LatticeMico8 Processor
Reference Manual

s=LATTICE

June 2012

Copyright

Copyright © 2012 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Movile Device,
DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCEA40, iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog,
iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL,
ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA,
PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD,
TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in
the United States and/or other countries. ISP, Bringing the Best Together, and More of
the Best are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico8 Processor Reference Manual

Type Conventions Used in This Document

Convention Meaning or Use

Bold

<Italic>
Ctrl+L

Courier

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

LatticeMico8 Processor Reference Manual

LatticeMico8 Processor Reference Manual

= LATTICE

Contents

Introduction 1

Architecture 3

Register Architecture 3
General-Purpose Registers 3
Control and Status Registers 4

Memory Architecture 5
Memory Regions 5
Memory Modes 9

Interrupt Architecture 10
Call Stack 10

Configuration Options 11

Instruction Set 13

Instruction Formats 13
Instruction Set Lookup Table 14
Instruction Descriptions 16

Programming Model 37
Data Representation 37

Procedure Caller-Callee Convention 38
Register Usage 38
Stack Frame 39
Parameter Passing 40

Interrupt Convention 41

Acessing LatticeMico8 Memory Regions 42
Scratchpad 42
Peripheral 42
PROM 43

LatticeMico8 Processor Reference Manual

CONTENTS

Index

45

\%

LatticeMico8 Processor Reference Manual

= LATTICE Chapterl

Introduction

The LatticeMico8™ is an 8-bit microcontroller optimized for Field
Programmable Gate Arrays (FPGASs) and Programmable Logic Device
architectures from Lattice Semiconductor. It combines a full 18-bit wide
instruction set with 16 or 32 general-purpose registers. It is suitable for a wide
variety of markets, including communications, consumer, computer, medical,
industrial and automotive. The core consumes minimal device resources—
fewer than 250 Look-Up Tables (LUTSs) in the smallest configuration—while
maintaining a broad feature set.
LatticeMico8 Features
8-Bit Data Path
18-Bit Instructions
Configurable Instruction Memory (PROM)
Internal, or external through the WISHBONE Interface
Configurable to accommodate 256, 512, 1K, 2K, or 4K instructions
Scratchpad Memory
Internal, or external through the WISHBONE Interface
Configurable up to 4Gbytes using paged bytes (256 bytes/page)
Input/Output Peripheral Space through the WISHBONE Interface
Configurable up to 4Gbytes using paged ports (256 ports/page)
Minimum Two Cycles per Instruction
Configurable 16 or 32 General-purpose Registers

Configurable Call Stack size

Figure 1 on page 2 shows the LatticeMico8 Microcontroller block diagram.

LatticeMico8 Processor Reference Manual 1

INTRODUCTION

Figure 1: LatticeMico8 Microcontroller Core

Extemnal fRQ
fi
Flow Centrol
bC ‘
Internal PROM PROM WISHEOME
. . on -
Call Stack {optional) {optional)
Flag Control Instructis
Interrupt Control 28 onfe [=ea— netrueton [eat———————
{ Carry, Zero) Decode
Const | Rb Rd
OF 2
Peripheral (I'0) - oprode A Register Fls
WISHECONE oprode B
Intemnal Scratchpad
. ALU
{optional)
Result
Adcrairhpad Data
Extemal Data

LatticeMico8 Processor Reference Manual

= LATTICE Chapter 2

Architecture

This chapter describes the LatticeMico8 register and memory architecture
and explains the interrupt architecture and call stack.

Register Architecture

This section describes the general-purpose and control and status registers of
the LatticeMico8 architecture.

General-Purpose Registers

The LatticeMico8 microcontroller can be configured to have either 16 or 32
general-purpose registers. Each register is 8 bits wide. The registers are
implemented using a dual-port distributed memory. The LatticeMico8 opcode
set permits the microcontroller to access 32 registers. When LatticeMico8 is
configured with 16 registers, any opcode reference to R16 to R31 maps to RO
to R15 respectively.

General-purpose registers R13, R14, and R15 can also be used by the
LatticeMico8 microcontroller as page-pointer registers, depending on the
current memory mode. Page pointers (PP) are used when the scratchpad and
peripheral memory spaces are larger than 256 bytes (see “Memory Modes”
on page 9). The memory address is formed by concatenating the values in
registers R13, R14, and R15 with an 8-bit value derived from the LatticeMico8
memory instruction. Table 1 on page 4 highlights the three LatticeMico8
memory modes and corresponding designation of registers R13, R14, and
R15.

In the large memory mode, registers R13, R14, and R15 indicate which of
the 16M pages is currently active. R13 provides the least-significant byte
of page address and R15 provides most-significant byte.

LatticeMico8 Processor Reference Manual 3

ARCHITECTURE : Register Architecture

In the medium memory mode, register R13 indicates which of the 256
pages is currently active.

Table 1: Designation of LatticeMico8 Registers Based on LatticeMico8 Memory Mode

LatticeMico8 Memory Mode

Register Number Small

0 through 12 general-purpose
13 general-purpose
14 general-purpose
15 general-purpose
16 through 31 general-purpose

Medium
general-purpose
PP
general-purpose
general-purpose

general-purpose

Large
general-purpose
PP (LSB)

PP

PP (MSB)

general-purpose

Control and Status Registers

Table 2 shows all the names of the control and status registers (CSR), the
read and write access, and the index used when the register is accessed. All
signal levels are active high.

Table 2: Control and Status Registers

Name Access Index Description

IP R/W 0 Interrupt Pending

IM R/W 1 Interrupt Mask

IE R/W 2 Global Interrupt Enable/Disable

IP — Interrupt Pending The IP CSR contains a pending bit for each of the 8
external interrupts. A pending bit is set when the corresponding interrupt
request line is asserted low. Bit O corresponds to interrupt 0. Bits in the IP
CSR can be cleared by writing a 1 with the wcsr instruction. Writing a 0 has no
effect. After reset, the value of the IP CSR is 0.

IM — Interrupt Mask The IM CSR contains an enable bit for each of the 8
external interrupts. Bit O corresponds to interrupt 0. In order for an interrupt to
be raised, both an enable bit in this register and the IE flag in the IE CSR must
be set to 1. After reset, the value of the IM CSR is 0.

IE — Global Interrupt Enable The IE CSR contains a single-bit (bit position
0) flag, IE, which determines whether interrupts are enabled. This flag has
priority over the IM CSR. After reset, the value of the IE CSR is 0.

