s LATTICE

Advanced Security Encryption Key
Programming Guide for ECP Device Family

Technical Note

FPGA-TN-02202-1.8

July 2024

Advanced Security Encryption Key Programming Guide for ECP Device Family ::LATT’CE
Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

= LATTICE

Contents

(800 1 =T o) X3RN 3

AbbBreviations iN This DOCUMENT.........uiiiiii et e e e e et e e e e e e et eeeeeeese st taaeaeaeeesaastasseaeeseaaassasseaaaeesansssenseassansnns 5

1. Introduction

N O Y= oV 1 PP POPPRTTPPON

3. LattiCe ENCIYPtioN FEAtUIE.....uiiiiiii ittt e et e e e e e s e e e e e e se bbb e e e e e e s eesssetaeeeeeeeesnstaneeeseeesassssnneeeeessnnssnnens 9

4. Encryption Key Programming AIZOTItNMeeiiiiiiii ettt et e st e e s et e e s eaae e e e s nteeeeenreeesnneeas 10
4.1. Encryption Key Programming FIOWcc.ueeiiiiiie it ctee s ee st e s e st e e e st e e snae e e e sntaeessnnneessnnnnaeennseeesnnens 10
4.2. ECP5, ECP5-5G, LatticeECP3, LatticeECP2MS, and LatticeECP2S Bitstream Encryption Format........c...cccceeuuee 13

4.3. Creating an Encrypted Bitstream File and Key File
4.4, Setting Security and Encryption for FPGA Devices
45, Creating the Encryption Key and Encrypted Bitstream Using Diamond Security Setting Tool and Process Flow

.. 15
5. Encrypted Bitstream JTAG ProgrammMingcccccuieeiiiiieeciieeeeeiteeesitteeeesiteeesssaeeessaeaesssteeesasseeessssasasssesesassesesnssees 17
5.1. Setting Security and Encryption Using the Deployment TOOIcocuiiiieiieiicciiie ettt cvee e 17
5.2. ENCryption KEY PrOgramiMiNg.....ccccuviiiieiiiiiiiiieeet e erciiteee e e e s seiter et e e e e ssssbatteeeesssssbssaaaeesssasssssaaaeesssssssssnaeesssnnnns 22
5.3. Encrypted Bitstream JTAG Programming ProCeAUIES........cccutiiiiriiiieiieeniie ettt ettt e s e e sareesaee e 24
5.4, Advanced Encryption Key Programming FIOWccocuiiiiiiiii ittt et e e aae e e s vaee e esaraeeeanes 25
F YY1 o Lo I AW XY AV Vo] o] [ot 14 e o TN USRS 26
Al Setting Security and ENCryption fOr FPGA DEVICES.......uviiecieiiiiiee et e eetteeesteeeeseteeesesaeeesnsaesesnsaeesennresesnneens 26
A.2. Programming ENCrYPLiON KEY.....o.uuiiiiiiii ittt ettt e e e e st e e e e e s s s et a e e e e e s seaaetaeeeeesssssnsteneaesesanans
A.3. Encrypted Bitstream JTAG ProgramimMiNg.......c.ueeccciereriieeeerieeeeeiieeesseeesesseeesesseeeesassessessseessssssesssssssessssseessnnses
A4, Programming Manufacturing Encryption Key
Appendix B. Using Lattice Model 300 Programmer to Program ENcryption Keyccecueeviiiiieiniiiniennee e 35
Appendix C. ispVM Advanced Encryption Key Programming FIOWScoiuiiiiiiiiiiiiiiiieete et 37
(201 £ 4= g 1ol TSSO USSP 39
TeChNICAl SUPPOIT ASSISTANCE ...c...vviieciiiie e cieee ettt ettt e et e e e et e e s te e e e tteeeeeaeteeesassaeeassseeeasssaeessnsaeeastaeeaanssesesssnasesstseennnnns 40
REVISION HISTOIY 1ottt et e e e e e e et et e e et e e e e et e e e e e e e e et e e e e et e e eaeaeeeeeeeeeeeeesasasenanens 41

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 3.1. Encryption Key FUSE BIOCK DI@gram........cccccuiiiiiiiiieceiie e ceee ettt e e ettt e sae e e et e e e et e s e e naaaeesntaeesansteeesnnsaeessnnananan 9
Figure 4.1. Encryption Key Fuse JTAG Programming FIOW.......ccc.coiiiiiiiiiiienieerieeeiee sttt sttt st st e e st esne e s 11
Figure 4.2. Strategies OPLioNS WINGOWciiiiiiiiiiiiiiiee ettt e ettt e e e e e e e et e e e e e e e sesasetaeeeaeesesanstaeseaaeeesanstanseaaseenansres 15
Figure 4.3. Enter PassWOrd Dialog BOXcicuiiiiiiriieiiieeiitesiteeste ettt ettt ettt st e st e st e eabe e st e e saseesabeesabeesabeesnneesares 15
Figure 4.4. Change PassWOrd DIalog BOXcuuiiiiiiiiiiiiee e ciieeeeiite e et e e e stte e e et te e e eetaeeesbaseeesstaeesansseeeassasaenstseeeanssesesssnns 16
Figure 4.5. Security SETEINGS DIAlOZ BOX......cccicuiieeeiiiieeeiiieeeiiteeeeitteeeeetteeestaeaeestraeeeesaeaessaseeasstasesasssseaassesaeastseeeanssssesnssees 16
Figure 5.1. Getting Started DialOg BOX.......ueeiiuiieeeiieieeiieeeeciteeeestte e e setreeestaee e st taeessasaeeesasaeeeastaeesansseeessseseesssaeesassesesnsees 17
Figure 5.2. File CONVEISION (STEP 1) ..uiiiiiiiieeiiiiie e ettt e ettt ettt e e ettt e e sataeeesataeeeestaeeaansaaeesssaeeeastasesanssaeessseeeasstanesanssnsesnsees 18
Figure 5.3. File CONVEISION (STEP 2) couriiiieeiieeitiieete e sttt este e sttt estteestteestaeesateesaseesateessseesstaessseesateeansessasaeanseesasessnsessnsesanseesnses 19
FIGUre 5.4. ENCIrYPLION KEY SETUP ..uuviiiiiiiiiiiiiiieees ettt sttt e e e e s sttt e et e e s s st bat e e e e e e s seabataaeeesssasssseaaeasssnssnraneeesssnnssnres 20
Figure 5.5. File CONVEISION (STEP 4) ..ouiiiuieiieeiteeie ettt ettt ettt st sb ettt et sat e e atesb e et e et e eabeeabesatesbeesbeenbeentesutesbeesbeenbeans 21
Figure 5.6. ProgrammeEr INTEITACEcoiiiiiie ettt e e ettt e e ettt e e e sttt e e e e tteeeeebaeeesabasaeestaseeansseseassasaeantaeeeansaseeanssees 22
Figure 5.7. DeVvice Properties DIalog BOXc.uiicciiiieiiee e ciiee e ettt et e e e stte e e et te e e eetaeeesabaseeesstaeeseasseeesssasaeastseeeansseseensens 23
Figure A.1. Procedure to Encrypt @ REGUIAr BitSIrEaMccccuuiiiieiiie e ctee et seee e et e e e eer e e e snr e e e e ate e e e e asaeeeennnes 26
Figure A.2. Configuration Modes and Format of Encrypted BitStreamccceeeciiiiiciiii s 28
Figure A.3. Procedure for Programming the Encryption Key ONIYcooiiiieieiiiiiceiiis et 29
Figure A.4. Configuring a Device with an Encrypted BitStreamooceieiiiiie i 31
Figure A.5. Encryption Key Production Programming FIOWcoiueiiiiiiiiiiieeniieeiee sttt 33
Figure B.1. Off board Encryption Key Code Programming on the Model 300 Programmer..........ccoceeeveeniieenieencieeeneeenane 35
Tables

Table 4.1. Encryption Key Fuse JTAG Programming FIOWccoiuiiiiieiiiiiiieeie ettt ettt s 12
Table 4.2. Encrypted Bitstream Format and Configuration Mode Dependencyccoceervueieniieeiiienienieeenie e 13
Table A.1. ENcrypting @ REGUIAI BItSTrEAMcii ittt e ettt e e e e te e e e e tte e e eeabaeeesataeeeesbaeeeensaeaeenseeaaan 27
Table A.2. Programming the ENCryption KEY ONIY.........uiiiiiiieeciiiec ettt erre e st e e e e rate e e s eaaae e e sataeeeenateeeensaaeesanaeaean 30
Table A.3. Configuring a Device with an ENcrypted BitStreamcccviiiiiiieeeiiiic ettt e st e et e e e eaa e e e earaee s 32
Table A.4. Configuring a Device with an Encrypted BitStreamcccueeiiiieeieiiii ettt e e e e e e sraee s 34
Table B.1. Off board Encryption Key Code Programming.......cccccueeeecueiriiiieeeeiieeeeseeeeesieeeseseeeeessneeeeesnnsesssnsesesnnsessssnseneeas 36
Table C.1. Encryption Feature Command Line Syntax of ispVM and iSPUFWcoiiiiiiiriiiinieneeeee e 38

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Advanced Security Encryption Key Programming Guide for ECP Device Family
Technical Note

Abbreviations in This Document

A list of abbreviations and terms used in this document.

Abbreviations or Terms

Definition

AES Advanced Encryption Standard.
JTAG Joint Test Action Group.

OoTP One-Time Programmable.

PCM Pulse-Code Modulation.

PROM Programmable Read Only Memory.
SPI Serial Peripheral Interface.

Authentication

The algorithmic validation process to determine pass/fail results.

Bitstream

A binary file that contains commands and data that can configure FPGA devices.

Configuration

Program (write to the fuses of) a volatile device.

Decipher Key

The key code used for encryption or decryption.

Decrypt Apply the reverse encryption process on an encrypted file.

Encrypt The encryption action has taken place.

Encryption Uses a password (key) and an algorithm to scramble a file.

Hashing A scrambling algorithm that makes it impossible to restore the original contents after it is applied. For
example: Let the seed = 10100101. Let the hashing code = 4 right-shifts.
e Hashing: 4 right-shifts of the seed = 00001010
e Reverse hashing: 4 left-shifts of the hashed seed = 10100000

Key Code The binary key pattern for encryption or decryption.

Key Code Size

The fixed length of the key code in bits. For ECP5, ECP5-5G, LatticeECP3, LatticeECP2MS, and
LatticeECP2S devices, it is 128 bits.

Key Lock Fuse

When programmed, the key lock fuse prevents the encryption key code from being read out.

Non-Volatile Fuse

Fuses that keep the fuse state when power is turned off.

OTP Fuse

One-time programmable, non-volatile fuse that can only be programmed once, and cannot be
erased.

Over Program

An error caused by blowing a fuse that was supposed to remain un-programmed.

Private Key

The key code that is confined to the Trusted Area.

Program Fuse

An OTP fuse that is blown to produce a logical state 1.

Public Key

The key code that is not confined to the Trusted Area.

Un-program Fuse

An OTP fuse that is not blown (left intact) to produce a logical state 0.

Under Program

An error caused by leaving intact (un-blown) a fuse that was supposed to be programmed.

Unencrypt

No encryption action has taken place.

Trusted Area

The real or virtual space that houses all confidential and high-security material.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

All Lattice FPGAs provide configuration data read security, meaning that a fuse can be set so that when the device is
read, all Os are outputted instead of the actual configuration data. This type of protection is common in the industry
and provides good security when the configuration data storage is already programmed into the device. However, if
the configuration bitstream comes from an external boot device it is quite easy to read and intercept the configuration
data, allowing access to the FPGA design.

For this reason, Lattice offers the 128-bit Advanced Encryption Standard (AES) to protect the bitstream. You select and
have total control over the 128-bit key and no special voltages are required to maintain the key within the FPGA. This is
available on the S (security) versions of LatticeECP2™ and LatticeECP2M™ devices. It is also available in all versions of
the LatticeECP3™, ECP5™, and ECP5-5G™ devices.

