory: Browse, ..
() select archive file:
Projects:

Select All

Deselect al

A

Refresh

D Copy projects into workspace

Cancel

I:JI
s
Im
Qi
(ml
-~

3. Choose either Select root directory or Select archive file and click the
associated Browse button to locate the folder or file containing the project
that you wish to import.

4. Under Projects, select the project or projects that you would like to import.
5. Click Finish to start the import.

If the project is successfully imported, it will appear in the Projects view.

Understanding the Build Process

Once you develop the software application code, you must compile and link it
to generate an executable.

Building a project involves compiling, assembling, and linking the software
application code, as well as the system library code generated by the C/C++
SPE. Each step in this process has associated settings that affect the build. A
group of such settings is called a build configuration.

A newly created C/C++ SPE project provides only a release build
configuration for generating an optimized executable (devoid of any debug
information) for the LatticeMico8 microcontroller.

46 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

The build process involves creating makefiles and then performing a make
operation on the top-level makefile that, in turn, pulls in the required
makefiles. This process creates makefiles for the software application code
structure (typically subfolders for code organization) and creates makefiles for
the platform library.

The build process also involves creating the linker settings for the software
application that is being compiled in to an executable. These linker settings
describe which memories within the MSB platform contain the compiler-
dependent sections of the application software. For example, where the text,
read-only data, and read/write data sections are located. These settings are
especially important when the platform contains multiple memories. The linker
settings are automatically generated from the LatticeMico8 microcontroller's
configuration settings specified in the MSB platform file. The section settings
are updated when a change to the MSB platform file is detected.

Building Your Software Project

This section describes how to build your software project, that is, to create all
of the necessary files that you must have in place to properly deploy your
software application code.

To build your project:

1. Inthe C/C++ perspective, right-click the desired project folder in the
Projects view on the left. In the example in Figure 19, the highlighted
project folder in the Projects view is called HelloWorld.

Figure 19: Build Project Selection

& CIC++ - hello_world.c - Eclipse Platform

File Edit Mavigate | Projeck Tools Search Run Window He

Doy =
L e L}

—mn Close Project
B Bmse |HFop
=4 Build Al Chrl-+B

i C/C++ Projects

=% FlashPrograr

= HelloWarld Ewild Praject

== LEDTest Build ‘warking Set 3
Clean...

Build Autamatically

2. Inthe pop-up menu, choose Build Project. Alternatively, you can build a
project by choosing the Project > Build Project menu command, as
illustrated in Figure 19.

If the build has potential warnings or errors, Eclipse CDT might place an
information icon next to the project folder in the Projects view.

LatticeMico8 Developer User Guide 47

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

The Console view in the C/C++ perspective displays the project build
messages. The Problems view in the C/C++ perspective displays problems
encountered during the build. Along with other icons, the Problems view may
display a warning or error icon:

The warning icon ¢ indicates that there was an associated warning
message that was generated by the build process.

The error icon @ indicates that there was an associated error message
generated by the build process.

For a complete list of icons in the user interface that may be displayed and
their meanings, refer to Eclipse/CDT and the LatticeMico8 System online
Help.

Setting Project Properties

You can set up your project properties in the Properties dialog box. Project
properties include various project parameters, for example, file encoding
parameters, build configuration options, and platform settings. The Project
Property dialog box is dynamic in that it enables you to select different “tabs”
from the list box at left, which changes the display parameter set in the main
option area of the dialog box.

To set project properties:

1. Inthe C/C++ perspective, right-click the desired project folder in the
Projects view on the left. In the example in Figure 19 on page 47, the
project is entitled HelloWorld.

2. Inthe pop-up menu, choose Properties.

48

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Using C/C++ SPE to Develop Your Software

The Properties dialog box appears, as shown in Figure 20.

Figure 20: Properties Dialog Box

& Properties for HelloWorld

Project References

) Other:

() Other:

Info
Infa Path: JHelloweorld
Builders Tyns: Praisct
C/C++ build LR rojee
CICH+ Indexer Location: C:imico_platFormsiHelloWorld
Flatfarm Last modified: September 10, 2009 10;19:51 AM

Text file encoding
() Inherited From container (Cpl252)

Mew text file ine delimiter

() Inherited Fram container

[Restore Defaults] [Apply l

Lo I

Cancel]

The Properties dialog box enables you to set the C/C++ build settings through
the C/C++ build tab and the platform preferences through the Platform tab.
See the list box on the left side of the Properties dialog box, as shown in
Figure 20.

LatticeMico8 Developer User Guide

49

USING THE LATTICEMICO SYSTEM SOFTWARE

Using C/C++ SPE to Develop Your Software

The C/C++ build tab, as shown in Figure 21, enables you to set build
properties for the project.

Figure 21: C/C++ Build Tab of Properties Dialog Box

= Properties for LEDTest

BEX

type Filter text

Info
Builders
(i buid :
C/CH+ Indexer
Platform

Project References

C/C++ build

Active configuration

Project Type:

Corfiguration: |Release

Configuration Settings
System Library Satting same as application

=183 LatticeMicaf CjC++ Compiler
(22 General Compiler Options
(22 Preprocessor Options
=182 LatticeMicos C System Library Campiler
(2 General Compiler Options
2% PreProcessor Options
= 8 LatticeMico Linker
(22 Linker Options Category

LatticeMicod

UART

Command: | Im3-elf-gec

All options:

Expert settings:
Command
line pattern:

Preprocessar Options For Component Drivers

[[]_MICO_NO_INTERRUPTS__

[_MICOUART_BLOCKING _
[[]_MICOUART_INTERRUPT__

¢ -Ffunction-ssctions -meal-prologues -Os -wall

${COMMAND} ${FLAGS} $40UTPUT_FLAGH{OLITRUT_PREFL:3§

Restore Defaults Apphy

The C/C++ build tab enables you to set compiler and linker options for a given
build. This tab contains several options:

Active Configuration — This option allows you to select the active build
configuration, as well as to modify the default settings. It also enables you
to define your own configurations. LatticeMico8 C SPE uses the
LatticeMico8 GNU C tool chain for project compilation and linking. A set of
C build settings is known as a build configuration.

The C/C++ SPE has only one predefined configuration, Release, for
LatticeMico8 applications. To define you own configurations, refer to the
Eclipse CDT documentation.

Configuration Settings — This tab enables you to view or modify the
compiler or linker settings.

“System Library Settings same as application” enables you to select
application compiler settings and use these settings as system library
compilation settings. You can apply separate compiler settings for the
application and the system library build by clearing this option and
selecting appropriate settings. The system library build is part of the
managed build process described in “Managed Build Process and
Directory Structure” on page 91. The LatticeMico8 linker settings
affect the generation of the application executable.

50

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

Figure 22 shows the platform settings that are accessible in the Platform tab
of the Properties dialog box.

Figure 22: Platform Tab of the Properties Dialog Box

< New Project
Mico32 Managed Make Project Wizard c
Mico32 Managed Make Project Wizard Setting i el 72

Project Mame:

Project contents

Location C:'l,Projects'l,XOZCompoljents'l,D0_c_umentat_iolj'l,Tutor_ial'l,ImS_tutor

Select Target Hardware

MSE System: | C:fProjects/%02Components/Documentation) Tutorial/ima_tutor/platform1 fsociplatform1.msh

Select Project Templates

blark project Description

The Platform tab is further subdivided into the following fields:

Target Hardware Platform — This option shows the currently selected
platform for the selected project in the MSB System text box. You can
retarget this software application to another platform by using the Browse
button to select the appropriate platform. You must make sure that the
platform that you select and your software applications are compatible
with each other.

Linker Script — By default, C/C++ SPE always generates a linker script
usable for linking the selected project. This default linker script is
generated from the target hardware platform's MSB file by parsing the
configuration settings for the LatticeMico8 microcontroller. You can
provide your own linker script by selecting the '‘Use Custome Linker Script'
button.

Rebuilding Your Software Project

After you create your project, you can perform subsequent builds by right-
clicking the project name in the C/C++ perspective’s Projects view and
choosing Build Project from the pop-up menu.

LatticeMico8 Developer User Guide 51

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

A release build configuration is for generating an optimized executable devoid
of any debug information.

In the Eclipse/CDT, you can change the default settings that the C/C++ SPE
remembers for the project, and you can create new build configurations with
customized settings.

Performing Builds Automatically

You can set up the software workbench to automatically perform incremental
builds whenever sources are saved.

To indicate that you want the software to perform incremental builds
whenever resources are saved:

Within a given perspective, choose Project > Build automatically.

The workbench automatically performs incremental builds of resources
modified since the last build. Whenever a resource is modified, another
incremental build is run.

Deploying Your Software to LatticeMico8 Platform

Once the software application code is created and built using the C/C++ SPE,
it can be deployed to the hardware platform. The software can be deployed to
on-chip memory or non-volatile memories such as SPI flash. The C/C++ SPE
builds the application code in to an ELF executable in which cross-references
between multiple object files are resolved, and similar sections are grouped
together in to contiguous locations and loaded at the correct addresses in
memory. There are two types of sections that are important from a software
developer’s perspective: code and data. The code sections should reside in
the LatticeMico8 PROM and the data sections should reside in the
LatticeMico8 Scratchpad.

The PROM and Scratchpad are implemented using On-Chip memories which
can be initialized during platform bitstream generation. Section “On-Chip
Memory Deployment” discusses this flow. The other option is to locate the
PROM and Scratchpad images in non-volatile memories such as SPI flash
and let the LatticeMico8 microcontroller load these images in to the PROM
and Scratchpad at run time. Section “Non-Volatile Memory Deployment”
discusses this flow.

On-Chip Memory Deployment

The Lattice on-chip memory can be initialized with valid content prior to
generation of platform bitstream. The PROM and Scratchpad of the
LatticeMico8 microcontroller are implemented using these on-chip memories,

52

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Deploying Your Software to LatticeMico8 Platform

and can therefore be initialized with the code and data sections of the ELF
executable. The deployment flow discussed in this Section generates the
initialization files for the PROM (file “prom_init.mem?”) and the Scratchpad (file
“scratchpad_init.mem”). The developer initializes the LatticeMico8
microcontroller with these files within MSB and then regenerates the
hardware platform. The sections of the LatticeMico8 GUI that deal with
memory initialization are highlighted in Figure 23.

Figure 23: LatticeMico8 PROM Initialization File

P

= Modify LatticeMico8

Mumber of Registers

Deployment Setkings
[JImages in Mon-aolatile Memary Flash Base Address

[]Esxecute-In-Placs

O1s (O

Call Stack Depth

(@] ®1s (@ cr

[ata and [0 Addressable Range

{256 () 64K ()45

Scratchpad Base Address | 0x00000000
110 Base Address 080000000

PROM Settings
G o it o B o o e e B e o B e e o o e o =1
[PROM Size | 2048 V |
[e [LatticeMico8

Initialization File Mame | none Browse. ..

I ' | B PROM
| Eile Eormat | hex .Vf: I Initialization File
L — — — o d

arratchpad Settings

_____________________ =
[Internal Scrakchpad Size | Ox00000800 |
I Initialization File Mame | none Browse I LatticeMico8
| | p Scratchpad

: Initialization File

| File Format | hex W |
L — — . . L L L L L L o |

o] 4 J I Cancel

] I Help

LatticeMico8 Developer User Guide

53

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

To generate the initialization files:

1. Inthe C/C++ perspective, launch the Software Deployment GUI from the
Tools pull-down menu. This brings up the GUI shown in Figure 24.

2. Select the ‘Mico8 Memory Deployment’ tab and then press the ‘New’
button to create a new configuration. Figure 24 shows this new
configuration. The developer must specify the following items within the
configuration

Name — This item refers to the name by which the configuration will be
saved so that you can reuse it the next time you launch Mico8 Memory
Deployment.

Project — Specifies the C/C++ SPE project to use for selecting an
application to deploy. Click the Browse button for a list of available
selections.

C/C++ Application — Specifies the application (.elf file) to be deployed in
the selected project. Click the Browse button for a list of available
applications in the selected project, or click the Search Project button to
select an application (.elf file).

Save Memory Initialization Files — The software developer must specify
the folder within which the initialization files will be saved.

Figure Figure 24 shows the values that are entered within the four
aforementioned items for the HelloWorld software project.

Save the configuration by clicking on Apply.

4. Generate the initialization files “prom_init.mem” and
“scratchpad_init.mem” by clicking on Start.

54 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

Figure 24: Software Deployment Dialog Box

= Software Deployment Tools

Software Deployment Tools

0 -
=R SN=0E ame: | Helloworld
type Filker text =
1= Main
& Mico3? Flash Deployment
& Mico32 Multi On Chip Memary Deployment Ay
& Mico3z on Chip Memary Deployment it
=@ Micod Memory Deployment Helloiarld Browse..,
@ Heloiworld CfC++ Application:
ReleaselHellaviorld. el Search Project...
Save Memory Initislization Files to directary...
CHiProjectsixO2Component s DocumentationSWuideExampleiHellotworld

Click "Start” to generate deployment file

The LatticeMico8 PROM and Scratchpad can now be instantiated with these
initialization files. This step is performed within MSB by launching the
LatticeMico8 GUI of the microcontroller instance within the hardware platform.
Once the PROM and Scratchpad have been initialized, as shown in

Figure 25, the hardware platform must be regenerated prior to generating the
platform bitstream in Diamond.

LatticeMico8 Developer User Guide 55

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

Figure 25: PROM and Scratchpad Initialized

-

= Modify LatticeMico8
Mumber of Registers
)16 ®32
Call Skack Depth
Os #)16 i3z

[raka and [} Addressable Fange
() 756 (%) 64k 4G

Scratchpad Base Address | 000000000

1)0 Base Address | 0xB0000000

PROM Settings
PROM Size 2045 ||
Initialization File Mame GuiI:Ie,l'Exe_lmple,l'HeIIDWDrId,l'prDm_init.mem Browse, ..

File Farmat | hex | w1

Scratchpad Settings

Internal Scratchpad Size | 0x00000S00
Initialization File Mame ExampIe,l'HeIIu:_uWu:urIu:I,l'scrat_chpad__init.mem|
File Format | hex (]

Deployment Setkings
[]1mages in Mon-Yolatile Mermory Flash Base Address

[JExecute-In-Place

[Ik, H Cancel ” Help

Non-Volatile Memory Deployment

The initialization files for the LatticeMico8 PROM and Scratchpad can also be
located within non-volatile memories such as SPI flash. When LatticeMico8 is
configured with this option, the LatticeMico8 microcontroller will automatically
fetch these images and initialize the PROM and Scratchpad at power-up.
Deploying the application to flash memory involves the following steps:

Configure the microcontroller in MSB to load the PROM and Scratchpad
images from non-volatile memory.

56

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

Create the software image to be programmed to the non-volatile memory.

Program the software image from Step 2 to non-volatile memory.

Configuring LatticeMico8 to Load from Flash

The LatticeMico8 microcontroller must be configured to load the images for
the PROM and Scratchpad from flash. Figure 26 shows the items in the
LatticeMico8 GUI that are configured:

Images in Non-Volatile Memory — Specifies that the PROM and
Scratchpad images are located in flash.

Flash Base Address — Specifies the address in flash at which the images
are located. The developer must ensure that the SPI flash is instantiated
within the hardware platform at this address.

Execute-In-Place — Specifies that the PROM itself is located in the flash
and the code will execute out of flash.

LatticeMico8 Developer User Guide 57

USING THE LATTICEMICO SYSTEM SOFTWARE

Deploying Your Software to LatticeMico8 Platform

Figure 26: LatticeMico8 PROM Initialization File

-

= Modify LatticeMico8

Mumbet of Registers

11 ®32
Call Stack Depth
@k *16 O3z
Data and IO Addressable Range
(25 (& ek (4
Scratchpad Base Address | 0x00000000
1/ Biase Address | (A0000000
PROM Setkings

PROMSize 2048 ||

|

Erowse, ..

Initialization File Mame | none

File Formnat | hex [|
Soratchpad Settings
Internal Scratchpad Size | 0x00000500

Initialization File Mame | none

Erowse. ..

File Farmat éhex ||
e e = e e = = = = = = = = = = = =
| Deployment Setkings
| Images in Mon-volatile Memory Flash Base Address | Ox01000000
I [+] Execute-In-Flace
e
)4] [Cancel] [Help

]

LatticeMico8

- p» Settings for
Deployment
to Flash

Adding SPI Flash Component to Hardware Platform

The hardware platform must contain the LatticeMico SPI flash component
which will contain the images of the LatticeMico8 PROM and Scratchpad.
Figure 27 shows the platform with a SPI flash component. It is, as shown in
the Figure 27, located at the “Flash Base Address” entered in the

LatticeMico8 component GUI.

58

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

Figure 27: Platform with SPI Flash Component

.. Platform &3

Mame wWishbone Connection Base End Size(Bytes) Lock. IR Disable
= LM8]
InstructionPaort 2
Data port 3
Scratchpad 000000000 OO0 7= O0000832
= uatk O
UART Port 030000000 BN (AN o
= LED O
GP I Port 50000010 X BN 0T &
= SPIFlash O
S Port 001000000 [e T A3 O

Creating the Application Binary Image

Once the application executable is created, it is converted to a binary
format. To generate the initialization file:

1.

In the C/C++ perspective, launch the Software Deployment GUI from the
Tools pull-down menu. This brings up the GUI shown in Figure 28.

Select the ‘Mico8 Memory Deployment’ tab and then press the ‘New’
button to create a new configuration. Figure 28 shows this new
configuration. The developer must specify the following items within the
configuration

Name — This item refers to the name by which the configuration will be
saved so that you can reuse it the next time you launch Mico8 Memory
Deployment.

Project — Specifies the C/C++ SPE project to use for selecting an
application to deploy. Click the Browse button for a list of available
selections.

C/C++ Application — Specifies the application (.elf file) to be deployed in
the selected project. Click the Browse button for a list of available
applications in the selected project, or click the Search Project button to
select an application (.elf file).

Save Memory Initialization Files — The software developer must specify
the folder within which the initialization file will be saved.

Figure 28 shows the values that are entered within the four
aforementioned items for the HelloWorld software project.

3. Save the configuration by clicking on Apply.

4. Generate the initialization file “flash_init.bin” by clicking on Start.

LatticeMico8 Developer User Guide

59

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

Figure 28: Values Entered for HelloWorld Software Project

~ Software Deployment Tools
Software Deployment Tools .
S O i
=% B Name: HelloWorld
type filker text -
|| Main
@ Mico3z Flash Deployment
& Mico32 Multi On Chip Memory Deployment i
& Mico32 On Chip Memary Deployment e
1= 4@ MicoB Memory Deployment Helloworld Browse. ..
@ Heloworld CJC++ Application:
ReleaseHellovorld, elf Search Project...
Save Memory Initialization Files ko directory. ..
Ci\Projectsi®o2Components'Document ation| SWiEuide\ ExamplelHelloWorld
Click "Start” ko generate deployment File

Programming the Application Binary Image to SPI
Flash Using Deployment Tool

Once the .bit file containing the application image is ready, it is programmed
to the SPI flash by creating a .mcs file using a tool named Deployment Tool.
For detailed information on this tool, refer to the Deployment Tool online Help.
The procedure is below:

1. Launch Deployment Tool as follows:

In Windows choose Programs > Lattice Diamond <version
number> > Accessories > Deployment Tool.

In Linux, enter the following on a command line:
<Programmer install path>/bin/lin/./deployment
The Deployment Tool Getting Started dialog box appears.

2. Inthe Function Type dropdown menu, choose External Memory.

60

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

In the Ouput File Type dropdown menu, choose Hex Conversion, as
shown in Figure 29.

Figure 29: Deployment Tool Getting Started Dialog Box
r Diamond Deployment Toal - Getting Started l ? &1

@ Create New Deployment

Function Type: ’Exhernal Memory -]

Output File Type: ’Hex Conversion =]

(7} Open an Existing Deployment

Recent Files:

oK] [Close

3. Click OK to display the Step 1 of 4: Select Input File(s) dialog box, as
shown in Figure 30.

Figure 30: Step 1 of 4: Select Input File(s) Dialog Box

Diamend Deployment Toal- project0.ddt® l =HAC] é}
File Help
B # £
External Memory: Hex Conversion
Step 1 of 4: Select Input File(s)
| File Name | Device Family Device
1] |

4. Double-click the File Name box and browse to the “flash_init.bit” file.

LatticeMico8 Developer User Guide

61

USING THE LATTICEMICO SYSTEM SOFTWARE : Deploying Your Software to LatticeMico8 Platform

5. Click Next to display the Step 2 of 4. Hex Conversion Options dialog box,
as shown in Figure 31.

Figure 31: Step 2 of 4: Hex Conversion Options Dialog Box

Diamond Deployment Tool- project0.ddt* SRACE X
File Help
.
NEH &

External Memory: Hex Conversion

Step 2 of 4: Hex Conversion Options

Ouput Format:
Program Security Bit:
Verify ID Code:
Compression:
CRC Calaulation:

[Byte wide Bit Mirrar
|| Retzin Bitstream Header

6. In Output Format dropdown menu, select Intel Hex. Leave all other
options as default.

62 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

7. Click Next to display the Step 3 of 4: Hex Conversion dialog box, as
shown in Figure 32.

Figure 32: Step 3 of 4: Hex Conversion Dialog Box

Diameond Deployment Tool- project0.ddt® =RACE X
File Help
D@ A
External Memory: Hex Conversion
Step 3 of 4: Select Output File(s)
Output File 1: C:fProjects/XO2Components/Documentation /SWGvide fExample HelloWorld /flash_initjmes -
Previous Next

8. Provide the name of the output data file as “flash_init.mcs”. Then click on
Generate to generate the .mcs file.

The“flash_init.mcs” file can be programmed to the SPI flash via Diamond
Programmer.

Performing HDL Functional Simulation of
LatticeMico8

In most cases, the platforms that are created using the LatticeMico System
Builder work correctly in hardware because the existing components have
been tested many times. New custom components, however, start as
untested elements and will probably need debugging through HDL functional
simulation.

