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Introduction 

Almost invariably, servers, disk arrays and other high-availability systems are subject to 

the requirement that functional modules be replaceable on-the-fly without the need for 

powering the system down.  Replacing modules while the system is in operation is 

commonly known as hot swapping.  A key factor in being able to provide hot swap 

capability is the appropriate management of the local power systems on each of the 

interchangeable modules.  

 

To support hot swapping, a subassembly such as a printed circuit board must reliably 

perform several operations, and power management is among the most critical.  When 

inserted into the larger system, a board's hot swap controller must ensure that power at 

the connector is stable before being distributed to other onboard systems and 

commanding the board to initialize.  For boards drawing little current, power can be 

switched onboard with digitally switched MOSFETs.  Higher levels of current (e.g. 10's 

of amperes) require more sophisticated switching strategies to avoid inducing transients 

in the bus-level power supplies and damaging the current-switching MOSFETs.  

Maximizing system-level performance requires close coordination of the low-level 

functions of switch control with those of the top-level hot swap management functions, 

such as sequencing and fault detection.  While it is possible to implement such systems 

with hardwired circuitry, it is often more simple and cost-effective to do so using 

programmable system components.   
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2  

Hot Swap Power Switching  

 The power pins on a hot swappable module's connector typically are not 

connected directly to the module's internal power buses.  The more usual arrangement 

is for the local board power to be isolated from the bus power with MOSFETs or other 

types of power switching devices, as shown in the schematic of Figure 1.  This circuit 

controls the connection of a single +12V bus power supply to board-side power through 

MOSFET M1, and is based on Lattice Semiconductor's ispPAC-POWR-1014 power 

management device.  Some of the individual functions performed by the other parts of 

this circuit include: 

  

1. Voltage monitoring – through resistive dividers R1/R2 and R7/R8 

2. Current Sensing – through RSENSE and a ZXCT1009 differential amplifier 

3. High-side MOSFET drive – the CHARGE_PUMP signal from the ispPAC device 

is a square-wave used to develop a high voltage (> +12V) across C2 that can be 

used to fully switch N-channel MOSFET M1 on.  M1's gate voltage is controlled 

by the SHUT_DOWN signal buffered by Q



 

Figure 1 – A hot swap controller typically employs a power MOSFET (M1) to connect 
the bus power to the internal board power systems after the board has been positively 
seated in its socket.  Lattice's ispPAC-POWR1014 provides intelligent control that can 
be tailored to the application's requirements through its programmable logic and analog 
functions.  

 

For modules consuming small amounts of power with minimal internal supply 

capacitance, one could power up the module simply by switching M1 into its low-

resistance on-state (hard-switching) quickly.  In the case of modules with greater power 

requirements, however, this will result in a large turn-on current transient through M1, 

because when CL is in the process of charging it will appear as a momentary short 

circuit between the supply rail and ground.  The resulting current transient creates two 

problems.  The first is that it can cause voltage drops in the bus power supply, 

potentially affecting the operation of other modules sharing bus power.  A second 

problem with this scheme is less subtle:  the current transient may damage the 

MOSFET, resulting either in reduced long-term reliability or outright failure.  
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When charging a capacitor (C) up to a voltage source (V) through a MOSFET or other 

purely resistive device, the total amount of energy dissipated in the MOSFET is CV2/2, 

the same as that which ends up being stored in the capacitor.  This is independent of 

the value of the MOSFET's on resistance or the time needed to charge.  While the total 

amount of dissipated energy is not negotiable, the rate at which it's dissipated – the 

instantaneous power - can be controlled.  For example, using a MOSFET with a small 

on resistance results in high power dissipation for a short duration, while a device with a 

larger on resistance will experience lower power dissipation over a longer duration.  

Making the appropriate tradeoff between maximum power dissipation and the time 

needed to charge a module's local capacitance is a key part of implementing an 

effective hot swap design. 

 

The amount of time a MOSFET can safely dissipate a given amount of power usually is 

specified in the device's data sheet by its safe operating area (SOA) chart (Figure 2).  

The SOA chart specifies the maximum amount of time the MOSFET can safely remain 

biased under various combinations of drain-to-source voltage (VDS)  and drain current 

(ID).  Superimposed on this SOA chart are “trajectories” of VDS and ID corresponding to 

the control schemes to be discussed. 



 
Figure 2 – The Safe Operating Area (SOA) chart for a MOSFET shows the device's 
safe endurance limits for combinations of drain-to-source voltage and drain current.  
Different control strategies can be used to avoid excessively stressing the MOSFET 
when used as a hot swap load switch. 

