s LATTICE

Single-Wire Controller for Digital
Temperature Sensors

Reference Design

FPGA-RD-02099-1.1

December 2019

Single-Wire Controller for Digital Temperature Sensors .I.ILATTICE

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-RD-02099-1.1

http://www.latticesemi.com/legal

= LATTICE

Contents
O [0 o o [0 4 T o OO P PR PPOTRTOPROP 4
R < | A8 [=P PSP UPPPPRPRRPIN 4
T VY Vot To] g |l D=ty ol o o1 [o PP URUURRRRRNt 4
4. One-wire CommUNICAtION PrOTOCOI.....cciiiiiiiiiiiie ettt ettt e e ee e e s ba e e e ssabe e e seabteessabaeeesabeeeesaseeessnnenens 5
5. DESIZN MOAUIE DESCIIPTION . ..uviiiiiiiiee et e ettt e ettee e et e e e et e e e eetteeeestbaeeeetbeseeaasaeaeasbaeaaassseeaassaasesssseaeanssaeeeassaaeesssnaans 6
5.1. (@ oYol Qe 11/ T [=T a1V, o Yo [V 1R PPN 6
5.2. Register_CONFIGUIE IMOGUIB.........ooiiee e e ee e s e e et e e s asa e e e sataeeeeastaeesensaeeesntaeeeansreeesnnnens 7
5.3. (00T 0 8 o] Il 2= =4] =Y SRS 7
5.4.) LI ST o 1 =T PRSP PUPPRPRPIOt 8
5.5. ONE-WiIre INtErface MOTUIB.....oouiiieie ettt sa bt et s it e e s bt e e sabeesseeesabeesateesaseenneeens 8
5.6. INTE_STATE_MACKNINE (et ee ettt e b e st e s bt e st e e s bt e st e e sbeesabeesneenane 8
5.7. data_transfer_State MACNINE.........oi it e et e e e st e e e e tbe e e seataeeesabaeaeeabeeeenssaeaesnbanaans 9
5.8. search_rom_id_State MACKINEGccociiiiiiiie et e et e e et e e e et e e e e abeeeeeabeeeeabeeeesataeesensreeessanens 10
ST O o 1= T =Y [] BT =To [U] [PP UPPRPRRPNt 11
S N1 1YY o=y Tor: o] o T3S 11
S S 10 Y o1 [T 0 T=T oY - [0 o SRS 13
REFEIENCES ...ttt bttt e b e e bt e bt e e bt e e bt e e bt e e sh b e e bt e e shbe e aee e b b e e aee e s abeenae e e shbeenabeesnbeenaneesareennreens 14
TeChNICal SUPPOIT ASSISTANCE . .eeiiuiiiiiieitee ettt ettt s bt s bt e s bt s bt e e bt e s bt e st e e e abeesabeesabeesabeesnbeesabeesneenane 15
LAV T o I T ES) o T PSP PPP PPN 16
Figures
FIGUIE 3.1, BIOCK DIGBIam .ccccuieiieeiieeiiiieeieitiee e ettt e e sttt e e sttt e e ssatteessabaeeessbeeessaseeessabaeeessbeeesnaseeessasaeeessbaeesnnsaeessnsseeesnssenennnne 4
Figure 4.1. Initialization TimMiNG DI@GIamcccuuiiiuiiiiiieiiieree ettt ettt ettt e st e st e st e e st e e s bt e sabeesabeesabeesaseesabeesaneesareesneenane 5
Figure 4.2. Write and REAA SIOt TIMINE ..ceceuiiiieiiie ettt e ettt e ettt e e e e eteeeeestbeeeeeasaeeeetaeeaaastesasensasaessaeaaaasreeenannes 6
Figure 5.1. Initialization Procedure State IMaChiNeccuiiieeiii et tre e st e e e et b e e e s asae e e snnaeeeesraeesnnnns 8
Figure 5.2. Data Transfer STate MacChineooeeiii i e e e et e e e et e e s sta e e e e tteeeeeasaeeesasaeaeestaeennnens 9
Figure 5.3. Search ROM ID State MaChine.......cccueiiiiiiiee ettt et e e ettt e e st e e e st e e e e et e e e ssaaeeessasaeeeanneeeesnnsneeesnneeenans 10
Figure 7.1. INitialiZation PrOCEAUIEScoiieiiee et e et et e st e e e st e e e s ete e e sate e e e s ateeeeessteeeenseeeesnsaeeeansseeesnnsneeesnseneaans 12
Figure 7.2. Command Transfer WavefOrm ..o ittt ettt e b e e e e sareesaee e 12
Tables
I o [00 R T T 1Yol o o SR 5
Table 5.1. User ReiSter DEfiNITIONScccueiiiiiiiii ittt et ettt sbe e st e s sbeesbe e s beesabeeenneeeaneas 7
Table 5.2. Control Register DefiNitiONScoiuiiiiiiiiie ettt ettt s sbe e s e e sbeesbe e s beesabeeenneesanees 7
Table 5.3. Status REGISTEr DETINITIONSccc ittt e et e e et e e e e stbe e e e etaeeesabbeeeesbeeeeessaeaesateeeeesbeeeennneas 8
Table 8.1. Performance and ReSoUrce ULIlIZationccioieriiiiiieniii ettt sae e st esaeesabeesneesane 13