This topic describes the process for using an HDL simulation tool such as
Mentor Graphics ModelSim™ or Aldec Active-HDL™. The method described
is applicable to designs written in VHDL, Verilog, or a combination of both. .
The firmware (C code) is compiled using the Lattice C/C++ SPE software, and
memory initialization files are created for the LatticeMico8 PROM and
Scratchpad. It is possible to locate the firmware in other off-chip memories as

LatticeMico8 Developer User Guide 63

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

Figure 33: Platform Setup

Platform &3

= LME

Mame

InstructionPort
Data pork
Scratchpad

=1 uart

= LED

UART Port

GP IfO Part

long as there exists a behavioral model for the memory. The platform in
Figure 33 shows a Verilog design that will be simulated.

‘Wishbone Connection Base End Size{Bytes) Lock IRG Disable
il
i
5
000000000 AT R

]

3 080000000 i % el o
]

3 080000010 i e % el

Configuring the Platform with
LatticeMico System Builder

The LM8 microcontroller instance in the platform, shown in Figure 33, must be
configured to permit functional simulation of software applications through any
HDL simulator. The following steps are required:

1. Ensure that the PROM initialization file is provided.
2. Ensure that the Scratchpad is internal and the initialization file is provided.

3. Ensure that deployment to flash is turned off..

Directory Structure

When MSB is used to generate a platform, a set of directories is created in a
top-level platform directory. The top-level directory is automatically assigned
the same name as the MSB project name, which is Platform in this example.

<path_to_toplevel_directory>/Platform
components
soc

The components directory contains RTL and software drivers that pertain to
each of the components instantiated within the design. Important files in the
soc directory include:

system_conf.v — This file contains the auto-generated macro definitions of
the various components in the design. As mentioned previously, this file
must be modified if the “Enable Debug Interface” option is selected in the
LM32 processor dialog box.

platform.v — This file contains the top-level module of the design, which is
Platform in this example.

pmi_def.v — This file contains module definitions of all the PMI modules
used in the design. For the purpose of functional simulation, the PMI

64

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Performing HDL Functional Simulation of LatticeMico8

Figure 34: Setup

= Modify LatticeMico8

Mumber of Registers

O1s [OF

Call Stack Depth
Os @16 Oizz

Data and I/0 Addressable Range
256 [OI" ([@r

PROM Settings

Initialization File Mame G_uide,l’Example,l’_HeIIoWorId,l’prom_ini_t.mem_
File Format hex : v
Scratchpad Settings
Internal Scratchpad Size:
Initialization File Mame Exa_mple,l’HeIIoWorId,l’scratc_hpad_init.mem
File Farmat :-hex v

Deployment Settings

[l1mages in Mon-Yolatile Memory Flash Base Address

[CExecute-In-Flace

PROM Size |

Scratchpad Base Address | 0x00000000

I/ Base Address | 0x80000000

000000500

Browse. ..

Browse. ..

[8]4] [Cancel

J

Help

behavioral models must be provided. See “Replace PMI Black-box
Instantiations with Behavioral Models.” on page 66.

Creating an Optional VHDL Wrapper

For mixed-language designs, the VHDL Wrapper is required for simulation. To

demonstrate mixed-language functional simulation, a VHDL wrapper has
been created for the top-level module in the design example.

Preparing for HDL Functional

Simulation

The following sections describe the steps required to perform functional

simulation on a given platform.

1. Create the Simulation Directory.

Functional simulation is performed in a directory that is created under the

top-level directory, which is named Platform in this example.

<path_to_toplevel_directory>/Platform

components

LatticeMico8 Developer User Guide

65

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

soc
simulation

2. Create the Testbench.

A testbench is required to functionally verify a design. The example
testbench, shown in Figure 35, instantiates Platform, the top-level module
of the design.

Figure 35: Testbench File

“timescale 1 ns / 1 ns
module testbench;

event done;

// Inputs

reg clk i;

reg reset_n;

// Outputs

wire uartSIN, uartSOUT;

wire [3:0] LEDPIO_OUT;

Platform Platform u
(

.clk i (clk_1i),
.reset n (reset_n),
.LEDPIO_OUT (LEDPIO_OUT),
.uartSIN (uartSIN),

.uartsSouT (uartsouT)

__*/
initial begin
reset n = 0;
#290;
reset n = 1;
end

initial begin

clk i = 0;
#20;
forever #(20) clk i = ~clk_i;
end
endmodule

3. Replace PMI Black-box Instantiations with Behavioral Models.

The black-box instantiation of each PMI module in the file pmi_def.v must
be replaced with its respective behavioral model. The PMI behavior
models are located in the simulation directory of the Diamond installation:

66 LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE Performing HDL Functional Simulation of LatticeMico8

<diamond_install paths>/cae_library/simulation/verilog/pmi

Select the behavioral model of each PMI module from the simulation
directory in the Diamond installation. Figure 36 shows those selected
for the Platform example.

Figure 36: Selected PMI Behavior Models from CAE Library

Falders x pmi_add.v pri_pll, v
= 2 cae_library -~ pri_addsub, v proi_ram_dp.
= bis pmi_complesx_mult.v pri_ram_dp_true, ¥
[23) macrobh prmi_constant_mult,v pri_ram_dg.
= I5) simulation pri_caunter, pri_rom,
) blackbosx pri_distributed_dprarm, v pri_sub,y
=l) verilog pri_distributed_rom, v
) ec prii_distributed_shift_req.v
) ecp prni_distributed_spram. v
) ecpz prii_dsp_rcasmultaddsub, v
) ecp3 pri_dsp_mac.y
3 machxa proi_dsp_rnulk, v
9 pmi pri_dsp_multaddsub, +
I3 sc
|2 scm
2 xp
o :ildlxlﬂ proi_ralt v
) «p2 prii_rultaddsub, v
) vhdl 3 prii_rultaddsubsumn, v

Copy the selected models and paste them into the platform’s
simulation directory. Figure 37 shows the simulation directory of the
Platform example where PMI modules have been replaced by the
appropriate behavior models.

Figure 37: PMI Models in Platform Simulation Directory

Folders

= [Platform
| companents
Simulation
|25 sim_design
£ work
I soc
L) preferences_attributes
[T references
() reveal_tutar
[svn
|5 timing_clasure_kutar
() werilog
3 vhdl
) zip
= el
() temp
(5 WINNT
£

X [)sim_design
w Iwork
|ﬂ library.cfg
“& modelsim.ini
modelsim_script,do
|ﬂ prii_addsub. v
m pri_distributed_dprarm.y
i] proi_Fifo.v
ﬂ prii_Fifo_dc.v
ﬁ proi_rar_dp.v
ﬂ proi_rarm_dp_true.w
ﬂ pri_ram_dg.v
scripk.do
@ sim_space. aws
simn_wave awf
ﬁ test_program.mem
ﬂ testhench.y
wvlog.opk
wsinm.wif

LatticeMico8 Developer User Guide

67

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

Performing HDL Functional Simulation
with Aldec Active-HDL

To perform HDL functional simulation with Aldec Active-HDL, first create a
script, “aldec_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

cd “<path to_ toplevel directorys/Platform/simulation”
workspace create sim space

design create sim design

design open sim_design

cd “<path to toplevel directory>/Platform/simulation”
set sim working folder

vlog pmi_addsub.v

vliog pmi_ram dg.v

vliog pmi ram dp.v

vlog pmi ram dp true.v

vlog pmi distributed dpram.v

vliog pmi fifo.v

vlog pmi_fifo dc.v

add additional vlog commands for each PMI module in the
design. The list shown is not intended to be complete for all
possible LM8 designs.

vlog +define+SIMULATION ../soc/platform.v testbench.v

the VSIM command uses the Aldec for Lattice pre-compiled FPGA
libraries. If the Aldec for Lattice simulator is not being
used, it will be necessary to compile the behavioral code for
the FPGA. For the MachX02, the behavioral code is located at:
<isptools>/cae_library/simulation/verilog/machxo2

H*H H HF HF

vsim testbench -L ovi_machxo2

Launch the Active-HDL software and execute the following command in the
console window:

cd <path to toplevel directorys>/Platform/simulation
verify that you are in the correct directory

pwd
do aldec_script.do

Performing HDL Functional Simulation
with Mentor Graphics ModelSim

To perform HDL functional simulation with ModelSim, first create a script,
“modelsim_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

vlib work
vdel -1ib work -all

68

LatticeMico8 Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

vlib work
vmap machxo2 black boxes C:/Diamond/diamond/1.2/cae_library/
simulation/blackbox/machxo2 black boxes
vlog -work C:/Diamond/diamond/1.2/cae library/simulation/
blackbox/machxo2_black boxes -refresh
vlog -work C:/Diamond/diamond/1.2/cae library/simulation/
blackbox/machxo2 black boxes -refresh
vlog +define+SIMULATION \
+incdir+../soc \
+incdir+../components/1lm8/rtl/verilog \
+incdir+../components/uart core/rtl/verilog \
+incdir+../components/gpio/rtl/verilog \
+incdir+./models \
models/pmi_addsub.v \
models/pmi_ram dg.v \
models/pmi_ram dp.v \
models/pmi_ram dp true.v \
models/pmi_distributed dpram.v \
models/pmi_distributed_spram.v \
models/pmi_fifo.v \
models/pmi_ fifo dc.v \
models/pmi pll.v \
models/mt481lc2m32b2.v \
C:/Diamond/diamond/1.2/cae library/simulation/verilog/machxo2/
BB.v \
../soc/Platform.v \
testbench.v
vsim work.testbench -novopt

Note

When doing mixed-language simulation, use the -t 1ps command-line option for the
“vsim” command.

LatticeMico8 Developer User Guide 69

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico8

70 LatticeMico8 Developer User Guide

= LATTICE Chapter 3

LatticeMico8 Run-Time

Environment

This chapter describes the run-time environment for LatticeMico8
microcontroller-based designs. It takes you through an example of a simple
program.

Build/Compilation Utilities

The C/C++ SPE is built on the GNU GCC compiler tool chain customized for
the LatticeMico8 micrcontroller. It contains the standard GNU GCC
executable utilities, such as objdump, gcc, and Id. The names of these utilities
all contain the “Im8-elf” prefix. For example, the GNU GCC compiler
executable customized for LatticeMico8 is called Im8-elf-gcc, and the
objdump utility customized for LatticeMico8 is called Im8-elf-objdump. Refer
to “Software Development Utilities” on page 137 for more information on
compilation and build utilities and valid options for them.

Device Drivers and Services

The LatticeMico System Builder (MSB) generates platforms that allow the
LatticeMico8 microcontroller to interact with a wide range of possible devices.
A platform can also contain multiple instances of the same device, each being
configured with different capabilities and features. These devices have
software drivers that provide a mechanism for user software code to interact
with the device. The device drivers bundled with LatticeMico8 are not meant
for use in a multi-threaded environment. The device-specific software driver
information that is used for direct manipulation of the device can be found in
the device’s component data sheet available as a part of the LatticeMico
documentation set.

LatticeMico8 Developer User Guide 71

LATTICEMICO8 RUN-TIME ENVIRONMENT

Device Drivers and Services

Microcontroller-Related Services Available at Run
Time

Table 1 lists the available microcontroller-related functions and ‘function-like
macros that can be used by the user application.

Table 1: Microcontroller-Related Services Available at Run Time

Functional Category

Interrupt Management

Sleep

Note: These are software
loops approximating a
delay and do not depend
on a hardware timer
peripheral.

Platform Clock Speed

Note; The managed build
process based on the
platform configuration
dynamically identifies this
value.

Functions/Macros

mico_status MicoDisablelnterrupt (char intNum);

void MicoSleepMilliSecs (unsigned int timelnMilliSecs);

MICO8_CPU_CLOCK_MHZ

Header File

Micolnterrupts.h

mico_status MicoEnablelnterrupt (char intNum);
MICO8_DISABLE_GLOBAL_IRQ ();

MICO8_ENABLE_GLOBAL_IRQ ();

MicoUltils.h

void MicoSleepMicroSecs (unsigned int timelnMicroSecs);

DDStructs.h

Device Driver Framework

The LatticeMico8 platform functionality is based on the structure that is
defined in the .msb file. In addition to the CPU and primary peripherals, there
may also be memory components for code and data storage and some
components for input and output control, such as the DMA component or the
SPI flash component that must be considered. The flexibility of the
LatticeMico System Builder (MSB) tool in LatticeMico System enables you to
easily change parameters of these components at the system builder level.
As documented in more detail in “Managed Build Process and Directory
Structure” on page 91, the .xml file provides a mechanism to automatically
extract the relevant information from the platform into the C/C++ SPE for
software development.

The Latticemico8 device driver framework provides the following facilities:

Ability to specify component device driver information as part of the
platform build

Ability to extract instance-specific component information from MSB into a
managed build software application

72

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Device Drivers and Services

LatticeMico8 microcontroller interrupt framework

Prepackaged sample device drivers with easy-to-use APIs for most
components

To ensure that software application functionality remains unaffected by any
changes to the platform, the MSB software provides ready-made device
drivers that interact with these components, using the information that is
automatically extracted from the .msb file. These device drivers enable you to
control instantiated components without having to know component-specific
details, such as register layout. It also basically protects the application from
the negative effects of changes like altering a component’s base address.

Device Driver APIs

The device driver APIs are device-specific functions. The LatticeMico System
Builder (MSB) includes device drivers, customized for LatticeMico8
microcontroller, for the following components:

RS-232 UART

GPIO

DMA

SPI Flash

MachXO2 EFB
The APIs directly manipulate these devices, along with their register layout
structures, as described in the respective component data sheets. These data
sheets also contain component usage examples. The availability of device-
driver APIs is platform-dependent. These APIs can be used directly from your

application, provided the platform description contains the corresponding
components.

Modifying Existing Device Drivers

This section shows you how to override the default behavior of the device
drivers.

Overriding Default Driver Initialization Sequence

As will be shown in “Boot Sequence” on page 82, the boot-up sequence
invokes function LatticeDDInit, which initializes the components before
invoking your main() implementation. If you want to override the default
LatticeDDInit implementation, perform the following steps:

1. As part of your application source, create a file named DDInit.c.
2. Within DDInit.c, implement the void LatticeDDInit(void) function.

A sample skeleton of what your DDInit.c file should look like is shown in the
code example in Figure 38

LatticeMico8 Developer User Guide 73

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

These steps override the default implementation of LatticeDDInit, bypassing
the LatticeMico8 C/C++ SPE build-process-generated driver initialization
routine. You can then dictate your own initialization sequence by placing code
in your DDInit.c file. For more information on the DDInit.c file, see “DDlInit.c
File” on page 107.

Figure 38: Code Example
#include "DDStructs.h"

void LatticeDDInit (void)

{

/* initialize uart instance of uart core */
MicoUartInit (&uart core uart) ;

/* invoke application's main routine*/
main () ;

Overriding Default Driver Implementation

You can override the default driver implementation by providing your own
source files that match the name of the driver source files that you want to
override. You must implement all of the functions in the source file that you
want to override. If you do not and if any of the functions you have not
rewritten are called by another code module, the compiler will attempt to pull
in the source file objects that you attempted to override and generate compiler
errors. You can also override the default interrupt management
implementation and implement your own scheme that handles nested
interrupts. Some library files become part of the application build process
instead of the library build process, such as crt0.S. The implementation in
these files cannot be overridden as part of the LatticeMico C/C++ SPE
managed build process.

Basic Program Structure

This section uses a simple “hello world” program to illustrate the program
structure and the behind-the-scene activities of a program. The platform
diagram from the MSB Editor view shown in Figure 39 illustrates the example
platform structure.

Figure 39: Example Platform Structure

Platfarm &2
Mame Wishbone Connection Base End Size(Bytes) Lock. IRQ Disable
= LMg O
InstructionPort 0
Data pork 1
Scratchpad 000000000 ROIIAATEE xAIOARA]
= uart O
UART Part 080000000 % % il & o

74

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

Note

The procedures presented in this section are not a substitute for the
LatticeMico8 tutorial but work together in a task-oriented way to provide a
quick way to learn some key points about programming in this environment.

The example used in this section depends on the following criteria:

The LatticeMico8 Managed C/C++ build process is used for building the
“hello world” application.

The “Platform” platform consists of the following components:
UART instance named “uart”
LatticeMico8 microcontroller instance named “Im8”

The UART is selected as the standard input, output, or error device. It is
configured to use interrupts. See information in Section “Setting Project
Properties” for details on how to modify the platform settings.

The linker settings map the program code and data sections to
LatticeMico8's internal PROM and Scratchpad respectively. See
LatticeMico8 data sheet for details on how to enable the internal PROM
and Scratchpad.

Creating a Blank Project

As the first step, the software developer must create a project based on the
platform criteria outlined previously in “Basic Program Structure” on page 74.

To create a blank project in the Project Wizard:

1.

In the C/C++ SPE perspective, choose File > New > mico Managed C
Project to bring up the New Project dialog box.

In the Project name text box, enter HelloWorld.

Select the project contents folder using the Browse button in the Location
text box.

Select the Platform target hardware platform, using the Browse button in
the MSB System text box.

Select Blank Project in the Select Project Templates list box in the lower
left portion of the dialog box.The New Project dialog should now resemble
the illustration in Figure 40.

Click Finish.

LatticeMico8 Developer User Guide

75

LATTICEMICO8 RUN-TIME ENVIRONMENT Basic Program Structure

Figure 40: New Project Dialog Box

P

= New Project

Mico Managed Make Project Wizard
Praoject Empky!

Project Mame:
Project contents
Location l;:'l,F‘ru;uje!:_t_s'\Tempu:u.rarv\,_

Browse, .,

Seleck Target Hardware

[M5E Systemn: | Ci\Projectst TemporaryiPlatformlisociPlatforml . msh

Seleck Project Templakes

blank project
LME DMA Test
LME LEDTest

LME LEDTest A5M
L& SPI Tesk

LIS UART Test

| -~ Description

inisk Cancel

This newly created project should now be visible in the C/C++ perspective’s
Projects view, as shown in Figure 4.

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

Figure 41: C/C++ Perspective Projects View

= CIC++ - Eclipse Platform
File Edit Mavigate Project Tools Search Run Window Help

E!="jv & % jﬂvfjﬁf' ci*v@f- :ﬁv@v jg‘a i o i
B mse |0 cic++ | %5 Detug
2] CfC++ Projects 52 ==

=

Adding a Source File to the Project

You will now add a new source file to your newly created project. Source files
refer to your source C language files.

To add a source file to your project:

1. Inthe C/C++ perspective, click on the HelloWorld project in the Projects
view.

2. In the pop-up menu, choose File > New > Source File.

In the New Source File dialog box, shown in Figure 42, enter HelloWorld.c in
the Source File text box.

Note

The source file can be a C source file, an Assembly-only source file, or a C with
inlined-assembly source file. The C and C with inlined-assembly source files must
have a .c file extension. The Assembly-only source files must have a .S or .s file
extension.

LatticeMico8 Developer User Guide 77

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

Figure 42: New Source Flle Dialog Box

-

< New Source File ﬁ
Create a new source file, C

= |
Source Folder: | HelloWorld
Source File: HelloWworld.c
() Firish] [Cancel

This new file is now visible beneath the project in the C/C++ perspective’s
Projects view, as shown in Figure 6.

Figure 43: New Flle Visible in C/C++ Perspective Projects View

= CJ/C++ - HelloWorld.c - Eclipse Platform
File Edit Mawvigate Project Tools Search Run Window Help

i m W B g Efr e -0 g - =i
T EmsEe R oo+ |5 Debug
EE o+ Projects 52 = 0| [Helloworld.c 2
' p—
I R

(5] |§| Hellavarld. c
= user.pref

In addition, you may see the user.pref file, which is automatically generated
by the C/C++ SPE managed build process and should not be modified or
deleted. The user.pref file is described in the “C/C++ Perspective Project
Folder File Contents” on page 95.

78

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

Adding Source to the Source File

Now you will want to add source to your source .c file. At this point, you are
interested in using a generic Hello World application that simply prints “hello
world” to the terminal via the UART. To do this, add the code shown in
Figure 44 in to the HelloWorld.c source file that you created in the prior step.

Figure 44: HelloWorld .c Source File
#include "MicoUtils.h"
#include "DDStructs.h" - @

#include "MicoUart.h"
const char *HELLO STRING = "Hello World\r\n"; <&——— @
static void SendCharacter (MicoUartCtx t *pUart, unsigned char c) 47@

{

MicoUart putC(pUart, c);

return;
}
int main(void) @
MicoUartCtx t *uart = &uart core uart;
unsigned int idx = 0;
- ©®
do {
SendCharacter (uart, *HELLO_STRING) ;
MicoSleepMilliSecs (1000); <

HELLO_ STRING++;
} while (idx++ < 14);

return (0) ; 47@

The lines shown in this code example are described following:

Item 1 — These three #include statements declare the header files needed
to verify the function prototypes of the functions used in the code. The
MicoUtils.h value refers to the standard LatticeMico8 header file that
contains the prototype declaration of the function listed in item 6. The
MicoUart.h value refers to the standard LatticeMico UART header file that
contains the prototype declaration of the function listed in item 3. The
DDsStructs.h value refers to the header file that is automatically generated
by the C/C++ SPE for the given hardware platform.

Iltem 2 — This is the “hello world” character string that will be transmitted
via the LatticeMico UART.

Item 3 — This is the function that calls the LatticeMico UART function
declared in MicoUart.h header file from Item 1 that transmits one
character over the UART transmit line.

Iltem 4 — The int main(void) parameter is the “main” function that is
executed when you execute your program. This is the main entry point of
the application code. This “main” does not receive any argument, and it

LatticeMico8 Developer User Guide 79

LATTICEMICO8 RUN-TIME ENVIRONMENT :

Basic Program Structure

passes back an integer value that has no significance for the current
release. The sequence of code leading to invocation of “main” is
described in Section “The int main(void) Function”.

Iltem 5 — This is the device context structure associated with the UART
instance named “uart” in the hardware platform. The declaration of the
context structure associated with every device in the hardware platform is
found in DDStructs.h header file from Step 1.

Item 6 — Since you are using the UART with interrupts enabled (as
selected during platform configuration in MSB), you must wait a
reasonable amount of time for the interrupt service routine to send all the
characters in the “hello world” string. Typically, the UART baud rate is
much slower than the CPU speed, so this delay is required. This function
is part of the LatticeMico8 platform library, specifically the CPU service,
and its prototype is declared in the MicoUtils.h header file.