LatticeMico8 Processor Reference Manual

ARCHITECTURE : Memory Architecture

Memory Architecture

This section describes the memory architecture of the LatticeMico8
microcontroller.

Memory Regions

The LatticeMico8 microcontroller recognizes three independent memory
regions. Each memory region has its own independent input/output interface
and its own instruction set support. These three memory regions are called
the PROM, the Scratchpad, and the Peripheral memory regions respectively.
The size and location of each of these memory regions is configurable as long
as all these three memory regions are located entirely within the 4GB address
space. These memory regions can also be configured to overlap within
LatticeMico System Builder. Figure 2 shows the three memory regions and
the address space to which they are confined by LatticeMico System Builder.

See “Acessing LatticeMico8 Memory Regions” on page 42 for details on how
to access each of the three memory regions from a software programmer's
perspective.

Figure 2: Memory Organization

OxFFFFFFFF
Peripherals
Peripherals
0x80000000 | -----------——--
PROM
PROM and
Scratchpad
Memory
Scratchpad
0x00000000

LatticeMico8 Processor Reference Manual 5

ARCHITECTURE

Memory Architecture

PROM Space

The PROM memory region contains the program code that will be executed
by the LatticeMico8 microcontroller core and is accessible via its instruction
fetch engine. The size of the PROM memory region can be configured to
accommodate 256, 512, 1024, 2048, or 4096 instruction opcodes. By default
the memory region is located within the LatticeMico8 microcontroller. The
memory regions can also be configured to be external to the LatticeMico8
microcontroller.

When the PROM memory region is internal to the microcontroller, it is
connected to the LatticeMico8 instruction fetch engine via a dedicated high-
speed bus that fetches one instruction opcode per clock cycle. There is no
instruction set support to write to internal PROM. When the PROM memory
region is external to the microcontroller, it is accessed by the master
WISHBONE interface within the LatticeMico8 instruction fetch engine. This
WISHBONE interface has a 8-bit data bus and it takes three 8-bit WISHBONE
accesses to fetch one LatticeMico8 instruction opcode. The instruction fetch
latency is now dictated by the system WISHBONE latency and the latency of
the PROM memory. The minimum instruction fetch latency is 12 clock cycles.
Table 3 shows the WISHBONE interface signals. For more information about
the WISHBONE System-On-Chip (SoC) Interconnection Architecture for
Portable IP Cores, as it is formally known, refer to the OPENCORES.ORG
Web site at www.opencores.org/projects.cgi/web/wishbone.

Table 3: PROM WISHBONE Interface Signals

Name

_CYC_O

|_STB_O

I_CTILO

| BTE_O
|_ADR_O
|_WE_O
|_SEL_O
|_DAT O
I_LOCK_O

|_ACK_|

|_ERR_I
|_RTY_I

|_DAT |

Width
1

32

[oo BN

Direction Description

Output A new LatticeMico8 instruction fetch request is initiated by asserting this

signal. This signal remains asserted until |_ACK_|I is asserted, which
indicates the completion of the request.

Output A new LatticeMico8 instruction fetch request is initiated by asserting this

signal. This signal may be valid only for the first cycle.

Output Always has a value 2'b00

Output Always has a value 3'b000

Output The address output array |_ADR_O() is used to pass a binary address.

Output Always has a value 1'b0

Output Always has a value 4'b1111

Output Unused

Output Unused (signal exists, but it is not implemented)

Input When asserted, the signal indicates the normal termination of a bus cycle
and that an instruction is available on |_DAT _| bus.

Input Unused (signal exists, but it is not implemented)

Input Unused (signal exists, but it is not implemented)

Input One byte of the LatticeMico8 18-bit instruction opcode is available on this

bus when I_ACK_| is asserted. It takes three WISHBONE transactions to
complete one LatticeMico8 instruction fetch.

LatticeMico8 Processor Reference Manual

www.opencores.org/projects.cgi/web/wishbone

ARCHITECTURE : Memory Architecture

The advantage of configuring the PROM memory region as external to the
LatticeMico8 microcontroller is that the PROM memory region can now be
configured to overlap with other LatticeMico8 memory regions within Lattice
Mico System Builder and, therefore, be directly written to by LatticeMico8
opcodes. This configuration also offers the ability to store and execute
LatticeMico8 instructions from non-volatile memory such as Flash. As shown
in Figure 2 on page 5, the external PROM memory region can be placed at
any location within a 4GB address range. When the LatticeMico8
microcontroller is instantiated using Lattice Mico System Builder, it will restrict
the placement of external PROM between 0x00000000 and 0x80000000.

Scratchpad Space

LatticeMico8 provides an independent memory space that is designed to be
used for program read/write and read-only data as well as other user-defined
data. The size of this scratchpad memory can be configured from 32 bytes to
4G bytes, in power-of-two increments. Figure 3 shows the structure of this
scratchpad space and how data is located within this space. The scratchpad
memory space can be placed at any location within a 4GB address range.
The first 4 bytes are reserved for LatticeMico8 interrupt handling. Program
data is situated above this reserved space. The designer can configure the
size of scratchpad memory that is used for program data. User-defined data is
optional and is always located after program data.

Figure 3: Scratchpad Space Structure

User Data

Program
Data

RS

The scratchpad memory can be configured to be entirely internal to the
LatticeMico8 microcontroller, entirely external to LatticeMico8 microcontroller,
or a combination of both.

The internal scratchpad is implemented using single-port EBRs and is
hooked up to the LatticeMico8 core through a dedicated bus. Reads or
writes to the internal scratchpad take a single clock cycle.

The external scratchpad is accessed through the Peripheral WISHONE
interface of the LatticeMico8 microcontroller (see “Interrupt Architecture”
on page 10). Each read or write will take a minimum of 2 clock cycles.

LatticeMico8 Processor Reference Manual 7

ARCHITECTURE

Memory Architecture

Peripheral (Input/Output) Space

LatticeMico8 provides an independent memory space that is designed to be
used for peripherals and other memory-mapped hardware. The size of this
peripheral memory space can be configured from 0 bytes to 4G bytes in
power-of-two increments. While the peripheral memory space can be placed
at any location within a 4GB address range, Lattice Mico System Builder
restricts the peripheral memory space to the addresses between 0x80000000
and OxFFFFFFFF.

