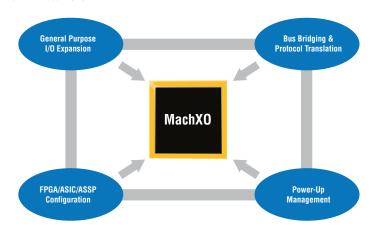
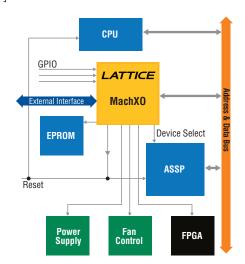


MachXO 系列


针对低密度应用进行优化

非易失无限可重构可编程逻辑器件(PLD)MachX0™系列是专为传统上使用CPLD或低密度FPGA实现的应用而设计的。将优化的查找表(LUT)结构与低成本的嵌入式闪存处理工艺结合在一起,即时启动,易于使用的MachX0器件是针对低密度应用的最通用的,非易失可编程逻辑器件。


通过提供嵌入式存储器、内置锁相环,灵活的多电压高性能的LVDS I/0、远程现场升级(TransFR™技术)和低功耗的睡眠模式,MachX0可编程逻辑器件系列有效地提升了系统的集成度,所有这些功能都整合在单片器件之中。

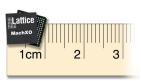
MachXO PLD专门为广泛的低密度应用而设计,包括通用I/O的扩展、控制,总线桥接和电源管理功能,MachXO PLD系列适用于各种终端市场,如消费电子、汽车、通讯、计算机,工业和医疗设备。

广泛的应用

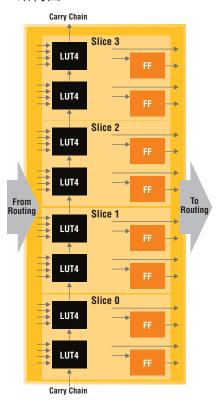
应用实例

主要特性和优点

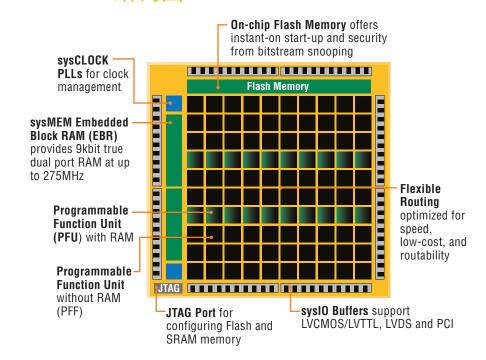
- 非易失性,无限可重构
 - 即时启动,上电时间低于1毫秒
 - 单芯片, 无需外部配置存储器
 - 优异的设计安全性, 无法截取位流
- 3.5ns引脚至引脚的性能
- TransFR技术使得能够方便地进行现场升级
- 灵活的LUT结构
 - 256到2280个 LUT4
 - · 具有多种封装选择的73至271个I/0
 - 支持密度迁移
- 嵌入式和分布式存储器
 - · 高达27.6千位的sysMEM™嵌入式RAM块
 - · 包含专用的FIFO控制逻辑
 - 高达7.7千位的分布式RAM
- 灵活的I/0缓冲器
 - 可编程sysI0™缓冲器支持各种接口:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI*
 - LVDS*, Bus-LVDS*, LVPECL*, RSDS*
- sysCLOCK™锁相环
 - 每个器件多达两个模拟锁相环
 - 时钟倍频, 分频和相移
- 睡眠模式降低待机功耗至< 100 μ A
- 系统级支持
 - IEEE标准1149.1边界扫描
 - 板上的20MHz振荡器用于配置和用户逻辑
 - 器件工作于3.3V、2.5V、1.8V或1.2V的电源电压
- 器件适用宽的温度范围
 - 商业: 0至85℃ (TJCOM)
 - 工业: -40至100℃ (TJIND)
 - 符合AEC Q100: -40至125℃ (TJAUTO)
- * 仅MachX01200和2280器件