All volatile FPGAs require non-volatile media, such as a SPI Flash device, to store the bitstream, which configures or
boots-up the FPGA. Therefore, SPI Flash memory is also known as the “boot PROM” for volatile FPGA devices.

Before the introduction of encryption, bitstreams are not protected or secure. Anyone could copy the design simply by
reading the bitstream out of the boot PROM.

If a bitstream is encrypted it cannot be used, even if it is read out of the boot PROM. An encrypted bitstream only
works with an FPGA that contains the same encryption key that was used to encrypt the bitstream.

Encryption offers a mechanism to prevent reverse engineering of intellectual property. It can also be disabled to use
the bitstream in an unsanctioned device for the purpose of limiting supply of the device for inventory control purposes.

One of the best techniques to produce a unique encryption key is serialization.

In terms of design security, an encrypted bitstream is known as protected and an unencrypted bitstream is
unprotected.

The AES security system is the best method to provide the highest level of protection to the bitstream of volatile FPGA
devices. This is demonstrated by the fact that some FPGA vendors started with different encryption schemes and all
eventually standardized on AES. A detailed description of AES can be found in the U.S. government publication of the
standard.

AES uses the symmetric Decipher Key format (that is, encryption key = decryption key). Therefore, the terms decipher
key, encryption key, and decryption key are synonymous. AES defines the decipher key size to be 64, 128, or 256 bits in
length.

The LatticeECP3, LatticeECP2MS, and LatticeECP2S FPGA families support:

e The optimal 128-bit AES key

e The reliable one-time programmable (OTP) non-volatile fuses for the AES encryption key
e Anunencrypted bitstream can be programmed into the device even if security key is set

The ECP5 and ECP5-5G families support:

e The optimal 128-bit AES key

e The reliable OTP non-volatile fuse for AES encryption key

e Option of unencrypted bitstream can be or cannot be programmed into the device when security key is set.

This document describes the security key programming operations at various stages of the implementation:
e Board prototyping using the Lattice Diamond™ Programmer software
e Manufacturing using the Diamond Programmer software
e Large volume production programming using desktop programmers
e Advanced security key programming using the Diamond Programmer software
e Decryption key serialization
e Bitstream encryption with serialized decryption key
The encryption scheme detail implemented in ECP5, ECP5-5G, LatticeECP3, LatticeECP2MS, and LatticeECP2S FPGA
families is provided in this document for those interested in the implementation details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2. Overview

The Diamond Programmer software takes care of all the technical details of programming the device, which saves you
from having to understand all the underlying programming complexities.

The technical information about the key code programming provided here is for the benefit of encryption users as a

reference. Due to the complexity of programming the key code into the device, only the high-level flow is presented.

This document does not provide the details for you to craft your own programming code (driver).

In LatticeECP2S, LatticeECP2MS, LatticeECP3, ECP5, and ECP5-5G devices, the OTP fuses for the key code can be

programmed in-system using the Diamond Programmer software in one of the following ways:

e Onboard programming using a Lattice parallel port cable with the 8-pin AMP connector or 10-pin JEDEC connector
connected between a PC or Linux system and a board test system

e Onboard programming using a Lattice USB port cable connected between a PC or Linux system and a board test
system

e Embedded onboard programming using FTDI single chip USB converter devices connected between a PC or Linux
system and an outfitted PCB host

e Off board programming using the Lattice Model 300 Desktop Programmer and Socket Adapter

The OTP fuses require a complicated if-then-else pass/fail decision tree programming flow. The following files cannot
support programming of the OTP fuses because of their simple go/no-go only pass/fail format:

e SVFfiles for IEEE 1149.1 BSCAN tools

VME files for embedded field upgrades

e ATE vectors for the Agilent HP3070 bed-of-nail board testers

ISC BSDL files for IEEE 1532 compliant tools

Instead, Lattice provides you with the following methods to program the key code:

e Off board programming using key files for third-party programmer vendors (BPM Microsystems, System General).
e Onboard programming using STAPL files for third-party BSCAN tools

The weakest link of the encryption flow is the transmission path of the key code from the source to the programming
area. The following lists two methods for transmitting the key code:

e Verbal

e Written (that is, encrypted key files)

The best deterrence against hackers is to transmit the key code in the form of encrypted key files to the trusted area.
The password for opening the encrypted key files can be transmitted when the programming operation begins, and
controlled with either time or quantity expiration.

The Diamond Programmer software supports the following methods of key code transmission:
e Entering the key code directly into the GUI
e Importing the key file after entering the password for the key file

To maintain the confidentiality and security of the key code, an industry standard requires all software and
programming tools for key code programming to observe the following rule:

It is strongly recommended you do not make a hard copy of the key code in the form of a data record (file) on a non-
volatile media, such as hard disks, or as a data image into non-volatile memory such as Flash devices.

Therefore, software and programming tools must only copy the key code into the volatile RAM of the PC during run
time to adhere to this rule.

The Diamond software follows the rule except when the key code is entered directly into the Diamond Security Setting
Tool GUI or into the Diamond Deployment Tool GUI. The key code is written into the chain configuration (.xcf) file or
into a key (.bek) file. You are informed and can make the appropriate arrangement to protect the files.

The AES has two algorithms—encryption and decryption. The U.S. government requires distribution control on all
software containing the encryption algorithm. To meet these requirements, the Diamond Programmer software does
not support encryption through normal software distribution. Lattice only distributes these capabilities through the
licensed-controlled Lattice Diamond design software. The standalone Diamond Programmer software control patches
can be obtained from Lattice Sales. The control patch inserts the encryption algorithm into the Diamond software tools
to enable encryption.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

If the Diamond design software does not have encryption enabled, the following operations cannot be performed:
e Converting an unencrypted bitstream into an encrypted bitstream
e Writing (saving) the password-protected (encrypted) key file

If encryption is not enabled, software cannot generate the key file. Instead, the key code that you entered is written

into the chain configuration (.xcf) file.

Note: The .xcf file is not encrypted, thus the key code can be obtained by reading the .xcf file. Therefore, entering the
key code directly should be carried out only in a trusted area.

The true security of encryption depends entirely on the security (protection) of the key code. Once the key code is
compromised, the corresponding encrypted bitstream is also compromised. This is because the decryption algorithm is
available to decrypt the bitstream with a good key.

Note: A good key is the key code that was used to encrypt the bitstream. The bitstream does not work if a different key
code is used to decrypt the encrypted bitstream. Therefore, a different key code is a bad key. A working bitstream
means the device receiving the bitstream is configured successfully, resulting in both DONE and INITN pins going
high. By simply viewing a decrypted bitstream, one cannot tell if it successfully configures a device.

A specialist skilled in the art of encryption can extract the key code if both the unencrypted bitstream and the
encrypted version of the same bitstream are available. Thus, for security reasons, it is standard practice in the
advanced security industry to demand traceability of the unencrypted bitstream. After the unencrypted bitstream is
encrypted, the unencrypted bitstream must be destroyed (deleted) to protect it.

The discussion above focuses on standard practices of the security industry for protecting key codes from leaking out
through paperwork control. For hackers, instead of hunting the key code through paperwork leaks, their first line of
attack is to read from FPGAs:

e Open the package and inspect OTP fuses on the die visually.

e Open the package and micro-probe the die to read the OTP fuses electronically.

In addition to the standard silicon layout defensive practices (that is, hiding fuses under several layers of metal and
scrambling their physical locations), Lattice has implemented the hashing code by the mesh circuit in ECP5, ECP5-5G,
LatticeECP3, LatticeECP2MS, and LatticeECP2S devices. This is a reliable defense against the two hacking tactics
mentioned above. Even if the hacker succeeds in obtaining a key code, the key code is invalid (useless).

The deployment of the hashing code helps assure that the key code cannot be compromised by hacking the device
security. The key code is extremely secure when it is programmed into the device. The only drawback of hashing is that
the key code fuse verification (the fuse-by-fuse check for an exact match) is not supported. Instead, verification can
only be done by using the encrypted bitstream. Verification by encrypted bitstream can be done before and after the
key lock fuse is programmed.

Lattice devices are uniquely designed to accept a regular bitstream whether or not the encryption key is programmed
into the device. This allows for system debugging even if the key code is lost or unknown. This is especially handy when
each device has a unique key code.

Some designers believe that if a device accepts both an encrypted and unencrypted bitstream, hackers can easily
create an unencrypted bitstream for the device to plant the probing agent (hacker probe) to compromise the security
of the system, and thus the device would have a security hole. This conclusion results from the assumption that the
unencrypted bitstream for the hacker probe can be superimposed on the encrypted bitstream. This cannot happen
because prior to configuring the device with an unencrypted bitstream, the Lattice devices perform a mandatory clear-
all operation which erases the SRAM fuses prior to configuration. Thus, the hacker probe planted into a cleared device
is useless and the key code and the encrypted bitstream remain protected. On top of that, ECP5 and ECP5-5G devices
also provide an Encryption Only option, which allows you to set the device to accept encrypted bitstream only.
However, this option is available with ECP5 and ECP5-5G devices only.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Lattice Encryption Feature

The following figure illustrates the logical functional blocks supporting the encryption feature.

The Lattice device families support the encryption feature by using three key rows. Each row has 128 fuses, for a total
384 (3 x 128) fuses forming the 128-bit decryption key.

Theoretically, only one row of 128 fuses should be sufficient to support 128-bit decryption key.

Due to the nature of the OTP fuses, some fuses might not respond to the program command. Thus, one or more
additional row(s) of fuses is provided to serve the following purposes:

e Serve as back-up fuses to enhance the encryption key programming yield

e Serve as redundant fuses to enhance encryption key reliability

Q Q Lock
Fuses

Fuse Row 1 (KEY 1) |XX . XX|
Fuse Row 2 (KEY 2) ‘XX............XX|
Fuse Row 3 (KEY 3) XX XX|

Read Out
Disable

Key Output

$_ Encrypted Bitstream

1
Key Input > i I Decyrption Key
S o
(ad (ad
o o
S o
[S I

Decryption

Engine

97T 1] [N
LTT U] [N

Decrypted
Bitstream

Figure 3.1. Encryption Key Fuse Block Diagram

Because KEY2 and KEY3 rows are redundant fuses, coupling with the fact that the E-fuses are OTP only, the KEY1, KEY2,
and KEY3 rows should be programmed to the same key code.

The function of the key lock fuses is to protect the programmed encryption key from being read. Therefore,
programming the key lock fuse does not affect the encryption feature. If the device key has been programmed, before
shipping the boards out to end-customers, the key lock fuse must be programmed to protect the encryption key from
falling into the unauthorized hands.

The purpose of the mesh circuit is to destroy the visual correlation between the physical location of a fuse and its
logical function (that is, the decipher key bit number). In other words, the key code is still protected even if the die is
open and the fuse pattern is read by visual inspection. This circuit causes the key code shifted in for programming to be
different from the one shifted out for verification.