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

A single-wire interface can be used for serial protocol applications, such as 12C and SPI buses. It provides a
smallfootprint communication channel between a controller and low-cost components on the board such as
temperature sensors. Such communication channels usually do not require high speed. The protocol should be simple;
using few resources in the controller.

As its name suggests, this bus protocol uses one wire to communicate with a master controller, usually a
microprocessor. This reference design implements the Single-Wire Controller in a CPLD. The initialization procedure
and all data transfers are implemented in the CPLD to offload the tasks of the microprocessor. The task of the
microprocessor is reduced to reading and writing of the registers in the master controller through the WISHBONE bus.
The Single-Wire Controller can be used in various applications. This design uses a single-wire interface to read/write a
digital-output temperature sensor.

2. Features

e One-wire communication protocol compliant design

e Configurable command/data transfers

e Standard one-wire communication speed (15.4 Kbps with 60 us data slot)

e Configurable process clock frequency

e Provides control for most one-wire temperature sensors

e Initialization procedure and data transfer are triggered by configuring the control register
e WISHBONE compliant reference design

3. Functional Description

The Single-Wire Controller is used to control one or multiple one-wire slave components such as temperature sensors.
It is a master controller located between the microprocessor and the slave devices.

The one-wire data communication protocol is composed of two procedures, an initialization procedure and a
data/command transfer procedure. All data/command transfers are byte-oriented except for the Search-ROM
command. This design provides a third procedure to complete the Search-ROM command. Figure 3.1. is a block
diagram of the design.

Init_start_fl
X nit_stort Tag P Initialization —~
&» . Init_busy Procedure gl
<%
b_dat_i
W—a‘l> Write_data_enable
b_dat_o >
<L Read_data_enable .
wb stb i | DataTransfer -
—_—P - data_pro_busy Procedure
i D
wb_ack_o Register . data o DQ Control - Q »-
¢ Configure [*%& > Mux
Search_rom_valid
whb_we_i) _fom_vat !
Supposed_Rom_id F—
i Lol
&» - Conflict_valid
-« SearchROM -
wb clk i _ g Conflict_mark_index ID Procedure
—»7 = -y
- Searched Rom_id
=Searched Rom_error
clk_div
A J
wh_rst_i »
Clock ck 1IMHz o
whb clk i Configure = One-Wire Interface
Rl S

Figure 3.1. Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 3.1. provides the pin descriptions for this reference design.

