
www.latticesemi.com 1 rd1105_01.0

April 2011 Reference Design RD1105

© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand 
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The Cyclic Redundancy Check (CRC) is an efficient technique for detecting errors during digital data transmissions 
between a source and a destination. The destination device calculates the CRC of the received data. If the CRC 
calculated by the destination device does not match the one calculated by the source device, then the received 
data contains an error. This technique is used in a wide variety of applications from Ethernet transmission to daily 
file transfers. It provides quick and easy insurance of data integrity within digital communication systems The CRC 
is based on polynomial manipulations which treat each received message as a binary number. The received mes-
sage is then divided by a fixed value, also known as the generator polynomial, using modulo-2 arithmetic. The 
characteristic of the CRC implementation is determined by the generator polynomial selection. The generator poly-
nomials are selected to maximize the error detection capability without using too many resources. Generator poly-
nomials that have been incorporated into standards such as CRC-8, CRC-16 and CRC-CCIT are commonly known 
and are well tested. 

This reference design describes the use of Lattice programmable devices to implement the CRC generator and 
checker. The design allows users to implement the CRC using different generator polynomials.

Features
• Parameterized data width

• Supports polynomial orders from CRC-1 to CRC-64

• Supports both CRC generators and CRC checkers

• Allows transposing of incoming data bytes, transposing CRC output bytes

• Allows complement input data bytes and complement output CRC bytes

Functional Description
The functional block diagram of this reference design is shown in Figure 1.

Figure 1. Functional Block Diagram

clk

CRC Generator CRC Checker

rst

data_ena

crc

input_data

clk

rst

check_ena

data_crc_input

crc_checkout

Cyclic Redundancy Check



2

Lattice Semiconductor Cyclic Redundancy Check

Signal Descriptions
Table 1. Signal Descriptions 

Table 2. Parameter Descriptions

CRC Generator
A polynomial called generator polynomial must be chosen before the user computes the CRC of a transmitted 
message. The generator polynomial must have a degree greater than zero and a non-zero coefficient in the MSB 
and LSB positions. An attribute of the generator polynomial is that its length is equal to the degree +1. For example, 
in CRC-8, the degree is 8 and the length is 9. The degree of the generator polynomial determines the length of the 
CRC code. For example, if the degree of the generator polynomial is 16, then the length of the CRC code is 16.

In this reference design, a n number of zero (‘0’) bits (n is the degree of the generator polynomial) is appended to 
the transmitted message before the n-bit CRC code is computed. Modulo-2 arithmetic (XOR operation) is imple-
mented when computing n-bit CRC code, as shown in the example below. In this example, the generator polyno-
mial is chosen as CRC-16-IBM (11000000000000101) and the transmitted message is chosen as 0xAA 
(10101010). Before the CRC code is computed, 16 bits of zeros are appended to the 0xAA and line the bits in a 
row, as follows:

Signal Name Direction
Active 
State Description

CRC Generator

clk Input N/A Clock signal

rst Input High Asynchronous reset signal

data_ena Input High Input data enable signal

input_data[INPUT_DATA_WIDTH-1 : 0 ] Input N/A Input data being transmitted

crc[CRC_WIDTH-1 : 0 ] Output N/A CRC code

CRC Checker

clk Input N/A Clock signal

rst Input High Asynchronous reset signal

check_ena Input High Input enable signal

data_crc_input [INPUT_DATA_WIDTH+ CRC_WIDTH-1 : 0 ] Input N/A Received message appending CRC 
code

crc_checkout[CRC_WIDTH-1 : 0 ] Output N/A CRC checker out code

Parameter Description Active Value
Default 
Value

INPUT_DATA_WIDTH Specifies the width of the message to be transmitted. 2 to 256 8

CRC_WIDTH Specifies the CRC code width. 1 to 64 16

INPUT_DATA TRANSPOSE Specifies whether the message to be transmitted is 
transposed before generating the CRC code. 

0 = Not transposed 
1 = Transposed 0

CRC_TRANSPOSE Specifies whether the CRC code is transposed after 
generating the CRC code.

0 = Not transposed 
1 = Transposed 0

INPUT_DATA_COMPLEMETN Specifies whether the message to be transmitted is 
complemented before generating the CRC code.

0= Not complemented
1= Complemented 0

CRC_COMPLEMENT Specifies whether the CRC code is complemented after 
generating the CRC code.

0= Not complemented
1= Complemented 0

POLYNOMINAL

The CRC polynomial, which can be specified between 
CRC-1 and CRC-64. The LSB and MSB positions of the 
polynomial value must be 1. The default value is 0x8005 
(CRC-16).

