s LATTICE

Arbitration and Switching Between Bus
Masters

Reference Design

FPGA-RD-02104-1.2

December 2019

Arbitration and Switching Between Bus Masters .I.ILATTICE

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02104-1.2

http://www.latticesemi.com/legal

= LATTICE

Contents
O [0 o o [0 4 T o OO P PR PPOTRTOPROP 4
R < | A8 [=P PSP UPPPPRPRRPIN 4
T VY Vot To] g |l D=ty ol o o1 [o PP URUURRRRRNt 5
3.1. (Y T =Y A g o114 = 4 o o APPSR 5
3.2. How to Read From and WIit€ TO @ REGISTON......ccccuiiiiiiiie ettt ee e e e etae e e et e e e e eata e e e sabaeeeensreeesareeas 6
3.3. HOW the SIaVe SWItCh WOIKS.....ciiiiiiiiiiecie sttt ettt st e e e s bae e ba e e sbee e beesneteenbeeenseeenseas 7
3.4. HOW the Master ACCESSES the SIAVE.........iiviiiiiiiie ettt sba e e bt e s saaessbaessaaesneas 8
O T 1T ol T B 1Tl o)1 o PR 8
LT 10 Vo1 [T 0 1Yo - 4 [0 o PSR 9
Technical Support Assistance .10
LAV T o I o TES) o T PO P PO PPP PPN 11
Figures
Figure 2.1. Bus Arbitration Application EXamMPIecouiiiiiiiiiieeieeeeee ettt st s s s e 4
Figure 3.1. Arbitration Control BIOCK DIi@gramccccuieiuiiiiiiiiiieiieeitee sttt ettt st e st e s bt e st e s bt e st e e saeesabeesareesabeesneenane 5
Figure 3.2. I2C Master Writes Data to the arbitrator_CONtrol REGISTENc.ccivviiiiiieiceieeeee ettt st ennns 6
Figure 3.3. I2C Master Reads Data from the arbitrator_CoONtrol REGIStErccccivivieeiieieieeecee ettt st ennns 7
Figure 3.4. I2C Master Writing Data to the sWitch_CONTrOl REGISLETccvivvieviieiieeeieeeeeeeeeee ettt st ere e ennens 8
Figure 3.5. I2C Master Reading Data from the switch_CONtrol REGISTErcvvviiviieieeieeieeceee ettt eanns 8
Figure 4.1. Master 1 and Master 2 Read the REGISTEIuiii ittt et e s ae e e et e e e saae e e sraeeeenreeeennnns 8
Figure 4.2. Master 1 ACCESSES IZC SIAVE Loovieveieieeeeeieeeeteeeeete ettt ettt eeteeteeteeteeteeteeaeeseesenseeseeseeseeseessensensenseasesaseseeaeeseennens 9
Figure 4.3. Master 2 ACCESSES 120 SIAVE 2....o.vveuiieieeiiiieeieeteteee ettt ettt ettt sttt s et et st e se s et ese s ebese s ebesessebess s ebesessesesis 9

Tables

Table 3.1. Bus Arbitration I/O Interface Descriptions.......
Table 3.2. arbitrator_control Register Bit Descriptions
Table 3.3. switch_control Register Bit DESCIIPTIONScccuviiiieiiiecctiee ettt ettt e ettt e e et e e e et e e e eeabe e e eeaaeeaesabaeeeesbeeeenneeas

Table 5.1. Performance and RESOUIce ULIHZAtIONcccuviiiieiiii ettt e et e e e eate e e e eate e e e e atae e eetteeeenneeas 9

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

Since the development of the system bus that allows multiple devices to communicate with one another through a
common channel, bus arbitration has been a critical component of system designs. Devices capable of controlling the
bus are called the “masters” of the bus. Bus arbitration is a way to determine which master is allowed access to a bus
and when. Its mechanism often grants higher priority to critical devices on the bus, such as a processor, and assigns
lower-priority devices a longer waiting time. In addition to arbitration, bus switching is necessary when redundancy is
required in the system. Switching between communication channels can protect a system from disruption.

This reference design provides a mode of connection and arbitration between multiple bus masters. While an I°C bus is
used in this design, it is a generic implementation and the algorithm could be applied to any communication protocols.
The 12C bus is chosen for its simple two-wire connection that reduces the board design complexity.

