Laﬂlce GPIO Expander

mmmmE® Samjconductor

== nn s CoOrporation

April 2011 Reference Design RD1065

Introduction

Most microprocessors have a General Purpose Input/Output (GPIO) interface to communicate with external
devices and peripherals through various protocols. These GPIO connections are usually very flexible. They can be
individually configured as an input to read signals from other parts of a circuit, or as an output to control or send
signals to other devices. GPIOs are typically arranged into 8-port groups that are often sufficient for data and con-
trol support for external devices.

Despite the convenience and flexibility of this interface, microprocessors sometimes offer a limited number of GPIO
ports for the purpose of reducing pin counts and package sizes. For many applications, designers need more GPIO
ports than those available on the microprocessor. This design provides a solution that uses a Lattice CPLD as a
GPIO Expander. It provides additional control (control signal and data output signal) and monitoring (input data sig-
nal) capabilities when the microprocessor has insufficient 1/0 ports.

Theory of Operation

Overview

The GPIO Expander design is used to interface a microprocessor with a back-end device through a common timing
specification. This design is configured as eight banks that are independent of each other. Each bank consists of a
few GPIO ports. The number of GPIO ports in each bank can be configured by the designer, with a default value of
four. Each GPIO port in a bank can be individually configured as an input, output or bi-directional port by the micro-
processor. The module provides an active low interrupt pin. When related internal registers are configured cor-
rectly, the interrupt may be activated when any of the GPIO inputs reach the programmed interrupt level.

Figure 1 is the top-level block diagram of this design. It provides a generic interface for the microprocessor and
eight GPIO banks. The microprocessor’s data width and the number of GPIO ports are set by the default value.
Table 1 lists the 1/0 pins used in this design.

Figure 1. GPIO Expander I/O Interface Block Diagram
GPIO Expander

| General I/O (4 Bits in Bank 0)

cpu_data (4 bits) Bank O < >
General I/O (4 Bits in Bank 1)
bank_address (4 bits) N Bank 1 < >
[
General I/O (4 Bits in Bank 2)
register_address (3 bitsg Zeulic < >
[
Microprocessor Bank 3 % General I/O (4 Bits in Bank 3) S Back-End
Interface write/read _ Interface
o General I/0 (4 Bits in Bank 4
Bank 4 K () >
chip_select
b= General I/0 (4 Bits in Bank 5)
Bank 5 K >
<« nterrupt General I/O (4 Bits in Bank 6
- Bank 6 K () >
clock ‘ General I/0 (4 Bits in Bank 7
> Bank 7 K () >

Note: The cpu_data width and general I/O width can be configured by the designer.
The default value is 4.

© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 rd1065_01.3

Lattice Semiconductor

GPIO Expander

Table 1. Expander I/O Interface Descriptions

Signal Name ‘ Signal Direction Active State Definition

Microprocessor Interface
cpu_data (4 bits) Bi-directional N/A Data bus with CPU.
bank_address (4 bits) Input 0x0,0x1....0xf Address used to select one of the 16 banks.

. . Address used to select one of the four registers in each
register_address (3 bits) |Input 0x0,0x1,0x2,0x3,0x4 bank or input data from back-end device.

. Low = write . .
write/read Input High = read Write or read control signal from the CPU.
chip_select Input Low Chip select control signal from the CPU.
interrupt Output Low Interrupt signal generated by the back-end device.
clock Input N/A Clock signal from CPU to synchronize operation.
Back-end Interface

. Input,Output _—

General I/0 (4 bits) or Bi-directional N/A Eight independent GPIO banks.

Common Microprocessor Interface

Various microprocessors require different timing specifications to read from or write to the external device. The
microprocessor timing defined in this design is based on the ARM7 timing specification (refer to ARM7TDMI-S
Revision r4p3). Figures 2 and 3 show the functional representation of the write and read operations respectively.

Figure 2. Microprocessor Write Data to GPIO

chip_select

bank_address

registe

General I/0O Port
(GPIO Expander)

I
cycle :
T

clock

I
0 |
|
f

I

|
|
T
1

Bank Address (0x0, 0x1, y, 0x7)

r_address X

Data out register (0x3)

X

write

|
|
write/read :
|
|

cpu_data X

Data from CPU

X

Data from CPU

K t
I
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Initially, the microprocessor pulls down the signals chip_select and write/read to implement a write cycle. Mean-
while, the signal’s bank_address and register_address must be set to the appropriate values in order to write a
specific bank and a register. If the microprocessor writes data to the back-end device, the value of register_address
must be set to 0x3. The data from the microprocessor must be available at the same time. It takes two clock cycles
for the microprocessor to complete the write operation. During this time, the control signals such as chip_select,
bank_address, register_address, write/read, and cpu_data must not be updated.