Item 7 — Since you are finished with your application, you must pass back
control to the calling process. Once you do this, the calling process as
described in a subsequent section will terminate. For typical embedded
systems, your application would never return control back from your
“main.”

Building the Application

At this point in the example, you are ready to build your application using the
C/C++ SPE managed build process.

To build the application:

1.

In the C/C++ perspective, right-click on the project folder in the Projects
view.

In the pop-up menu, choose Build Project to initiate the managed build
process, as described in “Managed Build Process and Directory Structure
on page 91. The Projects view in the C/C++ perspective is updated to
show the generated artifacts, as shown in Figure 8.

80

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Basic Program Structure

Figure 45: HelloWorld Shown in C/C++ Perspective Projects View

= C/C++ - HelloWorld.c - Eclipse Platform
File Edit Mavigate Project Tools Search Run Window Help
Ci-EH & &S B E@ i B0 @I PG
Fj O mse @.CIC__++.|$Debug
Fg C/C++ Projects {ciC++ perspective] = 5 L] Hellaworld.c 53

= #include "MicoUcils.h"
#include "DD3tructs.h"

= 125 Hellawarld ; e o
<> Binaries #include "MicolUart.h
#-€p archives
TR const char *HELLO STRING = "Hello Worldirin™:
[#-[=- Platform o

&= Release

| Hellawarld.c

|£|\ MicogInterrupts.c
=| user.pref

static void ZendCharacter (MicoUartCtx t *plUart, unsigned char c)
{

MicoUart_putc(pUart, cj:

return;
i

int mwainivoid)

{
MicolUartCtx t ¥uart = Euart CoOre uart;
unsigned int idxz = 0;

do {
SendCharacter (uart, *HELLO STRING):
MicoSleepMilliSecs (1000) ;
HELLO STRING+H+:

¥ while (idx++ < 14):

return (0] ;

Figure 9 shows the contents of the platform library for the example. “Platform
Library-Generated Source Files” on page 101 describes the various items
within the Platform Library folder.

LatticeMico8 Developer User Guide 81

LATTICEMICO8 RUN-TIME ENVIRONMENT : Boot Sequence

Figure 46: Platform Library Folder

#-<» Binaries

F-p archives

[=- == Platform

= Release

h| DDStrucks.h
Micalnterrupks. b
MicoTvwpes.h
Micallart. b
MicolJtils. b
syskem_conf.h
crtd.5

DDInit.c
DDStructs.c
MicoInkerrupks.c
MicoSleepHelper .5
MicostdSktreams.c
|£| Micollart, c
Release
Helloworld.c
MicoSInterrupts.c

| user,pref

=

FRRERBREEHEHEEE

A = R
DIy RV e I T R O

Boot Sequence

An assembly language file named crt0.S in the platform library folder contents
contains the boot-up sequence. This section generically describes the boot-
up sequence, as well as the layout of the boot section. This section assumes
that you are familiar with the LatticeMico8 microcontroller architecture
described in the LatticeMico8 Processor Reference Manual. The code in
crt0.S is shown in the example sections in Figure 10.

82 LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Boot Sequence

Figure 47: Contents of ctr0.s

.section .vectors, "ax"
.weak 1irg save restore2
b _ irg save_restore2

.globl _start
_start:
/* Clear bss */
movir0, lo(_bss start)

#if defined(CMODEL LARGE) || defined(_ CMODEL MEDIUM)
movirl3, hi(bss start)
#endif

#ifdef CMODEL LARGE
movirl4, higher(_ bss start)
movirl5, highest(_bss start)

#endif
movirl, 0

cmpir0, lo(_ bss_end)

#if defined(_ CMODEL_LARGE) || defined(_CMODEL MEDIUM)
bnzlf
cmpirl3, hi(_ bss_end)

#endif

#ifdef CMODEL LARGE
bnzlf
cmpirl4, higher(_bss end)
cmpirl5, highest (_ bss_end)

#endif
bz2f

l:sspirl,xr0
addiro, lo(1)

#if defined(CMODEL LARGE) || defined(CMODEL MEDIUM)
addicrl3, hi(1)
#endif

#ifdef CMODEL LARGE
addicrl4, higher (1)
addicrl5, highest (1)

#endif
b 3b

2:/* Setup the stack */
#if defined (_ CMODEL_SMALL)
movirl4, stack

/* Mark the end-of-stack */
movirls, 0

#elif defined(CMODEL MEDIUM)
movir8, lo(_ stack)
movir9, hi(stack)

LatticeMico8 Developer User Guide 83

LATTICEMICO8 RUN-TIME ENVIRONMENT : Boot Sequence

/* Mark the end-of-stack */
movirlO, lo(0)
movirll, hi(0)
#elif defined(_CMODEL_LARGE)
/* -4 because main(int, char **, char **) and that third
argument
* is passed on the stack, otherwise the compile may access
things
* past the end of the stack space. */
movir24, lo(_ stack-4)
movir25, hi(_ stack-4)
movir26, higher(stack-4)
movir27, highest(stack-4)

/* Mark the end-of-stack */
movir28, lo(0)
movir29, hi(0)
movir30, higher (0)
movir3l, highest (0)
#endif

seti
callLatticeDDInit
clri

/* Kill the simulation */
movir3l, Oxde

movir30, Oxad

movir29, 0xbe

movir28, Oxef

movr27,xr0

1:b 1b

__irq save restore2:
iret

Reset Address

From a software boot perspective, the most important parameter in
LatticeMico8 configuration is the location of the program memory (PROM)
since it determines the Reset Address. This 32-bit address value dictates the
address at which execution begins after power-up. When the PROM is
internal to the LatticeMico8 instance, the address value defaults to
0x00000000 and the Reset Address is 0x00000003. When the PROM is
external to the LatticeMico8 instance, the Reset Address is 3 byte locations
from the starting address of the external PROM. The Reset Address is
automatically calculated upon platform generation.

84

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT

Boot Sequence

Note

The C/C++ SPE locates the boot-up sequence within the assembly language
file crt0.S at the location of the PROM.

Boot Code Sequence Flow

This section provides an overview of the boot sequence in file crt0.S and its
steps. Figure 48 illustrates this boot sequence.

Figure 48: Boot Code Sequence Flow

crt0.8

Clear BSS Section

Set Up Stack
Pointer

h 4

Enable Interrupts

LatticeDDInit.c
including .c driver
files of each
componentinstance
in design.

(Call Component
> Initialization

Disable Interrupts

Functions

HelloWorld.c

_| Application Main

J

A

DONE

The primary actions performed during boot-up are:

crt0.S

Clear .bss section of the application’s data space.

Initialize stack pointer to top of Scratchpad memory that is specified in
the linker settings.

LatticeMico8 Developer User Guide

85

LATTICEMICO8 RUN-TIME ENVIRONMENT : Interrupt Handling Sequence

Enable all interrupts
Call LatticeDDlInit()
LatticeDDInit.c

Call all component initialization functions. The initialization function for
each component is located within its device driver source file. The
initialization function of a component is invoked for each instantiation
of the component within the platform.

Call main()
Application Main

Execute the user’s application code

Interrupt Handling Sequence

A C source file named Mico8Interrupts.c under the software project folder
contains the LatticeMico8 interrupt handler. In addition, the LatticeMico8 GNU
GCC compiler automatically generates assembly language code that is
responsible for handing over control of the LatticeMico8 execution to the
aforementioned interrupt handler after a hardware interrupt is detected. This
section provides an overview of this interrupt handling sequence.

Interrupt Handlers

Hardware interrupts cause an interruption of normal application execution.
LatticeMico8 supports a maximum of eight dedicated hardware interrupts.
Each component instance within the platform can be tied to only one of these
eight dedicated hardware interrupt lines. Some of the components implement
a Lattice-provided generic interrupt handler function. The customer can either
choose the generic implementation or customize it by implementing the
function within his software code. When an interrupt is raised, control is
transferred to a function __irq_save_restore that is automatically generated
by the LatticeMico8 GNU compiler as part of the application executable. This
function saves the current microcontroller state, sets up the microcontroller for
interrupts, and then transfers control to the global interrupt handler. This
global interrupt handler is implemented in the C source file Mico8Interrupts.c
shown in Figure 50. This file is automatically generated and populated by the
C/C++ SPE as part of the managed build process.

86

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT

Interrupt Handling Sequence

Figure 49: Contents of Mico8Interrupts.c

#include "DDStructs.h"

#ifndef MICO NO_INTERRUPTS
#include "MicoInterrupts.h"
#include "MicoUart.h"

void MicoISRHandler () ;

void IRQ(void) _ attribute ((interrupt));

void _ IRQ(void)
{

MicoISRHandler () ;

}

void MicoISRHandler ()

-0
{
unsigned char ip, im, Mask, IntLevel;
do {
MICOB_READ_IM(im);
MICO8 READ IP(ip);

ip &= im;
Mask = 0x1;
IntLevel = 0x0;

if (Mask & ip) {
switch (IntLevel)
case O:
MicoUartISR (&uart core uart) ;
break;
default:
break;
}
MICO8 PROGRAM IP (Mask) ;
break;
}

Mask <<= 0x1;
++IntLevel;
} while (1);
} else {
break;
}

} while (1);
return;

}

#endif

- O

-—®

This C source file is automatically generated by the C/C++ SPE for every
software project. The lines in the C source file are described below:

LatticeMico8 Developer User Guide

87

LATTICEMICO8 RUN-TIME ENVIRONMENT

Interrupt Handling Sequence

Item 1 — These three #include statements declare the header files needed
to verify the function prototypes of the functions used in the code. The
DDsStructs.h value refers to the header file that is automatically generated
by the C/C++ SPE for the given hardware platform and contains each
component instance’s context structure declaration. The value
Micolnterrupts.h refers to the LatticeMico8 header file that contains the
prototype and macro declarations for enabling/disabling interrupts within
LatticeMico8. The value MicoUart.h refers to the standard LatticeMico
UART header file that contains the prototype declaration of the function
listed in item 3.

Iltem 2 — The LatticeMico8 GNU compiler only recognizes this function as
the interrupt handler. When this function is implemented within the
software project, the compiler will automatically do the following tasks:

Generate code to save the program Stack Pointer

Generate code to save the current microcontroller state (e.g.,
registers)

Generate code to set up the stack pointer at the base of the Interrupt
Stack and then jump to function __IRQ(void)

Generate code to restore the current microcontroller state upon return
from the function __IRQ(void)

Generate code to restore the program Stack Pointer upon return from
the function __IRQ(void)

Item 3 — This is LatticeMico8 microcontroller’s global interrupt handler.
This function services each pending hardware interrupt by calling its
interrupt handler. The interrupt handler function names are obtained from
the hardware platform’s MSB file.

Interrupt Handling Sequence Flow

This section describes the interrupt handling sequence. Figure 50 illustrates
the sequence of events that occur once an interrupt has been received by the
LatticeMico8 microcontroller.

88

LatticeMico8 Developer User Guide

LATTICEMICO8 RUN-TIME ENVIRONMENT : Interrupt Handling Sequence

Figure 50: Interrupt Handling Sequence Flow

__irg_save_restore() Micodinterrupts.c Component Driver
or

T ————————r -

Save Stack Pointer User Application

Code

T

'—“\ -
Save State . __IRQ Function
. |

E

e T T
Restore State r Global IRQ L Component
Handler " Interrupt Handler

Restore Stack
Pointer

r
RETURM

LatticeMico8 Developer User Guide 89

LATTICEMICO8 RUN-TIME ENVIRONMENT : Interrupt Handling Sequence

0 LatticeMico8 Developer User Guide

2 LATTICE Chapter U

Managed Build Process and
Directory Structure

The managed build process uses input user application code files and files
associated with the targeted platform to build an output executable for that
platform. It follows a specific directory structure for managing the different
types of files. It automatically generates certain application source files that
are specific to the platform and to its target application.

This chapter focuses on the process steps, file inputs, file outputs, and
directory structure associated with the managed build flow and the installation
of the LatticeMico System software. Besides giving you insights into how the
managed build process works, this information is required if you wish to add
any user-defined components to your platform using Mico System Builder
(MSB).

Creating Managed Build Applications

The LatticeMico8 C/C++ managed build process provides a framework for
developing software applications targeting a LatticeMico8 microcontroller. The
build process examines the platform definition that is specified in the .msb file
generated by Mico System Builder (MSB) and extracts component-specific
device-driver information, if present, in addition to memory information
specified for generating appropriate linker scripts. It uses this information to
automatically generate platform-specific source code for platform initialization.

This framework also generates the necessary makefiles for building the
system’s platform library, which consists of startup and helper routines for the
microprocessor, as well as specified components, and the makefiles needed
for building the application.

The LatticeMico C/C++ managed build environment does the following:

Extracts device driver information from instantiated components

LatticeMico8 Developer User Guide 91

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

Creates a device-driver structures header (DDStructs.h) file and
component instance-specific device-driver structure instances based on
that header file in the device-driver structures source (DDStructs.c) file.
The DDStructs.c file creates information about the components that are in
the .msb file available to the C application and driver code. It also
generates a device-driver initialization source (DDInit.c) file that contains
the initialization sequence.

Creates the LatticeMico8 interrupt handler source file (Mico8Interrupts.c)
that contains the global interrupt handler which invokes the interrupt
handlers for individual components.

Creates and manages required makefiles

Creates a default linker script by identifying memory components in the
platform

LatticeMico8 C/C++ Project Build Flow

This section outlines the steps in the managed build process and describes
the directory structure and the relevant contents of the generated folders
created by the build.

To clarify the build flow, a build example is provided in this chapter. It is based
on the following information:
LatticeMico8 C/C++ managed build project name: MyProjectName
LatticeMico8 project folder: <user_dir>\MyProjectName
LatticeMico8 platform name: Platform
LatticeMico8 build configuration name: Release

Application source code file name: HelloWorld.c

92

LatticeMico8 Developer User Guide

MANAGED BuILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

The Build Process

The LatticeMico8 managed build process is centered on information
contained in the .msb file generated by MSB as part of platform generation.
Figure 51 illustrates the steps in the process of building an application from
the .msb file that you initially create in MSB.

Figure 51: Managed Build Process Diagram

(2] '

Application Build
Start

:

Identify Device Driver
Information

:

-
p

Q.

Platform
Description File Generate Device Driver

(-msb) Intialization File
2

Generate Platform Library
Makefiles

|

Generate Default
Linker Script

|

Build Platform
_ oy Library

o

Q.

-

A__ppl'i_cnti_on:_i_%

All of the steps presented in Figure 51, particularly 2 through 7, do not
necessarily occur in the order in which they are shown. They are presented in
the manner shown for illustrative purposes.

These steps occur when building or rebuilding your project. In the C/C++
perspective, you build a project by choosing Project > Build Project. See
“Understanding the Build Process” on page 46 and “Building Your Software
Project” on page 47 and for more details.

LatticeMico8 Developer User Guide 93

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

Build Directory Structure

The folder in which the C/C++ SPE project is saved cannot reside at the same
directory level as the folder in which the MSB project is saved. The C/C++
SPE folder can reside at a higher or lower directory level than the MSB project
folder.

LatticeMico8 C/C++ SPE splits a project build into two parts: the application
build and platform library build. The platform library build outputs a platform
library archive (<platform>.a) file that is referenced by the application build. It
enables you to override any default software implementation by providing
your own source file as part of the application build. Additionally, it helps
maintain the demarcation between your source files and the device library
source files that are used automatically by the software.

Figure 52 shows the top-level outline for the project, as viewed within the
C/C++ perspective’s Projects view, after performing a build.

Figure 52: Top-Level Application Structure Outline

CJC++ Projecks 23 =i

.............. =

+ O Binaries

T &p Archives

+- 7= Platform

#-[= Release

- [g] Hellowarld.c

l |£, MicoSInterrupts.c
| user.pref

The Binaries and Archives folders in the Projects view do not actually exist in
the project folder on the hard disk but contain certain files that are used by the
project and are accessible here. Specifically, the Archives folder contains a
platform library archive, and the Binaries folder contains an executable .elf
file.

Figure 53 on page 95 shows how this top-level application structure in the
Project view as shown in Figure 52 maps to the to the actual file system on
your hard disk at the project folder level, that is, MyProjectName in the
example.

94

LatticeMico8 Developer User Guide

MANAGED BuILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

C/C++ Perspective Project Folder File Contents

This section introduces you to the actual contents on your hard disk of what is
represented in the project folder that is viewable in the C/C++ perspective’s
Projects view. Figure 53 shows the directory structure that you would view in
Windows Explorer, in contrast to similar information on project content that
you will view in the C/C++ perpective’s Projects view, as shown in Figure 52.

Figure 53: Project Folder Contents

= Platform < Platform Library
= Release < Application Output Folder
- [g] Hellawarld.c
+ |£| MicoBInkerrupks.c
=| user.pref

The project folder contains an application output (release) folder, a platform
library folder, and various project information and user files.

Application Output Folder

The application output folder, named release in Figure 53 on page 95,
contains the files that LatticeMico8 C/C++ SPE generates as it builds a
particular software configuration, such as the final executable and compiled
and assembled object files. The name of this folder corresponds to the name
of a build configuration currently being used. If you switch between multiple

LatticeMico8 Developer User Guide 95

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

LatticeMico8 C/C++ Project Build Flow

Figure 54: Application Output Folder Contents

build configurations, multiple directories are generated, with each nhamed for
the chosen build configuration. Figure 54 shows the contents of the

application output folder.

== Release

= Platfarm
subdir. k.

| Release

[+ @n crkd.o - [nanele]

[+ |£n}| DDInit.o - [nonele]

[+ ﬂ DDStructks. o - [nonele]
[+ r@l MicoGPIC,o - [nonele]

&

M Micolnterrupks,o - [nonele]
[m} MicoSleepHelper.o - [nonele]
:_n;. MicoSkdstreams.o - [nonele]

[o1d Micallart,o - [nonele]

=3l

]

{o1d MicoEPIOService, o - [nonele]

i+

T
+

i‘_’ Helloworld. elf - [nonele]

o fR

B libPlatform.a
DDInit.d

|=| DDSkructs.d
5| MicoGPTO. d
=] MicoGPIOService, d
|=| Micolnterrupts.d
\=| MicaSkdstrearns.d

Micallart.d

|oj Hellovworld, o - [nonele]

F-|ad MicodInterrupts.o - [nonele]

= HelloWarld.d
| MicoSInkerrupts.d

| i drivers.mk
=l force_clean_archive_obijs

& makefile

subdir . mk

Platform Library
Object Files

Platform Library
Archive File

Application Executable
Application Object File

Application Build
Makefiles

The application output folder contains the following files:

Application build makefiles: These makefiles enable the building of the

application.

drivers.mk is similar to the drivers.mk makefile used by the library
build. It includes component makefiles that provide header file relative
path information for your source files. It also contains information that
identifies driver sources that must be built as part of the application.

makefile is the application build makefile. It pulls in other makefiles
that allow the generation and build of the platform library. It is
responsible for generating the final executable image. This file is
automatically generated and should not be modified.

96

LatticeMico8 Developer User Guide

MANAGED BuILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

subdir.mk identifies user sources contained within the project folder,
as well as subdirectories in the project folder. It is automatically
generated and maintained by Eclipse/CDT.

Application executable is a result of linking the application and the
platform library object file. It is an executable in ELF format that can be
downloaded and executed by using the GNU debugger. For each build
configuration, there is a unique application executable in the
corresponding application output folder. If this application is targeted to
another platform, the application executable and all associated files will be
overwritten.

Application object files are your source object files that have been
compiled and assembled from their source C files. Figure 54 shows a
single object file, LEDTest.o, in the directory structure that corresponds to
its single source file as part of the application. If source subfolders are part
of the project folder, the build process will contain similarly named folders
containing object files generated from the source files that are present.

Platform library object files are grouped into a subfolder that has the same
name as the application output folder, for example, debug. They are put
into this subdirectory to separate them from the application files in this
directory structure. This folder contains the following files:

Platform library object (.0) files are the compiled outputs of the library
source files. As explained earlier, these library source files are
contained in the platform library folder.

Platform library archive (.a) file is derived from the platform library
object files. The name of this archive file is automatically generated,
prefixed with the “lib” string, with the root of the name corresponding to
the name of the selected platform. This archive file is used when
linking the application executable to resolve platform functions used
by the application.

Platform Library Folder

The platform library folder contains the following:

Source code files relevant for software support for the components
specified in the platform

Makefiles for building the project library archive (<platform_name>.a)
file

Makefiles that are referenced by the application makefile. These
makefiles provide the following information to the application makefile:

Compiler flags that are activated when the following components
are selected: hard multiplier, barrel shifter, sign-extend unit, and
divider. These automatically activated compiler flags prevent you
from having to manually set the appropriate compiler flags based
on the CPU configuration.

Linker script selection (that is, the default or user-defined)

LatticeMico8 Developer User Guide

97

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

LatticeMico8 C/C++ Project Build Flow

As shown in Figure 55, the platform library folder (PlatformE in the example)
contains a subfolder named debug, the name of the build configuration used
for this example. This folder contains the platform library contents, source,

makefiles, and linker scripts.

Figure 55: Platform Library Directory Structure

|:| Platform <

- D Release <«

L D linker.ld
— D makefile

—D drivers.mk <
—D inherited_

settings. mk <

&

— D linker_settings.mk

— D platform_rules.mk

—D settings.xml <

<

A

&

<«

A

- D *cl*s 4

o
o
n
—
=
c
(o]
—
wn
o
A

Q.
o
4]
—_
=
c
Q
—+
2]
0
A

_D cri0.s

— D system_conf.h

A

Platform library directory

Build-configuration platform library output
directory

Makefile that identifies peripheral
makefiles for library build

Build settings inherited from application
build settings

Default linker script for this platform

Makefile identifying linker script to use

Makefile for building platform library

Platform build variables inherited from
application settings

Platform library build-settings file
Platform-specific driver sources

Platform-specific driver header files

Driver initialization source file

Peripheral instance-specific data
structures

Peripheral-specific data structures

LatticeMico8 boot/startup assembly
source file

System configuration manifest header file

The contents of the platform library folder are dynamically created and
populated and should not be modified. The platform library folder and its
associated contents are generated when you build the project for the first

time.

The files and subfolders in the platform library folder are as follows.

