
 GPIO Expander

April 2011 Reference Design RD1065

www.latticesemi.com 1 rd1065_01.3

© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
Most microprocessors have a General Purpose Input/Output (GPIO) interface to communicate with external
devices and peripherals through various protocols. These GPIO connections are usually very flexible. They can be
individually configured as an input to read signals from other parts of a circuit, or as an output to control or send
signals to other devices. GPIOs are typically arranged into 8-port groups that are often sufficient for data and con-
trol support for external devices.

Despite the convenience and flexibility of this interface, microprocessors sometimes offer a limited number of GPIO
ports for the purpose of reducing pin counts and package sizes. For many applications, designers need more GPIO
ports than those available on the microprocessor. This design provides a solution that uses a Lattice CPLD as a
GPIO Expander. It provides additional control (control signal and data output signal) and monitoring (input data sig-
nal) capabilities when the microprocessor has insufficient I/O ports.

Theory of Operation
Overview
The GPIO Expander design is used to interface a microprocessor with a back-end device through a common timing
specification. This design is configured as eight banks that are independent of each other. Each bank consists of a
few GPIO ports. The number of GPIO ports in each bank can be configured by the designer, with a default value of
four. Each GPIO port in a bank can be individually configured as an input, output or bi-directional port by the micro-
processor. The module provides an active low interrupt pin. When related internal registers are configured cor-
rectly, the interrupt may be activated when any of the GPIO inputs reach the programmed interrupt level.

Figure 1 is the top-level block diagram of this design. It provides a generic interface for the microprocessor and
eight GPIO banks. The microprocessor’s data width and the number of GPIO ports are set by the default value.
Table 1 lists the I/O pins used in this design.

Figure 1. GPIO Expander I/O Interface Block Diagram

bank_address (4 bits)

cpu_data (4 bits)

register_address (3 bits)

write/read

chip_select

interrupt

clock

Back-End
Interface 

Microprocessor
Interface 

General I/O (4 Bits in Bank 0)

General I/O (4 Bits in Bank 1)

General I/O (4 Bits in Bank 2)

General I/O (4 Bits in Bank 3)

General I/O (4 Bits in Bank 4)

General I/O (4 Bits in Bank 5)

General I/O (4 Bits in Bank 6)

General I/O (4 Bits in Bank 7)

GPIO Expander

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Note: The cpu_data width and general I/O width can be configured by the designer. 
The default value is 4.



Lattice Semiconductor GPIO Expander

2

Table 1. Expander I/O Interface Descriptions

Common Microprocessor Interface
Various microprocessors require different timing specifications to read from or write to the external device. The
microprocessor timing defined in this design is based on the ARM7 timing specification (refer to ARM7TDMI-S
Revision r4p3). Figures 2 and 3 show the functional representation of the write and read operations respectively.

Figure 2. Microprocessor Write Data to GPIO

Initially, the microprocessor pulls down the signals chip_select and write/read to implement a write cycle. Mean-
while, the signal’s bank_address and register_address must be set to the appropriate values in order to write a
specific bank and a register. If the microprocessor writes data to the back-end device, the value of register_address
must be set to 0x3. The data from the microprocessor must be available at the same time. It takes two clock cycles
for the microprocessor to complete the write operation. During this time, the control signals such as chip_select,
bank_address, register_address, write/read, and cpu_data must not be updated.

Signal Name Signal Direction Active State Definition

Microprocessor Interface

cpu_data (4 bits) Bi-directional N/A Data bus with CPU.

bank_address (4 bits) Input 0x0,0x1….0xf Address used to select one of the 16 banks.

register_address (3 bits) Input 0x0,0x1,0x2,0x3,0x4 Address used to select one of the four registers in each 
bank or input data from back-end device.

write/read Input Low = write
High = read Write or read control signal from the CPU.

chip_select Input Low Chip select control signal from the CPU.

interrupt Output Low Interrupt signal generated by the back-end device.

clock Input N/A Clock signal from CPU to synchronize operation.

Back-end Interface

General I/O (4 bits) Input,Output 
or Bi-directional N/A Eight independent GPIO banks.

clock

General I/O Port
(GPIO Expander)

cpu_data

write/read

register_address

bank_address

write

Data from CPU

Bank Address (0x0, 0x1, y, 0x7)

Data from CPU

Data out register (0x3)

chip_select

cycle 20 1



Lattice Semiconductor GPIO Expander

3

Figure 3. Microprocessor Read Data from GPIO

To initiate a read cycle, the microprocessor pulls down the signal chip_select and pulls up the signal write/read.
Meanwhile, the signals bank_address and register_address must be set to the appropriate values to determine
which bank and which register to read from. If the microprocessor reads data from the back-end device, the value
of register_address must be set to 0x4. Like the write operation, the microprocessor also takes two clock cycles to
complete the read operations. Therefore the control signals from the microprocessor interface should not be
updated during this period. The data from the back-end device is available at the second cycle.