The task of the decryption engine is to decrypt the incoming encrypted bitstream, turning it into an unencrypted
bitstream while writing into the SRAM fuses. After the unencrypted bitstream is written into the SRAM fuses, setting
the security fuse is the only method that can be used to protect the bitstream. The security fuse is set automatically
when encrypting the bitstream.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Encryption Key Programming Algorithm

The E-fuses in Lattice devices do not need a super-voltage or high current to be programmed. This allows the
encryption key to be programmed in-system. The two additional rows of backup E-fuses ensure the encryption key
programming yield is high. However, the nature of E-fuses does not allow for any errors. When an E-fuse that is not
supposed to be programmed is programmed, the device is rejected. The following standard precautionary measures
are deployed to minimize the possibility of rejects:

Use a qualification technique to verify first, then program

Use a double shifting-in technique to screen out double clocking

Use a double verify technique to protect against data corruption

Use a redundancy fuses scheme to protect against power disruption during programming

4.1. Encryption Key Programming Flow

Figure 4.1 provides a high-level view of the encryption key programming flow implemented in the Diamond
Programmer software. The programming algorithm for the OTP fuses is complex, and it is impractical for users to craft
their own programming code. It is also beyond the scope of this document to describe the programming flow in detail.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

, 3

Enter Edit Mode Yes
‘ Clear The Mismatch Counter
| Check Key 1, 2,3 of All 128 Bit Locations
¢ Set #=1,2,3
Use Key Code As The Mask
@ Compare The Key Code Against Buffer #

Increment The Mismatch Counter
of The Mis-Match Bit Location

S

| Shift Key Code Into Key # Key
i File No

Shift Out From Key # The Meshed

Key Code Into The Buffer # Yes
¢ Scan All 128 Mismatch Counters
Shift Key Code Into Key # |
Shift Out From Key # The Meshed Key @
Code And Compare Against the Buffer #

No, Not Selected
Need Lock
?
FAIL @ .
Yes, Selected
| Shift In The Lock Pattern |

Activate Program Action ¢

¥

| Wait 2 Seconds |

| Activate Program Action |

Read From Key # Into Buffer # | Wait 2 Seconds | @
Compare Against The Key Code ¢

@ | Read From Key 1 The Meshed Key Code |

® >

Over Blown

Recommended:
Configure Device With The Encrypted
Bitstream To Confirm W orking

Figure 4.1. Encryption Key Fuse JTAG Programming Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.1. Encryption Key Fuse JTAG Programming Flow

Note Description

1 Set the device into JTAG programmable mode. The device requires a special password to arm the E-fuse
programming engine to prevent accidental and unauthorized access to the E-fuse block.

2 There are three rows of E-fuses that must be programmed. The pass-counter remembers the total number of fuse
rows with 100% pass verify.

3 This is the first read of the key code that you entered. The key code is read the first time it is used as the master key
code for comparison.

4 This is the second read of the key code. If the comparison with the master key in Note 3 passes, then the key code
entered has been shifted in correctly. The key code is authenticated.

5 Programming time or burn time. This is the most critical moment of the programming process. The power supply
must not be interrupted. If a power disruption happens (such as a ground surge), the E-fuse state is not undefined.

6 An unprogrammed fuse state = 0. A programmed fuse state = 1. If any un-programmed fuse is found to be
programmed, then an over-blow has occurred and the device must be rejected.

7 If the key code read from the fuses matches the master key code from Note 3, the key is 100% verified and the pass
counter is incremented to register a perfect match.

8 The pass/fail decision flow changes from a simple go/no-go flow to the more complicated if-then-else flow when
there is no perfect match (that is, the value of the pass counter = 0). The if-then-else flow is necessary for all three
rows that need to be re-checked to make sure that at least one fuse is programmed in the column(s) where the fuse
state is expected to be a 1 (a programmed fuse state). IEEE 1149.1-specific SVF files, IEEE 1532- specific ISC BSDL and
ATE vectors are for go/no-go flow only. The JEDEC STAPL file is the only standard file that supports the if-then-else
flow. Therefore, for large volume key code programming, Latticerecommends:

e Use third-party desktop programmers (BPM Microsystems or System General)

e Use BSCAN tools which support STAPL files

9 Once the lock fuse is programmed, the key code cannot be read out to protect it from falling into unauthorized
hands. This step, therefore, is mandatory in production programming. It is optional during the board development
phase or evaluation phase. Users should select the option accordingly.

10 This step verifies that the lock fuse is programmed. If the lock fuse is indeed programmed, instead of the key code,
all 1s, for ECP5 and ECP5-5G devices, or all Os, for ECP3 and ECP2/MS devices, in the fuse state will be read out.

Due to the complexity of the encryption key programming flow, it cannot be expressed by using the simple SVF format.
Instead, you are strongly advised to use the STAPL file.

The Diamond Deployment Tool can generate a STAPL file for you to program the encryption key in-system using a third-
party tool that supports SVF files. All third-party tools that support SVF files also support STAPL.

Lattice works closely with third-party programmer vendors to develop off board programmer support. Lattice provides
detailed programming algorithm specifications to the Lattice-approved third-party programmer vendors. Lattice
engineers perform a full qualification on the programming code developed by these vendors to ensure the fuses are
programmed to meet Lattice’s quality and reliability requirements.

Lattice also can pre-program a user’s encryption key into a device before shipment. Contact Lattice Sales for details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.2.

Encryption Format

Table 4.2. Encrypted Bitstream Format and Configuration Mode Dependency

ECP5, ECP5-5G, LatticeECP3, LatticeECP2MS, and LatticeECP2S Bitstream

Master Modes

Slave Modes

SPI

(Bit Wide Serial)
Bit 0...n?

JTAG, SCM, SSPI
(Bit-Wide Serial)
Bit 0...n

PCM (CPU)
(Byte-Wide
Parallel) DO..7

Description

Encrypted Data

filler

filler

128 Bits of 128 Bits of encrypted data
Encrypted Data
128 Bits of 64 bits of 1s as 512 bits of 1s as

Encrypted Data

filler

filler

Comments (Comment String) Optional. Can be replaced by >= 128 bits
of dummy. See Note 4.

Header 1111..1111 Mandatory if the Comment String above
exists.

Encryption 1011101010110011 Mandatory. OxBAB3 decryption preamble

Preamble code.

30,000 Filler Bits 11..1111 11..1111 Mandatory. Provides delay time > 500us
for the decryption engine to load the
decryption key. The 30K clocks are
calculated with Fmax = 60 MHz to yield
the 500us delay. See Note 5.

Alignment 1011110010110011 Mandatory. 0xBCB3 is the alignment

Preamble code to signify the encrypted bitstream
follows.

Delimiter Bit? 1 Mandatory. This bit separates and
provides a smooth transition between
the unencrypted field and the encrypted
field.

Encrypted 128 Bits of 128 Bits of encrypted data The decryption packet size = 128 bits per

Configuration Data | Encrypted Data packet.

128 Bits of 64 bits of 1s as 512 bits of 1s as Each packet is punctuated by filler

equivalent to 64 clocks.

SPI mode needs no filler since it is a
Master Mode. It provides its own clock,
using the technique of clock suspension
(stops CCLK for 64 clocks worth of delay).
In CPU mode, each clock is for a byte of
data, thus 64 clocks = 64 bytes =64 * 8
bits = 512 bits of filler. See Note 3 for
details on filler.

Encrypted Frame
Program Done

32 Bits Encrypted

Mandatory. Terminates the bitstream
engine and readies the device for
wake-up.

Frame (End)

32-bit Encrypted Terminator

Mandatory. Terminates the decryption
engine.

clocks

Packet Bound 11..1111 Mandatory. Sizes the last frame to be
Filler Bits packet- bound.
207 bits/wake up 111..1111 Mandatory. 207 + the delimiter bit = 208,

thus the entire bitstream is
byte-bounded.

Notes:

1. Dual Boot with encryption only available with LatticeECP3, ECP5 and ECP5-5G devices. Unsupported with LatticeECP2S and
LatticeECP2MS devices. Multiple Boot with encryption is available only with ECP5 and ECP5-5G devices.

2. The direction of shifting the bitstream is from left to right (that is, bit 0, 1, 2...n).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. The single delimiter bit prepares the device for the encrypted bitstream. This bit offsets the entire bitstream from byte bond
until the end of the bitstream where the 207 bits of wake-up clocks are padded. The consequence of this delimiter bit causes
the skipping of filler bits to keep the encryption bitstream size small rather difficult.

The encrypted bitstream in Slave Mode, as compared to Master mode, increases drastically due to the insertion of the filler
bits. In SCM and JTAG modes, it would increase the bitstream size by 50%. In PCM mode, it would increase the bitstream size by
400%. The drivers for the SCM and PCM modes can be designed to provide their own filler bits (they are the 64 decryption
clocks). The same encrypted bitstream without filler bits for SPI mode can also be used. Embedded applications can only
support an encrypted bitstream with the filler bits already inserted. Deployment Tool prompts you to convert the encrypted
bitstream to meet the filler bits requirement when users choose the Fast Program operation.

4. Do not select the no-header option when generating the bitstream for SPI mode operation. The header string is used in lieu of
dummy bits. The device ignores the first 128 bits of data coming out of the SPI Flash device.

5. When the devices read configuration data out of the SPI Flash devices, the first 128 bits of data are ignored since most SPI Flash
devices provide random data on the first eight clocks in a fast read. The header string, which usually stores your entry, is a
don’t-care for configuration purpose. Deployment Tool uses the header as the filler to meet the 128 bits dummy requirement.

4.3. Creating an Encrypted Bitstream File and Key File

The Encryption feature must be enabled to create a key file and encrypt a Lattice bitstream file. There are two ways to
create an encrypted key file and encrypted bitstream file:

1. Inthe Lattice Diamond design software, set security settings using the Security Setting tool and then generate an
encrypted bitstream from within the Process pane.

2. Inthe Deployment tool, specify security settings and convert an unencrypted bitstream file to an encrypted
bitstream file.

4.4. Setting Security and Encryption for FPGA Devices

There is an important difference between using the Deployment Tool and using the Security Setting tool and the
Diamond Process flow. When the Security Setting tool is not used, an unencrypted bitstream is created in the Diamond
Process flow. When using the Security Setting tool to specify encryption settings and the Diamond Process flow to
create a bitstream, the Diamond software only creates an encrypted bitstream. When using the Deployment tool, an
unencrypted bitstream file is used to create an encrypted bitstream file. Therefore, using the Deployment tool is
considered less secure unless the tools and the unencrypted bitstream file are in a trusted secure area. The
unencrypted bitstream could be protected by using a security control such as PKZIP along with a password to protect
the file.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-
HH LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\:lc.e Flahrlmly
echnical Note

4.5. Creating the Encryption Key and Encrypted Bitstream Using Diamond
Security Setting Tool and Process Flow
To create the Encryption Key and Encrypted Bitstream, follow these steps:

1. Inthe Diamond File List window pane, double-click on the Strategy to be used for your design to invoke the
Strategies option window. In this window, select Bitstream. Set the required Bitstream options and click OK.

‘::2' Strategies - Strategyl ®@

Description: | [

Process

= 7 Synthesize Design
Synplify Pro Display catalog: Al :'H Default J

Precision

ranslate Design Name § Type Value
=] Map Design Chain Mode List Disable
Map Trace Create bit file T/F True
=] lace & Route Design Mo Header TJF False
Place & Route Trace Qutput Format List Bit File (Binary)
IO Timing Analysis PROM Data Output Format List Intel Hex 32-bit
iming Simulation iReset Config RAM in re-configuration : T/F True
[25] Bitstream Run DRC TiF True
Search Path Dir

The Reset option reinitializes the device when you download a bitstream or JEDEC file. The No Reset
option retains the current configuration and allows additional bitstream or JEDEC configuration.

Lo J[conce pply

Figure 4.2. Strategies Options Window

2. Inthe Diamond software, select Tools > Security Setting. The Enter Password dialog box appears with the default
password as LATTICESEMI.

'3:2' Enter Password E3[3]

Enter Password

|LATTICESEMI |

Password must be 8 to 16 characters of Alpha and Numeric values
and no spaces.

l Change I[Ok][Cancel H Help]

Figure 4.3. Enter Password Dialog Box

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8 15

http://www.latticesemi.com/legal

Advanced Security Encryption Key Programming Guide for ECP Device Family :.ILATTICE
Technical Note

3. Select the Change button to open the Change Password dialog box and create a unique password for the
encryption key file. The password must be between 8 and 16 characters. Verify the password and select OK.

{1~ Change Password @@

Set Password

Enter Password

[|
Verify Password

| |

Password must be 8 to 16 characters of
Alpha and Numeric values and no spaces.