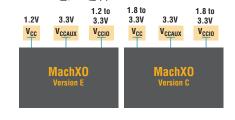
MachXO架构


架构概述

MachXO可编程逻辑器件为传统上用CPLD或低密度FPGA实现的应用提供了一个低成本,灵活的选择。器件基于一种极其有效的架构,MachXO可编程逻辑器件提供出色的引脚对引脚的性能,支持高速的I/O、嵌入式RAM块,以及sysCLOCK锁相环。

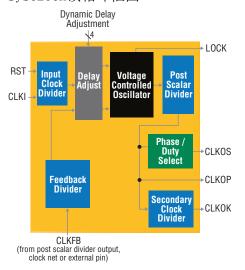

可供选择节省面积的符合RoHS的封装,MachXO PLD可用于广泛的面积受限的应用。

PFU结构图


MachXO结构图

sysMEM配置选择

单口	双口	准双口	FIFO
8192 x 1	8192 x 1	8192 x 1	8192 x 1
4096 x 2	4096 x 2	4096 x 2	4096 x 2
2048 x 4	2048 x 4	2048 x 4	2048 x 4
1024 x 9	1024 x 9	1024 x 9	1024 x 9
512 x 18	512 x 18	512 x 18	512 x 18
256 x 36	-	256 x 36	256 x 36


MachX0电压选择

sysI0缓冲支持高带宽的I/0标准

- LVCMOS / LVTTL
 - Hotsocketing功能
 - 可编程转换率
 - 可编程驱动强度
 - 可编程上拉、下拉,总线友好
 - 可编程漏极开路
 - 可编程施密特单元
- PCI, LVDS, LVPECL, Bus-LVDS, RSDS

sysCLOCK锁相环框图

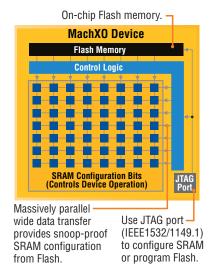
易于现场更新

MachXO可编程逻辑器件支持莱迪思的专用透明的现场重新配置(TransFR)技术。 TransFR技术使得能够在现场更新逻辑,而 无需中断系统的运行。

Step 1 Program Flash in background while logic functions

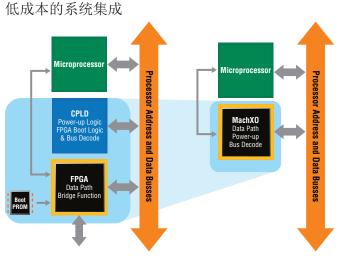
Step 2 Precisely control

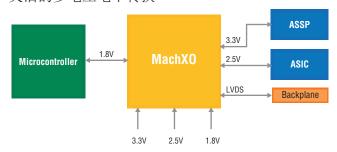
JTAG.


I/Os and initiate Flash to SRAM transfer through

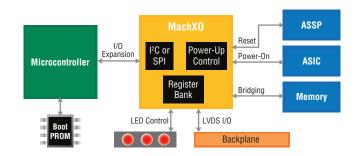
FLASH

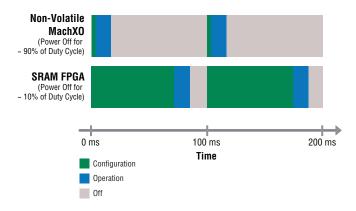
MachXO配置


MachXO可编程逻辑器件同时采用闪存和SRAM的技术,在一个低成本的器件上提供"即时启动"功能。上电时,在不到1毫秒的时间内,配置数据从闪存传送到SRAM单元。可从JTAG端口对SRAM和闪存编程。通过莱迪思的独特TransFR技术,这种SRAM和闪存的组合能够方便地进行现场更新。 MachXO PLD拥有一个防止回读的安全方案,通过使用内部的闪存,莱迪思消除了窥探位流的可能性。


MachXO休眠模式下功耗减少100倍!