Table 3.1. Pin Descriptions

Port Direction Width Description

WISHBONE Interface

wb_clk_i Input 1 WISHBONE clock input

wb_rst_i Input 1 WISHBONE reset input, active high level, synchronous reset signal
wb_adr_i Input 5 WISHBONE input lower address bits

wb_dat_i Input 8 WISHBONE input data towards the core
wb_dat_o Output 8 WISHBONE output data from the core

wb_we_i Input 1 WISHBONE input write enable signal

wb_stb_i Input 1 WISHBONE input strobe signal

wb_ack_o Output 1 WISHBONE output bus cycle acknowledge output
One-wire Interface

DQ | Input | 1 | One-wire device interface, default is tri-state

4. One-wire Communication Protocol

One-wire communication is a strict data transfer protocol made up of an initialization procedure, command procedure
and data procedure. The initialization procedure is used to detect the presence of the slave devices and to reset them.
The command procedure includes the ROM command procedure and function command procedure. The ROM
command is used to identify the slave device. The function command is used to read/write the internal registers of a
slave device (e.g. to trigger the temperature conversion and to get the voltage supply mode). The data procedure
works with the function command to transfer or read data to and from the slave device.

When the one-wire bus is in idle state, it keeps the wire in a high logic level until the master pulls the bus to the logic
low level. All the data transfers are initiated by the master start by sending the reset pulse. The initialization procedure
is comprised of one reset pulse and one presence pulse. The reset pulse is transmitted by the master and the presence
pulse is the acknowledge signal from the slave device. The initialization procedure timing is described in Figure 4.1.

Reset Low Level

L— Reset Low Level Period —»!

! > 480 us

[« MasterSample Time —— =
| =555 us |

i‘ One Initialization Slot > 960 us >

Legend
L} Master

Slave

"""""" Resistor Pull-up

Figure 4.1. Initialization Timing Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Once the master receives the presence pulse, it knows there is at least one slave device on the bus. It can now transmit
a ROM command to identify the slave devices. By transmitting a ROM command, the master determines the ROM ID of
the slave device and how many slave devices are available on the one-wire bus. The ROM command can be
summarized by reading the ROM, MATCH ROM, SEARCH_ROM, ALARM_SEARCH and SKIP_ROM comands. The
COMMAND/DATA register can be written to send the ROM command to the slave devices.

The function command is used for accessing the specified device after executing a ROM command. Depending on the
functional requirements of the slave device, the master can send different command codes to the targeted slave
device. The function commands include triggering temperature conversion, reading and writing the scratchpad register,
and determining the power supply mode. The same COMMAND/DATA register can be used to send the function
command to the slave devices.

For every data transfer operation, the master must first pull down the DQ bus for 1us. If the operation is a WRITE
command/data procedure, the master can trigger the write ‘0’ slot for bit ‘0’, or the write ‘1’ slot for bit ‘1’. If the
operation is a READ procedure, the master samples the DQ bus as the read value from the slave device at 15 us. Data
transfer can last from 60 to 120 us.

The timing for the write and read slots is shown in Figure 4.2.

e R veo : L
. L . . e .
! ,° |] '/ |
I, | .
ba - . pQ - <. .
| « Recover -] I/ Recover
. Master Write 0 Slot Time [} Master Read 0 Slot 1 Time
GND |] : GND - \
! I10 to15 ! : : ! : 10to 15 :
. . 01l5us - . ol5us ;
[60t0120Us —————————— e b= LN . — e
| ! ! le——— 10t0 15 us — Master Sample Time .
le——— 60t0120us ————— !
(] .
____/_I:_)[_)____ 1 Master Write 1 Slot ! VDD Master Read 1 Slot .
3 g . h ad B]
| 1, | ! 4 [:
J . .
pa | 0 . Da | . 1
i] ! I ! :
GND |] : GND | : : !
i<_5t06us.| l Il5t06us_>| l |
_ . .
! 60usto 120 us [le——10t015us — Master Sample Time .
le—— 60to 120 us —
Legend

CEEE——— |\/aster
Slave

"""""" Resistor Pull-up

Figure 4.2. Write and Read Slot Timing

5. Design Module Description

This design can be divided into three sub-modules: the clock_divider, register_configure and one_wire interface
modules.

