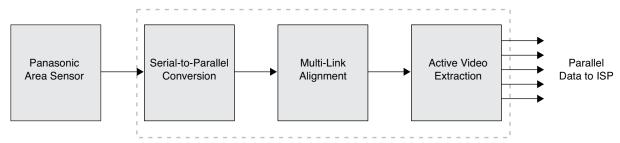


Panasonic Image Sensor Bridge

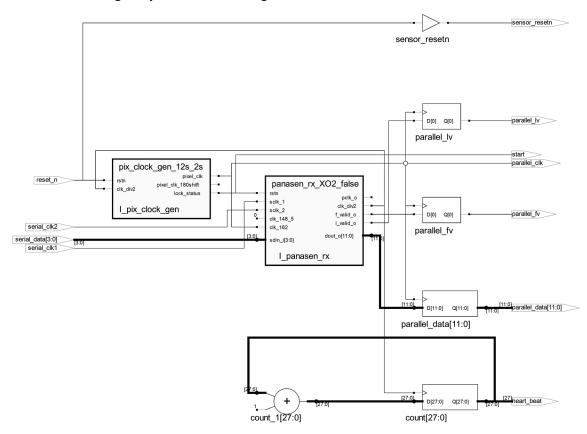

March 2012 Reference Design RD1121

Introduction

As image sensor resolutions have increased, Panasonic has chosen a differential high-speed serial interface instead of using a traditional CMOS parallel interface for their sensors. This was done because the resolution and frame rate of the MN34041 and MN34081 are sizable. An interface of higher bandwidth and lower noise than a standard CMOS parallel bus was required. The Panasonic MN34041 and the MN34081 are image sensors that output 2.1M pixels and 1.33M pixels, respectively. The MN34041 outputs two serial data streams up to three lanes wide. The MN34081 outputs two serial data streams up to two lanes wide. Each stream has its own clock.

The Panasonic Image Sensor Bridge reference design is configured to utilize the two data streams with two lanes. The full resolution of the Panasonic sensor is supported (MN34041: 1944x1092 at 60 fps, MN34081: 1304x1024 at 60 fps). The design output is a 12-bit parallel data bus that a standard Image Signal Processor (ISP) can read (Figure 1).

Figure 1. Panasonic Image Sensor Bridge Block Diagram


Each input port is a sub-LVDS signal and can operate up to 500 Mbps. The output signals interfacing to the ISP are single-ended LVCMOS pins and can be driven at 1.8V, 2.5V and 3.3V. For technical details regarding the image sensor, please contact Panasonic.

Complete Reference Design for Panasonic to Parallel Sensor Bridge

The complete reference design includes a sensor bridge NGO and HDL wrappers for component primitives specific to the targeted device family. Reference design blocks diagram are shown in Figures 2 and 3.

Figure 2. Reference Design Top Level Block Diagram

| ECLKSYNCA | CLKDIVC | Constitute | Constit

Figure 3. Reference Design NGO Wrapper Block Diagram

Table 1. Sensor Bridge NGO Port Definitions

Signal	Definition	Direction
reset_n	Reset, active low	Input
serial_clk_1	Serial link channel 1 clock	Input
serial_clk_2	Serial link channel 2 clock	Input
serial_data[3:0]	Serial link data: serial_data [0], ch1 port 0 serial_data [1], ch1 port 1 serial_data [2], ch2 port 0 serial_data [3], ch2 port 1	Input
start	Indicating pixel clock is available	Output
parallel_clk	(serial_clk/2 * 4/3)	Output
parallel_data[11:0]	12-bit parallel data	Output
parallel_lv	Indicates active video data inside a line	Output
parallel_fv	Indicates active lines	Output

Panasonic Sensor Bridge NGO File

The Panasonic Sensor Bridge NGO accepts the deserialized data lanes and formats them to a 12-bit parallel bus (Figure 4). First, the data on each lane is word-aligned to 12 bits. Second, the lanes are aligned to each other. Finally, the word- and lane-aligned data is parsed into the parallel bayer output.