This memory space is always external to the LatticeMico8 microcontroller and
is primarily used to enable LatticeMico8 to communicate with memory-
mapped hardware and peripherals. The LatticeMico8 microcontroller can
communicate with any hardware or peripheral within the peripheral memory
space, through the peripheral WISHBONE interface within LatticeMico8 core,
using LatticeMico8 instruction opcodes. This WISHBONE interface has 8-bit

input and output data busses and a 32-bit address bus. Table 4 shows the
Peripheral WISHBONE interface signals.

Table 4: Peripheral WISHBONE Interface Signals

Name Width Direction Description

D_CYC_O 1 Output A new LatticeMico8 data request is initiated by asserting this signal.
This signal remains asserted until D_ACK | is asserted, which
indicates completion of the request.

D_STB_O 1 Output A new LatticeMico8 data request is initiated by asserting this signal.
This signal may be valid only for first cycle.

D_CTILO 2 Output This bus will always have a value 2'b00

D_BTE_O 3 Output This bus will always have a value 3'b000

D_ADR_O 32 Output The address output array D_ADR_O() is used to pass a binary
address. D_ADR_O() actually has a full 32 bits.

D_WE_O 1 Output This signal indicates whether a new data request is a read (0) or a
write (1). This signal must hold its value as long as D_CYC_O'is
asserted.

D_SEL_O 1 Output Always has a value 1'bl

D _DAT O 8 Output Has valid data when D_WE_O is 1'b1.

D_LOCK_O 1 Output Unused (signal exists, but it is not implemented)

D_ACK_I 1 Input When asserted, the signal indicates the normal termination of a bus
cycle.

D_ERR_I 1 Input Unused (signal exists, but it is not implemented)

D _RTY_I 1 Input Unused (signal exists, but it is not implemented)

D_DAT | 8 Input Data is available on this bus when D_ACK_| and D_WEO are
asserted.

8 LatticeMico8 Processor Reference Manual

ARCHITECTURE : Memory Architecture

Figure 4: Memory Modes

256

identify byte within pags
0 page 0 - identify active pags

Memory Modes

The LatticeMico8 microcontroller can be configured for different sizes for the
scratchpad and peripheral memory regions. The size of scratchpad and
peripheral memory regions can be as small as 32 bytes and as large as 4G
bytes. A 32-byte memory region requires only 5 address bits, while a 4GB
memory region requires 32 address bits.

The LatticeMico8 instruction set can directly access only 256 memory
locations, since all general-purpose registers are 8 bits wide. (See “Instruction
Set” on page 13.) To access memory regions that are larger than 256 bytes,
LatticeMico8 relies on a concept called “paging,” in which the memory is
logically divided into 256-byte pages. The memory address is composed of
two parts, as shown in Figure 4: the page index and the page pointer. The
page index is 8 bits wide and addresses a byte in the currently active page,
while the page pointer provides the address of the currently active page.

page

page MN-1

15eoril g7 0
page pointar | page index |

— e ——

The page pointers are essentially general-purpose registers that have been
retargeted to provide a memory address. (See “Memory Regions” on page 5.)
Table 5 shows the memory modes of the LatticeMico8 microcontroller, the
size of addressable memory space in each mode, and the general-purpose
registers used as page pointers.

Table 5: LatticeMico8 Memory Modes

Memory Mode
Small
Medium

Large

Maximum Memory Size Address Bits Page Pointer Registers
256 bytes 8 N/A

16K bytes 16 R13

4G bytes 32 R13, R14, R15

LatticeMico8 Processor Reference Manual 9

ARCHITECTURE : Interrupt Architecture

Interrupt Architecture

Call Stack

The LatticeMico8 microcontroller supports up to 8 maskable, active-low, level-
sensitive interrupts. Each interrupt line has a corresponding mask bit in the IM
CSR. The mask enable is active high. A global interrupt-enable flag is
implemented in the IE CSR. The software can query the status of the
interrupts and acknowledge them through the IP CSR. If more interrupt
sources or more sophisticated interrupt detection methods are required,
external interrupt controllers can be cascaded onto the microcontroller’s
interrupt pins to provide the needed functionality.

When an interrupt is received, the address of the next instruction is pushed
into the call stack (see “Call Stack” on page 10), and the microcontroller
continues execution from the interrupt vector (address 0). The flags (carry and
zero) are pushed onto the call stack along with the return address. An iret
instruction will pop the call stack and transfer control to the address on top of
the stack. The flags (carry and zero) are also popped from the call stack.

See “Interrupt Convention” on page 41 for details on the programming model
for interrupts.

Note

The LatticeMico8 microcontroller does not support nested interrupts. Locations O
through 3 in the scratchpad are reserved for interrupt handling and should not used for
any other purpose.

The LatticeMico8 microcontroller implements a hardware call stack to handle
procedure calls (call instruction) and procedure/interrupt return (ret and iret
instructions). The depth of this call stack determines the number of nested
procedure calls that can be handled by the LatticeMico8 microcontroller, and
designers can choose the depth to be 8, 16, or 32. When a call instruction is
executed, the address of the next instruction is pushed on to the call stack. A
ret or iret instruction will pop the stack and continue execution from the
location at the top of the stack.

Note

There is no mechanism in hardware to detect whether the number of nested procedure
calls has exceeded the depth of the call stack. It is up to the software developer to
ensure that the call stack does not overflow.

10

LatticeMico8 Processor Reference Manual

= LATTICE

Chapter 3

Configuration Options

The LatticeMico8 microcontroller is reconfigurable. Table 6 outlines the
various configuration options that are available to a designer.

Table 6: LatticeMico8 Configuration Options

Parameter Name
LATTICE_FAMILY
CFG_PROM_INIT_FILE

CFG_PROM_INIT_FILE_FORMAT

CFG_PROM_SIZE

CFG_SP_INIT_FILE

CFG_SP_INIT_FILE_FORMAT

SP_PORT_ENABLE

SP_SIZE

SP_BASE_ADDRESS

CFG_IO_BASE_ADDRESS

CFG_EXT_SIZE_[8]16]32]

CFG_REGISTER_[16/32]

Description
The target Lattice FPGA family.

Provides the file that contains the initialization data (program code) for an
internal PROM.

Indicates whether CFG_PROM_INIT_FILE is in hex (default) or binary.

Indicates the number of instructions that can be accommodated in the
PROM.

Provides the file that contains the initialization data (program data) for an
internal scratchpad.

Indicates whether CFG_SP_INIT_FILE_FORMAT is hex (default) or binary.