GPIO Expander Operation
The eight GPIO banks have the same structure and are independent of each other. For every microprocessor oper-
ation, the signal bank_address will determine the bank with which the microprocessor will communicate. The
designer can easily add more banks if additional GPIO ports are needed. Figure 4 shows the function of each
bank.

clock

General I/O Port
(GPIO Expander)

write/read

register_address

bank_address

read

Data from back-end device

Data from back-end device

(0x4)

Bank address (0x0, 0x1, y, 0x7)

chip_select

cpu_data

cycle 20 1



Lattice Semiconductor GPIO Expander

4

Figure 4. Functional Block Diagram a GPIO Bank

There are four registers in each bank. These include the interrupt mask register, interrupt polarity register, tri-state
register and data out register. These registers are all four bits wide by default. The microprocessor can read from or
write to the registers by providing the proper bank select signal and register address.

Interrupt Mask Register Definition
The interrupt mask register defines which GPIO input can generate an interrupt to the microprocessor. When the 
bit in this register is set to ‘0’, the corresponding GPIO input can generate interrupt.

Interrupt Polarity Register Definition
The interrupt polarity register defines the active level of a GPIO input which can generate an interrupt. When the bit
is set to ‘1’ in this register, the corresponding GPIO input generates an interrupt when its level is high. When the bit
is set to ‘0’, the corresponding GPIO input generates an interrupt when its level is low.

Register Name Register Address Width (Default) Reset Value Access

Interrupt mask register 0x0 4 0xf Read/Write

Register Name Register Address Width (Default) Reset Value Access

Interrupt polarity 
register 0x1 4 0x0 Read/Write

Register Select and Bank Select

Write

Clock

Write/Read

Register Select

Read

Interrupt
(Bank 0) 

Interrupt
(Bank 1) 

Interrupt
(Bank 7) 

Decoder

And
Interrupt

chip_select

register_address

General I/O

xor

Or

.

.

.

cpu_data

Register Select
bank_address

Bank Select and Read

Bank Select

Data Out Register 

Tri-state Register 

Interrupt Polarity Register

Interrupt Polarity Register

Interrupt Mask Register 

Data Out Register 

Tri-state Register 

Interrupt Polarity Register

Interrupt Mask Register 

Interrupt Mask Register 

Decoder



Lattice Semiconductor GPIO Expander

5

Tri-state Register Definition
The tri-state register enables or disables the output and bi-directional modes of operation for each GPIO. When the
bit is set to ‘1’ in this register, the corresponding GPIO output driver is enabled. When the bit is set to ‘0’, the corre-
sponding GPIO is configured as input and the output/bi-directional driver operates in tri-state mode.

Data Out Register Definition
The data out register drives GPIO outputs.

The first four register address values (0x0, 0x1, 0x2, 0x3) select the specific register to be written to or read from. If
the value of register address is 0x4, this indicates that the microprocessor reads data from the GPIO port directly.
The GPIO expander ignores the other values of the signal register address.

Before every application, the microprocessor selects one or more banks to be used depending on how many GPIO
ports the application uses. At the same time, the microprocessor sets the appropriate values for these four regis-
ters before the read or write operation begins on the back-end device. Figure 5 shows a timing diagram of how the
microprocessor writes data to the register and Figure 6 shows timing diagram of how the microprocessor reads
data from the register.

Figure 5. Microprocessor Writes Data to Registers

Register Name Register Address Width (Default) Reset Value Access

Tri-state register 0x2 4 0x0 Read/Write

Register Name Register Address Width (Default) Reset Value Access

Tri-state register 0x3 4 0x0 Read/Write

clock

bank_address Bank address (0x0, 0x1, y, 0x7)

chip_select

cycle 20 1

register in bank Data from CPU

Data from CPU

Writewrite/read

cpu_data

register_address (0x0,0x1,0x2,0x3)



Lattice Semiconductor GPIO Expander

6

Figure 6. Microprocessor Reads Data from the Register

GPIO Configuration
Each bank is connected with four GPIO ports by default. These GPIO ports can be dynamically and individually
configured as input, output or bi-directional ports by setting the tri-state register as ‘1’ or ‘0’.

GPIO as an Input Signal
When the GPIO is used as an input, the corresponding bit in the tri-state register must be set to ‘0’ and the corre-
sponding bit in the interrupt mask register must be set to ‘1’ by the microprocessor. The microprocessor can set the
signal register_address to 0x4 to read the input GPIO value.

GPIO as an Output Signal
When the GPIO is used as an output, the corresponding bit in the tri-state register must be set to ‘1’ and the corre-
sponding bit in the data out register must be written to the value that is required to be driven on the GPIO. The cor-
responding bit in the interrupt mask register must be set to ‘1’ to disable generation of spurious interrupt. All these
operations should be done by the microprocessor.