5.1. Clock_divider Module

This module is used to generate one 1MHz clock. The CLK_DIV register can be configured to obtain the required clock
frequency based on the process clock frequency. This reference design uses clock_1MHz to generate the timing
parameters defined in the one-wire communication protocol.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.2. Register_configure Module

This module implements the slave WISHBONE interface and read/write functions of all user registers. Based on the
contents of the CONTROL register, the module generates different control signals to trigger different flows. The STATUS
register stores the internal status of the controller. The COMMAND/DATA register is used to store the command codes
and data. The READ_DATA register stores the contents read back from the slave device. For the search ROM_ID
command, this reference design has a presumed Rom_ID number which is stored at addresses 8’h2 to 8’h9. In each
search process, it records the conflict bit position and the conflict may occur many times. The conflict_mark register
records the latest conflict position. After each search, the master acquires one slave device’s ROM ID which is
registered in the ROM_ID registers.

This reference design includes 22 user registers, as listed in Table 5.1.

Table 5.1. User Register Definitions

Name Address Width Access Description
Control 0x00 8 Read/Write Control register
Write_DATA 0x01 8 Read/Write Command/data configure register
Rom_ID_DATA 0x02,0x03 64 Read/Write Presumed ROM ID number, the default value is 64’b0.
0x04,0x05, The value can be modified before each search ROM_ID
0x06,0x07 procedure.
0x08,0x09
Rom_ID 0x0A,0x0B 64 Read Received slave ROM_ID after each Search ROM com-
0x0C,0x0D, mand
0xOE,0xO0F,
0x10,0x11
Status 0x12 8 Read Status register, records each trigger enable signal and
monitors the state machine
Read_data 0x13 8 Read Acquired data after executing function command
Clk_div 0x14 8 Read/Write Clock configuration register
Conflict_mark 0x15 8 Read Conflict mark register records the last conflict bit
position

5.3. Control Registers

Table 5.2. Control Register Definitions

Bit # Access Description

7:4 R/W Reserved
3 R/W search_rom_valid signal — Triggers the search ROM procedure
2 R/W read_data_enable signal — Triggers the read data procedure
1 R/W write_data_enable signal — Triggers the write data procedure
0 R/W init_start_flag signal — Triggers the initialization procedure

The control register is cleared after the busy_pro signal is valid. The default value is 8’h0.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.4. Status Registers

Table 5.3. Status Register Definitions

Bit # Access Description
7 R busy_pro signal — Or’ed by init_busy, data_busy and search_rom busy
6 R no_slave_device_flag — Indicates no slave device on the one-wire bus
5 R error flag — Records the error in the Search ROM procedure
4 R conflict_mark_valid — Indicates one conflict occurs in the Search ROM procedure
3 R search_rom_valid signal — Monitors the search ROM state machine
2 R read_data_enable signal — Monitors the read operation state machine
1 R Write_data_enable signal — Monitors the write operation state machine
0 R init_start_flag signal — Monitors the initialization state machine

The status register is used to monitor the controller. The default value is 8’h0.

5.5. One-wire Interface Module

Based on the one-wire data communication protocol, the data transfer procedure uses two timing models, one for the
initialization procedure and the other for the data transfer procedure. These timing modes have different timing
parameters. This module uses two state machines to build the corresponding timing model. A third state machine is
used to complete the Search ROM command to simplify the data transfer state machine.

The three state machines include:

e init_state_machine

e data_transfer_state_machine

e search_rom_id_state_machine

5.6. init_state_machine

According to the one-wire communication protocol, the initialization procedure can be divided into seven states, as
shown in the state transfer diagram in Figure 5.1.

Reset/
power up

INIT_TURN_
AROUND_STATE

init_start_flag=1 . .
init_time_axis_count >960

INIT_COMMAND_
END_STATE

SEND_RESET_PUL
SE_STATE

init_time_axis_count >960

init_time_axis_count > 480 P .
init_time_axis_count >555

PRESENCE_
PULSE_LOW_
RELEASE_STATE

PRESENCE_
PULSE_DETECT_
STATE

PRESENCE_
PULSE_WAIT_STATE

init_time_axis_count
> 495

Figure 5.1. Initialization Procedure State Machine

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

In the initial stage, the state machine is in idle state and the DQ bus is in weak pull-up state. If the user wishes to
operate a device, the first task is to write the control register to generate the init_start_flag signal. After the
init_start_flag signal is received, the master pulls down the DQ bus for 480 us. All slave devices respond to the master’s
reset pulse by generating one presence pulse. The presence pulse is the slave device pulling down the DQ bus for more
than 60 us. As soon as the master detects the low state of the DQ bus, the master knows there is a slave device
response to the past reset pulse.