[Ok][Cancel]

Figure 4.4. Change Password Dialog Box

4. The Security Settings dialog box appears. Select the Advanced Security Settings check box to enable entering the
Encryption key. Select the Key Format. The following lists the choices:
e ASCII — Alphanumeric values, using up to16 characters
e Hex —Values of 0 through F, using up to 32 characters
e Binary — Values of 0 and 1, using up to 128 characters

5. Select OK to create the bitstream encryption key file (.bek).

{:0 Security Settings @@
Advanced Security Settings

Advanced Settings Options

Cncrypticn Key Ker Mormat

| [ascr v

[OK][Cancel][Help]

Figure 4.5. Security Settings Dialog Box

6. To create the encrypted bitstream, double-click on Bitstream File, under Export Files, in the Process pane. An
encrypted bitstream file (.bit) is created. You can now use this file to program the device using the Diamond
Programmer software. The encrypted bit stream generation is dependent on the configuration mode that you
selected in the Diamond Spreadsheet view. This step is necessary to pad the correct number of program mode
dependent filler bits when encrypting the bitstream. The filler bits are described later in this document.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

-
H- LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\Inc.e Flal\rlmtly
echnical Note

5. Encrypted Bitstream JTAG Programming

The way Diamond Programmer software supports JTAG programming makes the differences between an encrypted
bitstream and an unencrypted (regular) bitstream transparent to you.

The major difference between an encrypted and a regular bitstream is the configuration mode dependency of the
encrypted bitstream. Regular bitstream format is mode-independent. Therefore, regular bitstreams do not have the
configuration mode note field on the bitstream header, whereas the encrypted bitstreams do.

Programmer uses the note field of the bitstream header to ensure the bitstream is encrypted and the configuration
mode is selected, and prompts you accordingly. If the configuration mode selected is SPI or SPIm, you are prompted to
convert the configuration mode and save it as a temporary file. If the configuration mode selected is Slave SCM, no
conversion is necessary.

Note: When prompted to convert an encrypted bitstream for SPI or SPIm configuration modes, do not overwrite the
original file. Instead, save the changed file to a different file. If the encrypted bitstream has the configuration
mode changed to Slave SCM then programmed into the SPI Flash, the Lattice devices fail configuration. Only the
encrypted bitstream for SPI or SPIm configuration mode can be programmed into the SPI Flash devices.

5.1. Setting Security and Encryption Using the Deployment Tool

The Deployment Tool is a stand-alone tool that allows you to generate files for deployment for single devices or a chain
of devices. It is also used to convert data files to other formats. The Deployment tool can be installed as an individual
tool or as part of the Diamond software installation.

1. When installed as part of the Diamond software, invoke the Deployment tool from: Start > Programs > Lattice
Diamond > Accessories > Deployment Tool.

In Linux, from the <install_path>/bin/lin directory, enter the following on a command line: ./deployment.

2. The Getting Started dialog box appears. Choose Create New Deployment.

=~/ Diamond Deployment Tool - Getting Started @@

(3) Create New Deployment

Function Type: File Conversion g
Output File Type: v

C) Open an Existing Deployment

Recent Files: C:/DEMOSSERDES Target fimpl1 /project0.ddt

[OK] [Close]

Figure 5.1. Getting Started Dialog Box

In the Function Type drop-down menu, choose File Conversion.
In the Output File Type drop-down menu, choose Bitstream.

Click OK. A File Conversion (step 1) window is displayed.

o vk~ w

Left-click on the blank File Name column. Then click the browse (...) button in the File Name column. Browse to
select the unencrypted .bit file that was created by double-clicking on the Bitstream file in the Process window.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02202-1.8 17

http://www.latticesemi.com/legal

Advanced Security Encryption Key Programming Guide for ECP Device Family
Technical Note

= LATTICE

7.

=" Diamand Deployment Tool- project0.ddt™
File Hep

)
A"EEH Z
File Conversion: Bitstream

Step 1 of 4: Select Input File(s)

S]=]3)

| File Name I Device Family

1 DEMOS/SERDES/ Targetfimpll/Serdes_Eve_Dema_impl1.oit n LatticeECP3

LFE3-35EA

Device

>

Previous Next

Figure 5.2. File Conversion (Step 1)

Select Next to go to the step 2 window. Select the Output Format.

18

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

-
H- LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\:lc.e Flal\rlmtly
echnical Note

=7/ Diamond Deployment Tool- project0.ddt™

File Help
A B 2

File Conversion: Bitstream

Step 2 of 4: Bitstream Options

Ouput Fornat: :ABinary Bitstream vj

Program Szcurity Bit: |On ‘

Yerify ID Code: \Default v‘
Frequency: \Default Y‘
Compression: iDur:ulr b i
CRC Calcdation: :Default 7‘
USERCODE Format: | Hex v|
USERCODE: 00000000

Byte Wide Bit Mirror
Retain Bitstream Header

Encryption

Configuation voce: T

Encryption Key:

Edit Key Save Key

[Previous][MNext]

Figure 5.3. File Conversion (Step 2)

8. To burn the security fuses to disable the ability to read back the bitstream from the SRAM in the FPGA, set the
Program Security Bit to On.

9. To store device data such as firmware version number, manufacturer ID, programming date, programmer make,
pattern code, etc., set a USERCODE. Select the USERCODE Format and then enter a USERCODE:
e ASCIl — Alphanumeric values, using up to 16 characters
e Hex—Values of 0 through F, using up to 32 characters
e Binary - Values of 0 and 1, using up to 128 characters

10. To create an encrypted bitstream from an unencrypted bitstream, select the Encryption option box. Select the
Encryption Configuration Mode. This step is necessary to pad the correct number of program mode dependent
filler bits when encrypting the bitstream. The following lists the choices of modes and filler bits:

e slave_scm — 64 bits.

e slave_pcm — 64 bytes or 512 bits.

e jtag—jtag burst (also known as JTAG fast program) — 64 bits.

e spi—0 bits.

e spim — 0 bits. This mode is for setting up the dual-boot feature. The encrypted bitstream must be located only
in one pattern, either primary or golden. Selecting the SPI or SPIm mode yields the same bitstream. Both
modes require no filler bits. The dual-boot mode is not available in LatticeECP2MS and LatticeECP2S devices.

e slave_spi— 0 bits.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8 19

http://www.latticesemi.com/legal

11.

12.
13.

14.

15.
16.

17.

= LATTICE

Since the ECP5 and ECP5-5G devices do not have different padding bits for different modes, this option is no longer

valid nor necessary. The following lists other file conversion options to choose from:

e Verify ID Code — For bitstream debugging, inserts the verify device 32-bit JTAG IDCODE frame into the
bitstream. The setting Default means do not override the bitstream. ON (insert) or OFF (omit) overrides the
current setting in the bitstream. It is recommended to leave this as default.

o Frequency — Used to adjust the master clock configuration frequency in the bitstream for the two master
modes, SPI and SPIm mode. The setting has no effect on the Slave modes. The setting of Default means keep
the bitstream setting. Selections other than Default overrides the current setting in the bitstream.

e Compression — Used to compress the bitstream. Default means do not change the bitstream. ON (compress)
or OFF (no compress) overrides the bitstream. It is recommended to not use compression with encryption.
Compression not available on LatticeECP3 devices.

e CRC Calculation — Disables the frame-by-frame CRC for bitstream debugging. It is recommended to keep the
default of the bitstream for maximum configuration reliability.

To enter the encryption key, select the Edit Key button. The Encryption Key Setup dialog box appears:

=~ Encryption Key Setup @@

Encryption Key:

|
Hide Ercryption Key

Encryption Key Format:

ASCIL ¥ | |Load From File

Figure 5.4. Encryption Key Setup

Select the Encryption Key Format. The choices are ASCIl or Hexadecimal.

Enter the Encryption Key. Select/deselect the Hide Encryption Key checkbox to turn off/on the visibility of the
encryption key. If you enter less than the full Encryption Key code, the fillers are padded on the left (most
significant) position. The user interface blocks the entry of more than the maximum number of characters and
truncates the overflow. This step is necessary to protect the .bek file with a password. You can also load an existing
Encryption Key Format File by selecting the Load From File button and then browse to select the .bek file. Select
OK when your selections are complete. The Encryption Key is filled into the step 2 window.

Select Save Key and enter the Encryption Key File Name (.key file). This step is necessary because an encrypted
bitstream must have some record of the Encryption Key used. Select Save.

Enter the Encryption File Password (up to 16 characters) into the prompt and select OK.

To view what is being typed, un-check the Hide Password checkbox. The password is restricted to ASCII characters
only. If fewer than 16 characters are entered, the fillers are padded on the left position. The user interface blocks
the entry of more than the maximum number of characters. This step is necessary to protect the .bek file with a
password. Select OK. Select Next to continue to the step 3 window.

Select or enter an Output file name for the encrypted bitstream and select Next to proceed to step 4. A
Deployment Tool Summary appears. Select the Generate button to create the encrypted bitstream. An example of
the summary and messages is shown in the following figure.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Advanced Security Encryption Key Programming Guide for ECP Device Family

Technical Note

You are now ready to download the encrypted bitstream using the Diamond Programmer software.

=~ Diamond Deployment Tool- project0.ddt™

File Help

)
N"EEH L
File Conversion: Bitstream

Step 4 of 4: Generate Deployment

Deployment Tool Summary

Nptdoans-

Program Security Bit: On
Verify ID Code: Default

Frermienmw- Defanlt

L

152

Input File: C:/DEMOS/SERDES/Target/impll/Serdes Eye

Output Format: Binary Bitstream

(24

| >

"C:flscefciamond)2.0/bin/ntjddtcmd" -o°t -bit -dev LFE3-35EA -if
"C:/DEMOS/SERDES] Targetfimpll/Serdes_Eve_Demo_impl1.bit" -encryption
-key -asci".....LATTICESEMI" -config_mode spi -of

"C:JDEMOS/SERDES/ Target/impl1/Serdes_Eve_Demo_impl1l_junk.bit"

[

<

processed successfully.
The file C:

was generated successfully.

<

%“DEMOS,SERDES'\ Target\impl1'Serdes_Eye_Demo_impl1.hbit A

%“DEMOS\SERDES" Target'impl1'Serdes_Eye_Demo_impl1l_junk.b

Lattice Diamond Deployment Tool has exited successfully.

v
| &

[Previous][senerate

Figure 5.5. File Conversion (Step 4)

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8

21

http://www.latticesemi.com/legal

Advanced Security Encryption Key Programming Guide for ECP Device Family ::LATT’CE
Technical Note