Indicates whether the scratchpad is internal (value 1) or external (value 0).
The default is 1.

Indicates the number of bytes in the scratchpad.

Provides the base address of the scratchpad, regardless of whether it is
internal or external.

Provides the base address of the peripheral memory region.

Indicates the size of address bus for the scratchpad and peripheral memory
regions and, therefore, identifies the LatticeMico8 memory mode. The
default is 16 (medium memory mode).

Indicates the number of general-purpose registers in LatticeMico8. The
default is 8.

LatticeMico8 Processor Reference Manual

11

CONFIGURATION OPTIONS

Table 6: LatticeMico8 Configuration Options (Continued)

Parameter Name
CFG_CALL_STACK_[8]16|32]
CFG_ROM_EN

CFG_ROM_BASE_ADDRESS

Description
Indicates the depth of the call stack. The default is 16.

Indicates whether the PROM and Scratchpad memories need to be
initialized from non-volatile storage such as flash at power-up. The default
is 0, i.e., no copying is required.

Provides the base address of the memory which contains the PROM and
Scratchpad images. The PROM image starts at this base address. The
Scratchpad image starts at location (CFG_PROM_SIZE*3).

CFG_XIP Indicates whether the PROM memory is the same as the non-volatile
storage that contains the PROM image. The default is 0, i.e., both
memories are different. 1 indicates that both memories are the same (i.e.,
no copying needs to be done) and the PROM is external to LatticeMico8.

INTERRUPTS Indicates the number of external interrupts. The default is 8.

12 LatticeMico8 Processor Reference Manual

2 LATTICE Chapter U

Instruction Set

This chapter includes descriptions of all the instruction opcodes of the
LatticeMico8 microcontroller.

Instruction Formats

All LatticeMico8 instructions are 18 bits wide. They are in three basic formats,
as shown in Figure 5, Figure 6, and Figure 7.

Figure 5: Register-Register Format

17 13 12 g7 i 2 1 0
| Opcode | Rd Rb 000

Figure 6: Register-Iimmediate Format

17 135 12 87 0
| Cpcode | Rd | Constant

Figure 7: Imnmediate Format

17 12 11 0
| Cpcode | Signed Immediate

LatticeMico8 Processor Reference Manual 13

INSTRUCTION SET Instruction Set Lookup Table

Instruction Set Lookup Table

Table 7: Instruction Set Reference Card

Operation Action Flags
ADD Rd, Rb Rd=Rd + Rb Carry, Zero
ADDC Rd, Rb Rd = Rd + Rb + Carry Carry, Zero
ADDI Rd, C Rd=Rd+C Carry, Zero
ADDIC Rd, C Rd =Rd + C + Carry Carry, Zero
AND Rd, Rb Rd =Rd & Rb Zero
ANDI Rd, C Rd=Rd&C Zero
B Label PC = PC + Label
BC Label If Carry =1, PC = PC + Label
BNC Label If Carry =0, PC = PC + Label
BNZ Label If Zero = 0, PC = PC + Label
BZ Label If Zero =1, PC = PC + Label
CALL Label Stack = PC + 1, PC = PC + Label
CALLC Label If Carry = 1, Stack = PC + 1, PC = PC + Label
CALLNC Label If Carry = 0, Stack = PC + 1, PC = PC + Label
CALLNZ Label If Zero = 0, Stack = PC + 1, PC = PC + Label
CALLZ Label If Zero = 1, Stack = PC + 1, PC = PC + Label
CLRC Carry =0 Carry
CLRI IE=0
CLRZ Zero=0 Zero
CMP Rd, Rb Rd - Rb Carry, Zero
CMPI Rd, C Rd-C Carry, Zero
EXPORT Rd, Port# Peripheral (Port #) = Rd
EXPORTI Rd, Rb Peripheral (Page Pointer, Rb) = Rd
IMPORT Rd, Port# Rd = Peripheral (Port #)
IMPORTI Rd, Rb Rd = Peripheral (Page Pointer, Rb)
IRET PC, Carry, Zero = Stack Carry, Zero
LSP RD, SS Rd = Scratchpad (SS)
LSPI Rd, Rb Rd = Scratchpad (Page Pointer, Rb)
MOV Rd, Rb Rd = Rb
MOVIRd, C Rd = Const

14

LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Set Lookup Table

Table 7: Instruction Set Reference Card (Continued)

Operation
NOP
OR Rd, Rb
ORIRd, C
RCSR Rd, CRb
RET
ROL Rd, Rb
ROLC Rd, Rb
ROR Rd, Rb
RORC Rd, Rb
SETC
SETI
SETZ
SSP Rd, SS
SSPI Rd, Rb
SUB Rd, Rb
SUBC Rd, Rb
SUBIRd, C
SUBICRd, C
TEST Rd, Rb
TESTIRd, C
XOR Rd, Rb
XORIRd, C
WCSR CRd, Rb

Action

PC=PC+1

Rd =Rd | Rb

Rd=Rd|C

Rd = CSR (Rb)

PC = Stack

Rd = {(Rb<<1), Rb[0]}

Rd = {(Rb<<1), Carry}, Carry = Rb[7]
Rd = {Rbl[0], (Rb>>1)}

Rd = {Carry, (Rb>>1)}, Carry = Rb[0]
Carry =1

IE=0

Zero=1

Scratchpad (SS) = Rd

Scratchpad (Page Pointer, Rb) = Rd
Rd = Rd - Rb

Rd = Rd — Rb — Carry

Rd=Rd-C

Rd =Rd - C - Carry

Rd & Rb

Rd&C

Rd = Rd *Rb

Rd=Rd~"C

CSR (Rd) =Rb

Flags

Zero

Zero

Zero
Carry, Zero
Zero
Carry, Zero

Carry

Zero

Carry, Zero
Carry, Zero
Carry, Zero
Carry, Zero
Zero
Zero
Zero
Zero

Zero

LatticeMico8 Processor Reference Manual

15

INSTRUCTION SET : Instruction Descriptions

Instruction Descriptions

This section describes the operations of the instruction set.
ADD Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd + Rb (add registers)

The carry flag is updated with the carry out from the addition. The zero flag is
set to 1 if all the bits of the result are 0.

ADDC Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 Rd Rd Rd Rd Rd Rb RbDb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd + Rb + Carry Flag (add registers and carry flag)

The carry flag is updated with the carry out from the addition. The zero flag is
set to 1 if all the bits of the result are 0.