  

If one switches the MOSFET on quickly (shown by the black “Hard switching” curve of 

Figure 2), it is subjected initially to a maximum value  of VDS, with ID limited only by the 

channel resistance and parasitic impedances such as PCB trace resistance and 

inductance.  As the load capacitor charges, the MOSFET's operating point moves left 

and down to more benign conditions.  If the operating point does not shift quickly 

enough, the MOSFET may be damaged or destroyed.  And even if one selects a 

MOSFET with sufficiently high power dissipation capabilities, the problem that the initial 

current surge could disrupt bus-side power supplies still remains. 
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Controlling Current Surge 

One common technique used to avoid the problems resulting from abruptly turning on 

the MOSFET is to ramp up the MOSFET's gate voltage gradually, at a rate that is slow 

enough so that the load capacitor's voltage will track with a minimal VGS.  This ensures 

that the operating point will remain in a low-current region near the bottom of the SOA 

chart.  This strategy can be readily implemented with the circuit of Figure 1 by 

appropriately selecting the value of C2.  

 

While simple to implement,   ramp-up up rates in the above scheme must be heavily 

margined to accommodate component variation in both the MOSFET and power-bus 

load capacitance.  For low to moderate current applications, specifying a slightly larger 

MOSFET may not be much of an additional expense, and may well be justified by cost-

savings from simplified control.  In other cases, where large on-board capacitances 

must be charged, this approach can result in significant delays between the time when a 

module is plugged into the larger system and when it is ready to begin operation. 

 

With current-sensing hardware, it becomes possible to maintain a constant current 

trajectory through the SOA by using negative feedback control.  By providing precise 

regulation of drain current, the MOSFET switching trajectory (Figure 2, simple current 

limit) can be set to a higher current level than would be prudent in the previous case of 

simply ramping up gate voltage in open-loop fashion.  Because it is often necessary to 
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monitor current for diagnostic purposes, current-sensing hardware may already be 

available in a design, in which case only the control logic need be added.  

 

Linear current-mode control, however, can be tricky to implement reliably, with the 

potential for instability and uncontrolled oscillation.  An alternative is to use a hysteretic 

control scheme (Figure 3), in which the MOSFET current is maintained between a lower 

and an upper threshold.  In a hysteretic control scheme, MOSFET gate voltage is 

ramped up until the drain current reaches a predetermined upper threshold.  At this 

point, the gate voltage is ramped down until drain current falls below a predetermined 

lower threshold.  The process then repeats, with drain current varying between the two 

threshold levels.  

 

While hysteretic control could be implemented with a small number of discrete 

components, it can also be realized by merely reprogramming the ispPAC Power 

Manager in the original circuit of Figure 1.  Each of the Power Manager device's voltage 

monitor pins supports dual comparator functions with independently programmable high 

and low voltage thresholds.  Programming the device's FET driver outputs to a higher 

current provides a faster but still controlled rise time for MOSFET gate voltage and 

corresponding drain current.  An additional advantage of using a programmable device 

to manage the current control process is that it is straightforward to fully integrate the 

hot swap control logic with that needed for normal board operation.  For example, the 

Power Manager device can be programmed to permit higher currents during the short 
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time the board is initializing, and then to seamlessly shift into normal operating mode, 

where the MOSFET is completely turned on and current is monitored at a lower 

threshold to detect board fault conditions.  



 
Figure 3 – Hysteretic current limiting cyclically allows MOSFET current to increase to a 
maximum allowable level, and then throttles it back to a slightly lower level.  This 
technique provides many of the advantages of linear current control while sidestepping 
many of the potential stability issues. 

 

Optimizing Switching Performance 

The programmable nature of the Power Manager device supports the designer in 

realizing more highly optimized control techniques at little or no additional cost.  One 

example of such a technique is charging up board capacitance in two separate phases 

– a low current initial phase and a high current final phase, as shown in Figure 4.  The 

value of adding this complexity is that it optimizes charge rate so that the MOSFET’s 

operating point more closely follows the constraints of the device's   SOA curve (2-

phase current limit plot in Figure 2).  This provides two benefits over the constant 
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current charging scheme described previously.  First, by switching to a higher current 

midway through the charging cycle, less time is needed to bring the load capacitor up to 

operating voltage.  Second, this scheme only operates the MOSFET at higher current 

levels when the VDS across the device is relatively low, minimizing power dissipation.  

This in turn allows the designer to specify a smaller, less expensive MOSFET for a 

desired level of performance.   

 

While this technique is straightforward to implement with a programmable hot swap 

controller such as an ispPAC Power Manager device, it would require significant 

additional hardware and design effort if realized using a fixed-function hot swap 

controller.  Programmability also makes it straightforward for the designer to vary control 

parameters, making it easier to adapt the same basic circuit for use in multiple 

applications with few or no hardware changes.  



 
Figure 4 – A two-phase switching strategy first charges the on-board capacitors at a 
low current when the switch MOSFET is subject to a high VDS, and then increases the 
current when the capacitors are partially charged and the MOSFET experiences lower 
VDS.  

  

Summary 

Supporting hot swapping features requires sophisticated power management 

techniques.  While fixed-function controllers may be useful in the most simple designs, 

programmable solutions provide the designer with the flexibility needed to meet 

increasingly demanding applications.  This article has described one example of how 

the performance of a load switch can be enhanced through the use of programmable 

control.  

### 
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