Sometimes the bus may not be pulled low. The master waits for 480 us and concludes that there is no slave device on
the DQ bus. In this case, it generates a no_slave_device_flag signal to report this case.

5.7. data_transfer_state_machine

Data transfer is made up of the ROM command write, function command write, data write, status signal read, ROM-ID
data read and Search ROM command operations. Except for the Search ROM command operation, the other command
operations are byte-oriented. Since the one-wire bus uses only one line to transfer data, it needs to transfer the 8-bit
data or command eight times.

Each data transfer is comprised of the write ‘0’, write ‘1’, read ‘0’ and read ‘1’ slots. This state machine is used to
implement an 8-time read slot or write slot according to the master’s configuration contents. If the operation is a read
operation, the state machine enters the reading flow. If the operation is a write operation, it enters a write flow.

The data transfer flow can be divided into nine states as shown in Figure 5.2.

Reset/
Power Up

A 4

WRITE_REG1=], READ_REG1=1

WRITE_DATA_ DATA_TRANSFER_ READ_DATA_

—
START_STATE IDLE_STATE START_STATE
data_transfer_time_ data_transfer_time_ A data_transfer_time_
axis_count > 70 r axis_count > 6 axis_count > 1
WRITE_BIT_STATE READ_BIT_STATE
Index >7
data_transfer_time_
data_transfer_time_ data_transfer_time_ axis_count >70
4 axis_count > 60 axis_count > 15
WAIT_SEND, DATA_TURN_ READ_DATA_

AROUND_STATE SLOT_END_STATE

DATA_END

data_transfer_time_
axis_count > 70

Index > 7

data_transfer_time_
axis_count > 60

A
data_transfer_time_
axis_count > 70 WAIT_RECEIVE_

DATA_END_STATE

Figure 5.2. Data Transfer State Machine

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

If only one slave device is on the DQ bus, the master can read or write the data directly to the slave device. Usually the
master does not know the number of slave devices and the ROM ID. For this reason, the master needs to send a
SEARCH_ROM command to get information from the slave device.

For each data transfer, the master writes the command code to the COMMAND/DATA register first. Then it writes the
write_data_enable bit of the control register. Once the write enable signal is valid, the controller can transfer a bit
every 70 us. After transferring the command code, the master determines the next step. If more data must be written,
the master writes the control register to activate the write-enable signal again. If data must be read, the master writes
the control register to activate the read-enable signal. The controller is designed to be byte-oriented. Therefore, it
reads one time if the feedback data is one byte. If the feedback data is 64 bits, the master will read the data byte eight
times and the read enable signal will be written eight times.

5.8. search_rom_id_state_machine

When the serial numbers of the slave devices on the one-wire bus are unknown, the master must send a SEARCH_ROM
command code to acquire the information from the slave devices. Users should read the reference document to
understand the algorithm. This section only describes the implementation flow of the algorithm. For every search, it
can read one 64-bit ROM-ID from the slave device.

Before the SEARCH_ROM command is executed, the master goes through the following steps:
1. Forthe SEARCH_ROM flow, the master sends the 8’hFO command code first.

2. Before each search, the master writes the presumed ROM ID to the ROM_ID_DATA register. The 64’b0 is the default
presumed ROM ID. Once a search is finished, the master gets the last conflict bit index and one slave device’s ROM
ID. The conflict_valid of the status register indicates that more than one slave device is connected to the one-wire
bus. To search the second slave device, the ROM_ID_DATA register is written with the latest acquired ROM ID and
the changed bit in the conflict bit index. For example, if the latest acquired ROM ID is 64’h0123_4567_89ab_cdef
and the conflict bit index is 6’d32, next ROM_ID_DATA register is 64’h0123_4566_89ab_cdef.