5.2. Encryption Key Programming
To program the key code onto the OTP fuses in the FPGA, use the Diamond Programmer software. The encryption
control pack is required to enable the programming of encryption keys and bitstreams. Only the encryption-enabled
version of the Diamond software can save the entered key code into the key (.bek) file. If the encryption-enabled
version is not available, then the key code is written to the .xcf file. It is strongly advised to protect the .xcf file by using
PKZIP to encrypt it after use.
Because the Programmer is used primarily in the board design prototype development phase, choosing to program the
key lock fuse while programming the encryption key code is left to you. The purpose of the key lock fuse is to disable
the reading of the fuse state of all the OTP fuses, which provides the key code as the first line of defense.
Even if the key lock fuse is not programmed, verifying the key code (that is, comparing for an exact match) is not
possible due to the hashing. Therefore, the only method to verify that the key code is correct is to configure the device
with an encrypted bitstream.
Note: Before programming the encryption key, be sure the board with the Lattice FPGA is properly connected to your
computer and turned on.
To program the encryption key in the Diamond Programmer software, follow these steps:
1. Open the Diamond Programmer software. The Diamond Programmer software can be invoked in several ways:

e In the Lattice Diamond window, select Tools > Programmer or select the Programmer icon from the Diamond

toolbar.
<> Lattice Diamond - Programmer - impl1_xcf BE®
File Edit View Project Design Process Tools Window Help
NA-Br-Ha8|ir SRR) B B [
CECBE @
File List e : Programmer - impl1.xcf 5 x
B Timeo s e : =
Strategy1l | o = - I
= [EH impl1 Enable Status Device Family — Device Operation File Mame 5 »|
C Cable Settings
) Lol Cles ‘ 1V LatticeECP3 LFE3-35EA “ast P ISWwDemoProject/VersaBoard/D
E}) oo Jeorefddr_p_evalfddr3corefsr I e i ast Program i ork] emobrajectNersaboard) | Detect Cable
xﬂ . f.Jsrcfddr3_test_params.v — ey
M 1. srcfled_tSseg_drv.y Cable: |use2 _ B
xﬂ o fsrcfifsr 128,y | Port: ‘FTUSB-U |
E}) ..J..Jsrcidata_gen_chk.v g
x}] o fsrciddr_ulogic.v Custom Port (HEX): ‘ ‘\
E}) o Jeorelddr_p_evalfmodelsfecp?
m oo Jeorefddr_p_evalfmodelsfecp? 1/O Settings
E}) o Jeorefddr_p_evalfmodelsfecp? 5
Eﬂ wfodfeorefddr_p_evalimodelsfecpl o | & © Use Default 1j0 Settings
< ¥ | S| @ Use Custom IjO Settings
=0 I—— 2
"
Process = g x o4 [] INITN Pin Connected
=R i Al o=
T o ,fynt:::;;f;sf" —1 & ["] DONE Pin Connected
& L]
%, Translate Design § TRST Pin Connected
2 % Map Design 2]
[& vap Trace () Set TRST High
O = verilog Simulation File © Set TRST Low
[& vHOL Simulation File =
= %L Place & Route Design
%Y olace & Route Trace
5] 2 (/o Timing Analysis [] PROGRAMN Pin Connected
= & Export Files ispEN Pin Connected
[2 615 Model
[& verilog Simulation File @ Set ispEN High
- S FeReE
O ¥ ¥HDL Simulation File | I< 5 O Set ispEN Low
¥, 3itstream File | [| | D
Tel Console & X Output g X
> pgr_project open "C:/lscc/diamond/2.0/exauples/VersaBoardDenoECP3/DK-ECP A‘ Starting: "pgr_project close” ~
XCF file opened successfully. |
‘; Starting: "pgr_project open
b1 v: “C:/lscc/diamond/2.0/examples /VersaBoardDemoECP3/DK-ECP3-
< > " ||DDR3-011/user_logic/par/diamond/impll/impll.xcE™"
Tcl Consale Find Results v
"Opens Programmer Yiew'" Mem Usage: 144 564 K

Figure 5.6. Programmer Interface

e In Windows, go to the Windows Start menu and choose Programs > Lattice Diamond Programmer >
Programmer.
e In Linux, from the <install_path>/bin/lin directory, enter the following on a command line:
<Install path>/.programmer

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

-
H- LATTICE Advanced Security Encryption Key Programming Guide for ECP Device Family

Technical Note

2. Inthe Programmer window, double-click in the Operation column for the FPGA device you want to program. The
Device Properties dialog box appears:

i..} LatticeECPAUM - LFE4UM-85F - Device Properties IM

General Device Information

Device Operation

Access mode: j_Mvanced Security Keys Programming ~ \

Operation: 1 Security Program Encryption Key Only & ‘

Device Options

Reinitialize part on program error

Encryption Key Options

Enter key: eeescccccccscsee ‘ Load Key... ‘
Confirm key: eeeesessscscscse ‘7 S;eil(ey;‘
Format: L@zi Show key
¥ | Program key lock Type 'yes' to confirm yes
Type ‘yes' to confirm yes
[oK ’ ’ Cancel

Figure 5.7. Device Properties Dialog Box

Note: The Encrypted Bitstream Only is for ECP5 and ECP5-5G devices only.
3. Select Advanced Security Keys Programming as Access Mode.

Select Security Program Encryption Key in Operation.

Other options include:

Security Program Encryption Key — Verify the programmed encryption key and program it into the device. This
operation carries out the entire encryption key fuse programming. Whether the key lock fuse is programmed
at the same time depends on the setting for the key lock fuse. Since fuses are OTP, each device is allowed to go
through this procedure once. Pass or fail, there is no second attempt. Programmer blocks any subsequent
programming operations.

Security Verify Encryption Key

Security Read Encryption Key — Read back the encryption key from the device. Valid only when the key lock is
not programmed. If the lock fuse is not programmed, unprogrammed fuses read as Os and programmed fuses
read as 1s.

If the lock fuse is programmed, all the key fuses read back as 1s, for ECP5 and ECP5-5G devices, or as Os, for
ECP3 and ECP2/MS devices. Programmer checks for an all-1 fuse state, for ECP5 and ECP5-5G devices, or an all-
0 fuse state, for ECP3 and ECP2/MS devices, from keys 1, 2, and 3 to determine if the lock fuse is programmed.
Security Program Key Lock — Program the key lock only. This is valid only when the device encryption key is
programmed but the key lock is not programmed. This operation is provided so that the key lock can be
programmed separately after the encryption key fuse is programmed. This operation can only be done once.
Programmer blocks all second attempts when an all-1 fuse state, for ECP5 and ECP5-5G devices, or an all-0 fuse
state, for ECP3 and ECP2/MS devices, is read from keys 1, 2, and 3.

5. Select the Encryption Key Format, enter the encryption key and confirm the encryption key or select the Load Key
button to load the encryption key from an existing .bek file. Selecting Show Key controls whether the encryption
key is visible.

6. Select the Save Key button to save the encryption key as a .bek file. Enter the encryption key password and select
OK. This option is available only if Encryption patch is installed.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02202-1.8 23

http://www.latticesemi.com/legal

= LATTICE

5.3. Encrypted Bitstream JTAG Programming Procedures

When performing manufacturing (production) encryption key programming, verifying the key code using the encrypted
bitstream and programming the key lock fuse both become mandatory.

The encrypted bitstream can verify the key code because if the key code programmed into the key fuses exactly
matches the one that was used to encrypt the bitstream, then the encrypted bitstream configures the device and both
INITN and DONE go high. Otherwise, both remain low. The Programmer only needs to check the status register for the
DONE bit state = 1 to flag to determine a pass.

The encryption key production programming flow is as follows:

1.
2.
3.

Launch the Device Properties menu by double-clicking in the Operation field in the Programmer window.
Select Advanced Security Production Programming under Device Access Options.

Select Security Fast Program with Encryption Operation to select the flow as follows:

a. Program the encryption key.

b. Use the encrypted bitstream to verify the encryption key is OK.

c. Program the key lock fuse if selected (strongly recommended).

d. Program the Encryption only fuse if selected.

The Key lock fuse is purposely the last to provide some debugging capability by reading out the fuse state in the
event that failure happens at step a or b.

Select the encrypted bitstream so that the encryption key can be verified correctly. If the encrypted bitstream is
not available, use the Programmer to encrypt the regular sample bitstreams first.

Note: Select JTAG configuration mode when encrypting the bitstream. If the mode is not JTAG, a prompt guides you
to convert the file.

Launch the Security key entry menu.

Select the encryption key format under Encryption Key Format. The choices are ASCIl or Hexadecimal. You can load
the encryption key from an existing .bek file by selecting the Load From File button.

Enter the encryption key and re-enter to confirm.

Check the Programming Key Lock box. For production, the key lock fuse is strongly recommended to be
programmed at the same time. If it is not, then the key lock fuse should be programmed afterwards.

Check the Encryption Bitstream Only box for extra security. This option is for ECP5 and ECP5-5G devices only. For
LatticeECP2/MS and LatticeECP3, whether or not the encryption key is programmed into the device, the device can
always be programmed with non-encrypted bitstream.

10. Select Apply and OK.
11. Select the Program button in the Programmer toolbar.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.4. Advanced Encryption Key Programming Flow

The Diamond Programmer software supports a command line option for encryption fuse programming, and also
supports passing the key code through the command line. The Deployment Tool can also accept the key code through
the command line to encrypt an unencrypted bitstream file.

Programmer and Deployment Tool are designed to implement customized programming flows. Customized
programming flows are usually defined by using a script file. The script file can be launched by your user interface
program or ATE.

The .xcf file is still needed to launch the Programmer.exe command line. Use the Programmer user interface to
generate the .xcf file first. The .xcf file contains the following information required by Programmer to run:

e Device name

e QOperation

e Encrypted bitstream file name

e Encryption key code

The following examples illustrate the key serialization:
1. Launch the Deployment Tool to encrypt the bitstream with the first key code. Select Slave SCM Mode for JTAG.

2. Launch the Deployment Tool with the .xcf file already generated to program the key code into the FPGA device and
verify the correct key code using the encrypted bitstream obtained in step 1.

The -key switch lets the encryption key that follows replace the one in the .xcf file.
3. Repeat steps 1 and 2 after incrementing the key code.
If you wish to program the encrypted bitstream into the SPI Flash device as well, follow this procedure:
1. Launch the Deployment Tool to encrypt the bitstream to Key Code 1. Select Slave SCM mode for JTAG.
2. Launch the Deployment Tool to encrypt the bitstream to Key Code 1. Select SPI mode for SPI Flash.

3. Launch the Deployment Tool with the encryption key programming .xcf file to program the key code into the FPGA
device and verify the correct key code using the encrypted bitstream obtained in step 1.

4. Launch the Deployment Tool with the SPI Flash programming .xcf file to program the SPI Flash device using the
encrypted bitstream obtained in step 2.

5. Repeat steps 1 and 2 after the key code has been incremented.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Advanced Security Encryption Key Programming Guide for ECP Device Family ...lLATTICE
Technical Note

Appendix A. ispVM Applications

A.1. Setting Security and Encryption for FPGA Devices

When encryption is enabled, ispVM System software can also create a key file and encrypt a Lattice bitstream file. The
most important difference between ispLEVER or the Diamond software and ispVM System is that ispLEVER or the
Diamond software can create a bitstream file without an unencrypted bitstream. ispVM System can only encrypt an
existing unencrypted bitstream. Therefore, when using ispVM System, an unencrypted bitstream exists. Thus, using
ispVM System is less secure than using ispLEVER or the Diamond software. However, if ispVM System is also installed in
the Trusted Area, then the security is the same. If ispVM System is used in the open (Untrusted) area, then it is
important to keep the unencrypted version of bitstream in security control, such as using PKZIP and a password to
protect it.

Figure A. illustrates the procedures to convert the unencrypted (regular) bitstream to an encrypted bitstream. Figure
A.2 illustrates the differences between a regular bitstream and an encrypted bitstream.

[§ LSC ispVM® System Version 17.4 - C\TEMD\DEMONSTRATEXCE M
Fis EQR View m spToois Options p Help
DSBQEBB.E!EE@QEHE:#@ ‘
a v > A S aa
9 > > BeBe = o S i
For Help, press F1 T
il
e E& Yew okt oo Wndow b
= ms ¢ | El~m Enciyption Key: f—|
@] Bisteam "t "t " k. ks * bk bk " . " ex0; " mcs: “tek) =] §8) | AT NSy)
i ™ Hide Enceyplion Key
|| Cousie New Flhe =l : ;
Encryption Key Format:
Input/Dutput/Settings I [ascn Q;) =] Load From Fie | @
@ =453 Input Data Fie
& CestWecoms 350672 7seg persistbt o~
= Device: LFEIMISSE . JTAG Burst Save Encryption Key File ; 21|
- foPackage: LFE2M355E XF672 sP1 Savein [test > «®ckm-
® - 555 Dipud Do Fie o1m —
=33 Bitstream Seltings Slave PCM |
=% Duiput Format: Bitseam Binary Slave SCM |
- >- i Disable CAC Calculation OFF - ; —
-4 Encpiiony ON LT Feree: | (1) =i Save @
p |- Configuration Mode: I e Yoy 7 Saveastype: [Key Files " bek "BEK) = Cancel |
e Feg o - Encryption
CEErTIrrT T — x]
~Wlgnore ID Code: Defaud : ;
 Compesi Dok \&. F (16 Cosssmnsive) (e
"~y Frequency Default . |LAii||;E*5EM| @ —————
| J 0| ™ Hide password Cancel
D4 —!
) L

Figure A.1. Procedure to Encrypt a Regular Bitstream

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

= LATTICE

Table A.1. Encrypting a Regular Bitstream

Step | Description

1 Launch the UFW in ispVM.

2 Select Bitstream File as the output format.

3 Browse to the input bitstream file. The device name is extracted from the header of the bitstream file automatically. If
the ispVM version is encryption-enabled and the device name is a LatticeECP2S, LatticeECP2MS or LatticeECP3 device,
the Encryption option shows up automatically for step 5. Otherwise, it does not show up.