The build configuration folder (or debug folder in the example) contains all
the files specific to that particular build configuration. As you would
expect, these files can differ between build configurations that you might

create in your project.

98

LatticeMico8 Developer User Guide

MANAGED BuILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

The platform-specific component device driver source and header files
are either copied from the components directories in the installation path
or are automatically generated. The copied files, based on the .msb file,
are described in the “Platform Library-Generated Source Files” on

page 101. The DDinit.c file is an example of a file that is automatically
generated. All platform library sources become part of the application
project, aiding debug and source visibility.

The project settings .xml file contains information about the parent project
and its settings, as well as information on the platform referenced by the
parent project. It is used to derive the makefiles for the platform library.

The default linker script, linker.ld, is the default linker script for the
particular platform or project combination and can be used as a starting
point for creating a custom linker script file. The linker sections identified
in this script are derived from the platform settings (user.pref) file.

The makefiles are necessary for building the platform library, as well as for
providing information to the application build. These makefiles facilitate
building the application through the LatticeMico8 C/C++ SPE and the
LatticeMico Cygwin shell. The platform library can be built independently
of the application, using the LatticeMico Cygwin shell once the contents
are populated. The following points provide a summary of the relevant
makefiles:

makefile is the platform library makefile. It contains the commands that
define the targets, rules, and dependencies that tell the make utility
how to construct the software build from its sources.

drivers.mk includes relevant component makefiles. These component
makefiles identify the sources and paths for the corresponding
component device drivers. This makefile is referenced only by the
platform library makefile. It is derived from information present in the
.msb file.

inherited_settings.mk contains compiler settings derived from the
build configuration. These settings can be changed in the user
interface, as shown in Figure 20 on page 49. In addition to compiler
settings, this file also contains the location for depositing the built
platform library archive (.a) file and its associated compiled or
assembled object files. This file is referenced only by the platform
library makefile.

linker_settings.mk identifies which linker script to use, that is, either
the default or a user-defined makefile. This file is referenced by the
application makefile and is not used by the platform library makefile. It
is derived from information present in the platform settings (user.pref)
file.

platform_rules.mk contains compiler switches. It is referenced by the
application makefile, as well as the platform library makefile. These
compiler switches are extracted according to the microcontroller
configuration information contained in the .msb file.

If another build configuration is created and used in addition to the default
debug configuration, the managed build process generates a new platform
library for each configuration. The files for this new library all reside in the

platform library folder.

LatticeMico8 Developer User Guide 99

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico8 C/C++ Project Build Flow

If you create a new build configuration, a new build configuration subfolder is
created in the platform library folder.

In Figure 55 on page 98, a newly generated build configuration folder would
be placed under the Platform folder at the same level as the debug build
configuration folder. This new build configuration folder would hold the files
specific to that particular build, its makefiles, and linker scripts. All the platform
library source files are held in the platform library folder. This single copy of
the source is used across all defined build configurations.

Perl scripts invoked from makefiles, included by the application build makefile,
generate the contents of the platform library folder. Figure 54 on page 96
shows an outline of the application output folder contents.

Project Information and User Files Folder
The project information and user files are the following:

Eclipse/CDT project information files should not be modified:
.cdtbuild
.cdtproject
.project

User files that you create or provide as part of the project. The source files
contained in the project folder or any subfolder become part of the build
process without you having to explicitly specify them.

Template source file, LEDTest.c, is a C programming source file.
Template description file, LEDTest.txt, is an ASCII-formatted text file.

The platform settings file, user.pref, contains platform information for the
platform used by this project. It is generated by the managed build
process. It dictates how the executable is targeted to your platform,
because it stores information that you set in the Platform tab in the
Properties dialog box. See Figure 22 on page 51. For example, it contains
information on your settings that tell the platform build to use the default or
a user-defined linker script in the linker section.

Note

The user.pref file is automatically generated during the build process, so it is not
recommended that you modify a user-defined version of this file in its present
location or it will be overwritten. You should copy any custom versions of this file to
another area to maintain your user-defined preferences.

The platform library folder contains platform-specific device-driver sources
for the chosen platform. It is explained in “Platform Library Folder” on
page 97. It also contains the default linker script and makefiles that are
needed for building the platform library, as well as those used by the
application build. The name of this folder, Platform, shown in Figure 54 on
page 96, is derived from the referenced platform. If you target your project
to different platforms, there will be multiple platform library directories that

100

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

are given a name that corresponds to the referenced platform. Refer to
Figure 55 on page 98, which outlines the platform library folder contents.

Platform Library-Generated Source Files

This section explains how platform-library-generated source files associated
with components used in the platform (for example, driver code) are brought
into the build process so that the application code that directly (or indirectly)
uses this component-specific code can be linked properly. In the managed
build process, some C source files are automatically generated and put into
the platform library folder, as shown in Figure 55 on page 98. The contents of
these source files depend on what components are in the platform being
targeted.

A key mechanism to enable linking of the application code properly during the
build process is the .msb file created in Mico System Builder (MSB). Each
component in the platform is represented in the .msb file. The information
about each component in the .msb file includes details about the component’s
C source files that must be included in the build process. This component
information is called the component information structure declaration and
originates from the <component_name>.xml file in the installation directory.
For more information on this component information structure declaration, see
“DDStructs.h File” on page 103.

If a component is instantiated in a platform, the contents of that component’s
xml file are included in the .msb file.

To enhance the description of the concepts presented here, this section uses
a build example based on the following information:

LatticeMico8 C/C++ Managed Build Project Name: MyProjectName

LatticeMico8 Platform: Platform

LatticeMico8 Build Configuration: Release
There are four main source/header files whose contents are platform-specific
and are automatically generated as part of the platform library:

DDStructs.h

DDStructs.c

DDInit.c

system_conf.h

Figure 56 illustrates the following:

In MSB, a platform is created using two instances of Component A, called
“A_1"and “A_2,” and one instance of Component B, called “B_1."

Steps 1 and 2 are performed by the MSB tool when the .msb file is saved.
ComponentA.xml information is copied twice into the .msb file.

ComponentB.xml information is copied into the .msb file.

LatticeMico8 Developer User Guide 101

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

Platform Library-Generated Source Files

Additional information is also added into the .msb file, for example,
how the components are connected in the platform.

During the managed build process, steps 3, 4, and 5 are completed.

Figure 56: Component Information Flow to Platform Library Files

Install Directory

=install_dir=\componenis\=comp_name=

Platform Directory

\=plafform_name=

ComponentA.xml Platform.msb C Files
~
I DDS“"T: ;C::"_ri“’) Rt y ea:DI]Slru-‘:ts.h-Deﬂnes the
= Parms efault values - Comnections M/S 1
. - Sostmst (axome-zeis)””] typehdef .(s) for the info sttn.lct for
- Perms (vilues from each unique componen
\ MSB) /)
7 R = Initroutine = “, 7 ol
a2
- Comections M/S DDStructs.c - Defines a static
ComponentB‘xml - DDStruct (cross-refs) var (based Ont)‘pedefs in
- Parms (values from DDstructs.h) for each
weme component instance which wil
- DDStruct (cross-refs) - Initroutine = hold component info
- Parms (default walues) B R \\-
- Commections M/S

- Initroutine = %, . %

- DDStruct (cruss—refs)y_h/e

C Project Directory

\=project_name=

DDInit.c - Init function calls
inserted for each component
instance which has one define

~

d
_

0

system_conf.h - Declares

component attributes for the
components in the platform

~

4

All the C files on the right in Figure 56 are automatically generated and
are deposited into your platform folder, along with your .msb file. The
device driver structures header and source files, DDStructs.h and
DDStructs.c, respectively, derive information from attributes assigned
to them during component definition.

The DDStructs.c file is generated according to the contents of the
DDStructs.h file but information is created on the basis of unique
component names relative to this construct.

The device driver initialization source file, DDInit.c, is generated
according to initialization routines for each component that are
designed during component definition.

The system configuration C header file, system_conf.h, declares
component attributes as manifest constants according to the
component specification for the components in the platform.

102

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

DDStructs.h File

The device driver structures header (DDStructs.h) file is the main header file
for any managed C/C++ application. It is also referenced by device-driver
implementations. It defines platform-specific information, such as the CPU
clock frequency and component-specific information structures. This
information is extracted from the .msb file.

Note

Information about the component-specific information structure and initialization
function information originates in the <comp_name>.xml file. This information has
been copied into the .msb file when the platform was created in MSB. The
information presented is subject to change in future releases of MSB.

The DDStructs.h file contains the following information:

MICO8_CPU_CLOCK_MHZ macro defines the CPU clock frequency.
This information is extracted from the .msb file.

Component information structure declarations are specified as part of the
xml file. MSB copies this information into the .msb file. The information is
then extracted from the .msb file by the managed build process and
translated as C structure definitions that appear in the DDStructs.h file.
Each unique component has its own unique component information
structure defined. For multiple instances of the same component, the build
ensures that there are no duplicate structure definitions.

Component instance declaration: Through the extern statement, the
header file declares the presence of an information structure for each
component instantiated in the platform. For example, in the DDStructs.h
file shown, the platform has a GPIO named “LED.” Through extern, the file
declares that a definition exists for the gpio_LED instance of the
st_MicoGPIOCtx_t structure. See Figure 57. The actual definition of the
instance of this structure is in the DDStructs.c file.

If a given component has multiple instances, the build process defines
and declares uniquely named instances of the same structure type. This
process relies on unique names for each instance of a given component in
a platform. This rule is enforced by MSB when creating or editing a
platform.

LatticeMico8 Developer User Guide 103

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Figure 57: Sample DDStructs.h File

#ifndef LATTICE DDINIT HEADER FILE

#define LATTICE DDINIT HEADER FILE
#include "stddef.h"

/* platform frequency in MHz */

#define MICO8_CPU_CLOCK_MHZ (25000000)

/*Device-driver structure for 1m8+*/

#define LatticeMico8Ctx t DEFINED (1)

typedef struct st_LatticeMico8Ctx t 1

const char* name;

} LatticeMico8Ctx_t;

/* 1lm8 instance LM8*/

extern struct st LatticeMico8Ctx t 1m8 LMS8;

/*Device-driver structure for uart core*/

#define MicoUartCtx t DEFINED (1) I

ypedet struct st_MicoUar X_
const char * name;
size t base;

#ifndef MICO NO_ INTERRUPTS

#ifdef _ MICOUART INTERRUPT
unsigned char intrLevel;
unsigned char intrAvail;
unsigned char rxBufferSize;
unsigned char txBufferSize;

#ifdef _ MICOUART BLOCKING
unsigned char blockingTx;
unsigned char blockingRx;

#endif

#ifndef MICO NO INTERRUPTS

#ifdef MICOUART INTERRUPT
unsigned int fifoenable;
unsigned char *rxBuffer;
unsigned char *txBuffer;
unsigned char rxWriteLoc;
unsigned char rxReadLoc;
unsigned char txWriteLoc;
unsigned char txReadLoc;

#endif
#endif
} MicoUartCtx t;

volatile unsigned char txDataBytes;
volatile unsigned char rxDataBytes;

CPU (and Platform
Clock Frequency

Macro Indicating
LatticeMico8
Instance is Defined

LatticeMico8 Component
Information Structure

Macro Indicating
LatticeMico8 UART
Instance is Defined

LatticeMico UART
Component
Information Structure

104

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Figure 58: Sample DDStructs.h File (Continued)

/* uart_core instance uart*/ LatticeMico UART
extern struct st MicoUartCtx t uart core uart; Instance Declaration
/* declare uart instance of uart core */ LatticeMico UART
extern void MicoUartInit (struct st MicoUartCtx t*); [Initialization Function
Declaration

/*Device-driver structure for gpio*/
#define MicoGPIOCtx_t DEFINED (1)
typedef struct st MicoGPIOCtx t {
const charx* name;
size t base;
unsigned char intrLevel;
unsigned int output_only;
unsigned char input only;
unsigned char in and out;
unsigned char tristate;
unsigned char data_width;
unsigned char input width;
unsigned char output width;
unsigned char intr enable;
} MicoGPIOCtx t;

/* gpio instance LED*/
extern struct st MicoGPIOCtx t gpio LED;

/* declare LED instance of gpio */
extern void MicoGPIOInit (struct st MicoGPIOCtx t¥*);

extern int main() ;

#endif

DDStructs.c File

Figure 58 shows a sample device driver structures source (DDStructs.c)
file corresponding to the DDStructs.h file shown earlier. The DDStructs.c
file contains instance-specific component information structures. The build
process populates the structure data on the basis of how that component
instance was configured in MSB.

LatticeMico8 Developer User Guide 105

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

Platform Library-Generated Source Files

Figure 58: Sample DDStructs.c File

#include "DDStructs.h"

/* 1m8 instance LM8%*/
struct st LatticeMico8Ctx t 1m8 LM8 = {
np,M8 " } ;

/* uart core instance uart*/

#ifndef _ MICO NO_ INTERRUPTS

#ifdef MICOUART INTERRUPT
/* array declaration for rxBuffer */
unsigned char uart core uart rxBuffer[4];
/* array declaration for txBuffer */
unsigned char _uart_core_uart_ txBuffer[4];

#endif

#endif

struct st MicoUartCtx t uart core uart =| {
"uart" ,
0x0000,

#ifndef MICO NO INTERRUPTS
#ifdef MICOUART INTERRUPT
0 ’
1,
4,
4 I
#endif
#endif

#ifdef MICOUART BLOCKING
1,
1 ’

#endif

#ifndef MICO NO INTERRUPTS
#ifdef MICOUART INTERRUPT
0,
_uart core uart rxBuffer,
uart core uart txBuffer,
#endif
#endif

i

/* gpio instance LED*/

struct st MicoGPIOCtx t gpio LED = ({
IILEDII7 - -
0x0010,
255,

LatticeMico UART
Instance Information
Structure

The structure instances have the same name as those declared in
DDsStructs.h and are generated by the same Perl script, which precludes

compilation issues. Since each structure has a unique name, the platform can

include multiple instances of the same component, and the build process

106

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

extracts and populates the information for these structures according to the
configuration of the platform. In the sample DDStructs.c source file in
Figure 57, you can see how this file uses the the GPIO instance information
that it derived from the DDStructs.h file by comparing it to the sample
DDStructs.h file shown in Figure 57.

The automatically generated DDInit.c file implements the LatticeDDlInit
function, which resets the CPU. It is described “Overriding Default Driver
Initialization Sequence” on page 73.

If a component has an initialization function to be called at reset, it is called
from the LatticeDDInit function. This LatticeDDInit function is called by the
boot-up process as part of CPU reset. It allows the platform library to call the
component instance initialization routines as part of boot-up.

DDInit.c File

As noted in the last section, the device driver initialization source (DDlInit.c)
file contains the LatticeDDInit function. The LatticeDDInit function calls the
initialization function for each component instance in the target platform.

The managed build process automatically creates an information structure for
each component instance. An initialization routine name is defined in the .msb
for each component type from the information that is specified in the
<comp_name>.xml file. The LatticeDDInit function is automatically generated
so that it calls these initialization routines for each component instance, using
the component instance's information structure defined in DDStructs.h.

During boot-up, the DDInit.c file is called by crtO as part of CPU reset in the
DDsStructs.c file, which tells the platform library to call the component instance
initialization routines. Refer to “Overriding Default Driver Initialization
Sequence” on page 73 for more details on the LatticeDDInit function.

Figure 59: DDInit.c Source Code Sample

#include "DDStructs.h"

Component Initialization Routine

‘i’°id LatticeDDInit (void) Called by crt0 After CPU Reset

* dnitialize uart instance of uart core */
MicoUartInit (&uart core uart); [—————— UART Instance Initialization Functions

/* initialize LED instance of gpio */

MicoGPIOTnit (sgpio LED) ; —— GPIO Instance Initialization Function

/* invoke application's main routine*/
main() ;

The build process uses the .msb file to create the DDInit.c file. This routine
takes a pointer to the instance-specific component instance information

LatticeMico8 Developer User Guide 107

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

structure as its parameter, allowing the same initialization routine to be
invoked multiple times for multiple instances.

After invoking the component initialization routines, LatticeDDInit calls the int
main(void) function that you must implement. This int main(void) function is
the starting point of your code.

System_Conf.h File

The system configuration C header file, system_conf.h, contains C syntax
manifest constants for each component’s attributes as configured in MSB.
This information is extracted from the platform specification file for the
platform chosen for the C/C++ SPE project. The system_conf.h file is
overwritten during software builds, so it should not be modified.

The system_conf.h file is generated by a Perl script function in the
msb_mdk_subs.pm Perl module file located in the //micosystem/utilities/
perliscript/ folder. The Perl function extracts the following information from the
platform specification file:

Platform attributes
Processor attributes
Component attributes for 1/O-type components

Component attributes for memory-type components

Platform Attributes

Figure 60 shows the platform attributes for a sample platform in the
system_conf.h header file.

Figure 60: Sample Platform Attributes in system_conf.h File

#define FPGA DEVICE FAMILY "MachXo2™"
#define PLATFORM_NAME "Platform"
#define USE_PLL (0)
#define CPU_ FREQUENCY (25000000)

Table 2 lists the platform attributes and their properties.

Table 2: Platform Attributes

Atttribute C Type Information
FPGA_DEVICE_FAMILY String FPGA device family selection in MSB
PLATFORM_NAME String MSB platform name

108

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Table 2: Platform Attributes (Continued)
Atttribute C Type Information
USE_PLL Numeric Indicates PLL selection:
0 means that the PLL is absent.

1 means that the PLL is present.

CPU_FREQUENCY Numeric Indicates platform frequency, taking into
account PLL selection.

Processor Attributes

Figure 61 shows the processor attributes in the system_conf.h header file for
a sample platform.

Figure 61: Sample Processor Attributes in system_conf.h File

/*

* CPU Instance LM8 component configuration
*/

#define CPU NAME "LM8"

Attributes for I/O-Type Components

I/0O-type components have two types of attributes:

Generic attributes, such as base address and size, exist for all I/O-type
components.

Component-specific attributes, such as the UART baud rate selection in
MSB, are specific to a component.

LatticeMico8 Developer User Guide 109

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

Platform Library-Generated Source Files

Figure 62 shows sample UART component attributes in the system_conf.h

header file.

Figure 62: Sample UART Component Attributes in system_conf.h File

A
¥ uart

w

component configuration

Hdefine
#define
#define
#define
#define
#define
#define

ULRT WEME "uart"”
UART BASE ADDRESS
ULRT SIZE (128)
ULRT IRQ (0]

{0xE0000050)

UART CHALRTO TN (11
UART CHARTIC oOUT (11

UALRT CHALRTO TYPE

"RZ-232"

Generic Attributes

Hdefine
#define
#define
#define
#define
H#define
#define
#define
H#define
#define
#define
H#define
#define

ULRT ADDRESS LOCE (1)
UART DISAELE (O]

ULRT MODEM (O}

UART ADDRWIDTH (5]
UART DATAWIDTH (8]
UART BAUD RATE
UART IE SIZE (4]
UART OB SIZE (4]
UART BLOCK_WRITE (1}
UART BLOCK READ (1)
UART DATA BITS (8]
UART STOP BITS (1)
UART INTERRUPT DRIVEN

1115200

(1)

Component-Specific Attributes

Naming Conventions The attributes are in the following format:

#define <INSTANCE NAME> <ATTRIBUTE NAME>

<INSTANCE_NAME> is the name of the component instance, in capital

letters.

<ATTRIBUTE_NAME> is the attribute name specified in the component
description file for the component, in capital letters.

Generic Attributes for I1/0-Type Components Table 3 lists the generic

attributes for all I/O-type components.

Table 3: Generic Attributes for I1/0O-Type Components

Atttribute C Type Information

NAME String Component instance nhame as specified in MSB
BASE_ADDRESS Numeric Base address assigned in MSB

SIZE Numeric Address size specified in MSB, in bytes

110 LatticeMico8 Developer User Guide

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE

Platform Library-Generated Source Files

Table 3: Generic Attributes for I1/0-Type Components (Continued)

Atttribute

IRQ

CHARIO_IN

CHARIO_OUT

CHARIO_TYPE

C Type

Numeric

Numeric

Numeric

String

Information

IRQ assigned in MSB

This attribute is absent for components that do not have
an interrupt line connected to the processor.

For components with an interrupt line to the processor,
the value is O through 31.

A value of 255 indicates the absence of an interrupt line
(reserved for future interpretation of this field).

Indicates if the component’s description file has marked
this component available for character (file) input
operations.

0 means this component is not marked as available
for character input operations.

1 means this component is marked as available for
character input operations.

Indicates whether the component’s description file has
marked this component available for character (file)
output operations.

0 means this component is not marked as available
for character output operations.

1 means this component is marked as available for
character output operations.

Represents the character 1/O type as specified in the
component specification (for example, JTAG UART or
RS-232 UART).

This attribute is present only if the component is
marked available for either input or output.

Component-Specific Attributes The component-specific attributes
specified for the component in the platform specification file for the platform
are listed as encountered. The MSB Component Attributes pane lists the
user-configurable component attributes, along with the software constant
names, that will be generated in the system_conf.h header file.

Attributes for Memory-Type Components
Memory-type components have two types of attributes:

Generic attributes, such as base address and size, exist for all memory-

type components.

Component-specific attributes, such as data width, are specific to a

component.

LatticeMico8 Developer User Guide

111

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Figure 63 shows a sample of the flash component attributes in the
system_conf.h file.

Figure 63: Sample Flash Component Attributes in system_conf.h File

P
* flash component configquration

i

#define FLASH NAMNE "flash"

#idefine FLASH BASE ADDREZZ (0x00300000)

#define FLASH SIZE [1048576) Generic Attributes
#define FLASH IS READAELE (1)
#define FLASH IS WRITAELE (0}

#define FLAZH ADDRESS LOCK (1]
#define FLAZH SHARED (1)

#define FLASH DISAELE (O]

#define FLASH EEAD LATENCY (7]
#define FLALZH WRITE LATENCY (7]
#define FLASH SRAM ADDR WIDTH (Z5)
#define FLASH SRAM DATL WIDTH (3z2)
#define FLALZH FLASH STGNALS (1)
#define FLAZH FLAZH BYTE ENE (1)
#define FLASH FLASH BYTE (0]
#define FLASH FLASH BYTEN (1)
#define FLALZH FLASH WP ENE (1]
#define FLASH FLASH WF (0)

#define FLASH FLASH WPN (1)
#define FLALZH FLASH R3T ENE (1)
#define FLAZH FLAZH R3T (0]
#idefine FLA3H FLASH R3TH (1)

Component-Spedific Attributes

Naming Conventions The attributes are in the following format:
#define <INSTANCE NAME> <ATTRIBUTE NAME>

<INSTANCE_NAME> is the name of the component instance, in capital
letters.