3. After writing to the ROM_ID_DATA register, the master writes the control register to trigger the Search_ROM_ID
flow. Once the search_rom_valid is active, the search ROM ID state machine will be in busy state. The state
machine can be refreshed to idle state when an error occurs. The busy status signal is cleared when the search is
complete.

The search ROM procedure has the same timing as the data transfer procedure. The difference is that the search ROM
ID algorithm reads two bits from the slave device first and then writes to the slave device one bit at a time. This
operation repeats 64 times in the search procedure. The data transfer procedure is byte-oriented; therefore this
operation is repeated eight times. Figure 5.3. shows the Search ROM ID state machine.

Rom_id_index <= 64

search_rom_valid
_regl=1

Rom_id_index > 64

search_romid_cnt>1

search_romid_cnt
>70

search_romid_cnt> 15 {First_read_data,
second_dat} = 2'b11 search_romid_cnt > 60

search_romid_cnt > 60 search_romid_cnt>6

rch_romid_cnt (First_read_dat

>70 second_dat} !=2'b11

Figure 5.3. Search ROM ID State Machine

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6. Operation Sequence

The sequences of common operations are described below.

To read the ROM ID:
1. Write the clock divider register at address 8’h14 with 8’hA.

2. Read the status register address 8’h12. If the controller is idle, proceed to Step 3. Otherwise, wait for the controller
to be idle.

Write the control register at address 8’'h00 with 8’h01 to trigger the initialization operation.

&

Read the status register at address 8’h12. If the controller is idle, proceed to Step 5. Otherwise, wait for the
controller to be idle.

Write the command/data register at address 8’h01 with 8’h33.

Write the control register at address 8’h00 with 8’h02 to trigger write enable signal.
Read the status register at address 8’h12. If the controller is idle, proceed to Step 8.
Wait for the controller to be idle.

XN oW

Write the control register at address 8’h00 with 8’h04 to trigger read-enable signal.
10. Read the reading data register at address 8h13. Proceed to Step 8 until one ROM ID is read.
11. Proceed to Step 1 for the next operation.

To search the ROM ID:
1. Write the clock divider register at address 8’h14 with 8’hA.

2. Read the status register address 8’h12. If the controller is idle, proceed to Step 3. Otherwise wait for the controller
to be idle.

Write the control register at address 8’'h00 with 8’h01 to trigger the initialization operation.

&

Read the status register at address 8’h12. If the controller is idle, proceed to Step 5. Otherwise, wait for the
controller to be idle.

5. Write the command/data register at address 8’h01 with 8’hFO.

6. Write the control register at address 8 h00 with 8’h02 to trigger a write enable signal.

7. Read the status register at address 8’h12. If the controller is idle, proceed to Step 8.

8. Wait for the controller to be idle.

9. Write the ROM_ID_DATA register at address 8’h2 to 8’h9 with the presumed ROM ID data.
10. Write the control register at address 8’h0 with 8’h08 to trigger the Search ROM flow.

11. Read the status register at address 8’h12. If the controller is idle, proceed to Step 12.

12. Wait for the controller to be idle.

13. Read the ROM_ID register at address 8’ha to 8’h11 to get the searched ROM ID.

14. Proceed to Step 1 for the next search operation.

7. Timing Specifications

The simulation result is based on the functional simulation of the design.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Single-Wire Controller for Digital Temperature Sensors