16 LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

ADDIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd + CCCCCCCC (add constant to register)

The carry flag is updated with the carry out from the addition. The zero flag is
set to 1 if all the bits of the result are 0.

ADDIC Rd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd + CCCCCCCC + Carry Flag (add register, constant and carry flag)

The carry flag is updated with the carry out from the addition. The zero flag is
set to 1 if all the bits of the result are 0.

AND Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 0 0

CY Flag Updated Zero Flag Updated
No Yes

Rd = Rd and Rb (bitwise AND registers)

The zero flag is set to 1 if all the bits of the result are 0.

17

LatticeMico8 Processor Reference Manual

INSTRUCTION SET

Instruction Descriptions

17 16 15
0 1 0
17 16 15
1 1 1
17 16 15
1 1 0

14

14

13

13

ANDIRd, C

12 11 10 9 8 7 6 5 4 3 2 1 0
Rd Rd Rd Rd Rd C C C C C Cc C C

CY Flag Updated Zero Flag Updated

No Yes

Rd = Rd and CCCCCCCC (bitwise AND register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

B Label

CY Flag Updated Zero Flag Updated

No No

Unconditional Branch. PC = PC + Signed Offset of Label

Unconditional branch. PC is incremented by the signed offset of the label from
the current PC. The offset can be +2047/-2048.

BC Label

CY Flag Updated Zero Flag Updated

No No

If Carry Flag = 1 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if carry. If carry flag is set, the PC is incremented by the signed offset
of the label from the current PC. If carry flag is not set, then execution
continues with the following instruction. The offset can be +2047/-2048.

18

LatticeMico8 Processor Reference Manual

INSTRUCTION SET

Instruction Descriptions

17

17

17

16

16

16

15

15

15

14

14

14

13

13

13

BNC Label

12 11 10 9

CY Flag Updated

No

Zero Flag Updated

No

If Carry Flag = 0 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if not carry. If carry flag is not set, the PC is incremented by the signed
offset of the label from the current PC. If carry flag is set, then execution
continues with the following instruction. The offset can be +2047/-2048.

BNZ Label

12 11 10 9

CY Flag Updated

No

Zero Flag Updated

No

If Zero Flag = 0 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if not 0. If zero flag is not set, the PC is incremented by the signed
offset of the label from the current PC. If zero flag is set, then execution
continues with the following instruction. The offset can be +2047/-2048.

BZ Label

12 11 10 9

CY Flag Updated

No

Zero Flag Updated

No

If Zero Flag = 1 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if 0. If zero flag is set, the PC is incremented by the signed offset of
the label from the current PC. If zero flag is 0, then execution continues with

the following instruction. The offset can be +2047/-2048.

LatticeMico8 Processor Reference Manual

19

INSTRUCTION SET : Instruction Descriptions

CALL Label

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

Push PC + 1/C/Z into Call Stack
PC = PC + Signed offset of LABEL

Unconditional call. Address of the next instruction (PC + 1) is pushed into the
call stack, and the PC is incremented by the signed offset (+2047/-2048) of
the label from the current PC.

CALLC Label

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

If Carry Flag = 1, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL
Else, PC=PC+1

CALL if carry. If the carry flag is set, the address of the next instruction (PC +
1) is pushed into the call stack and the PC is incremented by the signed offset
(+2047/-2048) of the label from the current PC. If the carry flag is not set, then
execution continues from the following instruction.

20 LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

17

17

16

16

15

15

14

14

13

13

CALLNC Label

12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

If Carry Flag = 0, then
Push PC + 1/C/Z into Call Stack
PC = PC Signed Offset of LABEL
Else, PC=PC +1

CALL if not carry. If the carry flag is set, the address of the next instruction
(PC + 1) is pushed into the call stack, and the PC is incremented by the
signed offset (+2047/-2048) of the label from the current PC. If the carry flag is
not set, then execution continues from the following instruction.

CALLNZ Label

12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

If Zero Flag = 0, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL
Else PC=PC+1

CALL if NOT 0. If the zero flag is not set, the address of the next instruction
(PC + 1) is pushed into the call stack and the PC is incremented by the signed
offset (+2047/-2048) of the label from the current PC. If the zero flag is set,
then execution continues from the following instruction.

LatticeMico8 Processor Reference Manual 21

INSTRUCTION SET Instruction Descriptions

CALLZ Label

17 16 15 14 13 12 11 10 9

CY Flag Updated

No

If Zero Flag = 1, then

Zero Flag Updated

No

Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL

Else, PC=PC+1

CALL if 0. If the zero flag is set, the address of the next instruction (PC + 1) is
pushed into the call stack and the PC is incremented by the signed offset
(+2047/-2048) of the label from the current PC. If zero flag is not set, then
execution continues from the following instruction.

CLRC

17 16 15 14 13 12 11 10 9

CY Flag Updated

Yes

Carry Flag=0
Clear carry flag.

CLRI

17 16 15 14 13 12 11 10 9

CY Flag Updated

No

Interrupt Enable Flag =0

Zero Flag Updated

No

Zero Flag Updated

No

Clear interrupt enable flag. Disable interrupts.

22

LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

17

17

17

16

16

16

15

15

15

14

14

14

13

13

13

CLRZ

12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No Yes

Zero Flag =0

Clear zero flag.

CMP Rd, Rb

12 11 10 9 8 7 6 5 4 3 2 1 0
Rd Rd Rd Rd Rd Rb RbDb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

Subtract Rb from Rd and update the flags. The result of the subtraction is not
written back.

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

CMPIRd, C

12 11 10 9 8 7 6 5 4 3 2 1 0
Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

Subtract Constant from Rd and update the flags. The result of the subtraction
is not written back.

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

LatticeMico8 Processor Reference Manual

23

INSTRUCTION SET

Instruction Descriptions

EXPORT Rd, Port#

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 Rd Rd Rd Rd Rd P P P P P 0 0 0
CY Flag Updated Zero Flag Updated
No No
Peripheral (Port #) = Rd
Output value of Register Rd to Peripheral Address. Peripheral Address can
be 0-31.
EXPORTI Rd, Rb
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 1 0
CY Flag Updated Zero Flag Updated
No No
Port Value (Rb) = Rd
Indirect write to peripheral address. The peripheral address is formed by
concatenating the page pointer value with the value in register Rb. In small
memory mode, the peripheral address can be 0 - 255. In medium memory
mode, the peripheral address can be 0 - 64K. In large memory mode, the
peripheral address can be 0 - 4Ghyte.
24 LatticeMico8 Processor Reference Manual

INSTRUCTION SET

Instruction Descriptions

17

17

17

16

16

16

15

15

15

14

14

14

13

13

13

IMPORT Rd, Port#

12 11 10 9 8 7 6 5 4
Rd Rd Rd Rd Rd P P P P

CY Flag Updated Zero Flag Updated

No No

Rd = Peripheral (Port #)

Read value from Peripheral (I/O) address and write in to register Rd. The

Peripheral address can be 0 - 31.