<ATTRIBUTE_NAME> is the attribute name specified in the component
description file for the component, in capital letters.

Generic Attributes for Memory-Type Components Table 4 lists the
generic attributes present for all memory-type components.

Table 4: Generic Attributes for Memory-Type Components

Atttribute C Type Information

NAME String Component instance name as specified in MSB
BASE_ADDRESS Numeric Base address assigned in MSB

SIZE Numeric Address size specified in MSB, in bytes

112 LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Table 4: Generic Attributes for Memory-Type Components

Atttribute C Type Information

IS_READABLE Numeric Indicates whether the memory component is readable
by the processor without software support:

0 indicates that the memory is not readable.

1 indicates that the memory is readable.

IS_WRITABLE Numeric Indicates if the memory component is writable by the
processor without software support:

0 indicates that the memory is not writable.

1 indicates that the memory is writable.

Component-Specific Attributes The component-specific attributes
specified for the component in the platform specification file for the platform
are listed as encountered. The MSB Component Attributes pane lists the
user-configurable component attributes, along with the software constant
names, that will be generated in the system_conf.h header file.

Component Software Elements

This section describes all of the information that a component must have to be
used in the MSB tool and by the managed make project.

As previously stated, the build process automatically generates several
C/C++ files whose content is determined by which components are defined in
the platform and how they are configured. To do this, the process uses the
.msb file that you created in MSB. However, the component-specific
information in the .msb file originates in the .xml files that exist for each type of
available component.

The following information is necessary for MSB and the managed make utility:

<comp_name>.xml files, which exist for each element and reside in the
..\components\<comp_name> folder in your project. Each .xml file
contains reference information on component initialization routines and a
component information structure declaration that provides details about
the component’s source files, which are later picked up in the .msb file
when a platform definition is created. For more information on this
component information structure declaration, see “DDStructs.h File” on
page 103.

Device-driver files, (.c, .h) are the source files that contain driver code that
is compiled into object files during the software build. Component-specific
APIs are contained in these component source .c and .h files. You can
also consider the .s and .S source assembly files as driver code files.

LatticeMico8 Developer User Guide 113

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Information Structure Specification

As mentioned previously, the managed build process extracts component
instance-specific information from the .msb file, creates specified structures,
and calls specified initialization routines that originate from the .xml file.

Figure 64 depicts a typical directory structure for a Mico System Builder
(MSB) component residing in the top-level components epository folder.

Figure 64: LatticeMico GPIO Component Folder Directory Structure

[=I+) micoswskem
=-0) components < LatticeMico Top-Level Components Repository Folder
[#-1) asram_top
|} component_versions

H- efb
=) gpio < LatticeMico GPIO Component Folder
i) dacurment
=) drivers
=) device < Software Drivers Folder
) ms < LatticeMico8 Drivers for GPIO Component
5 Im3z < LatticeMico32 Drivers for GPIO Component
[service
ATt < RTL Implementation of GPIO Component

The example used for this section is the LatticeMico GPIO device. In
Figure 64, the GPIO component has two main subdirectories, drivers and
RTL. The drivers folder contains software support for LatticeMico DMA
component, and the rtl folder contains RTL support.

The gpio folder contains a single file, gpio.xml. This .xml file is the GPIO
component description file that contains RTL instantiation and GUI
information for MSB, as well as component information structure information.
In the .msb file, this component instance has a Parms section. The values for
the attributes in the Parms section were defined when the platform was
created in MSB.

The build looks in the component’s Parms section of the .msb file for a
parameter with a name that matches the value of the attribute value. The
value of this parameter is used as the initial value for this element of the
structure variable. For example, for the GPIO instance in the .msb, there is a
parameter named “BASE_ADDRESS” in its Parms section. If this parameter
had a value of 0x80000080, this value would be the initial value for the
element “base” in the GPIO information structure variable in the DDStructs.c
file. Information structure element names are associated with parameter
names, so that when a parameter is set in MSB, the correct information
structure element is assigned that value.

114 LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Source Code Organization

The previous section described how a component’s instance information in a
platform definition is transferred to the generated platform library DDStructs.c,
DDsStructs.h, and DDInit.c source files. Typically a component that defines a
component information structure has some software support in the form of
source files and header files that provide device driver implementation, in
addition to any services.

For example, the LatticeMico GPIO component provides easy-to-use API
routines for manipulating the GP10O. The UART component provides a device-
driver implementation that uses UART-specific component instance
information for transfer of data over an RS-232 link.

In a mature project, the individual component directories—for example, the
Acomponents\timer subfolder—appear in both the micosystem installation
folder and also in your project C folder. After the platform generation process
in MSB, the GPIO component subfolder and all of its contents are copied into
your platform folder’s directory structure. You will not see the gpio.xml file in
the platform folder’s directory structure.

The component-specific source files must be located in the drivers directory
or in subdirectories in the drivers folder of the component folder. In addition,
the drivers folder must contain a makefile named peripheral.mk. Makefiles
with other names are not processed. Figure 65 shows a sample drivers
folder’s directory structure for LatticeMico GPIO component. This figure is an
extension of the LatticeMico GPIO component directory structure.

LatticeMico8 Developer User Guide 115

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

Figure 65: LatticeMico GPIO Component Software Files

=== micosystem

== components
[+ asram_top

[+[= component_versions
F-[= efh
== gpin

-2 docurnent

(== drivers

== device
== Im32

[€] LCo.c
[£] LDk
[€] MicoGPIo.:
€] MicaaPIo.h
< Makefile Containing Build Information

LatticeMico32 GPIO Driver Source Files

A

== Imid

[Z] MicoGPIo.:

| MicoGPIO.h
|O peripheral.mkl < Makefile Containing Build Information

< LatticeMico8 GPIO Driver Source Files

== service

|§| MicoGPIOService. GPIO Driver Source Files Used for
@ MicoGPIOSarvice. b LatticeMico8 and LatticeMico32

A

peripheral.mk,

= rtl

== verilog

yL| gpia.y

| Epio.y

GPIO Component Description File

A

U gpio, il

Figure 65 shows the directory structure for LatticeMico GPIO component as
part of the components folder under the LatticeMico8 installation folder.

As part of platform generation (Platform in the current context), MSB
generates the directory structure by copying the relevant RTL and device-
driver directories under the components folder. In Figure 65, this example
component folder is components\gpio. If you compare the directory structures
shown in Figure 65 and Figure 66, the .xml files are not copied across
directories. Instead, the component description file contents are contained in
the .msb file (Platform.msb).

It is this .msb file, Platform.msb, that the C/C++ SPE managed build inspects
to identify the relevant software components, that is, the structures for
DDsStructs.c and declarations in DDStructs.h, on the basis of the component
configuration defined in the .msb file.

116

LatticeMico8 Developer User Guide

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

In addition, since the .msb file contains references to the GPIO component, it

inspects the GPIO component’s drivers folder in the directory structure

created by MSB (shown in Figure 66). It copies all the sources and header
files that it encounters in the drivers folder to the software project’s platform

library folder, as shown earlier in Figure 54.

Figure 66: Directory Structure Created by MSB

=I-[== Platfarm
= [components
== gpio
== drivers
= device

== Im3z
8 LoD.c
& Lok
[€ MicoGPIO.C
|& MicoGPIOLh
L& peripheral mk

==~ Ima
[€] MicoGPIG.:

[E] MicoGPIoh
@ peripheral mk.
=12 service
i-ﬁl MicoGPIOService. C
[£] MicoGPIoService.h
i petipheral.mb

= rtl
= verilog
gpio, v
kpio, s
&= Im3
[+ uark_core

== soc
|=| Plakfarm.msb
Platform.v
Platform_insk.
prii_def v
syskem_conf.v

The C/C++ SPE managed build also inspects the GPIO component’s drivers
folder for peripheral.mk. If it finds a peripheral.mk file, it includes this makefile
in the application build’s drivers.mk and the platform library’s drivers.mk file.
These drivers.mk makefiles identify the sources that must be built as part of
the platform library build and those that must be built as part of the application

build.

LatticeMico8 Developer User Guide

117

MANAGED BuUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

The C/C++ SPE managed build process copies the files found in the drivers
folder, other than the makefile, into the platform library folder of the project
being built.

Though peripheral.mk is a standard makefile, it must contain only that
information that is absolutely necessary. It cannot not use any other symbols
or define other rules. Figure 67 shows the LatticeMico GPIO ’s peripheral.mk
makefile.

Figure 67: GPIO Makefile

Identify source-paths for this device's driver-sources,
compiled when building the library

LIBRARY C SRCS += MicoGPIO.c

LIBRARY ASM SRCS +=

Here is a comprehensive list of variables that can be used in the
peripheral.mk makefile:

LIBRARY_C_SRCS

Use this variable to identify C sources that must be built as part of the
library build process.

LIBRARY_ASM_SRCS

Use this variable to identify assembly source files (with an .s or .S file
extension) that must be built as part of the library build process.

APP_ASM_SRCS

Use this variable to identify assembly source files (with an .s or .S file
extension) that must be built as part of the application build process.

APP_C_SRCS

Use this variable to identify C sources that must be built as part of the
application build process.

Note

Ensure that you add the “+=" symbols to your code for the keywords just shown , as
demonstrated in the LatticeMico GPIO makefile example in Figure 67. The C/C++ SPE
build process generates only those components’ peripheral.mk files that have a
corresponding component instance information structure.

118

LatticeMico8 Developer User Guide

= LATTICE Chapter 5

Tips on Developing Software
for LatticeMico8

This chapter provides a primer on developing software for LatticeMico8. The
following sections describe the GNU GCC compiler toolchain that has been
customized for LatticeMico8, the Lattice-developed built-in functions/macros
available to users developing in ASM or C, and the general programming
model that must be followed while developing software for LatticeMico8.

GNU Toolchain

The GNU GCC compiler toolchain has been customized for the LatticeMico8
microcontroller. It contains the standard GNU GCC executable utilities, such
as objdump, gcc, and Id. This compiler toolchain can be used by a software
developer to compile applications created in C, ASM, or C/ASM. The
LatticeMico8 C SPE is tightly integrated with this GNU GCC compiler
toolchain. This allows the customer to focus primarily on software
development and leaving the process of compiling the software and linking to
system libraries to the compiler toolchain and the C SPE. The following
sections describe some of the coding limitations imposed by the compiler
toolchain and LatticeMico8 on the software developer, and the various built-in
functions/macros that can be used by the developer.

Limitations

The LatticeMico8 GNU GCC compiler toolchain is not a full-featured port,
primarily due to architectural limitations of LatticeMico8. From a software
developer’s perspective this translates in to the following C coding limitations.

1. No language frontends other than C are supported.
2. No floating point library.

3. No support for shared libraries.

LatticeMico8 Developer User Guide 119

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

4. No support for position-independent executables.

No support for function pointers. This is because LatticeMico8 does not

support indirect (or register-based) jumps.

6. Limitations on the size of C/ASM applications due to short branch targets.
This is because all branches and procedure calls in LatticeMico8 are
relative to the current position and the maximum offset is +/-2K (i.e., a
branch can go to 2K instructions backwards or forwards). As a result, if
the compiler (during the link phase) determines that a branch or
procedure call want to jump to a location that is larger than +/-2K, it will
not create an application executable and exit with link errors.

7. Maximum depth of nested functions in a C/ASM application is limited to 8,
16, or 32. This is because the procedure call stack of LatticeMico8 is
implemented in hardware and is therefore finite.

8. No support for C Standard Library. This is because LatticeMico8 GCC port
does not contain a C Standard Library implementation such as Newlib,
libc, or glibc. This means that the developer cannot expect built-in
implementations for functions such as I/O (printf, putc, getc, etc.), string
manipulation (strcpy, etc.), utility functions (malloc, free, etc.), etc.

Built-in Functions

LatticeMico8's port of the GNU GCC compiler toolchain also implements
optimized (ASM) versions of common arithmetic and logical operations.
Unless indicated, these optimized implementations are automatically used by
the compiler toolchain when required during C code compiling. In addition, the
developer can manually invoke these functions from ASM code. These ASM

functions are shown in Table 5.

Table 5: ASM Functions

Name Input and Output Arguments
__ashlqi3 Input Arguments Shift RO left by R1 bits
1. RO — Value to be shifted
2. R1 — Shift amount
Output Arguments
1. RO — Shifted Value
__ashlhi3 Input Arguments Shift {R1, RO} left by R2 bits
1. RO — LSB of value to be shifted
2. R1 — MSB of value to be shifted
3. R2 — Shift amount
Output Arguments
1. RO — LSB of shifted value
2. R1 — MSB of shifted value
120 LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Table 5: ASM Functions

Name

__ashlsi3

__ashrqi3

__ashrhi3

__ashrsi3

__Ishrqi3

Input and Output Arguments

Input Arguments
1. RO — LSB of value to be shifted

2. R1 — 2" pyte of value to be shifted
3. R3 - 3" byte of value to be shifted
4. R4 — MSB of value to be shifted

3. R5 — Shift amount

Output Arguments

1. RO — LSB of shifted value

2. R1 - 2" pyte of shifted value

3. R3 — 3" byte of shifted value

4. R4 — MSB of shifted value

Input Arguments
1. RO — Value to be shifted
2. R1 - Shift amount

Output Arguments
1. RO — Shifted Value

Input Arguments
1. RO — LSB of value to be shifted
2. R1 — MSB of value to be shifted

3. R2 — Shift amount

Output Arguments

1. RO — LSB of shifted value
2. R1 — MSB of shifted value

Input Arguments
1. RO — LSB of value to be shifted

2. R1 — 2" pyte of value to be shifted
3. R3 — 3" byte of value to be shifted
4. R4 — MSB of value to be shifted

3. R5 — Shift amount

Output Arguments

1. RO — LSB of shifted value

2. R1 - 2" pyte of shifted value

3. R3 - 3" byte of shifted value

4. R4 — MSB of shifted value

Input Arguments

1. RO — Value to be shifted
2. R1 - Shift amount

Output Arguments
1. RO — Shifted Value

Description

Shift {R3, R2, R1, R0} left by R5 bits

Shift RO right (arithmetically) by R1 bits

Shift {R1, RO} right (arithmetically) by R2 bits

Shift {R3, R2, R1, R0} right (arithmetically) by R5 bits

Shift RO right (logical) by R1 bits

LatticeMico8 Developer User Guide

121

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 5: ASM Functions

Name

__Ishrhi3

__Ishrsi3

__clzqgi2

__clzhi2

__clzsi2

Input and Output Arguments

Input Arguments
1. RO — LSB of value to be shifted
2. R1 — MSB of value to be shifted

3. R2 — Shift amount

Output Arguments

1. RO — LSB of shifted value
2. R1 — MSB of shifted value

Input Arguments
1. RO — LSB of value to be shifted

2. R1 — 2" pyte of value to be shifted
3. R3 - 3" byte of value to be shifted
4. R4 — MSB of value to be shifted

3. R5 — Shift amount

Output Arguments

1. RO — LSB of shifted value

2. R1 — 2" pyte of shifted value

3. R3 - 3" byte of shifted value

4. R4 — MSB of shifted value

Input Arguments
1. RO — Value

Output Arguments

1. RO — Number of leading zeros

Input Arguments
1. RO - LSB of value

2. R1 — MSB of value

Output Arguments

1. RO — Number of leading zeros

Input Arguments
1. RO — LSB of value

2. R1 - 2" pyte of value
3. R2 - 3" pyte of value
4. R3 — MSB of value

Output Arguments

1. RO — Number of leading zeros

Description

Shift {R1, RO} right (logical) by R2 bits

Shift {R3, R2, R1, RO} right (logical) by R5 bits

Count leading zeroes in RO

Count leading zeroes in {R1, R0}

Count leading zeroes in {R3, R2, R1, R0}

122

LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Table 5: ASM Functions

Name

__ctzqi2

__ctzhi2

__ctzsi2

__mulqgi3

__mulhi3

Input and Output Arguments

Input Arguments
1. RO — Value

Output Arguments

1. RO — Number of leading zeros

Input Arguments
1. RO - LSB of value

2. R1 - MSB of value

Output Arguments

1. RO — Number of leading zeros

Input Arguments
1. RO - LSB of value

2. R1 - 2" pyte of value
3. R2 — 3" pyte of value
4. R3 — MSB of value

Output Arguments

1. RO — Number of leading zeros

Input Arguments
1. RO — Multiplier
2. R1 — Multiplicand

Output Arguments
1. RO — Result

Input Arguments

1. RO — LSB of Multiplier

2. R1 — MSB of Multiplier

3. R2 — LSB of Multiplicand
4. R3 — MSB of Multiplicand

Output Arguments
1. RO — LSB of result
2. R1 — MSB of result

Description

Count trailing zeroes in RO

Count trailing zeroes in {R1, R0}

Count trailing zeroes in {R3, R2, R1, RO}

Multiply RO by R1 and return result in RO.

NOTE: R2 is used as a temporary.

Multiply {R1, RO} by {R3, R2} and return result in {R1,
RO}.

NOTE: R4 and R5 are used as temporaries.

LatticeMico8 Developer User Guide

123

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 5: ASM Functions

Name

__mulsi3

__udivqi3

__umodqi3

__divqi3

Input and Output Arguments

Input Arguments

. RO — LSB of Multiplier

. R1 — 2" pyte of Multiplier

. R2 — 3" pyte of Multiplier

. R3 — MSB of Multiplier

. R4 — LSB of Multiplicand

. R5 — 2"d pyte of Multiplicand
. R6 — 3" byte of Multiplicand
. R7 — MSB of Multiplicand

o N o o b~ W N P

Output Arguments

1. RO — LSB of result

2. R1 - 2" pyte of result
3. R2 - 3" byte of result
4. R3 — MSB of result

Input Arguments
1. RO — Dividend
2. R1 - Divisor

Output Arguments
1. RO — Quotient
2. R2 — Remainder

Input Arguments
1. RO - Dividend
2. R1 — Divisor

Output Arguments
1. R2 — Modulus

Input Arguments
1. RO — Dividend
2. R1 — Divisor

Output Arguments
1. RO — Quotient
2. R2 — Remainder

Description
Multiply {R3, R2, R1, R0} by {R7, R6, R5, R4} and return
result in {R3, R2, R1, RO}.

NOTE: R12, R15 are used as temporaries in small and
medium memory models, while R12, R31 are used as
temporaries in large memory model.

Divide (unsigned) RO by R1. Place the quotient in RO and
remainder in R2.

NOTE: R3 and R4 are used as temporaries.

Modulus of RO by R1. Place the modulus in R2.

NOTE: R3 and R4 are used as temporaries.

Divide (signed) RO by R1. Place the quotient in RO and
remainder in R2.

NOTE: R3, R4 and R5 are used as temporaries.

124

LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Table 5: ASM Functions

Name

__modqi3

__udivhi3

__umodhi3

__divhi3

Input and Output Arguments

Input Arguments
1. RO — Dividend
2. R1 - Divisor

Output Arguments
1. R2 — Modulus

Input Arguments

1. RO — LSB of Dividend
2. R1 — MSB of Dividend
3. R2 — LSB of Divisor
4. R3 — MSB of Divisor

Output Arguments

1. RO — LSB of Quotient

2. R1 — MSB of Quotient
3. R4 — LSB of Remainder
4. R5 — MSB of Remainder

Input Arguments

1. RO — LSB of Dividend
2. R1 — MSB of Dividend
3. R2 — LSB of Divisor
4. R3 — MSB of Divisor

Output Arguments
1. R4 — LSB of Modulus
2. R5 — MSB of Modulus

Input Arguments

1. RO — LSB of Dividend
2. R1 — MSB of Dividend
3. R2 — LSB of Divisor
4. R3 — MSB of Divisor

Output Arguments

1. RO — LSB of Quotient

2. R1 — MSB of Quotient
3. R4 — LSB of Remainder
4. R5 — MSB of Remainder

Description

Modulus of RO by R1. Place the modulus in R2.

NOTE: R3, R4 and R5 are used as temporaries.

Divide (unsigned) {R1, RO} by {R3, R2}. Place the
quotient in {R1, RO} and remainder in {R5, R4}.

NOTE: R6, R7 and R12 are used as temporaries.

Modulus of {R1, R0} by {R3, R2}. Place the modulus in
{R5, R4}.

NOTE: R6, R7 and R12 are used as temporaries.

Divide (signed) {R1, RO} by {R3, R2}. Place the quotient
in {R1, RO} and remainder in {R5, R4}.

NOTE: R6, R7, R12 and R15 are used as temporaries in
small and medium memory models. R6, R7, R12 and
R31 are used as temporaries in large memory model.

LatticeMico8 Developer User Guide

125

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 5: ASM Functions

Name Input and Output Arguments Description

__modhi3 Input Arguments Modulus of {R1, R0} by {R3, R2}. Place the modulus in
1. RO - LSB of Dividend {RS, R4}.
2. R1 — MSB of Dividend

3 R2 - LSB of Divisor NOTE: R6, R7, R12 and R15 are used as temporaries in

small and medium memory models. R6, R7, R12 and
4. R3 — MSB of Divisor R31 are used as temporaries in large memory model.