Lattice Semiconductor GPIO Expander

Figure 3. Microprocessor Read Data from GPIO

T T T
cycle : 0 : 1 : 2

chip_select

bank_address Bank address (0x0, 0x1, yj 0x7) X

register_address (0x4)

X

\
read |

write/read |
| |
|

General I/0O Port

;Data from back-end device) X
(GPIO Expander)

X Data from back-q'nd device X

cpu_data

I N G S

To initiate a read cycle, the microprocessor pulls down the signal chip_select and pulls up the signal write/read.
Meanwhile, the signals bank_address and register_address must be set to the appropriate values to determine
which bank and which register to read from. If the microprocessor reads data from the back-end device, the value
of register_address must be set to 0x4. Like the write operation, the microprocessor also takes two clock cycles to
complete the read operations. Therefore the control signals from the microprocessor interface should not be
updated during this period. The data from the back-end device is available at the second cycle.

GPIO Expander Operation

The eight GPIO banks have the same structure and are independent of each other. For every microprocessor oper-
ation, the signal bank_address will determine the bank with which the microprocessor will communicate. The
designer can easily add more banks if additional GPIO ports are needed. Figure 4 shows the function of each
bank.

Lattice Semiconductor GPIO Expander

Figure 4. Functional Block Diagram a GPIO Bank

bank add > Decoder|—> Register Select
anx_aderesS ,Decoder |>| Bank Select

chip_select
"

register_address

;egister Select and Bank Select

—»{Interrupt Mask Register |

» | >{Interrupt Polarity Register|

)

—»| Data Out Register | >

—»| Tri-state Register

X » General I/0
Write
Read |

Bank Sglect and Read

Write/Read

/

<—|Interrupt Mask Register |

«|Interrupt Polarity Register|

‘cpu_data

Clock

«—| Tri-state Register |

«—| Data Out Register |

Register Select h

Interrupt Or
(Bank 0)

<&

Xxor

Interrupt Polarity Register|

A

Interrupt Mask Register |

Interrupt

(Bank 1)
<—

Interrupt And

Interrupt
(Bank 7)
<—

There are four registers in each bank. These include the interrupt mask register, interrupt polarity register, tri-state
register and data out register. These registers are all four bits wide by default. The microprocessor can read from or
write to the registers by providing the proper bank select signal and register address.

Interrupt Mask Register Definition

The interrupt mask register defines which GPIO input can generate an interrupt to the microprocessor. When the
bit in this register is set to ‘0’, the corresponding GPIO input can generate interrupt.

Access
Read/Write

Reset Value
Oxf

Register Name
Interrupt mask register

Register Address Width (Default)
0x0 4

Interrupt Polarity Register Definition

The interrupt polarity register defines the active level of a GPIO input which can generate an interrupt. When the bit
is set to ‘1’ in this register, the corresponding GPIO input generates an interrupt when its level is high. When the bit
is set to ‘0’, the corresponding GPIO input generates an interrupt when its level is low.

Register Name Register Address Width (Default) Reset Value Access
Interrupt polarity ox1 4 0x0 Read/Write
register

Lattice Semiconductor

GPIO Expander

Tri-state Register Definition

The tri-state register enables or disables the output and bi-directional modes of operation for each GPIO. When the
bit is set to ‘1’ in this register, the corresponding GPIO output driver is enabled. When the bit is set to ‘0’, the corre-
sponding GPIO is configured as input and the output/bi-directional driver operates in tri-state mode.

Register Name Register Address Width (Default) Reset Value Access
Tri-state register 0x2 4 0x0 Read/Write
Data Out Register Definition
The data out register drives GPIO outputs.

Register Name Register Address Width (Default) Reset Value Access
Tri-state register 0x3 4 0x0 Read/Write

The first four register address values (0x0, Ox1, 0x2, 0x3) select the specific register to be written to or read from. If
the value of register address is 0x4, this indicates that the microprocessor reads data from the GPIO port directly.
The GPIO expander ignores the other values of the signal register address.

Before every application, the microprocessor selects one or more banks to be used depending on how many GPIO
ports the application uses. At the same time, the microprocessor sets the appropriate values for these four regis-
ters before the read or write operation begins on the back-end device. Figure 5 shows a timing diagram of how the
microprocessor writes data to the register and Figure 6 shows timing diagram of how the microprocessor reads
data from the register.