IMPORTI Rd, Rb

12 11 10 9 8 7 6 5 4
Rd Rd Rd Rd Rd Rb Rb Rb Rb
CY Flag Updated Zero Flag Updated

No No

Rd = Peripheral (Page Pointer + Rb)

Indirect read from peripheral address. The peripheral address is formed by
concatenating the page pointer value with the value in register Rb. In small
memory mode, the peripheral address can be 0 - 255. In medium memory
mode, the peripheral address can be 0 - 64K. In large memory mode, the

peripheral address can be 0 - 4Ghyte.

IRET

CY Flag Updated Zero Flag Updated

Yes Yes

PC = Top of Call Stack
Pop Call Stack
Restore Zero and Carry Flags from Call Stack

Return from interrupt. In addition to popping the call stack, the carry and zero

flags are restored from shadow locations.

LatticeMico8 Processor Reference Manual

25

INSTRUCTION SET : Instruction Descriptions

LSP RD, SS

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

Rd = Scratch Pad (SS)

Load from scratch pad memory direct. Load the value from the scratch pad
location designated by constant SS into Register Rd. SS can be 0-31.

LSPIRd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 Rd Rd Rd Rd Rd Rb RbDb Rb Rb Rb 1 1 1

CY Flag Updated Zero Flag Updated

No No

Rd = Scratch Pad (Page Pointer + Rb)

Indirect read from scratchpad address. The scratchpad address is formed by
concatenating the page pointer value with the value in register Rb. In small
memory mode, the peripheral address can be 0 - 255. In medium memory
mode, the peripheral address can be 0 - 64K. In large memory mode, the
peripheral address can be 0 - 4Ghyte.

MOV Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No No

Rd = Rb (move register to register)

The zero flag is set to 1 if all the bits of the result are 0.

26 LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

MOVIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

Rd = CCCCCCCC (move constant into register)
The zero flag is set to 1 if all the bits of the result are 0.

NOP

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No No

PC=PC+1
No operation moves RO to RO.

ORRd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0

o
o

CY Flag Updated Zero Flag Updated

No Yes

Rd = Rd | Rb (bitwise OR registers)

The zero flag is set to 1 if all the bits of the result are 0.

LatticeMico8 Processor Reference Manual 27

INSTRUCTION SET : Instruction Descriptions

ORIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5

CY Flag Updated Zero Flag Updated

No Yes

Rd = Rd | CCCCCCCC (bitwise OR register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

RET

CY Flag Updated Zero Flag Updated

No No

PC = Top of Call Stack
Pop Call Stack

Unconditional return. PC is set to the value on the top of the call stack.

28 LatticeMico8 Processor Reference Manual

INSTRUCTION SET Instruction Descriptions

ROL Rd, Rb

17 16 15 14 13 12 11 10 9
Rd Rd

CY Flag Updated
No

Rd Rb Rb Rb Rb Rb O 0 1

Zero Flag Updated

Yes

MsB [|]

Rotate left. Register Rb is shifted left by one bit. The highest order bit is
shifted into the lowest order bit. The result is written back to register Rd. The
zero flag is set to 1 if all the bits of the result are 0.

ROLC Rd, Rb

17 16 15 14 13 12 11 10 9

CY Flag Updated

Yes

Rd Rb Rb Rb Rb Rb O 1 1

Zero Flag Updated

Yes

'V'SBIIIIIIII

Rotate left through carry. Register Rb is shifted left by one bit. The carry flag is
shifted into the lowest order bit and the highest order bit is shifted into the
carry flag. The result is written back to Register Rd. The zero flag is set to 1 if
all the bits of the result are 0.

LatticeMico8 Processor Reference Manual

29

INSTRUCTION SET : Instruction Descriptions

ROR Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 0 0

CY Flag Updated Zero Flag Updated
No Yes
A4
mse [[[[[T][]

Rotate right. Register Rd is shifted right one bit and the highest order bit is
replaced with the lowest order bit. The result is written back to Register Rd.
The zero flag is set to 1 if all the bits of the result are 0.

RORC Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

MSBILIIIIIII

Rotate right through carry. the contents of Register Rb are shifted right one
bit, the carry flag is shifted into the highest order bit, and the lowest order bit is
shifted into the carry flag. The result is written back to Register Rd. The zero
flag is set to 1 if all the bits of the result are 0.

30

LatticeMico8 Processor Reference Manual

INSTRUCTION SET

Instruction Descriptions

SETC
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
CY Flag Updated Zero Flag Updated
Yes No
Carry Flag =1
Set carry flag.
SETI
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
CY Flag Updated Zero Flag Updated
No No
Interrupt Enable Flag = 1
Set interrupt enable flag. Enable interrupt.
SETZ
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

CY Flag Updated

Zero Flag Updated

No

Yes

Zero Flag=1

Set zero flag.

LatticeMico8 Processor Reference Manual

31

INSTRUCTION SET

Instruction Descriptions

SSP Rd, SS

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd S S S S S 1 0 0

CY Flag Updated Zero Flag Updated
No No

Scratch Pad (SS) = Rd
Store into scratch pad memory direct. Store value of Register Rd into scratch
pad memory location designated by constant SS. The location address can
be 0-31.
SSPIRd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 1 1 0

CY Flag Updated Zero Flag Updated
No No

Scratch Pad (Page Pointer + Rb) = Rd
Indirect write to scratchpad address. The scratchpad address is formed by
concatenating the page pointer value with the value in register Rb. In small
memory mode, the peripheral address can be 0 - 255. In medium memory
mode, the peripheral address can be 0 - 64K. In large memory mode, the
peripheral address can be 0 - 4Ghyte.

32 LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

SUB Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd - Rb (subtract register from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

SUBC Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 Rd Rd Rd Rd Rd Rb RbDb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd - Rb - Carry Flag (subtract register with carry from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

SUBIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd - CCCCCCCC (subtract constant from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

33

LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

SUBICRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

Rd = Rd - CCCCCCCC - Carry Flag (subtract constant with carry from
register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all
the bits of the result are 0.