Output Arguments
1. R4 — LSB of Modulus
2. R5 — MSB of Modulus
__udivsi3 Input Arguments Divide (unsigned) {R3, R2, R1, R0} by {R7, R6, R4, R4}.
_ L Place the quotient in {R3, R2, R1, R0} and remainder in
. RO — LSB of Dividend (R7, R6, R5, Ra}.
. R1 - 2" pyte of Dividend
_ ard i
+R2 - 37 byte of Dividend NOTE: R12 and R15 are used as temporaries in small
. R3 — MSB of Dividend and medium memory models. R12 and R31 are used as
R4 — LSB of Divisor temporaries in large memory model.
. R5 — 2" pyte of Divisor
. R6 — 3" byte of Divisor
. R7 — MSB of Divisor

Output Arguments

. RO — LSB of Quotient

. R1 — 2" pyte of Quotient

. R2 — 3 byte of Quotient

. R3 — MSB of Quotient

. R4 — LSB of Remainder

. R5 — 2"d pyte of Remainder
. R6 — 3" byte of Remainder
. R7 — MSB of Remainder

o N O O A~ W N PP

126 LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Table 5: ASM Functions

Name

__umodsi3

__divsi3

Input and Output Arguments

Input Arguments

A N O O A WODN P

. RO — LSB of Dividend

. R1 — 2" pyte of Dividend
. R2 — 3" pyte of Dividend
. R3 — MSB of Dividend

. R4 — LSB of Divisor

. R5 — 2"d pyte of Divisor

. R6 — 3" byte of Divisor

. R7 — MSB of Divisor

Output Arguments

1.
2.
3.
4.

RO — LSB of Modulus
R1 - 2" pyte of Modulus
R2 — 3 pyte of Modulus
R3 — MSB of Modulus

Input Arguments

A N O OO A W N P

. RO — LSB of Dividend

. R1 - 2" pyte of Dividend
. R2 — 39 byte of Dividend
. R3 — MSB of Dividend

. R4 — LSB of Divisor

. R5 — 2" pyte of Divisor

. R6 — 3" byte of Divisor

. R7 — MSB of Divisor

Output Arguments

o N O g A~ W N PP

. RO — LSB of Quotient

. R1 — 2" pyte of Quotient

. R2 — 3 byte of Quotient

. R3 — MSB of Quotient

. R4 — LSB of Remainder

. R5 — 2"d pyte of Remainder
. R6 — 3" byte of Remainder
. R7 — MSB of Remainder

Description

Modulus of {R3, R2, R1, R0} by {R7, R6, R4, R4}. Place
the modulus in {R3, R2, R1, R0}.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

Divide (signed) {R3, R2, R1, R0} by {R7, R6, R4, R4}.
Place the quotient in {R3, R2, R1, R0} and remainder in
{R7, R6, R5, R4}.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

LatticeMico8 Developer User Guide

127

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 5: ASM Functions

Name Input and Output Arguments Description
__modsi3 Input Arguments Modulus of {R3, R2, R1, R0} by {R7, R6, R4, R4}. Place

1 RO — LSB of Dividend the modulus in {R3, R2, R1, RO}.

2. R1 — 2" pyte of Dividend

5 R2- 3 by or s A T

4. R3 — MSB of Dividend temporaries in large memory model.

5. R4 — LSB of Divisor

6. R5 — 2" byte of Divisor

7. R6 — 3'9 byte of Divisor

4. R7 — MSB of Divisor

Output Arguments

1. RO — LSB of Modulus

2. R1 - 2" pyte of Modulus

3. R2 - 3" byte of Modulus

4. R3 — MSB of Modulus

__cmpqi2 Input Arguments Signed compare or RO with R1.

1. RO — Comparison value 1 CF=1ifRO>=R1.

2. R1 — Comparison value 2 ZF =1ifRO==R1.

Output Arguments NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

__cmphi2 Input Arguments Signed compare or {R1, RO} with {R3, R2}.

1. RO — LSB of comparison value 1 CF =1if{R1, RO} >={R3, R2}.

2. R1 — MSB of comparison value 1 ZF = 1if{R1, RO} == {R3, R2}.

3. R2 — LSB of comparison value 2

4. R3 — MSB of comparison value 2 NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

Output Arguments

128 LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Table 5: ASM Functions

Name

__cmpsi2

__ucmpqi2

__ucmphi2

__ucmpsi2

Input and Output Arguments

Input Arguments

o N o o b~ W N P

. RO — LSB of comparison value 1
.R1-2nd byte of comparison value 1
. R2 — 3" pyte of comparison value 1
. R3 — MSB of comparison value 1
. R4 — LSB of comparison value 2
. R5 — 2"d pyte of comparison value 2
.R6 -3 byte of comparison value 2

. R7 — MSB of comparison value 2

Output Arguments

Input Arguments

1.
2.

RO — Comparison value 1

R1 — Comparison value 2

Output Arguments

Input Arguments

1. RO — LSB of comparison value 1
2. R1 — MSB of comparison value 1
3. R2 — LSB of comparison value 2

4. R3 — MSB of comparison value 2

Output Arguments

Input Arguments

1. RO — LSB of comparison value 1
2.R1-2nd byte of comparison value 1
3.R2-31 byte of comparison value 1
4. R3 — MSB of comparison value 1

5. R4 — LSB of comparison value 2

6. R5 — 2nd byte of comparison value 2
7. R6 — 3" byte of comparison value 2
8. R7 — MSB of comparison value 2
Output Arguments

Description

Signed compare or {R3, R3, R1, RO} with {R7, R6, R5,
R4}.

CF =1if{R3, R3, R1, R0} >={R7, R6, R5, R4}.

ZF = 1if{R3, R3, R1, RO} == {R7, R6, R5, R4}.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

Unsigned compare or RO with R1.
CF=1if RO >=R1.
ZF =1if RO ==R1.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

Unsigned compare or {R1, R0} with {R3, R2}.
CF = 1if{R1, RO} >= {R3, R2}.
ZF = 1if {R1, RO} == {R3, R2}.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model.

Unsigned compare or {R3, R3, R1, R0} with {R7, R6, R5,
R4}.

CF = 1if {R3, R3, R1, RO} >= {R7, R6, R5, R4}.
ZF = 1if{R3, R3, R1, R0} == {R7, R6, R5, R4}.

NOTE: R12 and R15 are used as temporaries in small
and medium memory models. R12 and R31 are used as
temporaries in large memory model

LatticeMico8 Developer User Guide

129

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 6: Builtin Functions

Function

Built-in Macros

The LatticeMico8 GNU GCC compiler toolchain also implements the following
macros that can be used directly in ASM to extract bytes from an integer (2
bytes) or long (4 bytes).

1. _lo(X) — This macro extracts the least-significant byte of an integer or

long.

2. _hi(X) — This macro extracts the most-significant byte of an integer, or 2nd
byte of a long.

3. _higher(X) — This macro extracts the 3rd byte of a long.

4. _highest(X) — This macro extracts the most-significant byte of a long.

Usage example: The following ASM puts value Oxad in to register RO.

movi r0, _higher(Oxdeadbeef)

Using I/O (Peripheral) Instructions

LatticeMico8 implements special instructions to access the 1/O or Peripheral
region. These instructions are import, importi, export, exporti. There are two
ways in which the developer can force the compiler generate these
instructions within the compiled application:

1. Inlined Assembly — The developer can use inlined assembly to explicitly
code these instructions.

2. Builtin Functions — The functions shown in Table 6 can be invoked by the
developer in C/ASM code when he needs to access an address in the
Peripheral region.

Effect

void __ builtin_export (char value, size_t address) Generates an export or exporti instruction

char __builtin_import (size_t address) Generated an import or importi instruction. The result

of the import instruction is the returned value.

Note: The size of size_t type reflects the size of pointers and is dictated by the memory mode used. Refer
to Table 7 for the number of bytes needed for a pointer

Programming Model

This section describes the LatticeMico8 programming model, including data
types, calling sequence, and interrupt convention.

130

LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Data Representation

The LatticeMico8 microcontroller supports the data types listed in Table 7.

Table 7: LatticeMico8 Data Types

Size in Memory Model

Type C Type Small Medium Large
Integer Signed char 1 1 1
Integer Unsigned char 1 1 1
Integer Signed short 2 2 2
Integer Unsigned short 2 2 2
Integer Signed int 2 2 2
Integer Unsigned int 2 2 2
Integer Signed long 4 4 4
Integer Unsigned long 4 4 4
Integer Unsigned long long 4 4 4
Pointer Any-type* 1 2 4
Floating-Point Float 4 4 4
Floating-Point Double 4 4 4
Floating-Point Long double 4 4 4

Alignment in Memory Model

Small Medium Large

1 1 1
1 1 1
2 2 2
2 2 2
2 2 2
2 2 2
4 4 4
4 4 4
4 4 4
1 2 4
4 4 4
4 4 4
4 4 4

Procedure Caller-Callee Convention

This section describes the standard function calling sequence, including stack
frame layout, register usage, and parameter passing. The standard calling
sequence requirements apply only to global functions; however, it is
recommended that all functions use the standard calling sequence.

Register Usage

The register usage model shown in Table 8 is used by the LatticeMico8
Compiler. It must be used by developers who are writing ASM code that will
be compiled into an executable using the LatticeMico8 compiler.

Table 8: Register Usage (SP — Stack Pointer, FP — Frame Pointer, PP — Page Pointer)

Preserved Across Functions

Register Small Medium Large Small
RO N N N Arg O/Return O
R1 N N N Arg 1/Return 1

Usage
Medium Large
Arg 0/Return 0 Arg 0/Return 0

Arg 1/Return 1 Arg 1/Return 1

LatticeMico8 Developer User Guide

131

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

Table 8: Register Usage (SP — Stack Pointer, FP — Frame Pointer, PP — Page Pointer) (Continued)

Preserved Across Functions Usage
Register Small Medium Large Small Medium Large
R2 N N N Arg 2/Return 2 Arg 2/Return 2 Arg 2/Return 2
R3 N N N Arg 3/Return 3 Arg 3/Return 3 Arg 3/Return 3
R4 N N N Arg 4 Arg 4 Arg 4
R5 N N N Arg 5 Arg 5 Arg 5
R6 N N N Arg 6 Arg 6 Arg 6
R7 N N N Arg 7 Arg 7 Arg 7
R8 Y Y Y Fixed — SP
R9 Y Y Y Fixed — SP
R10 N Y N Fixed — FP
R11 N Y N Fixed — FP
R12 N N N
R13 N N N Fixed — PP Fixed — PP
R14 Y Y N Fixed — SP Fixed — PP
R15 Y N N Fixed — FP Fixed — PP
R16 Y Y Y
R17 Y Y Y
R18 Y Y Y
R19 Y Y Y
R20 Y Y N
R21 Y Y N
R22 Y Y N
R23 Y Y N
R24 Y Y Y Fixed — SP
R25 Y Y Y Fixed — SP
R26 Y Y Y Fixed — SP
R27 Y Y Y Fixed — SP
R28 N N Y Fixed — FP
R29 N N Y Fixed — FP
R30 N N Y Fixed — FP
R31 N N Y Fixed — FP

132 LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

Stack Frame

In addition to registers, each function has a frame on the run-time stack. This
stack grows downward from high addresses. Table 9 shows the stack frame
organization.

Table 9: Stack Frame Layout

FP-relative Position

FP + (M — 6)

FP+0
FP—1
FP—2
FP-3
FP -4

FP-5

FP — (N +5)
FP — (N + 6)

FP — (N + 37)

SP-relative Position Contents Frame
SP+(N+M+4) Function Argument Byte M Previous
SP + (N +4) Function Argument Byte 6
SP + (N +3) Previous FP (byte 3) Current
SP + (N +2) Previous FP (byte 2)
SP+(N+1) Previous FP (byte 1)
SP +N Previous FP (byte 0)
SP+(N-1) Local Variable N
SP+0 Local Variable 0
SP-1 Red Zone Area — Start Future
SP - 32 Red Zone Area — End

Parameter Passing

There are two mechanisms to pass data between functions when the
LatticeMico8 GNU compiler toolchain is used. The first mechanism is via
registers RO — R7. Since each register is a byte wide, the maximum number of
bytes that can be passed via registers is 8 bytes. If the number of bytes to be
passed exceeds 8 bytes, then the remaining bytes are passed on the stack.
The return value is passed in registers RO — R3. The following rules are
followed:

1. The argument variables are processed in order when assigning them
argument register(s). For example, variable ‘X’ is assigned RO and 'y’ is
assigned R1 when calling the following function:
void foo (char x, chary)

2. If avariable cannot be completely allocated to argument registers, it is
passed on the stack. For example, variable ‘2’ is passed on the stack
since variables ‘X’ and 'y’ use up registers RO — R5 and variable ‘7’
requires 4 registers (only R6 and R7 are available).
void foo (long x, inty, long z)

3. Each register starting with RO must be assigned to a valid argument
variable prior to moving on to the next assignment. This allows maximum
number of argument variables to be fit in to the 8 argument registers RO —
R7 regardless of the individual sizes. For example, variable ‘X’ is assigned

LatticeMico8 Developer User Guide 133

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

RO, 'y’ is assigned R1 and R2, and ‘'z’ is assigned R3, R4, R5, and R6.
void foo (char x, inty, long z)

4. Multi-byte variables are assigned registers in little-endian format. For
example, least significant byte of variable ‘x’ is assigned RO and most-
significant byte is assigned R3.
void foo (long x)

5. Small structures and unions are passed in argument registers if all the
elements of the structure/union fits within the 8 argument registers.
Otherwise, the entire structure/union is passed on the stack.

6. If the returned variable is a structure/union and the size exceeds 4 bytes,
then the value is returned in memory, pointed by the “invisible” first
function argument.

Interrupt Convention

Interrupts are managed on an interrupt stack that is separate from the normal
program stack. In the event of an interrupt, the stack pointer is switched to the
top of the interrupt stack minus 32 where all the registers are saved according
to the convention shown in Table 10.

Table 10: Interrupt Frame Layout

Register

Position Small Medium Large
Top of Interrupt Stack — 1 R11 R9 R11
Top of Interrupt Stack — 2 R10 R8 R10
Top of Interrupt Stack — 3 R31 R31 R31
Top of Interrupt Stack — 4 R30 R30 R30
Top of Interrupt Stack — 5 R29 R29 R29
Top of Interrupt Stack — 6 R28 R28 R28
Top of Interrupt Stack — 7 R7 R7 R7
Top of Interrupt Stack — 8 R6 R6 R6
Top of Interrupt Stack — 9 R5 R5 R5
Top of Interrupt Stack — 10 R4 R4 R4
Top of Interrupt Stack — 11 R3 R3 R3
Top of Interrupt Stack — 12 R2 R2 R2
Top of Interrupt Stack — 13 R1 R1 R1
Top of Interrupt Stack — 14 RO RO RO

The first four bytes of the scratchpad memory area are reserved to set up the
interrupt stack in the event of an interrupt. The compiler will generate code to
setup the interrupt stack frame suitable for an interrupt handler in the prologue

134

LatticeMico8 Developer User Guide

TIPSONDEVELOPING SOFTWARE FORLATTICEMICO8

of the function that has the "interrupt" attribute. For this interrupt handler to
link correctly, it must be named *__IRQ". An example is shown in Figure 68.

Figure 68: LatticeMico8 Interrupt Handler

__attribute ((interrupt)) _ IRQ (void)
{

// user's interrupt handling code

}

LatticeMico8 Developer User Guide 135

TIPS ON DEVELOPING SOFTWARE FOR LATTICEMICO8

136 LatticeMico8 Developer User Guide

= LATTICE Chapter 6

Software Development Utilities

This chapter describes the software development utilities in the LatticeMico8
GNU C/C++ tool chain that are used to accomplish tasks, even though they
are not visible in the graphical user interface. This tool chain includes general-
purpose software development utilities, such as a command-line interface,
that incorporate UNIX shell capabilities on a PC platform. In addition, the tool
chain consists of LatticeMico System-specific utilities for generating and
debugging software code.

Build Tools

This section explains the GCC tools used for building software programs for
LatticeMico8 and the build flow in the C/C++ Software Project Environment
(SPE). This section also includes commonly used parameters for the tools,
along with LM8-specific build options. References to the GNU tool chain Web
site are provided here to supplement your information on this open-source
development tool.

If there are any issues or problems with any of these tools, report them at the
http://www.sourceware.org/bugzilla/ Web site.

Im8-elf-ar

The Im8-elf-ar utility generates an archive from the given input object files.

Refer to the GCC and GNU Binary Utilities documentation for more
information.

LatticeMico8 Developer User Guide 137

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Usage
lm8-elf-ar [emulation options] [-]{options}[modifiers]
[member name] [count] archive file name file name ...

Ilm8-elf-ar -M [<mri_ script]
Options can be any of the options listed in Table 11.

Table 11: Im8-elf-ar Options

Options Description

d Deletes files from the archive.

m[ab] Moves files in the archive.

p Prints files found in the archive.

qlf] Appends files to the archive.

r[ab][f][u] Replaces existing files or inserts new files

into the archive.
t Displays contents of the archive.

x[0] Extracts files from the archive.

Modifiers can be any of the command-specific or generic modifiers listed in
Table 12 or Table 13.

Table 12: Im8-elf-ar Command-Specific Modifiers

Options Description

[a] Puts files after [member_name].

[b] Puts files before [member_name] (same as
)R

[N] Uses instance [count] of name.

[f] Truncates inserted file names.

[P] Uses full path names when matching.

[0] Preserves original dates.

[u] Only replaces files that are newer than

current archive contents.

Table 13: Im8-elf-ar Generic Modifiers

Options Description

[c] Does not warn if the library had to be
created.

[s] Creates an archive index (cf. ranlib)

[S] Does not build a symbol table.

138

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Table 13: Im8-elf-ar Generic Modifiers

[v] Is verbose.

V] Displays the version number.

The Im8-elf-ar utility has no emulation-specific options.

The Im8-elf-ar utility supports the following targets: elf32-Im8, elf32-little,
elf32-big, srec, symbolsrec, tekhex, binary ihex.

Im8-elf-as

The Im8-elf-as utility is the assembler utility. It takes as input an assembler
source (.s) file and generates a relocatable object (.0) file.

Usage

lm8-elf-as [options] [asmfile...]

where options can be one or more of the options shown in Table 14.

Table 14: Im8-elf-as Options

Options Description
-a[sub-option...] Turns on listings.

Sub-options [default his]:

c Omits false conditionals.
d Omits debugging directives.
h Includes high-level source.

| Includes assembly.

m Includes macro expansions.

n Omits forms processing.

S Includes symbols.

=FILE Lists to FILE (must be last sub-option).

--alternate Initially turns on alternate macro syntax.

-D Produces assembler debugging messages.

--defsym SYM=VAL Defines symbol SYM to given value.

--execstack Requires executable stack for this object.

--noexecstack Does not require executable stack for this
object.

LatticeMico8 Developer User Guide 139

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Table 14: Im8-elf-as Options

£

-g --gen-debug
--gstabs
--gstabs+
--gdwarf-2
--help
--target-help

-I DIR

-J

-K

-L,--keep-locals

-M,--mri

--MD FILE

-nocpp

-0 OBJFILE

-R

--statistics

--strip-local-absolute

--traditional-format

--version

-W --no-warn
--warn
--fatal-warnings

--itbl INSTTBL

Skips white space and comment
preprocessing.

Ignored.

Ignored.

Ignored.

Ignored.

Shows these option descriptions and exits.
Shows target-specific options.

Adds DIR to search list for .include
directives.

Does not warn about signed overflow.

Warns when differences altered for long
displacements.

Keeps local symbols (for example, starting
with “L").

Assembles in MRI compatibility mode.

Writes dependency information in FILE
(default is none).

Ignored.

Names the object-file output OBJFILE
(default a.out).

Folds data section into text section.

Prints various measured statistics from
execution.

Strips local absolute symbols.

Uses same format as native assembler when
possible.

Prints assembler version number and exit.
Suppresses warnings.

Does not suppress warnings.

Treats warnings as errors.

Extends instruction set to include instructions
matching the specifications defined in file
INSTTBL.

Ignored.
Ignored.

Generates object file even after errors.

140

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Table 14: Im8-elf-as Options
--listing-lhs-width

--listing-lhs-width2

--listing-rhs-width

--listing-cont-lines

Im8-elf-gcc

Sets the width in words of the output data
column of the listing.

Sets the width in words of the continuation
lines of the output data column; ignored if
smaller than the width of the first line.

Sets the maximum width in characters of the
lines from the source file.

Sets the maximum number of continuation
lines used for the output data column of the
listing.

The Im8-elf-gcc utility is the compiler utility. It compiles a C code (.c) file into a
relocatable object (.0) file. It can call the linker as well, depending on the file

extension.

Usage

lm8-elf-gcc [options] file...

where options can be one or more of the options shown in Table 15.

Table 15: Im8-elf-gcc Options

Option

-pass-exit-codes

--help

--target-help

"-v --help'

-dumpspecs

-dumpversion

-dumpmachine

-print-search-dirs

-print-libgcc-file-name

-print-file-name=<Iib>

Description

Exits with highest error code from a
phase.

Displays these option descriptions.

Displays target-specific command-line
options.

Displays command-line options of sub-
processes.

Displays all of the built-in specification
strings.

Displays the version of the compiler.

Displays the compiler's target
microprocessor.

Displays the directories in the compiler's
search path.

Displays the name of the compiler's
companion library.

Displays the full path to the <lib> library.

LatticeMico8 Developer User Guide

141

SOFTWARE DEVELOPMENT UTILITIES Build Tools

Table 15: Im8-elf-gcc Options

Option Description

-print-prog-name=<prog>

-print-multi-directory

-print-multi-lib

-print-multi-os-directory

-Wa,<options>

-Wp,<options>

-WI,<options>

-Xassembler <arg>
-Xpreprocessor <arg>

-Xlinker <arg>

Displays the full path to the <prog>
compiler component .

Displays the root directory for versions of
libgcc.

Displays the mapping between
command-line options and multiple library
search directories.

Displays the relative path to OS libraries.

Passes comma-separated <options> to
the assembiler.

Passes comma-separated <options> to
the preprocessor.

Passes comma-separated <options> to
the linker.

Passes <arg> to the assembler.
Passes <arg> to the preprocessor.

Passes <arg> to the linker.

-save-temps Does not delete intermediate files.

-pipe Uses pipes rather than intermediate files.
-time Times the execution of each sub-process.
-specs=<file> Overrides built-in specifications with the

-std=<standard>

-B <directory>

-b <machine>

contents of <file>.

Assumes that the input sources are for
<standard>.

Adds <directory> to the compiler's search
paths.

Runs GCC for target <machine>, if
installed.

-V <version> Runs GCC version number <version>, if
installed.

-v Displays the programs invoked by the
compiler.

-t Like -v but options quoted and
commands not executed.

-E Preprocesses only; does not compile,
assemble, or link.

-S Compiles only; does not assemble or link.