Browse or enter the output file name.

5 Right-click on the Encryption option and set the Encryption to ON.

Note: This option appears only on the encryption version and this option appears only for LatticeECP2S, LatticeECP2MS
or LatticeECP3 device families.

6 Right-click on the Configuration Mode option and set the Encryption Configuration Mode. This step is necessary to pad
the correct number of program mode dependent filler bits when encrypting the bitstream. The modes and the filler bits
include:

JTAG Burst (also known as JTAG Fast Program) = 64 bits

SPI =0 bits

SPIm (not recommended, see note D5) = 0 bits

Slave PCM = 64 bytes or 512 bits

Slave SCM = 64 bits

Right-click on the Encryption Key option and click Edit Encryption Key to launch the Encryption Key setup dialog.

8 Select the Encryption Key format under Encryption Key Format. If you want to use the Hexadecimal format, select
Hexadecimal.

9 Enter the Encryption Key. To view what is being typed, un-check Hide Encryption Key. If you enter less than the full Key
Code, the fillers are padded on the left (the most significant) position. The user interface blocks the entry of more than
the maximum number. The command line truncates the overflow.

9.1 This step is optional. It loads the Encryption key from an existing .bek file by clicking the Load From File button.

10 Click the OK button. The prompt to save the Encryption file into a .bek file is shown.

11 Enter the .bek file name. This step is mandatory since an encrypted bitstream must have some record of the Encryption
Key used.

12 Click the Save button and the prompt to enter the password appears.

13 Enter the password. To view what is being typed, un-check Hide Password. The password is restricted to ASCIl characters
only. If fewer than 16 characters are entered, the fillers are padded on the left position. The user interface blocks the
entry of more than the maximum number of characters. This step is necessary to protect the .bek file with a password.

14 Click the OK button to write the .bek file.

15 Click the File Generation button to generate the encrypted bitstream.

Note | Comments

D1 This option disables the frame-by-frame CRC for bitstream debugging. Users are not recommended to change the setting
to ON. The default setting, OFF, provides the maximum configuration reliability.

D2 This option is provided to help bitstream debugging by inserting the verify device 32-bit JTAG IDCODE frame into the
bitstream. The setting default means do not over-ride the bitstream. If change setting to ON (insert) or OFF (omit), then
over-ride what is already in the bitstream. It is not recommended to change the default setting.

D3 This option is provided to compress the bitstream. The setting default means do not change the bitstream. If change
setting to ON (compress) or OFF (no compress), then over-ride what is already in the bitstream. It is not recommended
to deploy compression with encryption.

Note: Compression is not available for LatticeECP3 devices.

D4 This option is provided to adjust the master clock configuration frequency in the bitstream for the two master modes,
SPI and SPIm mode. The setting has no effect on the Slave modes. The setting default means keep the bitstream setting.
Right clicking on the item shows the selection table. Selection other than the default overrides the current setting in the
bitstream.

D5 SPIm mode is for setting up the dual-boot feature. The encrypted bitstream must be located only in one pattern, either
primary or golden. Therefore, this mode is not recommended. As far as bitstream format is concerned, selecting SPI or
SPIm mode yields the same bitstream. They both require no filler bits.

Note: The LatticeECP2/M and LatticeECP2MS devices do not support dual boot with encryption.
D6 JTAG Burst is another name for the Fast Program operation in ispVM. The bitstream format requires the same number of

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Advanced Security Encryption Key Programming Guide for ECP Device Family

Technical Note

== LATTICE

Step | Description

filler bits as the Slave SCM (Serial Configuration Mode). If using the ispVM Fast Program operation, ispVM accepts
encrypted bitstreams for SPI and Slave SCM modes and prompts you to convert if necessary.

ispEditor Launch Path —)
= >
Ww k UES USERCODEJUES Edior.,..
BSCAN Config... > 530 Control Register Edior. ..

&%, Control Register] Editor...

K2 Model 300 Programmer, Ctri+M
TZ0 universal File writer..,

Fle £ i P EpTods Cptors Wdon. b |

DeE & =ZE A
> (Befe LR B gy |

N\ TEMP\DEMONSTRATE.XCF

Hex Format View

loix|
4 Fle mrmwmw -

stion Bitstream
Prod_E ld (11)

t.ned

Regular Bitstream:
No ConfigMode Note Field
PremableCode = 0xBDB3

FE"FYF “sba'al/

Index_| Device List_| FieName/RLengh | Opestion | Sta. FF_ FFFFFF FFFFFFFF
@1 LFE2M35SE Ci\testchowbil Display Status Regs.. N/K| 44 000000 7eouooun” =
| eset Addre ne oA
| | _.ILI_I LIJ
| — 3 honbh] 7 domorehoe B tecom, o2 T pesivt [
[z For Help, press F1 int, cal 005 E=E
=lofx =lolx]
A Fle EGt View Commend Window Help =l8i x| A Fle Edt Vew Command Window Hebp =181
d & H &y B 82 o9 asge‘ Ty :»';:"0
New Stve Print Cot Copy Paste I Und Hedo [fiext New Open Save Cop Reds Nesk
I = 5
... s B 3
Bitstream
Encrypted For JTAG, Slave SCM
by ispVM Configuration Mode
Encrypted Bitstream:

rrtr

FF

DAnJ

=
L

ConfigMode Note Field
PremableCode = OxBAB3

FFFF BAB 3

FF

2L] | _»_l':l

l«l

Zimmy
2 showbit_ | & | A Wecoms_35ei672_7seg_persisthit_| I 3 showbt_ 4 [4 Wecoms 351672 7seq persistbit_|
Focii, press EL Iy, cdi Ioos | I For Help, press F1 ini, cal P

Figure A.2. Configuration Modes and Format of Encrypted Bitstream

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28

FPGA-TN-02202-1.8

http://www.latticesemi.com/legal

-
HH LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\]/lc.e Flahrlmly
echnical Note

A.2. Programming Encryption Key

Figure A.3 illustrates the procedure for using ispVM System to program the key code onto the OTP fuses in the FPGA.
The version of ispVM System shown in Figure A.3 is the version with encryption enabled. Only the Encryption enabled
version can save the entered key code into the key (.bek) file. If the encryption-enabled version is not available, then
the Save to File button is grayed out (disabled) and the key code is written into the .xcf file. Users are strongly advised
to protect the .xcf file by controlling it by using PKZIP to encrypt it after use.

Because the ispVM System is used primarily in the board design prototype development phase, choosing to program
the key lock fuse while programming the encryption key code is left to you. The purpose of the key lock fuse is to
disable the reading of the fuse state of all the OTP fuses, which provides the key code the first line of defense.

Even if the key lock fuse is not programmed, verifying the key code (that is, comparing for an exact match) is not
possible due to the hashing. Therefore, users are not provided with a Verify Security Key operation in ispVM. The only
method to verify that the key code is correct is to configure the device with an encrypted bitstream, as illustrated in
Figure A.4.

| EILSC ispVM System Version 17.4 - [C:Mest.xcf] o
[0 Edt vew projec Isplods@\s Window Help - 8 x|
DG & EEMEDEEEEED B Ey 0
Aaaldl) he haet
N | oW ey = e
(I Index | Device List | FieName/IR-Length | Operation | Staws | UES
|I0 1 LFE2-355E Securnity Program Encryplion Key N/A
’I Device Information (:)
| (o] :
Stalus | !
Device _Coed | Entering Encryption Key (ASCI Format)
2) Select. [ersss Avancad. Encaypton Key Fom
| [ol
[iFeasE a [Ekend] _ f !

= - Llose
o EntEncypion ey (7) -
LATTICESEMICONDU Load From File|(7.1

_ Bowe |

* Seecuty Pogian Encrption ey Inchucton Regsder Lenghh Peira Erpie iy ©,
@~ Seculy Read Encrption Key i S rI: ErtoDdsghiods e
@ " SBCUIIWPIWU“KWLNI(Orerstions @ V] Programning Key Lock (] Hide Encyton Key
@ "\ SecyPogen Ecopten ey K| Ay s oo he KeyLock?Pease e e anthe b

3| il
l[AdvmedSecutyKey:Progum‘g _'J] Securly Key... Type "yes" toconfim. %
> ok on he Auow o the Let for Addiional DataFes Seup \

Figure A.3. Procedure for Programming the Encryption Key Only

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8 29

http://www.latticesemi.com/legal

= LATTICE

Table A.2. Programming the Encryption Key Only

Step Description

1 Launch the Device Selection menu.

2 Select the FPGA device.

3 Select Advanced Security Keys Programming under Device Access Options.

4 Select Security Program Encryption Key under Operation.
Operation Comment
Security Program Encryption Set up the Encryption Key and program it into the device.
Security Read Encryption Key Read back the encryption key from the device. Valid only when the key lock is

not programmed.
Security Program Key Lock Program the key lock only. Valid only when the device encryption key is
programmed but the key lock is not programmed.

Launch the encryption key dialog by clicking on the Security Key button.
Select the encryption key format under Encryption Key Format. The default is ASCII with an option for Hexadecimal.
Enter the encryption key.
Re-Enter the encryption key.

7.1 This step is optional. Load the encryption key from an existing .bek file by clicking the Load From File button.

8 This step is optional. Select the Programming Key Lock option if you wish to lock the device.

8.1 Type Yes to confirm locking the device.

9 This step is optional. Save the encryption key as a .bek file by clicking the Save To File button.

10 Click Apply to come back to the Device Information Dialog.

11 Click OK to return to the ispVM windows. ispVM generates a chain configuration file, which can be saved as an .xcf file. It
contains the encryption key.

12 Select the Go button to program the Encryption Key into the device.

Notes Comments

D1 This operation carries out the entire encryption key fuse programming flow shown in Figure A.2. Whether the key lock
fuse is programmed at the same time depends on the setting for the key lock fuse. Since the fuses are OTP, each device
is allowed to go through this procedure once. Pass or fail, there is no second attempt. ispVM blocks any subsequent
programming operations.

D2 Only the Read operation is provided. The Verify (compare for exact match) operation is not possible due to the
deployment of hashing and each key code bit is formed by the three-input (fuses) OR gate.
If the lock fuse is not programmed, un-programmed fuses read as Os and programmed fuses read as 1s. If the lock fuse
is programmed, all the key fuses will read back as all 1s, for ECP5 and ECP5-5G devices, or as all Os, for ECP3 and
ECP2/MS devices. ispVM checks for an all-1 fuse state, for ECP5 and ECP5-5G devices, or an all-0 fuse state, for ECP3
and ECP2/MS devices, from keys 1, 2, and 3, and the PES rows to determine if the lock fuse is programmed.
Note: The PES (Private Electronics Signature) row is for Lattice factory use only.

D3 This operation is provided so that the key lock can be programmed separately after the encryption key fuse is

programmed. As discussed in Note D1, this operation can only be carried out once. ispVM blocks all second attempts
when an all-1 fuse state, for ECP5 and ECP5-5G devices, or an all-0 fuse state, for ECP3 and ECP2/MS devices, is read
from keys 1, 2, and 3 and the PES rows.