Reference Design

= LATTICE

Name Hierarchy Value Stimulator |+ 700 . .800 . .900 . 1000 U0 . 1200 . 1300 . 100 . 1S00Comeesp o 1700 o 80 o 1500 o 2
1+ R= addr_i 12
1+ R= addr_temp XX
R= clk_i 0
R-cyc 1
[+ R= data_i 00
[+ & data_o 80
i 00000000
q XK
- read_data a0 00 b 0]
FF012345678...
0
sel 1 0
R= strobe _i 1
= DQ 0
R=we_i 0 |
[1001.575 us} 2025
Figure 7.1. Initialization Procedures
Name Hierarchy Value Stimulator] 7800 L7900 . 8000 . 1+ 8100 1 8200 . 8300 . . 8400 . . 8500 . .00 00 1 B0 e 00 |
o ack_o 1
+1R- addr i 12
|+ R= addr_temp 09
R=clk_i 0
R=eyc 1
+R- data_i 00
[¥ = data_o a0
= DQ 1
#R: 00000008
+R: g XX
+1R= read_data 50
+1R= rom_id 0000000000,
Rerst i 0
+ R: sel 1
R= strobe_i 1
¥ > wh_cmp.a XX
+ & wh_cmp.d_exp XX
+ © wh_cmp.delay XXKXXXKX
[+ = wh_read.a 12
+ ® wh_read.d 80
+ o wh_read.delay 00000001
4 & wh_urite.a 00 @ @
+ & wh_write.d nz 0 02 Yos
1+ > wh yrite.delav 00000001 .
130.873 ug
68 us

Figure 7.2. Command Transfer Waveform

The master writes the command 8’hFO0 to the address 8’h01.

The master writes the control register with 8h02 to trigger the writing operation.

1
2
3. The data_o signal specifies that the state machine in busy state.
4

. The data 8hF0 is transferred on the DQ bus.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12

FPGA-RD-02099-1.1

http://www.latticesemi.com/legal

= LATTICE

8. Implementation
This design is implemented in the Verilog language with a VHDL wrapper supported.

Table 8.1. Performance and Resource Utilization

Device Family Software Speed Grade Utilization fmax (MHz) 1/0s Architecture
(LUTs) Resources

Machxo2™ ! ispLEVER’ -4 524 >20 27 N/A
Lattice -4 524 >20 27 N/A
Diamond™

MachXo™ 2 ispLEVER -3 511 >20 27 N/A
Lattice Diamond -3 511 >20 27 N/A

Notes:

1. Performance and utilization characteristics are generated using LCMX02-1200HC-4TG100CES, with Lattice ispLEVER 8.1 SP1 and
Lattice Diamond 1.1. When using this design in a different device, density, speed, or grade, performance and utilization may
vary.

2. Performance and utilization characteristics are generated using LCMX02280C-3T100C, with Lattice ispLEVER 8.1 SP1 and Lattice
Diamond 1.1 design software. When using this design in a different device, density, speed, or grade, performance and
utilization may vary.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Single-Wire Controller for Digital Temperature SensorsLATTICE
Reference Design

References

e Dallas Semiconductor, DS1821 — Programmable Digital Thermostat and Thermometer Data Sheet
e Dallas Semiconductor, DS18S20 — 1-wire Digital Thermometer Data Sheet
e MAXIM Semiconductor, DSIWM — Synthesizable 1-Wire Bus Master Data Sheet

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02099-1.1

http://www.latticesemi.com/legal

j— . e ..
HH LATTICE Single-Wire Controller for Digital Temperature Sens?rs
Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02099-1.1 15

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Single-Wire Controller for Digital Temperature Sensors :.ILATTICE

Reference Design

Revision History

Revision 1.1, December 2019

Section Change Summary

All e Changed document number from RD1099 to FPGA-RD-02099.
e Updated document template.

Disclaimers Added this section.

Revision 1.0, November 2010

Section Change Summary

All Initial release.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

16 FPGA-RD-02099-1.1

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Single-Wire Controller for Digital Temperature Sensors
	1. Introduction
	2. Features
	3. Functional Description
	4. One-wire Communication Protocol
	5. Design Module Description
	5.1. Clock_divider Module
	5.2. Register_configure Module
	5.3. Control Registers
	5.4. Status Registers
	5.5. One-wire Interface Module
	5.6. init_state_machine
	5.7. data_transfer_state_machine
	5.8. search_rom_id_state_machine

	6. Operation Sequence
	To read the ROM ID:
	To search the ROM ID:

	7. Timing Specifications
	8. Implementation
	References
	Technical Support Assistance
	Revision History