TEST Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 Rd Rd Rd Rd Rd Rb RbDb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

Perform a bitwise AND between Rd and Rb, update the zero flag. The result
of the AND operation is not written back.

The zero flag is set to 1 if all the bits of the result are 0.

TESTIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CY Flag Updated Zero Flag Updated

No Yes

Perform a bitwise AND between Rd and Constant, update the zero flag. The
result of the AND operation is not written back.

The zero flag is set to 1 if all the bits of the result are 0.

34 LatticeMico8 Processor Reference Manual

INSTRUCTION SET : Instruction Descriptions

XOR Rd, Rb

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb O 0 0

CY Flag Updated Zero Flag Updated

No Yes

Rd = Rd and Rb (bitwise XOR registers)

The zero flag is set to 1 if all the bits of the result are 0.

XORIRd, C

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CY Flag Updated Zero Flag Updated

No Yes

Rd = Rd and CC (bitwise XOR register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

LatticeMico8 Processor Reference Manual 35

INSTRUCTION SET : Instruction Descriptions

36 LatticeMico8 Processor Reference Manual

= LATTICE

Data Representation

Programming Model

Chapter 5

This chapter describes the LatticeMico8 programming model, including data
types, calling sequence, and interrupt convention.

The LatticeMico8 microcontroller supports the data types listed in Table 8.

Table 8: LatticeMico8 Data Types

Type

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Pointer

Floating-Point

C Type

Signed char
Unsigned char
Signed short
Unsigned short
Signed int
Unsigned int
Signed long
Unsigned long
Unsigned long long
Any-type*
Float

Size in Memory Model

Small

Medium Large

1

1

2

1

1

2

B R R -

Alignment in Memory Model

Small
1
1

Medium
1
1

Large

1

I

B N - A SN \CRE N SRR \CRE N V]

LatticeMico8 Processor Reference Manual

37

PROGRAMMING MODEL

Procedure Caller-Callee Convention

Table 8: LatticeMico8 Data Types

Type
Floating-Point

Floating-Point

Size in Memory Model Alignment in Memory Model

C Type Small Medium Large Small Medium Large
Double 4 4 4 4 4 4
Long double 4 4 4 4 4 4

*A NULL pointer of any type must be zero. All floating-point types are IEEE-
754 compliant.

Procedure Caller-Callee Convention

This section describes the standard function calling sequence, including stack
frame layout, register usage, and parameter passing. The standard calling
sequence requirements apply only to global functions; however, it is
recommended that all functions use the standard calling sequence.

Register Usage

The register usage model shown in Table 9 is used by the LatticeMico8
Compiler. It must be used by developers who are writing ASM code that will
be compiled into an executable using the LatticeMico8 compiler.

Table 9: Register Usage (SP — Stack Pointer, FP — Frame Pointer, PP — Page Pointer)

Register
RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

Preserved Across Functions Usage

Small Medium Large Small Medium Large

N N N Arg O/Return O Arg O/Return O Arg O/Return O
N N N Arg 1/Return 1 Arg 1/Return 1 Arg 1/Return 1
N N N Arg 2/Return 2 Arg 2/Return 2 Arg 2/Return 2
N N N Arg 3/Return 3 Arg 3/Return 3 Arg 3/Return 3
N N N Arg 4 Arg 4 Arg 4

N N N Arg 5 Arg 5 Arg 5

N N N Arg 6 Arg 6 Arg 6

N N N Arg 7 Arg 7 Arg 7

Y Y Y Fixed — SP

Y Y Y Fixed — SP

N Y N Fixed — FP

N Y N Fixed — FP

N N N

38

LatticeMico8 Processor Reference Manual

PROGRAMMING MODEL : Procedure Caller-Callee Convention

Table 9: Register Usage (SP — Stack Pointer, FP — Frame Pointer, PP — Page Pointer) (Continued)

Preserved Across Functions Usage

Register Small Medium Large Small Medium Large

R13 N N N Fixed — PP Fixed — PP
R14 Y Y N Fixed — SP Fixed — PP
R15 Y N N Fixed — FP Fixed — PP
R16 Y Y Y

R17 Y Y Y

R18 Y Y Y

R19 Y Y Y

R20 Y Y N

R21 Y Y N

R22 Y Y N

R23 Y Y N

R24 Y Y Y Fixed — SP
R25 Y Y Y Fixed — SP
R26 Y Y Y Fixed — SP
R27 Y Y Y Fixed — SP
R28 N N Y Fixed — FP
R29 N N Y Fixed — FP
R30 N N Y Fixed — FP
R31 N N Y Fixed — FP

Stack Frame

In addition to registers, each function has a frame on the run-time stack. This
stack grows downward from high addresses. Table 10 shows the stack frame
organization.

The stack pointer always points to the end of the latest allocated stack frame.
All frames must be aligned. The first 32 bytes below the stack frame are
reserved for leaf functions that do not need to modify the stack pointer.
Interrupt handlers must guarantee that they will not use this area.

LatticeMico8 Processor Reference Manual 39

PROGRAMMING MODEL : Procedure Caller-Callee Convention

Table 10: Stack Frame Layout

FP-relative Position SP-relative Position Contents Frame
FP + (M - 6) SP+(N+M+4) Function Argument Byte M Previous
FP +0 SP + (N + 4) Function Argument Byte 6
FP -1 SP + (N + 3) Previous FP (byte 3) Current
FP -2 SP+(N+2) Previous FP (byte 2)
FP -3 SP+(N+1) Previous FP (byte 1)
FP -4 SP +N Previous FP (byte 0)
FP -5 SP+(N-1) Local Variable N
FP — (N +5) SP+0 Local Variable 0
FP — (N + 6) SP-1 Red Zone Area — Start Future
FP — (N + 37) SP-32 Red Zone Area — End

Parameter Passing

Functions receive their first 8 argument bytes in function argument registers
RO-R7. If there are more than eight argument bytes, the remaining argument
bytes are passed on the stack. Small structure and union arguments are
passed in argument registers; other structure and union arguments are
passed as pointers. A function that returns an integral or pointer value puts its
result in the registers RO-R3. Void functions leave registers RO-R3 undefined.
A function that returns a small structure or union places the returned value in
registers RO-R3. Other structures and unions are returned in memory, pointed
by the “invisible” first function argument.