Note: The PES (Private Electronics Signature) row is for Lattice factory use only.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-
H LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\\/lc.e I=Ia|\r|11|:y
echnical Note

A.3. Encrypted Bitstream JTAG Programming

The way ispVM System supports JTAG programming makes the differences between an encrypted bitstream and an
unencrypted (regular) bitstream transparent to you.

The major difference between an encrypted and a regular bitstream is the configuration mode dependency of the
encrypted bitstream. Regular bitstream format is mode-independent. Therefore, regular bitstreams do not have the
configuration mode note field on the bitstream header, whereas the encrypted bitstreams do.

The ispVM System uses the note field of the bitstream header to ensure the bitstream is encrypted and the
configuration mode is selected, and prompts you accordingly. If the configuration mode selected is SPI or SPIm, then
you are prompted to convert the configuration mode and save it as a temporary file. If the configuration mode selected
is Slave SCM, no conversion is necessary.

Note: When prompted to convert an encrypted bitstream for SPI or SPIm configuration modes, do not overwrite the
original file. Instead, save the changed file to a different file. If the encrypted bitstream has the configuration
mode changed to Slave SCM then programmed into the SPI Flash, the Lattice devices fail configuration. Only the
encrypted bitstream for SPI or SPIm configuration mode can be programmed into the SPI Flash devices.

[1:16C ispvYM® System Version 17.4 - C:A TEMP\DEMONSTRATE XCF*
Fle Edt View Project kpTools ---@
NEWe =z HE INEEDED e

TTE T ALY

\TEMP\DEMONSTRATE X(CF*

Sl

Pt Descriptior: 5 r_rii‘ﬁ /
| 2
n":w ILFmesg w l ‘,) w"::mnmmr(:m“mm‘mmnm
Devce FulNarme: Package @- w |
[(Feavee [il
m Uala kile: — X
EWCOV‘J ‘ Browss IIC\MWW&U&E‘M Q) ? Ovenarbe existing fle?
\Vealy |0 | Instniction Register Lengt e | m Carcel
D@W D T "ﬂ—a [~ feintidles Paton Prooemior I I
[Diply USERCODE L S Save o3 Do il 20
|\
Read and Save »Faﬂﬁngmm ’3\ = Siei Iu‘“ 3 ol '
[Diply S il |) Sl o =
Device Access Optire 34 '
Relieshfrom FLASH | ,_] J———
[FIASHT] IJTAE1532Mnde @ _.J .
o | 18 Filonamo: [she ld Q) Seve l‘ :)
B b Dick on the Aisow to the Lelt for Addkional Dala Fles Seip —————
- Save aztype: [Eisvean Fie [b4) = Cancel |
i
‘Status Register — i
kS AN
I : ;3 1|2 g e i il:
mHZEI:* o el b L e L) e el bl £ = (31 = £ £ I
‘—.“"" ojloJoeflojoeloloeloelo]l]ejoje|a]Jo]Jo]leloe]oe]e]o]lo]o]lo]lo]olelo]loa]la]ea

Figure A.4. Configuring a Device with an Encrypted Bitstream

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8 31

http://www.latticesemi.com/legal

= LATTICE

Table A.3. Configuring a Device with an Encrypted Bitstream

Step Description

1 Scan or select the LatticeECP3, LatticeECP2MS and LatticeECP2S device.

2 Select JTAG 1532 under Device Access Options.

3 Browse for the encrypted bitstream.

Note: The software checks the bitstream configuration mode and asks to convert to the JTAG burst mode if the mode is
different.

4 Select the operation from the Operation list.

Operation Comments

Fast Program Uses the JTAG burst instruction to program the device. See Note D1.

Erase Only Erase the device.

Verify ID Read and compare the device’s ID.

Display ID Read and display the device’s ID.

Display USERCODE Read and display the device’s USERCODE. See Note D2.

Read and Save Read and save the device’s data into a file. See Note D3.

Display Status Register Read and display the device’s status register. See Note D4.

Refresh from FLASH Boot the data from an external SPI Flash. All I/O are tri-state while booting.

FLASH TransFR Boot the data from an external SPI Flash. All I/O are held by the BSCAN cells while
booting.

5 Click OK to close the device setup dialog. If the configuration mode of the encrypted bitstream selected in step 3 is not
Slave SCM (not for JTAG), the prompt to convert appears and the following optional steps becomes mandatory.

6 Mandatory when the prompt appears. Click Yes to convert.

7 Mandatory when the prompt appears. Click No so that the converted file is written to a different file name.

8 Mandatory when the prompt appears. Enter a different file name to keep the original file.

9 Mandatory when the prompt appears. Click Save to convert then write the converted file into the file name entered
above. The cursor is returned to the Project menu.

10 Click Go to program the device with the selected bitstream.

Note Comments

D1 Fast Program is the operation that uses the JTAG port to clock the bitstream into the FPGA to configure it. Since clocking
the bitstream is a continuous operation, terms such as blast, pump and burst are used to describe it.

D2 The 32-bit USERCODE is a standard feature available on all PLDs. It is accessible through the JTAG port. One popular use of
the USERCODE is to store the CRC of the bitstream. By reading the USERCODE, the bitstream version programmed into
the device can then easily be found. The default USERCODE in the bitstream is all Os.

D3 Read and Save a bitstream from the Lattice device is valid only when the device has already been configured
successfully and the security bit is not programmed. Thus, this operation is not valid for encrypted bitstreams since the
security bit is always programmed. The Read and Save operation is for debugging purposes only. It is not intended for
the configuration pass/fail decision.

D4 This operation is for debugging purposes only. The expected bit states relevant to regular users include:

Status Bit Bit Function When Status Value =0 When Status Value =1
17 Device Configured? No, done fuse is not Yes, done fuse is
programmed. programmed.
16 Device Secured? No, security fuse is not Yes, security fuse is
programmed. programmed.
2 Invalid Command? No, no bitstream or Okay. Fail, bitstream has invalid
command.
1 ID Verify Fail? No, no ID Verify or Okay. Fail, bitstream has ID Verify
and Fail.
0 CRC Compare Fail? No, no bitstream or Okay. Fail, CRC fail to compare.

ispVM checks bits 17, 2, 1 and 0 to confirm if whether the Lattice device has passed configuration in the Fast Pro- gram
operation.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-
HH LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\\/lc.e I:ahrlnl:y
echnical Note

A.4. Programming Manufacturing Encryption Key

When performing manufacturing (production) encryption key programming, verifying the key code using the encrypted
bitstream and programming the key lock fuse both become mandatory.

The encrypted bitstream can verify the key code because if the key code programmed into the key fuses exactly
matches the one that was used to encrypt the bitstream, then the encrypted bitstream configures the device and both
INITN and DONE go high. Otherwise, both remain low. The ispVM System only needs to check the status register for the
DONE bit state = 1 to flag to determine a pass.

[§:LSC isp¥M® System Version 17.5 - GA\TEMP\DEMONSTRATEXCF® = -lﬂlﬂ
File Edt View Project ispTools Opti(1s) Window Help

DFE S ZE0EIEEEEEE R Ex 0
>3 Bofs/t DE B AN

Fast Program with Encryption Option N/,

)
x4 ' A
Part D
[ey
Sot.[[FEBERE (2) — | Entering Encryption Key (ASCII Format) %]

- s Enceyption Key Fomat:

Device Ful Name: Package’

[LFE2M355E [aF __Ewond | Bt (7) - (9

Daata File: Entes Enciypion Key:
Browse "C:\tcel\show.bit Q;) [LMHCISEMICUNDU @ LoadFlomﬁlel@

Instiuction Alegistes Length: 3 I '
Troen m I [Heinia s Pation = 6atem eiro Re-Enter Enceyption Key: SavetoFie @
- _(EniER Dt e [ATTICESEMICONDU

DOperation:
IS:curly Fast Program with Encryption Option @ ‘:] Programming Key Lock @ I~ Hide Encrytion Key

Digice Acveex UrRiony A you sure wan! to program the Key Lock? Please type "yes'' on the box
dvanced Secusily Production Programming (3 v || SecuityKey. @ below.

[-”AG 1332 Mode : Type "jes" b corfim: ves ‘
Advanced Secunty Production Programming

SPI Flash Programming

Dual Boot SP1 Flash Programming

Static RAM Cell Backaround Mode
| Serial Mode

Figure A.5. Encryption Key Production Programming Flow

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8 33

http://www.latticesemi.com/legal

= LATTICE

Table A.4. Configuring a Device with an Encrypted Bitstream

Step Description

1 Launch the device selection menu.

2 Select the FPGA device.

3 Select Advanced Security Production Programming under Device Access Options in ispVM 17.5 or later.

4 Select Security Fast Program With Encryption Operation to select the flow as follows:

Program the encryption key.

Use the encrypted bitstream to verify the encryption key is OK.

Program the key lock fuse if selected (strongly recommended).

The key lock fuse is purposely the last to provide some debugging capability by reading out the fuse state in the
event that failure happens at step a or b.

5 Select the encrypted bitstream so that the encryption key can be verified correctly. If the encrypted bitstream is not
available, use ispVM to encrypt the regular sample bitstreams first.

Note: Select JTAG configuration mode when encrypting the bitstream. If the mode is not JTAG, a prompt appears
to guide users to convert.

Launch the Security Key entry menu.

Select the encryption key format under Encryption Key Format. The default is ASCII, with an option for Hexa-
decimal.

7.1 This step is optional. Load the Encryption key from an existing .bek file by clicking the Load From File button.
Enter the encryption key.

Re-enter the encryption key.

9 This step is mandatory. Check the box. For production, the key lock fuse is strongly recommended to be
programmed at the same time. If it is not, then follow Figure A.3 to program the key lock fuse afterward.

10 Enter Yes to confirm programming of the key lock fuse at the same time.

11 This step is optional. Only the encryption-enabled version of ispVM System supports saving the encryption key
into a .bek file. If the save to file is not selected, then the encryption key that you entered is saved into the .xcf
file.

12 Select the Apply button to accept the entry.

13 Select OK to save the entry onto the .xcf file.

14 Select Go to start the programming action.

Notes Comments

D1 This is for the group of operations for board development described in Figure A.3.

D2 This is the operation added into ispVM 17.5 or later to program the encryption key and verify with an encrypted
bitstream the same time.

D3 This is a standard feature provided by all user interfaces that accept password entry. It keeps the key code private
while it is being entered.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Advanced Security Encryption Key Programming Guide for ECP Device Family

Technical Note

Appendix B. Using Lattice Model 300 Programmer to Program

Encryption Key

The Lattice Model 300 desktop programmer supports off board (on-socket) programming. It is ideal for small volume
programming. Large volume programming should be done using Lattice’s approved third-party programmers. The

procedure for using the Model 300 programmer is shown in Figure B.1.

The Model 300 desktop programmer has the following three components:

e USB or parallel port ispDOWNLOAD cable for PC connection

e Model 300 programmer base unit for socket adapters and for providing power
e Model 300 socket adapter for mounting packaged devices

(lS'C ispYM® System Version 17.5 Encryption - [C:\TEST.XCF]

=J\a

B9 Fle Edt View Project ispTools Options Window Help

NEE & EENE DEEECEE P By O

-8 X

e a2 0 % vEhe oo @ o J—
& Model 300 Programmer* = Entering Encryption Key (ASCH Format) &
Bl Prowct Oplions teb EESS EnclwionKayFmd:@ =3
‘ | CE) | Apply 12
FLICT L = 1 =
Dovice: Package Enter Enciyption Key:.