GPIO as a Bi-directional Signal
To use the GPIO as a bi-directional signal, the corresponding bit in the tri-state register must be toggled up and
down to enable or disable tri-state of the bi-directional driver. The corresponding bit in the data out register must be
written to the value that is required to be driven on the output driver. The corresponding bit in the interrupt mask
register must be set to ‘1’ to disable generation of spurious interrupt. All these operations should be done by the
microprocessor.

GPIO as an Interrupt Input
When the GPIO is used as an interrupt input, the corresponding bit in the tri-state register must be set to ‘0’ and the
corresponding bit in the interrupt mask register must be set to ‘0’ as well by the microprocessor. The corresponding
bit in the interrupt polarity register indicates the active level of the GPIO interrupt.

Reset Value
This design has a reset signal not shown in Figure 1. This reset signal is used to set all the registers and the GPIO
to the initial values. When this signal is active, all GPIOs are configured as inputs and the output drivers are dis-
abled. The interrupt mask registers are set to ‘1’ to disable spurious interrupt generation.

clock

bank_address Bank address (0x0, 0x1, y, 0x7)

chip_select

cycle 20 1

write/read read

cpu_data

register in bank

register_address (0x0,0x1,0x2,0x3)

Register data

Register data



Lattice Semiconductor GPIO Expander

7

Test Bench Description
The test bench for this design is an application example that shows how to use the GPIO Expander design. The
GPIO Expander is used to interface with a SPI slave device as shown in Figure 7.

Figure 7. Interfacing the Microprocessor to the SPI Slave

This example selects bank 0 of the GPIO Expander to connect with the SPI slave device. Three general I/O ports in
bank 0 are configured as outputs by the microprocessor and are used as the serial clock signal, slave select signal
and master-out-slave-in signal respectively, as defined by the SPI protocol. The last port in bank 0 is configured as
an input by the microprocessor and is used as the master-in-slave-out signal.

After reset, the microprocessor initializes the registers in bank 0. Figure 8 shows the timing of this operation.

Figure 8. Microprocessor Initializes the Registers in Bank 0

Figure 9 shows the timing of the read operation of the registers in bank 0. 

Microprocessor
Interface 

GPIO Expander

bank_address

cpu_data 

register_address

write/read

chip_select

interrupt

clock

sclk

ss

mosi_slave

miso_slave

Bank 1

Bank 0

Bank 7

General I/O

General I/O

.

.

.

.

.

.

SPI Slave



Lattice Semiconductor GPIO Expander

8

Figure 9. Microprocessor Reads the Registers in Bank 0

The GPIO is able to generate the SPI timing based on the SPI protocol. Figure 10 shows the read/write timing
between the GPIO Expander and the read/write device.

Figure 10. SPI Timing



Lattice Semiconductor GPIO Expander

9

Implementation
This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 2. Performance and Resource Utilization

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Device Family Language Speed Grade Utilization fMAX (MHz) I/Os
Architecture 
Resources

LatticeECP3™ 1
Verilog -6 242 LUTs >100 47 N/A

VHDL -6 211 LUTs >100 47 N/A

LatticeXP2™ 2
Verilog -5 277 LUTs >100 47 N/A

VHDL -5 274 LUTs >100 47 N/A

MachXO™ 3
Verilog -3 238 LUTs >100 47 N/A

VHDL -3 206 LUTs >100 47 N/A

ispMACH® 4000ZE4 Verilog -5 (ns) 187 Macrocells >100 47 N/A

VHDL -5 (ns) 194 Macrocells >100 47 N/A

Platform Manager5 Verilog -3 250 LUTs >100 47 N/A

VHDL -3 207 LUTs >100 47 N/A

1. Performance and utilization characteristics are generated using LFE3-17EA-6FTN256C, with Lattice Diamond™ 1.2 design software. 
2. Performance and utilization characteristics are generated using LFXP2-5E-5TN144C, with Lattice Diamond 1.2 design software. 
3. Performance and utilization characteristics are generated using LCMXO640C-3T100C, with Lattice Diamond 1.2 design software. 

4. Performance and utilization characteristics are generated using LC4256ZE-5TN100C, with Lattice ispLEVER® Classic 1.4 software. 
5. Performance and utilization characteristics are generated using LPTM10-12107-3FTG208CES,with ispLEVER 8.1 SP1 software. 

Date Version Change Summary

December 2009 01.0 Initial release. 

March 2010 01.1 Added VHDL support.

Added support for the LatticeXP2 device family.

December 2010 01.2 Added support for Platform Manager device family.

Added support for Lattice Diamond 1.1 and ispLEVER 8.1 SP1 design 
software.

April 2011 01.3 Added support for the LatticeECP3 device family.

Added support for Lattice Diamond 1.2 design software.

http://www.latticesemi.com/

	Introduction
	Theory of Operation
	Overview
	Common Microprocessor Interface
	GPIO Expander Operation
	Interrupt Mask Register Definition
	Interrupt Polarity Register Definition
	Tri-state Register Definition
	Data Out Register Definition
	GPIO Configuration
	Reset Value

	Test Bench Description
	Implementation
	Technical Support Assistance
	Revision History