2. Features

e Multiple master arbitration, up to eight masters
e Supports up to eight slave devices

e 1:N switching between masters and slaves

e |2C compatible master and slave devices

Figure 2.1. is an example application of this reference design.

Arbitration Control and Switch

Master 1 < > < > Slave 1

Master Slave
Arbitration Switch

Master N < > < > Slave N

Figure 2.1. Bus Arbitration Application Example

The master devices and slave devices can access the design independently. Once the master arbitration is done, the
slave switch is used to select a slave device as requested by the master device.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Functional Description

By default, this design connects two master devices (master 1 and master 2) and eight slave devices. The design

consists of a master arbitration block and a slave switch block, as shown in Figure 3.1.

arb_switch_top.v
clk
rst Master Arbitration Slave Switch
i2c_slave.v arb_switch_reg.v ms_judge.v
scl_masterl I - I scl_slavel
- —> I -t = >
_ sda_masterl | |) I | | sda_slavel
- I 1=C | Arbitrator | Switch) L o
I Slave “»1 Register | Register »| Driver I
_scl_master2 || Interface |] scl_slave2 o
_sda_master2 I : ! sda_slave2 .
e} T Lol - T Lol
b - 1l |
Figure 3.1. Arbitration Control Block Diagram
Table 3.1. Bus Arbitration 1/0 Interface Descriptions
Signal Name | Signal Direction | Active State Description

System Interface

clk Input N/A System clock

rst Input High Reset signal

I2C Master Interface

scl_masterl Bi-directional High, Low Master 1 SCL signal
sda_masterl Bi-directional High, Low Master 1 SDA signal
scl_master2 Bi-directional High, Low Master 2 SCL signal
sda_master2 Bi-directional High, Low Master 2 SDA signal
I°C Slave Interface

scl_slave(n) (n=1,2....,8) Bi-directional High, Low Slave SCL signal
sda_slave(n) (n=1,2....,8) Bi-directional High, Low Slave SDA signal

3.1. Master Arbitration

Master arbitration determines which master device controls the bus. This work is done by the register
arbitrator_control which is defined in the module arb_switch_reg.

The address of this register is 0x00 and the width is 8 bits. Bit descriptions are listed in Table 3.2.

Table 3.2. arbitrator_control Register Bit Descriptions

Bit7to 0 Reset Value Bit Description Active Access
0 1 No control from master 1 0 = Inactive Read/Write
Master 1 controls the I?Cbus 1= Active
Default is master 1
1 0 No control from master 2 0 = Inactive Read/Write
Master 2 controls the 1?Cbus 1= Active
Default is master 1

Note: Other bits of this register are not defined. The value for these is 0.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

When a bit is set to 1 in this register, the corresponding master will control the bus. The least 2 bits in this register
control the bus arbitration. Bit 0 corresponds to master 1, and bit 1 corresponds to master 2. When either bit is set to
1, the corresponding master will control the bus.

This register can be read by all masters at any time. If the value of the register is 0x01, master 1 controls the bus.
Similarly, a value of 0x02 indicates that master 2 controls the bus. The default value 0x00 indicates that the bus is not
controlled by any master.

The register can be written by all masters at any time. If master 2 requests ownership of the bus, it should write the
value 0x02 to the register to take control of the bus. In the same manner, master 1 can write the value 0x01 to the
register to take control of the bus. Writing any value other than 0x01 for master 1or 0x02 for master 2 will result in a
0x00 value in the register and neither master can control the bus. If master 1 and master 2 write to this register at the
same time, master 1 has the higher priority.

Although a master can have ownership of the bus by writing the appropriate value to the arbitrator_control register at
any time, this will interrupt the ongoing communication between the current master and its slave device. For example,
when master 1 has control of the bus and is communicating with a slave device, writing a value of 0x02 to the
arbitrator_control register by master 2 will result in an interruption of master 1’s communication with the slave device.
This allows quick switching from one master to another if there is the potential for failure in the current link. If such
behavior is not desired, the master should read the arbitrator_control register periodically before writing to the
register. The writing of the register is carried out only if the value of the register is 0x00. After a master finishes a bus
transfer, it should write an invalid value to the arbitrator_control register to make the value of this register become
0x00.