Figure 4. Sensor Bridge NGO Block Diagram

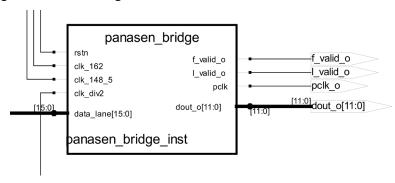
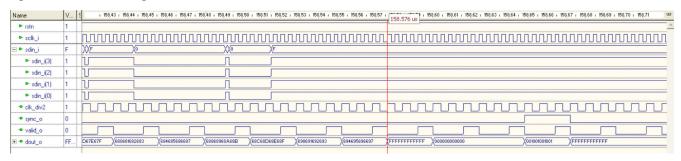



Table 2. Sensor Bridge NGO Port Definitions

Signal	Definition	Direction
rstn	Reset, active low	Input
clk_162	Active Video Extraction Clock: (4/3 * clk_div2); clock speed can vary depending on sensor oscillator and sensor PLL configuration.	Input
clk_148_5	Reserved; tie to 1'b0.	Input
data_lane[15:0]	Deserialized data: data_lane[3:0], ch1 port 0 data_lane[7:4], ch1 port 1 data_lane[11:8], ch2 port 0 data_lane[15:12], ch2 port 1	Input
f_valid_o	frame valid, active high	Output
I_valid_o	line_valid, active high	Output
dout_o[11:0]	Parallel data Dout_o[11:0]	Output
clk_div2	Output clock, Serial clock/2	Output

The simulation screen shot in Figure 5 shows the time of the serial lane inputs to the output of the Multi-Link Alignment Module. Note that the dout bit order is reversed in the simulation. Also, channel 1 and channel 2 use the same serial link clock, sclk_i. This is to simplify the test bench source code. In the actual design, the two clock signals are utilized to capture the deserialize data from each port. A FIFO on each lane is used to create a common clock domain.

Figure 5. Sensor Bridge Simulation

In the simulation dout_o = {ch2 port1, ch2 port0, ch1 port1, ch1 port0}, each chx portx is 12-bit parallel pixel data. The 12-bit parallel bus output is muxed from this and synced to f_valid_o and l_valid_o.

Figures 6 and 7 show the simulation for this reference design. Figure 6 shows an entire frame being transmitted, while Figure 7 shows the start of a frame.

Figure 6. Reference Design Simulation (Full Frame)

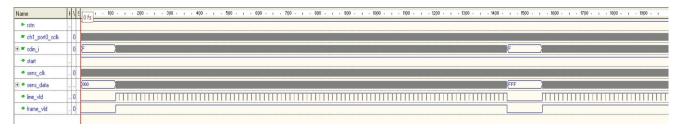
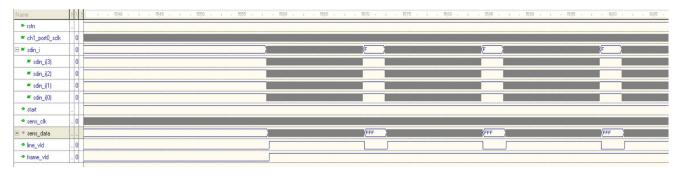



Figure 7. Reference Design Simulation (At Start of Frame)

The following is a summary of this reference design:

- 1. A 2-channel, 2-port sensor bridge NGO is instantiated to implement the serial-to-parallel conversion.
- 2. Clock domain transfer to parallel_clk.
- The final parallel output is 12-bit pixel words at a clock rate of serial_clk/2 *4/3 in Bayer format.
- 4. Line valid and frame valid signals are generated to indicate active pixels in a line and active lines in a frame.