CRC-1 to CRC-64 0x8005



3

Lattice Semiconductor Cyclic Redundancy Check

101010100000000000000000

To compute the CRC code, position the generator polynomial underneath the left-hand end of the row, then XOR 
the generator polynomial into the input, as follows:

If the resulting MSB bit is a ‘0’, the result is shifted to the right until the left-most bit (LSB) is a ‘1’. Position the gen-
erator polynomial under the non-zero (left-hand end) of the result and do the XOR calculation again. This process 
is repeated until the generator polynomial reaches the right-hand end of the result. The following is the entire calcu-
lation of this example:

Figure 2 shows the timing diagram of the CRC generator.

Figure 2. CRC Generator Timing (Polynomial = 11000000000000101)

Before calculating the CRC code, the user can transpose the input data. For example, if the input data is 0x55 and 
the parameter INPUT_DATA TRANSPOSE is set to ‘1’, then this design uses data 0xAA to generate the CRC code. 

101010100000000000000000
11000000000000101

Transmitted message appending n-bit zero
Generator polynomial
XOR

011010100000001010000000 Result

101010100000000000000000
11000000000000101

Transmitted message appending n-bit zero
Generator polynomial
XOR

011010100000001010000000 Result
11000000000000101

XOR
00010100000001111000000 Result

Generator polynomial

11000000000000101
XOR

01100000001111101000 Result

Generator polynomial

11000000000000101
XOR

0000000001111111100 CRC (0x03fc )

Generator polynomial

0xaa

0x03fc

rst

clk

data_ena

input_data

crc



4

Lattice Semiconductor Cyclic Redundancy Check

Before calculating the CRC code, the user can complement the input data. For example, if the input data is 0xF0 
and the parameter INPUT_DATA_COMPLEMETN is set to ‘1’, then this design uses data 0x0F to generate the 
CRC code.

After calculating the CRC code, the user can transpose it. For example, if the CRC code is 0x55 and the parameter 
CRC_TRANSPOSE is set to ‘1’, then the CRC code becomes 0xAA.

After calculating the CRC code, the user can complement the it. For example, if the CRC code is 0xF0 and the 
parameter CRC_COMPLEMENT is set to ‘1’, then the CRC code becomes 0x0F.

CRC Checker
To check the CRC after the data transmission, the user passes the transmitted message appending the CRC code 
through the CRC checker module. The calculation of the CRC checker is the same as the CRC generator.

The above example is used to explain the calculation of the CRC checker, as shown below:

If the checkout value is ‘0’ (all bits ‘0’), then there was no error during the transmitting of the message.

Figure 3 shows the timing of CRC checker.

Figure 3. CRC Checker Timing Diagram (Polynomial = 11000000000000101)

101010100000001111111100
11000000000000101

Transmitted message appending crc code
Generator polynomial
XOR

011010100000000101111100 Result
11000000000000101

XOR
00010100000000000111100 Result

Generator polynomial

11000000000000101
XOR

01100000000000010100 Result

Generator polynomial

11000000000000101
XOR

0000000000000000000 CRC_checkout (0x0000 )

Generator polynomial

0xaa03fc

0x0000

rst

clk

check_ena

data_crc_input

crc_checkout



5

Lattice Semiconductor Cyclic Redundancy Check

Test Bench Description
The test bench simulates the CRC generator and CRC checker in this design with default settings. 

Figure 4. CRC Generator

Figure 5. CRC Checker

Implementation
This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or 
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 3. Performance and Resource Utilization1

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History

Device Family Language Speed Grade Utilization fMAX (MHz) I/Os
Architecture
Resources

MachXO2™ 2
Verilog -6 26 LUTs >50 44 N/A

VHDL -6 26 LUTs >50 44 N/A

MachXO™ 3
Verilog -3 25 LUTs >50 44 N/A

VHDL -3 25 LUTs >50 44 N/A

1. Use default settings: INPUT_DATA_WIDTH=8; CRC_WIDTH=16; INPUT_DATA_TRANSPOSE=0; CRC_TRANSPOSE=0; 
INPUT_DATA_COMPLEMENT=0; CRC_COMPLEMENT=0; POLYNOMIAL=0x8005.

2. Performance and utilization characteristics are generated using LCMXO2-1200HC-6TG144C with Lattice Diamond™ 1.2 design software. 
3. Performance and utilization characteristics are generated using LCMXO640C-3T100C with Lattice Diamond 1.2 design software. 

Date Version Change Summary

April 2011 01.0 Initial release.

www.latticesemi.com/dynamic/view_document.cfm?document_id=http://www.latticesemi.com/

	Cyclic Redundancy Check
	Introduction
	Features
	Functional Description
	Signal Descriptions
	CRC Generator
	CRC Checker

	Test Bench Description
	Implementation
	Technical Support Assistance
	Revision History