-C Compiles and assembles but does not

link.

142

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Table 15: Im8-elf-gcc Options

Option Description

-0 <file> Places the output into <file>.
Im8-specific Options Description

-mcmodel=small Generates only 8-bit addresses for any I/

O or memory access.

-mcmodel=medium Generates only 16-bit addresses for an
I/O or memory access (default when no
switch is used).

-mcmodel=large Generates 32-bit addresses for an 1/0O or
memory access.

-mint8 The common 'int' type is 8 bits instead of
the standard 16 bits.

-m16regs Use registers 0 through 15 only.

-mcall-stack-size=<value> Set the size of call stack to a user-defined
value.

-mcall-prologues Don't inline the function epilogue/
prologue.

Options starting with -g, -f, -m, -O, -W, or --param are automatically passed on
to the various subprocesses invoked by Im8-elf-gcc. In order to pass other
options on to these processes, the -W<letter> options must be used. Report
bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

Im8-elf-Id

The Im8-elf-Id utility is the link-editor utility. It takes a single or multiple object
(.0) files as input, as well as library archives (.a), and produces the final
executable (.elf) file.

Usage
Im8-elf-1d [options] file...

where options can be one or more of the options shown in Table 16.

Table 16: Im8-elf-Id Options

Options Description

a KEYWORD Shares library control for HP/UX
compatibility.

-A ARCH, --architecture ARCH Sets architecture.

-b TARGET, --format TARGET Specifies target for following input files.

LatticeMico8 Developer User Guide 143

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Table 16: Im8-elf-ld Options
-c FILE, --mri-script FILE

-d, -dc, -dp

-e ADDRESS, --entry ADDRESS
-E, --export-dynamic

-EB

-EL

-f SHLIB, --auxiliary SHLIB

-F SHLIB, --filter SHLIB

-9
-G SIZE, --gpsize SIZE

-h FILENAME, -soname FILENAME

-l PROGRAM, --dynamic-linker
PROGRAM

-| LIBNAME, --library LIBNAME

-L DIRECTORY, --library-path
DIRECTORY

--sysroot=<DIRECTORY>
-m EMULATION

-M, --print-map

-n, --nmagic

-N, --omagic

--no-omagic

-0 FILE, --output FILE
-0

-Qy

-q, --emit-relocs

-1, -1, --relocatable

-R FILE, --just-symbols FILE

-s, --strip-all
-S, --strip-debug

--strip-discarded

Reads MRI format linker script.

Forces common symbols to be defined.
Sets start address.

Exports all dynamic symbols.

Links big-endian objects.

Links little-endian objects.

Specifies an auxiliary filter for shared object
symbol table.

Specifies filter for shared object symbol
table.

Ignored.

Specifies small data size (if no size, same as
--shared).

Sets internal name of shared library.

Sets PROGRAM as the dynamic linker to
use.

Searches for LIBNAME library.

Adds DIRECTORY to library search path.

Overrides the default sysroot location.
Sets emulation.

Prints map file on standard output.
Does not page-align data.

Does not page-align data and does not make
text read only.

Page-aligns data and makes text read only.
Sets output file name.

Optimizes output file.

Ignored for SVR4 compatibility.

Generates relocations in final output.
Generates relocatable output.

Just links symbols (if directory, same as --
rpath).

Strips all symbols.
Strips debugging symbols.

Strips symbols in discarded sections.

144

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES Build Tools

Table 16: Im8-elf-ld Options

--no-strip-discarded

-t, --trace

-T FILE, --script FILE

-u SYMBOL, --undefined SYMBOL
-unique [=SECTION]

-Ur

-V, --version

-V

-X, --discard-all

-X, --discard-locals

--discard-none

-y SYMBOL, --trace-symbol SYMBOL

-Y PATH

-(, --start-group
-), --end-group

--accept-unknown-input-arch

--no-accept-unknown-input-arch

-add-needed

--no-add-needed

--as-needed

--no-as-needed

-assert KEYWORD

-Bdynamic, -dy, -call_shared
-Bstatic, -dn, -non_shared, -static
-Bsymbolic

--check-sections

Does not strip symbols in discarded
sections.

Traces file opens.
Reads linker script.
Starts with undefined reference to SYMBOL.

Does not merge input [SECTION | orphan]
sections.

Builds global constructor/destructor tables.
Prints version information.

Prints version and emulation information.
Discards all local symbols.

Discards temporary local symbols (default).
Does not discard any local symbols.
Traces mentions of SYMBOL.

Sets default search path for Solaris
compatibility.

Starts a group.
Ends a group.

Accepts input files whose architecture
cannot be determined.

Rejects input files whose architecture is
unknown following dynamic libraries.

Sets DT_NEEDED tags for DT_NEEDED
entries in following dynamic libraries.

Does not set DT_NEEDED tags for
DT_NEEDED entries in following dynamic
libraries.

Only sets DT_NEEDED for following
dynamic libraries, if used.

Always sets DT_NEEDED for following
dynamic libraries.

Ignored for SunOS compatibility.
Links against shared libraries.

Does not link against shared libraries.
Binds global references locally.

Checks section addresses for overlaps
(default).

LatticeMico8 Developer User Guide

145

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Table 16: Im8-elf-ld Options

--no-check-sections

--cref

--defsym SYMBOL=EXPRESSION

--demangle [=STYLE]
--embedded-relocs
--fatal-warnings

-fini SYMBOL
--force-exe-suffix

--gc-sections

--no-gc-sections

--hash-size=<NUMBER>

--help

-init SYMBOL

-Map FILE
--no-define-common
--no-demangle
--no-keep-memory

--no-undefined

--allow-shlib-undefined

--no-allow-shlib-undefined

--allow-multiple-definition
--no-undefined-version
--default-symver

--default-imported-symver

--no-warn-mismatch
--no-whole-archive
--noinhibit-exec

-nostdlib

Does not check section addresses for
overlaps.

Outputs cross reference table.

Defines a symbol.

Demangles symbol nhames [using STYLE].
Generates embedded relocations.

Treats warnings as errors.

Calls SYMBOL at unload time.

Forces generation of file with .exe suffix.

Removes unused sections (on some
targets).

Does not remove unused sections (default).

Sets default hash table size close to
<NUMBER>.

Prints option help.

Calls SYMBOL at load time.

Writes a map file.

Does not define common storage.
Does not demangle symbol names.
Uses less memory and more disk 1/0.

Does not allow unresolved references in
object files.

Allows unresolved references in shared
libaries.

Does not allow unresolved references in
shared libraries.

Allows multiple definitions.
Does not allow undefined version.
Creates default symbol version.

Creates default symbol version for imported
symbols.

Does not warn about mismatched input files.
Turns off --whole-archive.
Creates an output file even if errors occur.

Only uses library directories specified on the
command line.

146

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES Build Tools

Table 16: Im8-elf-ld Options
--oformat TARGET

-gmagic

--reduce-memory-overheads

--relax
--retain-symbols-file FILE
-rpath PATH

-rpath-link PATH

-shared, -Bshareable
-pie, --pic-executable
--sort-common

--sort-section namejalignment

--spare-dynamic-tags COUNT

--split-by-file [=SIZE]
--split-by-reloc [=COUNT]

--stats
--target-help
--task-link SYMBOL

--traditional-format

--section-start SECTION=ADDRESS

-Thss ADDRESS
-Tdata ADDRESS
-Ttext ADDRESS

--unresolved-symbols=<method>

--verbose

--version-script FILE

--version-exports-section SYMBOL

--warn-common

--warn-constructors

Specifies target of output file.
Ignored for Linux compatibility.

Reduces memory overheads, possibly taking
much longer.

Relaxes branches on certain targets.
Keeps only symbols listed in FILE.

Sets run-time shared library search path.
Sets link-time shared library search path.
Creates a shared library.

Creates a position-independent executable.
Sorts common symbols by size.

Sorts sections by name or maximum
alignment.

Specifies how many tags to reserve in
.dynamic section.

Splits output sections every SIZE octets.

Splits output sections every COUNT
relocations.

Prints memory usage statistics.
Displays target specific options.
Does task-level linking.

Uses same format as native linker.
Sets address of named section.
Sets address of .bss section.

Sets address of .data section.
Sets address of .text section.

Specifies how to handle unresolved symbols.
<method> can be ignore-all, report-all,
ignore-in-object-files, ignore-in-shared-libs.

Outputs lots of information during link.
Reads version information script.

Takes export symbols list from .exports,
using SYMBOL as the version.

Warns about duplicate common symbols.

Warns if global constructors and destructors
are seen.

LatticeMico8 Developer User Guide

147

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Table 16: Im8-elf-ld Options

--warn-multiple-gp
--warn-once

--warn-section-align

--warn-shared-textrel
--warn-unresolved-symbols
--error-unresolved-symbols
--whole-archive

--wrap SYMBOL

Im8-elf-Id: supported targets:

Im8-elf-Id: supported emulations:

Im8-elf-Id: emulation specific options:

Im8-specific Options

-mIm8-elf-small

-mim8-elf-medium

-mim8-elf-large

Warns if the multiple GP values are used.
Warns only once per undefined symbol.

Warns if start of section changes because of
alignment.

Warns if shared object has DT_TEXTREL.
Reports unresolved symbols as warnings.
Reports unresolved symbols as errors.
Includes all objects from following archives.
Uses wrapper functions for SYMBOL.

elf32-Im8, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex.

elf32Im8
No emulation-specific options.
Description

Generates only 8-bit addresses for any 1/0O or
memory access.

Generates only 16-bit addresses for an 1/O
or memory access (default when no switch is
used).

Generates 32-bit addresses for an I/O or
memory access.

Report bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

Im8-elf-nm

The Im8-elf-nm utility lists symbols in [files] (a.out by default).

Usage

lm8-elf-nm [options] [files]

where options can be one or more of the options shown in Table 17.

Table 17: Im8-elf-nm Options
Options
-a, --debug-syms

-A, --print-file-name

Description
Displays debugger-only symbols.

Prints name of the input file before every
symbol.

148

LatticeMico8 Developer User Guide

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES Build Tools

Table 17: Im8-elf-nm Options
-B

-C, --demangle[=STYLE]

--no-demangle

-D, --dynamic
--defined-only
-e

-f, --format=FORMAT

-g, --extern-only

-l, --line-numbers

-n, --numeric-sort

-0
-p, --no-sort
-P, --portability

-1, --reverse-sort
-S, --print-size

-S, --print-armap

--size-sort
--special-syms
--synthetic

-t, --radix=RADIX

--target=BFDNAME

-u, --undefined-only

-X 32_64
-h, --help
-V, --version

Im8-elf-nm: supported targets:

Performs same function as --format=bsd.

Decodes low-level symbol names into user-
level names. The STYLE, if specified, can be
“auto’ (the default), “gnu,’ “lucid,’ “arm,’ “hp,’
“edg,’ ‘gnu-v3,' “java,' or ‘gnat.'

Does not demangle low-level symbol names.

Displays dynamic symbols instead of normal
symbols.

Displays only defined symbols.
Ignored.

Uses the output format FORMAT. FORMAT
can be “bsd,' “sysv,' or "posix.' The default is
“bsd'.

Displays only external symbols.

Uses debugging information to find a file
name and line number for each symbol.

Sorts symbols numerically by address.
Performs same function as -A.

Does not sort the symbols.

Same as --format=posix.

Reverse the sense of the sort.

Prints size of defined symbols.

Includes index for symbols from archive
members.

Sorts symbols by size.

Includes special symbols in the output.
Displays synthetic symbols as well.
Uses RADIX for printing symbol values.

Specifies the target object format as
BFDNAME.

Displays only undefined symbols.
Ignored.

Displays this information.

Displays this program's version number.

elf32-Im8 elf32-little elf32-big srec
symbolsrec tekhex binary ihex.

Report bugs to the http://www.sourceware.org/bugzilla/ Web site.

LatticeMico8 Developer User Guide

149

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Im8-elf-objcopy

The Im8-elf-objcopy utility copies a binary file, possibly transforming it in the process.

Usage
1lm8-elf-objcopy [options]

in file

[out file]

where options can be one or more of the options shown in Table 18.

Table 18: Im8-elf-objcopy Options

Options

-| --input-target <bfdname>

-O --output-target <bfdname>
-B --binary-architecture <arch>

-F --target <bfdname>

--debugging

-p --preserve-dates

-j --only-section <name>

--add-gnu-debuglink=<file>

-R --remove-section <name>

-S --strip-all

-g --strip-debug

--strip-unneeded

-N --strip-symbol <name>

--strip-unneeded-symbol <name>

--only-keep-debug
-K --keep-symbol <name>

-L --localize-symbol <name>

-G --keep-global-symbol <name>

-W --weaken-symbol <name>

Description

Assumes input file is in format <bfd_name>.
Creates an output file in format <bfd_name>.
Set sarch of output file, when input is binary.

Sets both input and output format to
<bfd_name>.

Converts debugging information, if possible.

Copies modified/access timestamps into the
output.

Only copies section <name> into the output.

Adds .gnu_debuglink section linking to
<file>.

Removes the <name> section from the
output.

Removes all symbol and relocation
information.

Removes all debugging symbols and
sections.

Removes all symbols not needed by
relocations.

Does not copy the <name> symbol.

Does not copy the <name> symbol unless
needed by relocations.

Strips everything but the debug information.
Only copies the <name> symbol.

Forces the <name> symbol to be marked as
a local.

Localizes all symbols except <name>.

Forces the <name> symbol to be marked as
a weak.

150

LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Table 18: Im8-elf-objcopy Options

--weaken Forces all global symbols to be marked as
weak.

-w --wildcard Permits wildcard in symbol comparison.

-x --discard-all Removes all non-global symbols.

-X --discard-locals Removes any compiler-generated symbols.

-i --interleave <number> Only copies one out of every <number>
bytes.

-b --byte <num> Selects byte <num> in every interleaved
block.

--gap-fill <val> Fills gaps between sections with <val>.

--pad-to <addr> Pads the last section up to address <addr>.

--set-start <addr> Sets the start address to <addr>.

{--change-start|--adjust-start} <incr> Adds <incr> to the start address.

{--change-addresses|--adjust-vma} Adds <incr>to LMA, VMA and start
<incr> addresses.

{--change-section-address|--adjust- Changes LMA and VMA of the <name>
section-vma} <name>{=|+|-}<val>me> section by <val>.

--change-section-Ima <name>{=|+|- Changes the LMA of the <name> section by
I<val> <val>.

--change-section-vma <name>{=|+|- Changes the VMA of the <name> section by
}<val> <val>.

{--[no-]Jchange-warnings|--[no-]adjust- Warns if a named section does not exist.
warnings}

--set-section-flags <name>=<flags> Sets the <name> section's properties to

<flags>.

--add-section <name>=<file> Adds the <name> section found in the <file>
to output.

--rename-section Renames the <old> section to <new>.

<old>=<new>[,<flags>]

--change-leading-char Forces output format's leading character
style.

--remove-leading-char Removes leading character from global
symbols.

--redefine-sym <old>=<new> Redefines the <old> symbol name to <new>.

--redefine-syms <file> Redefines the symbol name for all symbol
pairs listed in the <file>.

--srec-len <number> Restricts the length of generated Srecords.

--srec-forceS3 Restricts the type of generated Srecords to
S3.

LatticeMico8 Developer User Guide 151

SOFTWARE DEVELOPMENT UTILITIES

Build Tools

Table 18: Im8-elf-objcopy Options

--strip-symbols <file>

--strip-unneeded-symbols <file>

--keep-symbols <file>
--localize-symbols <file>
--keep-global-symbols <file>
--weaken-symbols <file>
--alt-machine-code <index>
--writable-text
--readonly-text

--pure

--impure

--prefix-symbols <prefix>
--prefix-sections <prefix>

--prefix-alloc-sections <prefix>

-v --verbose
-V --version
-h --help

--info

Im8-elf-objcopy: supported targets:

-N for all symbols listed in <file>.

Strips unneeded symbols for all symbols
listed in <file>.

-K for all symbols listed in <file>.

-L for all symbols listed in <file>.

-G for all symbols listed in <file>.

-W for all symbols listed in <file>.

Uses alternate machine code for output.
Marks the output text as writable.

Makes the output text write protected.

Marks the output file as demand paged.
Marks the output file as impure.

Adds <prefix> to start of every symbol name.
Adds <prefix> to start of every section name.

Adds <prefix> to start of every allocatable
section name.

Lists all modified object files.
Displays this program's version number.
Displays this output.

Lists object formats & architectures
supported.

elf32-Im8, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex.

Report bugs to the http://www.sourceware.org/bugzilla/ Web site.

Im8-elf-objdump

The Im8-elf-objdump (Im8-elf-objcopy) utility displays information from object (.0) files.

Usage

lm8-elf-objdump <options> <files>

152

LatticeMico8 Developer User Guide

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

where options can be one or more of the options shown in Table 19. At least
one of the options must be given.

Table 19: Im8-elf-objdump Options

Option
-a, --archive-headers

-f, --file-headers

-p, --private-headers

-h, --[section-]headers
-X, --all-headers

-d, --disassemble

-D, --disassemble-all

-S, --source

-s, --full-contents

-g, --debugging

-e, --debugging-tags

-G, --stabs

-t, --syms

-T, --dynamic-syms

-r, --reloc

-R, --dynamic-reloc

-V, --version
-i, --info
-H, --help

The following switches are optional:

-b, --target=BFDNAME

Description
Displays archive header information.

Displays the contents of the overall file
header.

Displays the contents of the object format-
specific file header.

Displays the contents of the section headers.
Displays the contents of all headers.

Displays the assembler contents of
executable sections.

Displays the assembler contents of all
sections.

Intermixes source code with disassembly.

Displays the full contents of all sections
requested.

Displays debug information in object file.

Displays debug information using ctags
style.

Displays (in raw form) any STABS info in the
file.

Displays the contents of the symbol tables.

Displays the contents of the dynamic symbol
table.

Displays the relocation entries in the file.

Displays the dynamic relocation entries in
the file.

Displays this program's version number.

Lists object formats and architectures
supported.

Displays these option descriptions.

Specifies the target object format as
BFDNAME.

LatticeMico8 Developer User Guide

153

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Table 19: Im8-elf-objdump Options

-m, --architecture=MACHINE Specifies the target architecture as
MACHINE.

-j, --section=NAME Only displays information for section NAME.

-M, --disassembler-options=OPT Passes text OPT on to the disassembler.

-EB --endian=big Assumes big endian format when

disassembling.

-EL --endian=little Assumes little endian format when
disassembling.

--file-start-context Includes context from start of file (with -S).

-l, --include=DIR Adds DIR to search list for source files.

-, --line-numbers Includes line numbers and filenames in
output.

-C, --demangle[=STYLE] Decodes mangled and processed symbol

names. STYLE, if specified, can be auto,
gnu, lucid, arm, hp, edg, gnu-v3, java, or

gnat.
-w, --wide Formats output for more than 80 columns.
-z, --disassemble-zeroes Does not skip blocks of zeroes when

disassembling.

--start-address=ADDR Only processes data whose address is >=
ADDR.

--stop-address=ADDR Only processes data whose address is <=
ADDR.

--prefix-addresses Prints complete address alongside
disassembly.

--[no-]show-raw-insn Displays hexadecimal alongside symbolic
disassembly.

--adjust-vma=0OFFSET Adds OFFSET to all displayed section
addresses.

--special-syms Includes special symbols in symbol dumps.

Im8-elf-objdump: supported targets: elf32-Im8, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex

Im8-elf-objdump: supported Im8
architectures:

Im8-elf-size

The Im8-elf-size program displays the sizes of sections inside binary files. If no input
files are specified, a.out is assumed.

154 LatticeMico8 Developer User Guide

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

Usage

1lm8-elf-size [options] [files]

where options can be one or more of the options shown in Table 20.

Table 20: Im8-elf-size Options

Option Description

-Al-B --format={sysv|berkeley} Selects output style (default is Berkeley).

-0|-d|-x --radix={8|10|16} Displays numbers in octal, decimal, or
hexadecimal.

-t --totals Displays the total sizes (Berkeley only).

--target=<bfdname> Sets the binary file format.

-h --help Displays this information.

-V --version Displays the program's version.

Im8-elf-size: supported targets: elf32-Im8, elf32-little, elf32-big, srec,

symbolsrec, tekhex, binary, ihex

Report bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

LatticeMico8 Developer User Guide 155

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

156 LatticeMico8 Developer User Guide

= LATTICE

Glossary

Following are the terms and concepts that you should understand to use this
guide effectively.

application build An application build is the files that the managed build
process outputs and places in the application build output folder, for example,
the application executable, application build makefiles, application object files,
and necessary platform library files.

application build makefiles Application build makefiles enable the building
of the application.

application executable The application executable is a result of linking the
application and the platform library object file. The file is an executable in ELF
format.

application object files Application object files are user source object files
that have been compiled and assembled from their source C and Assembly
files.

breakpoints Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE C/C++SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/Assembly/C+Assembly
applications. The C/C++ SPE uses the bundled GNU C/C++ tool chain
(compiler, assembler, linker, debugger, and other utilities such as objdump)
customized for the LatticeMico 8 microcontroller. It uses the same graphical
user interface as MSB.

LatticeMico8 Developer User Guide 157

GLOSSARY

component information structure declaration A component information
structure declaration is specified as part of the .xml file and is copied into .msb
file by MSB. Each component in the platform is represented in the .msb file.
The component’s information in the .msb file includes the details about the
component’s source files that will need to be included in the build process.
The information is then extracted from the .msb file by the build process and
put into the DDStructs.h file. Each unique component must have its own
unique component information structure defined within its component
description file.

component instance declaration For those component instances that
have a corresponding information structure, this header file declares
presence of an instantiated structure. Originates in the Component
Description (.xml) file.

components Components are parts of the microprocessor system
architecture, for example, a CPU and peripherals are referred to generically
as components. Also see platform.

CSR CSRis an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

CDT CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

default linker script The default linker script, named linker.ld, is the default
linker script for the particular platform/project combination and can be used as
a starting point for creating a custom linker script file.

device driver files Device driver files are the source .c and .h C files that
contain driver code that will be compiled into object files during software build.

debugging Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse Eclipse is an open-source community whose projects are focused
on providing an extensible development platform and application frameworks
for building software. The LatticeMico System interface is based on the
Eclipse environment.