Figure 5. Microprocessor Writes Data to Registers

cycle

clock

chip_select

bank_address

register_address

write/read

cpu_data

register in bank

T T
| 0 |
| |
T T

\S]

I
|
T
|
Bank address (0x0, 0x1, y, 0x7)

A

I X (0x0,0x1,0x2,0x3)

A

Write

Data from CPU

Data from CPU

H

Lattice Semiconductor GPIO Expander

Figure 6. Microprocessor Reads Data from the Register

T T T
cycle | 0 | 1 | 2
clock
! | |
chip_select : ! !
I

|
bank_address I X Bank address (0x0, 0x1, y, 0x7)

|
|
|
register_address | X (0x0,0x1,0x2,0x3)

|
|
) |
write/read 1/ read
|
|
|
|
|
|
|
|
|
|
|

register in bank

|
I
|
>< ; Register data
T
|

X Register data

cpu_data

GPIO Configuration

Each bank is connected with four GPIO ports by default. These GPIO ports can be dynamically and individually
configured as input, output or bi-directional ports by setting the tri-state register as ‘1’ or ‘0.

GPIO as an Input Signal

When the GPIO is used as an input, the corresponding bit in the tri-state register must be set to ‘0’ and the corre-
sponding bit in the interrupt mask register must be set to ‘1’ by the microprocessor. The microprocessor can set the
signal register_address to 0x4 to read the input GPIO value.

GPIO as an Output Signal

When the GPIO is used as an output, the corresponding bit in the tri-state register must be set to ‘1’ and the corre-
sponding bit in the data out register must be written to the value that is required to be driven on the GPIO. The cor-
responding bit in the interrupt mask register must be set to ‘1’ to disable generation of spurious interrupt. All these
operations should be done by the microprocessor.

GPIO as a Bi-directional Signal

To use the GPIO as a bi-directional signal, the corresponding bit in the tri-state register must be toggled up and
down to enable or disable tri-state of the bi-directional driver. The corresponding bit in the data out register must be
written to the value that is required to be driven on the output driver. The corresponding bit in the interrupt mask
register must be set to ‘1’ to disable generation of spurious interrupt. All these operations should be done by the
microprocessor.

GPIO as an Interrupt Input

When the GPIO is used as an interrupt input, the corresponding bit in the tri-state register must be set to ‘0’ and the
corresponding bit in the interrupt mask register must be set to ‘0’ as well by the microprocessor. The corresponding
bit in the interrupt polarity register indicates the active level of the GPIO interrupt.

Reset Value

This design has a reset signal not shown in Figure 1. This reset signal is used to set all the registers and the GPIO
to the initial values. When this signal is active, all GPIOs are configured as inputs and the output drivers are dis-
abled. The interrupt mask registers are set to ‘1’ to disable spurious interrupt generation.

Lattice Semiconductor GPIO Expander

Test Bench Description

The test bench for this design is an application example that shows how to use the GPIO Expander design. The
GPIO Expander is used to interface with a SPI slave device as shown in Figure 7.

Figure 7. Interfacing the Microprocessor to the SPI Slave
GPIO Expander

sclk »
cpu_data S8 >
Bank O mosi_slave SPI Slave
bank_address miso_slave
. > -
register_address) General I/O
) Bank 1
Microprocessor write/read I—,<:
Interface >
chip_select
interrupt

lock General I/0
ool [e

This example selects bank 0 of the GPIO Expander to connect with the SPI slave device. Three general I/O ports in
bank 0 are configured as outputs by the microprocessor and are used as the serial clock signal, slave select signal
and master-out-slave-in signal respectively, as defined by the SPI protocol. The last port in bank 0 is configured as
an input by the microprocessor and is used as the master-in-slave-out signal.

After reset, the microprocessor initializes the registers in bank 0. Figure 8 shows the timing of this operation.

Figure 8. Microprocessor Initializes the Registers in Bank 0

MName Yalue W T BB oty TR THD B 9S00 B o0 WWR MR lge . SR B0 . Wb bW . lE) 10 L ”

rl 1l rli el 1t rl el rliri el ri i ririririre
1

ar k.

arpst

e

ar chip_select

gy rd

) Ar reg_addr

2 bank_addr

a7 cpu_data

= 2 bank_datan

o

¢ bank_data0(s)
*° bank_data0(2)
¢ bank_data0iL)
»° bank_data0(0)

R R TR R TS ST TS T

Bank_0

[A0 int_nask.

a7 int_pal

[3¢ data_ena

ETETE T

o data_put

Figure 9 shows the timing of the read operation of the registers in bank 0.