2)[mewer. |iresdase prResAima [ATTICESEMICONDU
Data Fie:

3 Blowss | [C:\rp\EC\EC2Mlioc2m_el672_7seq_sno bt ReEnter Encryption Key:

Instiuction Registes Lengthe Dperation Secuty Koy . | 6) ILAT"\CEWMIEONDU
E[_'@]]Sacumy Fast Program wih Encryption Option E iy

Device AccegsLotions ~ = -
|Advaﬂ:ed Sacunty Froduction Frogramming j 4
@ “—N [TAG 1522 Mode
Advanced Securty Kevs Proaremming
Aydvarvey Jouu iy Foduction Fogamn mng
PotSetting E2058.0 = Cable Type: Iusa ,I
Vollage Selecled
Pwi (RDY) Vee (ON) 1.8V % v S0V
L L L] B > =
-
Slatuz Messages -
‘ Notav 3TATUS
Status
Reacdy NUM

Q

©

[Programreing Key Lock [Hide Enciyion Kep
Are pou suse want to program the Key Lock? Please type "yes" on the box

below.
Type “yes" to confiim Ises

USB ispDOWNLOAD Cable

Figure B.1. Off board Encryption Key Code Programming on the Model 300 Programmer

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8

35

http://www.latticesemi.com/legal

= LATTICE

Table B.1. Off board Encryption Key Code Programming

Step Description
1 Launch the Model 300 using the ispVM System.
2 Select the FPGA device.
3 Browse to the encrypted bitstream. If an encrypted bitstream is not available, use ispUFW to encrypt the sample
regular bitstream provided with the ispVM System software first.
Note: The software checks the bitstream configuration mode and asks to convert to the JTAG burst mode if the
mode is different.
Select Advanced Security Production Programming under Device Access Options.
5 Select Security Fast Program With Encryption Operation to select the flow as follows:
a. Program the encryption key.
b. Use the encrypted bitstream to verify that the encryption key is OK
c. Program the key lock fuse if selected (strongly recommended).
d. The key lock fuse is the last program to provide some debugging capability by reading out the fuse state in
the event that a failure occurs during steps a or b.
Launch the Encryption Key dialog by clicking on the Security Key button.
Select the encryption key format under Encryption Key Format. To use the hexadecimal format, select Hexadecimal.
Enter the encryption key.
Re-enter the encryption key.
8.1 This step is optional. Load the encryption key from an existing .bek file by clicking the Load From File button.
9 This step is mandatory. Select the Programming Key Lock option to program the key lock fuse at the same time.
10 Type Yes to confirm programming of the key lock fuse at the same time.
11 This step is optional. Save the encryption key to a .bek file by clicking the Save To File button. This feature is
available only on the encryption-enabled versions of ispVM System software.
12 Click Apply to return to the Device Information dialog.
13 The Model 300 programmer generates a chain description .xcf file that contains the encryption key if it was not
saved as a .bek file in step 11.
14 Select the Go button to program the encryption key and verify use of the encrypted bitstream.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix C. ispVM Advanced Encryption Key Programming
Flows

The ispVM System software version 17.5 or later supports a command line option for encryption fuse programming,
and also supports passing the key code through the command line. The ispUFW included in ispVM System 17.5 or later
can also accept the key code through the command line to encrypt an unencrypted bitstream file.

The ispVM System and ispUFW are flexible tools designed to implement customized programming flows. Customized
programming flows are usually defined by using a script file. The script file can be launched by your user interface
program or ATE.

The .xcf file is still needed to launch the ispVM.exe command line. Use the ispVM user interface to generate the .xcf file
first. The .xcf file contains the following information required by ispVM to run:

e Device name

e QOperation

Encrypted bitstream file name

e Encryption key code

The following examples illustrate the key serialization:

1. Launch the ispUFW command line to encrypt the bitstream with the first key code. Select Slave SCM Mode for
JTAG.

2. Launch the ispVM command line with the .xcf file already generated to program the key code into the FPGA device
and verify the correct key code using the encrypted bitstream obtained in step 1.

The -key switch lets the encryption key that follows replace the one in the .xcf file.
3. Repeat steps 1 and 2 after incrementing the key code.
If you wish to program the encrypted bitstream into the SPI Flash device as well, follow this procedure:
1. Launch the ispUFW command line to encrypt the bitstream to Key Code 1. Select Slave SCM mode for JTAG.
2. Launch the ispUFW command line to encrypt the bitstream to Key Code 1. Select SPI mode for SPI Flash.

3. Launch the ispVM command line with the encryption key programming .xcf file to program the key code into the
FPGA device and verify the correct key code using the encrypted bitstream obtained in step 1.

4. Launch the ispVM command line with the SPI Flash programming .xcf file to program the SPI Flash device using the
encrypted bitstream obtained in step 2.

5. Repeat steps 1 and 2 after the key code has been incremented.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table C.1. Encryption Feature Command Line Syntax of ispVM and ispUFW

Program Command Line Syntax

ispVM Switch Description
-encryption Specifies the encryption options.
-key Replaces the key in the .xcf with the encryption key that follows.
-hex: Specifies the encryption key in hexadecimal (32 characters max.)
-ascii: Specifies the encryption key in ASCII (16 characters max.)
Examples:
ispVM.exe -infile c:\test.xcf -encryption -key -hex "000000004C6174746963652053656D69” ispVM.exe -infile
c:\test.xcf -encryption -protect -ascii "_LATTICE”

ispUFW Switch Description
-encryption: Specifies the encryption options.
-key Replaces the key in the .xcf with the encryption key that follows.
-hex Specifies the encryption key in hexadecimal (32 characters max.)
-ascii Specifies the encryption key in ASCII (16 characters max.)

-config_mode:

Specifies the configuration mode of the encrypted bitstream.

Possible values are “jtag burst”, “spi”, “spim”, “slave_scm”, and “slave_pcm”]

Examples:

ispUFW.exe -device LFE2M50SE -infile "ecp2m50e.bit" -encryption -key -hex
"000000004C6174746963652053656D69" -config_mode slave_scm -oft -pcm -outfile
“ecp2m50e_encryption.bit"

Notes:

e This option only available on the encryption-enabled version of ispVM.
e This option only supports the LatticeECP3, LatticeECP2MS or LatticeECP2S device families.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-
HH LATTICE Advanced Security Encryption Key Programming Guide for ECPTDer\\/lc.e I=Ia|\r|11|:y
echnical Note

References

For more information, refer to the following resources:

e LatticeECP2/M sysCONFIG Usage Guide (TN1108)

e LatticeECP2/M S-Series Configuration Encryption Usage Guide (TN1109)
e LatticeECP3 sysCONFIG Usage Guide (FPGA-TN-02192)

e LatticeXP2 Advanced Security Programming Usage Guide (TN1212)

e ECP5 sysCONFIG Usage Guide (FPGA-TN-02032)

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02202-1.8

39

http://www.latticesemi.com/legal
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=25616
http://www.latticesemi.com/view_document?document_id=32314
http://www.latticesemi.com/view_document?document_id=39746
http://www.latticesemi.com/view_document?document_id=50462

Advanced Security Encryption Key Programming Guide for ECP Device Family
Technical Note

= LATTICE

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2016-2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40

FPGA-TN-02202-1.8

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
https://www.latticesemi.com/Support/AnswerDatabase

= LATTICE

Revision History

Revision 1.8, June 2024

Section

Change Summary

Disclaimer

Updated the disclaimer.

Abbreviations in This Document

Moved the terms from the Glossary section to this section.

Encrypted Bitstream JTAG
Programming

Updated part of the description for the SPIm mode in step 10 of the Setting Security and
Encryption Using the Deployment Tool section as follows:
The encrypted bitstream must be located only in one pattern, either primary or golden.

Appendix A. ispVM Applications

Updated part of the description for the SPIm mode in Table A.1. Encrypting a Regular
Bitstream as follows:
The encrypted bitstream must be located only in one pattern, either primary or golden.

Technical Support Assistance

Added a reference to the Lattice Answer Database.

Revision 1.7, December 2020

Section

Change Summary

Overview of the Encryption Key
Programming Algorithm

Added SSPI to Slave Modes in Table 4.2. Encrypted Bitstream Format and Configuration
Mode Dependency.

Revision 1.6, November 2020

Section

Change Summary

All e Updated document title to Advanced Security Encryption Key Programming Guide for
ECP Device Family.
e Changed document number from TN1215 to FPGA-TN-02202.
e Updated document template.
e Applied minor editorial changes.
Disclaimers Added this section.

Acronyms in This Document

Added this section.

Overview of the Encryption Key
Programming Algorithm

Encrypted Bitstream JTAG
Programming

Appendix A. ispVM Applications

Updated encryption key readback for ECP5 and incorporated ECP5-5G in procedures.

Revision 1.5, January 2016

Section

Change Summary

Overview of the Encryption Key
Programming Algorithm

Updated Setting Security and Encryption for FPGA Devices section. Corrected procedure
numbering.

Appendix B. Using Lattice Model
300 Programmer to Program
Encryption Key

Updated Appendix B. Using Lattice Model 300 Programmer to Program Encryption Key
section. Corrected final step number in the procedure table.

Revision 1.4, October 2015

Section

Change Summary

All

e Changed document title to Advanced Security Encryption Key Programming Guide for
ECP5, ECP5-5G, LatticeECP3, and LatticeECP2/MS Devices.

e Added support for ECP5-5G device family.
e Added support for ECP5-5G device family.

Technical Support Assistance

Updated Technical Support Assistance section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Revision 1.3, March 2014

= LATTICE

Section

Change Summary

All

e Changed document title to Advanced Security Encryption Key Programming Guide for
ECPS5, LatticeECP3, and LatticeECP2/MS Devices.

e Added support for ECP5 device family.

Revision 1.2, March 2014

Section

Change Summary

All

e Changed document title to Advanced Security Encryption Key Programming Guide for
ECP5, LatticeECP3, and LatticeECP2/MS Devices.

e Added support for ECP5.

Introduction

Added features for ECP5 in Introduction section.

Glossary

Arranged Glossary section in alphabetical order.

Overview

Added description of Encryption Only feature for ECP5 in Overview section.

Overview of the Encryption Key
Programming Algorithm

Updated Table 5.1 footnote 1.

Encrypted Bitstream JTAG
Programming

e Added information on file conversion options in Setting Security and Encryption Using
the Deployment Tool section.

e Updated Diamond Programmer startup procedure in Encryption Key Programming
section.

References

Added FPGA-TN-02032 to References section.

Technical Support Assistance

Updated Technical Support Assistance information.

Revision 1.1, September 2012

Section

Change Summary

All

e Updated document with new corporate logo.
e Updated for Diamond Programmer/Diamond Deployment Tool usage.

e Procedure to Encrypt a Regular Bitstream diagram — updated corresponding table with
notes to D1 and D5.

Introduction

Expanded the Introduction section.

Revision 1.0, October 2010

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Advanced Security Encryption Key Programming Guide for ECP Device Family
	Contents
	Abbreviations in This Document
	1. Introduction
	2. Overview
	3. Lattice Encryption Feature
	4. Encryption Key Programming Algorithm
	4.1. Encryption Key Programming Flow
	4.2. ECP5, ECP5-5G, LatticeECP3, LatticeECP2MS, and LatticeECP2S Bitstream Encryption Format
	4.3. Creating an Encrypted Bitstream File and Key File
	4.4. Setting Security and Encryption for FPGA Devices
	4.5. Creating the Encryption Key and Encrypted Bitstream Using Diamond Security Setting Tool and Process Flow

	5. Encrypted Bitstream JTAG Programming
	5.1. Setting Security and Encryption Using the Deployment Tool
	5.2. Encryption Key Programming
	5.3. Encrypted Bitstream JTAG Programming Procedures
	5.4. Advanced Encryption Key Programming Flow

	Appendix A. ispVM Applications
	A.1. Setting Security and Encryption for FPGA Devices
	A.2. Programming Encryption Key
	A.3. Encrypted Bitstream JTAG Programming
	A.4. Programming Manufacturing Encryption Key

	Appendix B. Using Lattice Model 300 Programmer to Program Encryption Key
	Appendix C. ispVM Advanced Encryption Key Programming Flows
	References
	Technical Support Assistance
	Revision History