.elf file An .elf file is a file in executable linked format that contains the
software application code written in C/C++SPE.

158

LatticeMico8 Developer User Guide

GLOSSARY

GNU Compiler Collection (GCC) The GNU Compiler Collection (GCC) is a
set of programming language compilers produced by the GNU Project. It is
free software distributed by the Free Software Foundation (FSF).

HAL HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module The hardware debugger module is a
component of C/C++SPE that is used to find problems in the software
application. Most times it is simply referred to as the debugger module.

hardware platform See “platform.”

IRQ IRQ is an abbreviation for interrupt request, which is the means by
which a hardware component requests computing time from the CPU. There
are 8 IRQ assignments (0-7), each representing a different physical (or
virtual) piece of hardware. The lower the number, the more critical the
function.

JTAG ports JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

makefiles Makefiles contain scripts that define what files the make utility
must use to compile and link during the build process. There are many
makefiles employed in the LatticeMico system build process. The makefile file
is the application build makefile, calling all of the other makefiles that allow the
generation and build of the platform library and for eventually generating the
final executable image.

MSB MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing peripherals, such as
a memory controller and serial interface, to attach to the LatticeMico8
microcontroller. It also enables you to specify the connectivity between these
elements. MSB then enables you to generate a top-level design that includes
the processor and the chosen peripherals. It uses the same graphical user
interface as C/C++SPE.

.msb file The .msb file is the output XML file output by the MSB tool when
working in the MSB perspective. This .msb file is generated or updated when
you save your changes in the MSB perspective. This file defines your
platform, that is, the CPU and the peripherals in your design and also their
interconnectivity.

perspective A perspectivre is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enable you to perform a set of particular, predefined tasks. The LatticeMico
system contains three default perspectives: the MSB perspective, the C/C++
perspective, and the Debug perspective.

platform A platform (also called a hardware platform) is the LatticeMico8
microcontroller in an SoC (system on a chip) design. A platform comprises the
CPU and peripheral components and the interconnectivity that allows these
components to work together to successfully execute processor instructions.

LatticeMico8 Developer User Guide 159

GLOSSARY

platform library The platform library is a set of files that contain subroutine
code that references the application files that are necessary for linking during
the build process.

platform library build The platform library build is an integral part of the
managed build process. Another is the application build. The platform library
files contain code that is necessary to the linking during the build process. The
platform library build also outputs a platform library archive (<platform>.a) file
that is referenced by the application build. It allows you to override any default
software implementation.

platform library archive (.a) file The platform library archive (<platforms.a)
file is automatically generated during a platform library build. It is used when
linking the application executable to resolve platform functions used by the
application and is derived from the platform library object files.

platform library object (.0) file The platform library object (.0) file is a
compiled output of the library source files and is input for creating platform
library archive files.

platform settings file The platform settings file is the user.pref file that is
generated during the build process contains platform information for the
platform used by the current project.

project A project is the software application code written in C/C++ SPE.
Projects are contained within your workspace.

project workspace See “workspace.”

resources or resource files Resources are the projects, folders, and files
that exist in the Workbench. The navigation views provide a hierarchical view
of resources and allows you to open them for editing. Other tools may display
and handle these resources differently.

running Running is the process of executing a software progam.

software application The software application is the code that runs on the
LatticeMico8 microcontroller to control the peripherals, the bus, and the
memories. The application is written in a high-level language such as C (with
or without inlined Assembly) or low-level language such as Assembly.

source files In this document, source files generically refer to source .c and
header .h files written in C programming language. Source files can also refer
to source .S or .s files written in Assembly.

source folders Source folders are the folders you may have on your
system or in the project folder that contain input for a project. Input might
include source files and resource files to help enhance or to initially establish
a LatticeMico project.

UART UART is an acronym for universal asynchronous receiver/transmitter,
which is a computer component that handles asynchronous serial
communication. Every computer contains a UART to manage the serial ports,
and some internal modems have their own UART.

160

LatticeMico8 Developer User Guide

GLOSSARY

watchpoint A watchpoint is a special breakpoint that stops the execution of
an application whenever the value of a given expression changes, without
specifying where this may happen. A watchpoint halts program execution,
even if the new value being written is the same as the old value of the field.

workspace A workspace contains all of your LatticeMico System projects,
files, and folders and stores everything in a “workspace” folder. Basically a
workspace represents everything you do in the LatticeMico System software,
what is available, how you view it, and what options are available to you
through the different perspectives based on your settings. This is a basic
Eclipse-based software feature.

XML XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

xml file (1) The .xml file contains information about the parent project and
its settings, as well as information on the platform referenced by the parent
project. (2) The <comp_name>.xml files contain code declarations referred to
as component instance definitions that define the structure of each
component, Thes files reside in the <install_dir>/components folder. On build
generation, this information is copied into the .msb file by MSB.

LatticeMico8 Developer User Guide 161

GLOSSARY

162 LatticeMico8 Developer User Guide

= LATTICE

Index

Symbols
.ngo file 14
rtl file 14

A

.afiles (platform library archive) 94
Active Configuration parameter 50
active perspective 9
Add LatticeMico8 dialog box 20
adding existing files or folders to software
projects 42
adding new source files to C/C++ SPE project 41
addresses
assigning component 26
automatically assigning 27
locking component 28
manually editing component 28
Aldec Active-HD 68
Aldec Active-HDL 68
APP_ASM_SRCS variable 118
APP_C_SRCS variable 118
application build 157
application build makefiles see makefiles
application executable 97,157
application object files 97, 157
application output folder 95
Arbitration Scheme parameter 18
arbitration schemes
comparing 23
determining connections made by MSB 21
selecting 18
see also shared-bus arbitration scheme
see also slave-side arbitration schemes
archive utility 137
Archives folder 94
assembler utility 139

assigning component addresses 26

assigning interrupt request priorities 28

asynchronous SRAM controller see LatticeMico
asynchronous SRAM controller

Available Components view 16, 20

B
BASE 1/O-type attribute 112
behavioral model 66
Binaries folder 94
binary file-copying utility 150
binary section size-display utility 154
bitstream
downloading to FPGA 35
generating in Diamond 33, 34
Board Frequency parameter 18
breakpoints
definition 157
watchpoints 161
build configuration folder 98
build configurations 46
build directory structure 94
build tools 137
building software projects 46
incrementally 52
steps in 47

C

C/C++ build tab 50

C/C++ perspective 9, 35, 37
see also C/C++ SPE

C/C++ Software Project Environment see C/C++
SPE

C/C++ SPE
adding existing files or folders to projects 42

LatticeMico8 Developer User Guide

163

INDEX

adding new sources files to software
projects 41
building software projects 46, 47
building software projects incrementally 52
Console view 37,48
copying software projects 44
creating new software project 39
creating software applicaton code 38
definition of 157
deleting software items from project 42
deleting software projects 43
Editor view 37
error icon 48
GCC tools used in 137
Make Targets view 38
Navigator view 37
Outline view 37
place in design flow 3
Problems view 37,48
Projects view
deleting contents in 42
project folder in 95
purpose 37
renaming projects in 42
Properties view 37
purpose 2,7
rebuilding software projects 51
renaming software project contents 42
Search view 38
setting project properties 48
starting 36
Tasks view 38
warning icon 48
C/C++ SPE stand-alone 15
calling sequence 131
CDT 158
.cdtbuild file 100
.cdtproject file 100
changing default perspectives 11
changing master port arbitration priorities 25
Clone Platform parameter 18
closing views in perspectives 12
compiler flags 97
compiler utility 141
Component Attributes view 17
component data sheets 4
Component Help view 17,21
component information structure declaration 158
component instance declaration 158
component-specific attributes 111, 113
Configuration Settings parameter 50
Confirm Project Delete dialog box 44
connecting master and slave ports in MSB 21, 24
connecting microprocessor to FPGA pins 34
Console view 17, 37,48
copying software projects 44
CPU_FREQUENCY platform attribute 109
Create VHDL Wrapper parameter 18, 31, 33
creating custom perspectives 11

creating Diamond project 13

creating managed build applications 91
creating platform descriptions in MSB 18
creating software application code 38
crt0 function 107

CSR 158

Customize Perspective dialog box 10
customizing default perspectives 10

D
data sheets 4
data types 131
DDlnit.c file
.msb file used in creation of 107
automatic generation of 99, 101, 102
called by crt0 107
description of 107
generated by DDStructs.c file 92
LatticeDDlInit function in 107
DDsStructs.c file
automatic generation of 101, 102
contents of 113
description of 105
generation of .msb file information 92
generation of DDInit.c file 92
DDsStructs.h header file
automatic generation of 101, 102
C structure definitions in 103
contents of 113
creation of 92
description of 103
Debug perspective 9
see also Debugger
deleting custom perspectives 11
deleting items from software project 42
deleting software projects 43
Deployment
purpose 7
Design Flow, IP 14
design rule checks see DRC
device driver files 158
device-driver initialization source file see DDInit.c
file
device-driver structures header file see
DDStructs.h file
device-driver structures source file see
DDStructs.c file
devices suppported 3
Diamond
creating project 13
generating bitstream 33
generating FPGA bitstream 34
importing .Ipf file 34
importing EDIF file 34
importing Verilog file 32
importing VHDL file 32
IP design flow 14
Diamond Installation Notice document 5

164

LatticeMico8 Developer User Guide

INDEX

Directory parameter 18

DMA controller see LatticeMico DMA controller
document icon 21

downloading bitstream to FPGA 35

DRC 22, 26,29

drivers.mk file 96,99, 117

E
Eclipse 158
Eclipse C/C++ Development Toolkit User Guide
document 4
Eclipse workbench 8,9
Eclipse/CDT project information files 100
EDIF
creating file in Linux 31
importing file into Diamond 32, 34
Edit Arbitration Priorities command 25
Edit Arbitration Priorities dialog box 26
Editor view 17, 24, 26, 37
.elf file
definition of 158
error icon 48
extern statement 103

F
Family parameter 18
fixed slave-side arbitration scheme 22, 23, 25
FPGA_DEVICE_FAMILY platform attribute 108
Functional Simulation

Aldec Active-HDL 68

ModelSim 68
functional simulation 63

G
Generate Address command 27
Generate Address toolbar button 27
Generate IRQ command 29
Generate IRQ toolbar button 29
generating bitstream for FPGA 33, 34
generating platform 29
generic attributes 110, 112
GNU Compiler Collection see GNU GCC compiler
GNU GCC compiler

build tools 137

definition 159
GNU tool chain 137
GPIO see LatticeMico GPIO

H
HAL 159
hardware platform see platform

I

I/O-type component attributes 109
Import dialog box 45, 46

importing Verilog file into Diamond 32
importing VHDL file into Diamond 32
inherited_settings.mk file 99

int main(void) function 108
interrupt request priorities
assigning in MSB perspective 28
definition 159
IP cores 14
IP Design Flow 14
IPexpress 14, 20
IRQ see interrupt request priorities
IS_READABLE I/O-type attribute 113
IS_WRITABLE |/O-type attribute 113
ispVM System 35

J
JTAG ports 159

L
Lattice MachX02 Family Handbook document 5
Lattice MachXO2 Family Data Sheet document 5
LatticeDDInit function
held in LatticeDDInit.c file 107
implemented by DDlInit.c file 107
LatticeMico Asynchronous SRAM Controller 4,17,
20
document 4
LatticeMico data sheets 4
LatticeMico DMA Controller 4
document 4
LatticeMico GPIO 5, 20
directory structure 114,116
document 5
LatticeMico Master Passthrough
document 5
LatticeMico On-Chip Memory Controller
document 4
number of addresses available for access 17
LatticeMico Parallel Flash Controller
available in MSB perspective 20
LatticeMico Slave Passthrough
document 5
LatticeMico SPI Flash
document 5
LatticeMico System
accessing online Help 4, 20
applications in 7
creating Diamond project 13
installing 20
perspectives 8
running on Linux 13,15
running on Windows 8
LatticeMico Timer
API routines 115
available in MSB perspective 20
LatticeMico UART
available in MSB perspective 20
definition 160
device driver 115
document 5
LatticeMico8

LatticeMico8 Developer User Guide

165

INDEX

compiler 131
LatticeMico8 devices supported 3
LatticeMico8 Processor Reference Manual
document 4
LatticeMico8 System
applications in 1
design flow 1,3
LEDTest.c file 100
LEDTest.txt file 100
LIBRARY_ASM_SRCS variable 118
LIBRARY_C_SRCS variable 118
link-editor utility 143
linker script
created by platform build 3
custom 99
default
definition 158
generated according to platform 51
in managed build environment 92
location in platform library folder 100
using as basis for custom linker script 99
identifying script to use 99
in platform library folder 97, 100
memory information used to create 91
Linker Script parameter 51
linker settings 47
linker.Id file 99, 158
linker_settings.mk file 99
Linux
creating Diamond project 13
importing EDIF file 32,34
pointing to synthesis tool location 15
running LatticeMico32 System 13
synthesizing platform in MSB 31
Im32-elf-ar utility 137
Im32-elf-as utility 139
Im32-elf-gcc utility 141
Im32-elf-Id utility 143
Im32-elf-nm utility 148
Im32-elf-objcopy utility 150, 152
Im32-elf-objdump utility 152
Im32-elf-size utility 154
Lock column 28
locking component addresses 28
logical preference file see .Ipf file
Ipf file 34

M

MachXO2 Development Board User Guide
document 4

Make Targets view 38

makefile file 96, 99

makefiles
created for platform library 47,91, 97,99
created for software application code 47,91,

96, 97,99

definition 159
drivers.mk 96, 99, 117

inherited_settings.mk file 99
involved in build process 47
linker_settings.mk file 99
makefile 96,99
peripheral.mk 115,117,118
Perl scripts invoked from 100
platform_rules.mk file 99
subdirs.mk 97
managed build process 91, 93
directory structure 94
functions performed by 91
purpose 91
steps in 92
manifest constants 108
manually editing component addresses 28
master ports
changing arbitration priorities 25
connecting in MSB 21, 24
purpose 21
memory-type component attributes 111
Mico System Builder see MSB
MICO32_CPU_CLOCK_MHZ macro 103
micosystem installation folder 115
mixed-language designs 65
ModelSim 68
MSB
adding peripherals to platform 20
adding processor to platform 20
assigning component addresses 26
assigning interrupt request priorities 28
Available Components view 16, 20
changing master port arbitration priorities 25
Component Attributes view 17
Component Help view 17,21
connecting master and slave ports 21,24
Console view 17
creating platform description 18
defining platform 15
definition 159
Editor view 17,24, 26
files created during platform generation 30
generating platform 29
locking component addresses 28
manually editing component addresses 28
performing design rule checks 29
place in design flow 3
purpose 1,7
saving platform 29
starting 15
.msb file
created by platform generation 30
components used by C/C++ SPE 116
creating 18,19
creating DDlInit.c file 107
definition of 159
information in 91, 93,101, 102, 103
information originating in .xml file 101,113, 114
Parms section 114
selecting in C/C++ SPE 40

166

LatticeMico8 Developer User Guide

INDEX

MSB perspective 9, 16
see also MSB
msb_mdk_subs.pm Perl module file 108

N

NAME I/O-type attribute 112
Navigator view 37

New Platform Wizard dialog box 18
New Project dialog box 39

New Source File dialog box 41
.ngo file 30, 31

O

on-chip memory controller see LatticeMico on-chip
memory controller

online Help 20

opening views in perspectives 12

Outline view 37

P
Parms section 114
performing design rule checks 29
peripheral.mk file 115,117,118
Perl scripts 100, 106, 108
perspectives
active 9
C/C++ 9,35,37
changing default 11
closing views in 12
creating custom 11
customizing default 10
Debug 9
definition of 159
deleting custom 11
description of 9
MSB 9,16
opening and closing views in 12
reopening views 12
resetting default 12
switching to new 9
physical design rule checks see DRC
pin constraints 34
platform
adding peripherals to 20
adding processor to 20
assigning component addresses 26
assigning interrupt request priorities 28
attributes 108
changing master port arbitration priorities 25
connecting master and slave ports 21,24
creating description in MSB 18
defining in MSB 15
definition 15, 159
generating in MSB 29
library-generated source files 101
locking component addresses 28
manually editing component addresses 28
performance 32

performing design rule checks 29

saving in MSB 29
platform library 160
platform library archive (.a) file 94,97, 99, 160
platform library build 160
platform library folder 97, 98, 100
platform library object files 97, 160
Platform Name parameter 18
platform settings file 160
Platform tab

options in 51

storing information in user.pref file 100
PLATFORM_NAME platform attribute 108
platform_rules.mk file 99
PMI behavioral models 64
PMI Black-box Instantiations 66
PMI module 66
pmi_def.v 64, 66
Problems view 37,48
processor attributes 109
Programmer

installing on Linux 8
programming

calling sequence 131

data types 131

stack frame 133
project 160
project C folder 115
.project file 100
project folder 95
project workspace see workspace
Projects view

deleting contents in 42

project folder in 95

purpose 37

renaming projects in 42
Properties dialog box 48, 49

see also Platform tab
Properties view 37

R
rebuilding software projects 51
renaming contents of software project contents 42
reopening views in perspectives 12
Reset Perspective pop-up dialog box 12
resetting default perspectives 12
resource files 160
resources 160
round-robin slave-side arbitration scheme 23, 25
Run DRC command 29
Run DRC toolbar button 29
Run Generator command 30
Run Generator toolbar button 30
running LatticeMico System
from GUI 8

S
Save Perspective As dialog box 11

LatticeMico8 Developer User Guide

167

INDEX

saving platform in MSB 29
Search view 38
section settings 47
setting constraints 32
setting project properties 48
shared-bus arbitration scheme 21, 25
Simulation for mixed language 65
simulation tools 63
SIZE 1/O-type attribute 112
slave ports
connecting in MSB 21, 24
purpose 21
slave-side arbitration schemes 22
fixed 22, 23,25
round-robin 23, 25
software application code
building project 47
creating 35
creating project 38
see also C/C++ SPE
software development utilities 137
source files 160
source folders 160
SPI flash see LatticeMico SPI flash controller
stack
interrupt 134
stand-alone tool 15
Start menu 8
subdirs.mk file 97
symbol-listing utility 148
Synplicity Synplify Pro 31
system_conf.h file
automatic generation of 101
declaring attributes as constants 102
description of 108
generation of 108
I/O-type component attributes 109
memory-type component attributes 111
platform attributes 108
processor attributes 109

T
Target Hardware Platform parameter 51
Tasks view 38

template description file 100

template source file 100

testbench file 66

timing analysis 32

U

UART see LatticeMico UART
USE_PLL platform attribute 109
user.pref file 99, 100

\Y
.v files 30
Verilog
.msb file used in flow 30

.v file used in flow 30

creating platform in 29

files generated by platform creation 30
importing file into Diamond 32
importing file on Windows 33
instantiation template 31

specifying in MSB 18

.vhd file 31
VHDL

.msb file used in flow 30

.v file used in flow 30

creating wrapper 18, 20

files generated by platform generation 31
generating platform 30

importing file into Diamond 32

importing file on Windows 33
synthesizing platform 30

VHDL Wrapper 65
views

W

in C/C++ perspective 37
in MSB perspective 16

warning icon 48
watchpoints 161
workspace

definition 161

X
XML 161
xml file

contents in .msb file 101, 103, 114, 116
definition 161
description of 114

168

LatticeMico8 Developer User Guide

	LatticeMico System Overview
	LatticeMico System Design Flow
	Device Support
	Design Flow Steps

	Related Documentation

	Using the LatticeMico System Software
	LatticeMico System Software Overview
	About the LatticeMico System Tools
	LatticeMico System Requirements
	Running LatticeMico System
	LatticeMico System Perspectives

	Setting Up Diamond for a LatticeMico8 Platform
	Creating a New Diamond Project
	Recommended IP Design Flow

	Creating the LatticeMico8 Platform in MSB
	Starting MSB
	Creating a Platform Description in MSB
	Connecting Master and Slave Ports
	Changing Master Port Arbitration Priorities
	Assigning Component Addresses
	Assigning Component Interrupt Priorities
	Performing Design Rule Checks
	Saving the Microcontroller Platform
	Generating the Microcontroller Platform
	Synthesizing the Platform to Create an EDIF File (Linux Only)
	Design Guidance for Platform Performance
	Generating the Microcontroller Bitstream
	Downloading Hardware Bitstream to the FPGA

	Using C/C++ SPE to Develop Your Software
	Starting C/C++ SPE
	Creating Software Projects
	Basic Project Operations
	Understanding the Build Process
	Building Your Software Project
	Setting Project Properties
	Rebuilding Your Software Project
	Performing Builds Automatically

	Deploying Your Software to LatticeMico8 Platform
	On-Chip Memory Deployment
	Non-Volatile Memory Deployment

	Performing HDL Functional Simulation of LatticeMico8
	Configuring the Platform with LatticeMico System Builder
	Preparing for HDL Functional Simulation
	Performing HDL Functional Simulation with Aldec Active-HDL
	Performing HDL Functional Simulation with Mentor Graphics ModelSim

	LatticeMico8 Run-Time Environment
	Build/Compilation Utilities
	Device Drivers and Services
	Basic Program Structure
	Creating a Blank Project
	Adding a Source File to the Project
	Adding Source to the Source File
	Building the Application

	Boot Sequence
	Reset Address
	Boot Code Sequence Flow

	Interrupt Handling Sequence
	Interrupt Handlers
	Interrupt Handling Sequence Flow

	Managed Build Process and Directory Structure
	Creating Managed Build Applications
	LatticeMico8 C/C++ Project Build Flow
	The Build Process
	Build Directory Structure

	Platform Library-Generated Source Files
	DDStructs.h File
	DDStructs.c File
	DDInit.c File
	System_Conf.h File
	Component Software Elements

	Tips on Developing Software for LatticeMico8
	GNU Toolchain
	Limitations
	Built-in Functions
	Built-in Macros
	Using I/O (Peripheral) Instructions
	Programming Model

	Software Development Utilities
	Build Tools
	lm8-elf-ar
	lm8-elf-as
	lm8-elf-gcc
	lm8-elf-ld
	lm8-elf-nm
	lm8-elf-objcopy
	lm8-elf-objdump
	lm8-elf-size

	Glossary
	Index