Lattice Semiconductor

GPIO Expander

Figure 9. Microprocessor Reads the Registers in Bank 0

Name

Walug

IECCRONRNNE N RN SR, ppe= .0 . 1750 . 4 . 1800 . 4 . 1850 . 4 . 1900 . 4 . 1950 . 4 . 2000 . rv5”
ns |

ar k.

1 1 3 1 1 1 1 1 1 T’ 1 [1 T 1-

o rst

2 chip_selsct

ar g _rd

¥ 2 reg_addr

a7 bank_addr

[A7 cpu_data

a7 bank_datal

[i = = e e S

Bank_0

A7 int_mask

[A7 int_pol

¥ A" data_ena

& data_out

RN

The GPIO is able to generate the SPI timing based on the SPI protocol. Figure 10 shows the read/write timing
between the GPIO Expander and the read/write device.

Figure 10. SPI Timing

Mame

Walue

2200 0 2300 0 2400+ 2500 . 2600 . 2700 . 2600 4 2300 4 3000 . BP0 . 3200 4 3300 . 34P0 . 300 0 3600 . 3700 4 300 . IPO0 o 4000 o 4100 o 4200 o 4300 . 4400 o 450 o 4600 . 47D0 NS ‘

L

nhnhnLRLGHnHEnHHHRHHHHHNHRHHHHHHRHHHHRE

o pst

™ chip_select

o e _rd

il
1] oo

" req_addr

& &]]]] &

o bank_sddr

™ cpu_data

e & b E 0 Ja FF e F 66 b B FF e f 6 b 6 EF R B ¥k b W

BRI

o bank_data0

1
ul
ul
1
ul
ul
ul
ul

3 HE 3 HE fe € d

Bank_0

7 ink_mask

o int_pol

 data_ena

ERERERE

7 data_out

EURCTE T

SP1_Slave

o sk

Bcs

& mosi_slave

= miso_slave

ETETTE TS

Lattice Semiconductor GPIO Expander

Implementation

This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 2. Performance and Resource Utilization

Architecture
Device Family Language Speed Grade Utilization fuax (MHz) I/0s Resources
.] Verilog -6 242 LUTs >100 47 N/A
LatticeECP3™
VHDL -6 211 LUTs >100 47 N/A
. 5 Verilog -5 277 LUTs >100 47 N/A
LatticeXpP2™
VHDL -5 274 LUTs >100 47 N/A
Verilog -3 238 LUTs >100 47 N/A
MachXO™ 2
VHDL -3 206 LUTs >100 47 N/A
) ® 4 Verilog -5 (ns) 187 Macrocells >100 47 N/A
ispMACH™ 4000ZE
VHDL -5 (ns) 194 Macrocells >100 47 N/A
5 Verilog -3 250 LUTs >100 47 N/A
Platform Manager
VHDL -3 207 LUTs >100 47 N/A

Performance and utilization characteristics are generated using LFE3-17EA-6FTN256C, with Lattice Diamond™ 1.2 design software.
Performance and utilization characteristics are generated using LFXP2-5E-5TN144C, with Lattice Diamond 1.2 design software.
Performance and utilization characteristics are generated using LCMX0640C-3T100C, with Lattice Diamond 1.2 design software.
Performance and utilization characteristics are generated using LC4256ZE-5TN100C, with Lattice ispLEVER® Classic 1.4 software.
Performance and utilization characteristics are generated using LPTM10-12107-3FTG208CES,with ispLEVER 8.1 SP1 software.

ISAEE I A

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Revision History

Date Version Change Summary
December 2009 01.0 Initial release.
March 2010 01.1 Added VHDL support.
Added support for the LatticeXP2 device family.
December 2010 01.2 Added support for Platform Manager device family.
Added support for Lattice Diamond 1.1 and ispLEVER 8.1 SP1 design
software.
April 2011 01.3 Added support for the LatticeECP3 device family.
Added support for Lattice Diamond 1.2 design software.

http://www.latticesemi.com/

	Introduction
	Theory of Operation
	Overview
	Common Microprocessor Interface
	GPIO Expander Operation
	Interrupt Mask Register Definition
	Interrupt Polarity Register Definition
	Tri-state Register Definition
	Data Out Register Definition
	GPIO Configuration
	Reset Value

	Test Bench Description
	Implementation
	Technical Support Assistance
	Revision History