3.2. How to Read From and Write To a Register

The masters access the registers defined in the module arb_switch_reg through the module i2c_slave. The module
i2c_slave is used to implement an 12C slave which can connect to the I2C master directly. It receives the serial data from
the 1°C master and converts these serial data to parallel to write to the registers. Conversely, it also reads the parallel
data from registers and converts these parallel data to serial data to send to the 12C master.

The I2C slave module is taken from Lattice reference design RD1054, 12C Slave/Peripheral. It is compatible with the I°C
bus specification and supports most of the basic functionalities such as 7-bit addressing, random read/write, and
sequential read/write. As an I2C slave, the module i2c_slave has an address. This address value is hard-coded as 0x52
for this design. The module i2¢_slave implements the data transfer between the I1°C master and the register. The
module i2¢c_slave transmits or receives data to/from the 12C master based on the 12C bus protocol. Figure 3.2. shows the
process of the 1°C master writing data to the arbitrator_control register. Figure 3.3. shows the I2C master reading data
from the arbitrator_control register.

i2c_arbitrator_control address
r 'i (0x00) r

SDA_master1/2 0x52 register data |
| | write ’ !
| |

I

SCL_master1/2

Jd

-
-
o
©
©
=
o
o
©
©
=
o
o
©
©
—— e — —— =

ACK ACK ACK

Figure 3.2. I’C Master Writes Data to the arbitrator_control Register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

value of i2c_arbitrator_control
register

1 [
I I
| 0x52 9 9 I
| read |
| T
| |
Start | I
|
' |
SCL_master1/2 | | 1to8 1to8

I
I
| ACK ACK I

SDA_master1/2

-
I
I
I
I
I
I

Figure 3.3. I’C Master Reads Data from the arbitrator_control Register

3.3. How the Slave Switch Works

The slave switch determines which slave device can be directly connected to the selected master. This work is done by
the register switch_control which is defined in the module arb_switch_reg. The address of this register is 0x01 and the
width is 8 bits. The bits are described in Table 3.3.

Table 3.3. switch_control Register Bit Descriptions

Bit Reset Value Description Active Access

0 0 Enables IC bus access to I2C slave 1 0 = Inactive Read/Write
1 = Active

1 0 Enable IC bus access to I2C slave 2 0 = Inactive Read/Write
1 = Active

2 0 Enable IC bus access to I2C slave 3 0 = Inactive Read/Write
1 = Active

3 0 Enable IC bus access to I°C slave 4 0 = Inactive Read/Write
1 = Active

4 0 Enable IC bus access to 12C slave 5 0 = Inactive Read/Write
1 = Active

5 0 Enable 1C bus access to I°C slave 6 0 = Inactive Read/Write
1 = Active

6 0 Enable I°C bus access to I>C slave 7 0 = Inactive Read/Write
1 = Active

7 0 Enable 12%C bus access to I2C slave 8 0 = Inactive Read/Write
1 = Active

This register provides point-to-point access for the master to the slave. When the bit is set to 1 in this register, the
corresponding slave can be selected to communicate with the master.

This register can be read from and written to by all masters at any time. Even if the master does not control the bus, it
is capable of reading from and writing to the register. Only the master that has ownership of the bus can have point-to-
point access to a slave to write appropriate values to the register. If a master without control of the bus writes an
appropriate value to this register, it is possible to interrupt the communication between the current master and its
slave. Therefore, before the master writes data to this register, it should have ownership of the bus. If a master writes
multiple 1's into the register, the corresponding salves are selected to communicate with the master. The designer can
choose this function by application. Figure 3.4. shows the master writing data to the switch_control register. Figure 3.5.
shows the master reading data from the switch_control register.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Arbitration and Switching Between Bus Masters
Reference Design

= LATTICE

i2c_switch_control address

= 'i (0x01) register data
0x52
SDA_master1/2 : \ | X write X ><
|start |

SCL_master1/2

ACK ACK

Figure 3.4. I’C Master Writing Data to the switch_control Register

value of
i2c_switch_control register

° X

value of i2¢c_arbitrator_control
register

-—A
l 0x52
SDA_master1/2 | | read
|

Istart |

SCL_master1/2

|
| |
| p—— ACK ACK

Figure 3.5. I2C Master Reading Data from the switch_control Register

.4. How the Master Accesses the Slave
The master reads the arbitrator_control register until the value of the register is 0x00.
The master writes the appropriate data to the arbitrator_control register to control the bus.
The master writes the appropriate data to the switch _control register to select the slave.