特性	普通模式	关闭	睡眠模式
SLEEPN引脚	高	Х	低
静止I _{cc}	典型值<10mA	0	典型值<100 μ A
电源	正常范围	0	正常范围
逻辑操作	用户定义	不工作	不工作
I/O操作	用户定义	三态 (<1mA漏电流)	三态 (<10 µ A漏电流)


MachXO应用实例


灵活的多电压电平转换

上电和控制

低功耗循环工作

免费、易于使用的莱迪思软件

Lattice Diamond®设计软件为MachXO架构和其他器件系列提供了全面的设计环境。Diamond具有设计探索、易于使用、改进的设计流程,以及许多其他的增强功能。Diamond使得用户能够更快、更方便地完成设计,并获得比以往更好的结果。

评估和开发电路板

莱迪思提供了一些评估和开发板,从而提供一个完整的且易于使用的平台来评估MachXO的性能,也有助于定制设计的开发。

参考设计组合

针对低密度应用,莱迪思提供了IP核扩展产品系列和参考设计。对MachXO的结构进行了优化,其中包括流行的协议和连接标准,如I2C、SPI,UART和PCI标准。可从莱迪思的网站免费下载参考设计,源代码和文档。欲了解更多的信息,请访问www.latticesemi.com/IP.

MachX0迷你开发套件

使用MachXO迷你开发套件,能够在几分钟 内测试I2C、SPI、UART,SRAM接口,以及 8位LatticeMico8™微控制器。在不到不到 1小时的时间内用莱迪思的免费参考设计构 建自己的设计。欲了解更多信息,请访问 www.latticesemi.com/machxo-mini.

MachX0控制开发套件

使用MachXO控制开发套件测试电路板的诊断功能,包括与Power Manager II POWR1014A和8位

LatticeMico8 微控制器一起使用的基于温度监测的风扇转速控制,完整的电源监控和复位分配。测试这些功能只需几分钟,使用莱迪思的免费参考设计在不到一个小时内构建立你

自己的设计。欲了解更多的信息,请访问

www.latticesemi.com/machxo-control-kit.

器件选型指南

价 [T. 22] 11 [F]							
参数	LCMX0256	LCMXO640	LCMX01200	LCMX02280			
LUT	256	640	1200	2280			
分布式RAM(Kbit)	2	6.1	6.4	7.7			
嵌入式RAM块——EBR(Kbit)	-	_	9.2	27.6			
EBR块的数量	-	_	1	3			
V _{cc} 电压(V)选择	1.2V或1.8/2.5/3.3V	1.2V或1.8/2.5/3.3V	1.2V或1.8/2.5/3.3V	1.2V或1.8/2.5/3.3V			
PLL的数量	-	_	1	2			
I/O Bank的数量	2	4	8	8			
最多I/O数量	78	159	211	271			
最多的LVDS对*	-	_	27	33			
封装和I/O组合							
100引脚TQFP (14 x 14 mm)**	78	74	73	73			
144引脚TQFP (20 x 20 mm)		113	113	113			
100球型csBGA (8 x 8 mm)	78	74					
132球型csBGA (8 x 8 mm)		101	101	101			
256球型caBGA (14 x 14 mm)		159	211	211			
256球型ftBGA (17 x 17 mm)		159	211	211			
324球型ftBGA (19 x 19 mm)				271			

^{*} LVDS输出的数量可以通过使用外部电阻进行模拟后增加。

应用支持

1-800-LATTICE (528-8423) (503) 268-8001

techsupport@latticesemi.com

Lattice Semiconductor Corporation 2013版权⑤。Lattice Semiconductor、L(设计图案)Lattice Semiconductor Corporation、Lattice(设计)、ispLEVER、ispVM、LatticeMico8、MachXO、sysCLOCK、sysIO、sysMEM,和 TransFR及特定的产品名称均为莱迪思半导体公司或其在美国和/或其它国家的子公司的注册商标或商标。本出版物中提到的其它产品名称仅作识别目的,它们可能是其各自所有公司的商标。

2013年1月 订购编号: I0176HC

^{**}使用100引脚TQFP封装的设计不能从LCMXO640迁移到1200。