40 LatticeMico8 Processor Reference Manual

PROGRAMMING MODEL : Interrupt Convention

Interrupt Convention

Interrupts are managed on an interrupt stack that is separate from the normal
program stack. In the event of an interrupt, the stack pointer is switched to the
top of the interrupt stack minus 32 where all the registers are saved according
to the convention shown in Table 11.

Table 11: Interrupt Frame Layout

Register

Position Small Medium Large
Top of Interrupt Stack — 1 R11 R9 R11
Top of Interrupt Stack — 2 R10 R8 R10
Top of Interrupt Stack — 3 R31 R31 R31
Top of Interrupt Stack — 4 R30 R30 R30
Top of Interrupt Stack — 5 R29 R29 R29
Top of Interrupt Stack — 6 R28 R28 R28
Top of Interrupt Stack — 7 R7 R7 R7
Top of Interrupt Stack — 8 R6 R6 R6
Top of Interrupt Stack — 9 R5 R5 R5
Top of Interrupt Stack — 10 R4 R4 R4
Top of Interrupt Stack — 11 R3 R3 R3
Top of Interrupt Stack — 12 R2 R2 R2
Top of Interrupt Stack — 13 R1 R1 R1
Top of Interrupt Stack — 14 RO RO RO

The first four bytes of the scratchpad memory area are reserved to set up the
interrupt stack in the event of an interrupt. The compiler will generate code to
setup the interrupt stack frame suitable for an interrupt handler in the prologue
of the function that has the "interrupt" attribute. For this interrupt handler to
link correctly, it must be named *__IRQ". An example is shown in Figure 8.

Figure 8: LatticeMico8 Interrupt Handler

__attribute ((interrupt)) _ IRQ (void)

{

// user's interrupt handling code

}

LatticeMico8 Processor Reference Manual 41

PROGRAMMING MODEL : Acessing LatticeMico8 Memory Regions

Acessing LatticeMico8 Memory Regions

As explained in "“Memory Regions” on page 5, the LatticeMico8 architecture
defines three distinct memory regions - PROM, Scratchpad, and Peripheral (I/
0).

Scratchpad

The LatticeMico8 Scratchpad can be read from (or written to) using
LatticeMico8 instructions - Isp, Ispi, ssp, and sspi - regardless of whether it is
internal or external to the microcontroller. The developer should note that the
LatticeMico8 compiler always defaults to the Scratchpad for its data reads/
writes. That is, all memory accesses are always implemented using these
instructions unless otherwise stated.

Note

The size and location of the LatticeMico8 Scratchpad is configurable. The
software developer should note that MSB restricts the Scratchpad, regardless
of its size, to within 0x00000000 - 0x7FFFFFFF. Any MSB component that
falls within this range, as well as, falls within the Scratchpad is accessed using
the aforementioned LatticeMico8 instructions.

Peripheral

The LatticeMico8 Peripheral (1/0) region can be read from (or written to) using
LatticeMico8 instructions - import, importi, export, and exporti. The developer
should note that the LatticeMico8 compiler does not use these instructions for
data reads/writes unless explicitly directed to do so. There are two ways in
which the developer can instruct the compiler to use these instructions for a
particular data access:

1. Inlined Assembly - The developer can access data using inlined assembly
that uses these instructions.

2. Builtin Function - The LatticeMico8 compiler provides two "builtin"
functions that can be used by the software developer in his code when he
needs to access an address within the Peripheral region. The functions
are shown in Table 12.

Table 12: Builtin Functions

Function Effect

void __builtin_export (char value, size_t address) Generates an export or exporti instruction

42 LatticeMico8 Processor Reference Manual

PROGRAMMING MODEL : Acessing LatticeMico8 Memory Re-

Table 12: Builtin Functions

Function Effect

char __ builtin_import (size_t address) Generated an import or importi instruction. The result
of the import instruction is the returned value.

Note: The size of size_t type reflects the size of pointers and is dictated by the memory mode used. Refer
to Table 8 for the number of bytes needed for a pointer

Note

The size and location of the LatticeMico8 Peripheral region is configurable.
The software developer should note that MSB restricts the Peripheral region,
regardless of its size, to within 0x80000000 - OxFFFFFFFF. Any MSB
component that falls within this range, as well as, falls within the Peripheral
region is only accessible using the two mechanisms outlined earlier.

PROM

The LatticeMico8 PROM can either be internal to the microcontroller, or can
be externally located within a non-volatile memory such as SPI flash. When
the PROM is internal to the microcontroller, it cannot be modified via the
LatticeMico8 instruction set. The external PROM can only be modified when it
falls within the LatticeMico8 Scratchpad.

LatticeMico8 Processor Reference Manual 43

PROGRAMMING MODEL

Acessing LatticeMico8 Memory Regions

44

LatticeMico8 Processor Reference Manual

= LATTICE

Index
C modes 9
calling sequence 38 peripheral space 8
configuration options 11 PROM 6
regions 5
D scratchpad space 7
data types 37 \
E NULL pointer 38
external interrupt controllers 10 o
= OPENCORES 6
floating-point types 38 5
I programming
instruction set calling sequence 38
descriptions 16 data types 37
formats 13 interrupt convention 41
lookup table 14 parameter passing 40
interrupt register usage 38
architecture 10 stack frame 39
convention 41 PROM
handlers 39 space 6
iret 10
R
L registers
LatticeMico8 control and status 4
compiler 38 general-'purpose 3
features 1 page pointers 9
microcontroller core 2 ret 10
lookup table 14 s
M scratchpad
memory interrupt handling 10
address 3 size 7
implementation of registers 3 space 7

LatticeMico8 Processor Reference Manual

45

INDEX

stack
frame layout 39
interrupt 41
pointer 39

w

WISHBONE
peripheral interface signals 8
PROM interface signals 6

46 LatticeMico8 Processor Reference Manual

	Introduction
	Architecture
	Register Architecture
	General-Purpose Registers
	Control and Status Registers

	Memory Architecture
	Memory Regions
	Memory Modes

	Interrupt Architecture
	Call Stack

	Configuration Options
	Instruction Set
	Instruction Formats
	Instruction Set Lookup Table
	Instruction Descriptions

	Programming Model
	Data Representation
	Procedure Caller-Callee Convention
	Register Usage
	Stack Frame
	Parameter Passing

	Interrupt Convention
	Acessing LatticeMico8 Memory Regions
	Scratchpad
	Peripheral
	PROM

	Index