The master accesses the slave.

vk w NN W

bus.

4. Test Bench Description

The test bench for this design shows how the I1°C master accesses the I12C slave.
After resetting master 1 and master 2, read the registers arbitrator_control and switch _control

Value |Sti.. 4000 . 4 L E000 . 4 . 6000 .

|
|
1to8 1to8 1to8

7000 .

[%)

o

o

°
S —— |

L

ACK

When the master has accessed the slave, it writes data to the arbitrator_control register to relinquish control of the

IS 22000 .+ 3000
[a00us

» sda_master2

o scl_slavel

o sda slavel

a5l slave?

o sda_slave2

Figure 4.1. Master 1 and Master 2 Read the Register

The value of the arbitrator_control register is 0x01, indicating that master 1 has ownership of the 12C bus. Master 1

writes the data 0x01 to the switch _control register to access slave 1.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02104-1.2

http://www.latticesemi.com/legal

.I.ILATTICE Arbitration and Switching Between Bus Masters

Reference Design

Name Value !Sh 65 « 0 S%UU-:I' 78 « 0 o 8 « ¢ 85 . 4 9 4 85 4 10 . 4 .l05.
uropst 0 I
ar clk 0
= 5ol maste

® sda masterl

W ogel_slavel .1 . i | | | |]| | | || H
arosda slavel i [[[

Figure 4.2. Master 1 Accesses I>C Slave 1

When master 1 has accessed the I12C slave 1, master 2 writes data 0x20 to the arbitrator_control register to control the
12C bus. It then writes the data 0x02 to the switch _control register to access 1°C slave 2.

Name [Value |si.. | R ',—AﬁIS.ZSSmSI' R R R RS
= rst i0 i
AR e Pt B e i

s sever 1t ? UUUUUUUuuuuuyuuuuy

Figure 4.3. Master 2 Accesses I>C Slave 2

5. Implementation
This design is implemented in Verilog/VHDL language and the Lattice ispLEVER® design tool is used for implementation.

Table 5.1. Performance and Resource Utilization

Device Family Language Speed Grade 1/0 fmax (MHz) Utilization Architectual
Resources
MachXo™ 1 Verilog -5 22 >50 245 LUTs N/A
VHDL -5 22 >50 247 LUTs N/A
ispMACH® Verilog -5 (ns) 22 >50 206 Macrocells N/A
4000ZE? VHDL -5 (ns) 22 >50 209 Macrocells N/A
LatticeXp2™ 3 Verilog -5 22 >50 314 LUTs N/A
VHDL -5 22 >50 334 LUTs N/A
Notes:

1. Performance and utilization characteristics are generated using LCMX02280C-5T100C with Lattice ispLEVER 8.0 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

2. Performance and utilization characteristics are generated using LC4256ZE-5TN100C with Lattice ispLEVER Classic 1.3 software.
When using this design in a different device, density, speed, or grade, performance and utilization may vary.

3. Performance and utilization characteristics are generated using LFXP2-5E-5M132C with Lattice ispLEVER 8.0 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02104-1.2 9

http://www.latticesemi.com/legal

Arbitration and Switching Between Bus Masters .I.ILATTICE

Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2010-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02104-1.2

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

= LATTICE

Revision History

Revision 1.2, December 2019

Section Change Summary

All e Changed document number from RD1067 to FPGA-RD-02104.
e Updated document template.

Disclaimers Added this section.

Revision 1.1, February 2010

Section Change Summary

Implementation e Added support for LatticeXP2 device family.
e Added VHDL support for all device families.

Revision 1.0, January 2010

Section Change Summary

All Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Arbitration and Switching Between Bus Masters
	1. Introduction
	2. Features
	3. Functional Description
	3.1. Master Arbitration
	3.2. How to Read From and Write To a Register
	3.3. How the Slave Switch Works
	3.4. How the Master Accesses the Slave

	4. Test Bench Description
	5. Implementation
	Technical Support Assistance
	Revision History