Table 3. Sensor Bridge Resource Utilization in a LatticeXP2 and MachXO2 Devices

Complete Sensor Bridge Reference Design	Registers	Slices	LUTs	EBRs
LatticeXP2	596	468	443	0
MachXO2	822	648	517	0

Table 4. Place & Route Timing Analysis (Based on LatticeXP2-5E and MachXO2-1200HC Devices in 132-Ball csBGA Packages)

	LatticeXP2		MachXO2				
	-5	-6	-7	-4	-5	-6	Units
clk_div2 (Max.)	150.852	176.243	189.861	138.485	143.802	164.231	MHz
parallel_clk (Max.)	193.386	213.493	262.674	164.096	181.554	208.464	MHz

^{1.} MN34041 maximum internal operating frequency = 500 MHz (Table 1.2.6 of MN34041 data sheet). Normal operating frequency is 486 MHz. This means the maximum nominal serial clock speeds are 243 MHz respectively.

^{2.} clk_div2 (Max) = serial_clk/2 = 250MHz/2 = 125MHz. clk_div2(nominal) = 121.5 MHz. Please consider sensor operating speeds when choosing device speed grades. parallel_clk (max) = 4/3 * clk_div2 = 166.67MHz. parallel_clk (nominal) = 162 MHz. Please consider sensor operating speeds when choosing device speed grades.

Table 5. Pinout for Complete Sensor Bridge in a LatticeXP2-5 or MachXO2-1200 Device

Bridge Signal Name	LatticeXP2-5 132-Ball csBGA	MachXO2-1200¹ 132-Ball csBGA		
SDOCAP	H1	N6		
SDOCAN	H3	P6		
SDOCBP	L1	M7		
SDOCBN	L3	N8		
SDODAP_0	D2	M11		
SDODAN_0	E3	P12		
SDODAP_1	D1	P8		
SDODAN_1	E1	M8		
SDODBP_0	F3	M9		
SDODBN_0	G2	N10		
SDODBP_1	C2	N3		
SDODBN_1	D3	P4		
RESET_TO_SENSOR	B9	F2		
PSV	C9	C3		
MSSEL	A7	D1		
RESET_BAR	F12	C1		
PIXCLK	P2	A11		
FRAME_VALID	P14	B7		
LINE_VALID	P13	C4		
DOUT0	N8	C6		
DOUT1	M6	B3		
DOUT2	M5	C11		
DOUT3	M7	A12		
DOUT4	N12	A7		
DOUT5	N7	B5		
DOUT6	P12	A9		
DOUT7	P5	A10		
DOUT8	P6	A2		
DOUT9	N2	B12		
DOUT10	P7	C12		
DOUT11	N4	B13		
TCK ²	K14	B6		
TDI ²	L13	B4		
TDO ²	K13	A4		
TMS ²	L12	A6		

^{1.} When using the pins in this table for the MachXO2-1200 device, termination resistors are built in for serial_data SDOD lines and serial_clk SDOC lines.

All parallel data signals reside on Bank 0 for the MachXO2 and Banks 4 and 5 for the LatticeXP2. Voltage rails for these banks should be considered when interfacing directly to an ISP.

Tested Designs

The Panasonic Image Sensor Bridge has been tested with the Texas Instruments IPNC DM812X and DM385. See Leopard Imaging at www.leopardimaging.com for details on the Texas Instruments IP camera design.

References

• Target Specifications - Area Sensor MN34041PL, Panasonic Corporation

• Target Specifications - Area Sensor MN34081PLJ, Panasonic Corporation

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Date	Version	Change Summary	
May 2011	01.0	Initial release.	
February 2012	01.1	Added data on MN34081 and the MachXO2 pinout.	
March 2012	01.2	Document updated with new corporate logo.	
		Place & Route Timing Analysis table – Corrected speed grade information for MachXO2.	
		Added first footnote to the Pinout table.	
March 2012	01.3	Updated Pinout table.	
March 2012	01.4	Updated Pinout table footnote.	