= LATTICE SPI WISHBONE Controller

March 2014 Reference Desigh RD1044

Introduction

The Serial Peripheral Interface (SPI) bus provides an industry standard interface between microprocessors and
other devices as shown in Figure 1. This reference design documents a SPI WISHBONE controller designed to
provide an interface between a microprocessor with a WISHBONE bus and external SPI devices. In master mode,
the SPI controller can be configured for communication with multiple off-chip SPI ports. In slave mode, the SPI sup-
ports communications with an off-chip SPI master.

As a simple serial port, the SPI uses few FPGA resources (see Table 6) and little board space for wires. This SPI
reference design uses only three pins (clock, data in, and data out) plus one select for each slave device. A SPI is
a good choice for communicating with low-speed devices that are accessed intermittently and transfer data
streams rather than reading and writing to specific addresses. A SPI is an especially good choice if you can take
advantage of its full-duplex nature, which sends and receives data at the same time.

Figure 1. Using the SPI WISHBONE Controller to Connect to Peripherals

FPGA Peripheral

| Slave

SPI

SPI
Microprocessor “ “ V\ggzl?o?gf

(Master Mode) Peripheral

— Slave

SPI

Both Verilog and VHDL versions of the reference design are available. Lattice design tools are used for synthesis,
place and route and simulation. The design can be targeted to multiple Lattice device families. Its small size makes
it portable across different FPGA or CPLD architectures.

This design assumes the user has experience with WISHBONE controllers. Information available in the documents
listed in the References section is not repeated in this document.
Theory of Operation

Overview

This SPI WISHBONE controller provides an interface between a microprocessor with a WISHBONE bus and a SPI
device. The controller can either act as the SPI Master or SPI Slave device. The selection of the Master or Slave
mode is done using parameters in the HDL code. The design uses a single module.

The SPI WISHBONE reference design provides standard, fully-configurable SPI ports including:

WISHBONE B.3 interface
» Slave and master modes. Master mode can control up to eight slaves. More can be added if desired.
* Interrupt request to the processor, configurable for a variety of status conditions.

» Configurable serial clock (SCLK) frequency.

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 rd1044_01.7

= LATTICE

SPI WISHBONE Controller

¢ Configurable timing relationships between data and clock signals, and between data and slave-select signals.

* Double-buffered transmission, allowing new data to be written at the same time that previous data is being

shifted out.

* Receive and transmit registers configurable from 1 to 32 bits wide. Longer transfers can be done with software

support.

¢ Option for least-significant bit or most-significant bit first.

Figure 2 shows the Lattice SPI WISHBONE controller configured as a master port, and Figure 3 shows it config-

ured as a slave port.

Figure 2. Lattice SPI WISHBONE Controller Master Implementation

=

WISHBONE

=

WISHBONE

CLK_I
:@ » SCLK
SPI_DAT_I v
» TXDATA » Transmit Shift » MOSI
SPI_DAT_O l
< RXDATA Receive Shift | 4——— MISO
SPI_ADR_I
ADDRESS
SPIINT_O Status
< —>» SS_NO
Control ——» SS_N1
Slave Select » SS_N8
Figure 3. Lattice SPI WISHBONE Controller Slave Implementation
SCLK
SPI_DAT_| Y
TXDATA Transmit Shift » MISO
SPI_DAT_O i
< RXDATA < Receive Shift |« MOSI
SPI_ADR_I
» ADDRESS
«—— SS_N
SPILINT_O Status
4—
Control

v

On the internal side (the left in these diagrams), the SPI has a standard WISHBONE slave bus, which connects the
SPI with a microprocessor and other on-chip components. From the WISHBONE bus, the SPI appears as a set of

2

= LATTICE

SPI WISHBONE Controller

addressable registers that can be read or written. Through these registers, the processor can transmit and receive
data and control the operation of the SPI. Please note that only the major WISHBONE bus signals are shown in the
figures above for clarity. A complete listing of the WISHBONE bus signals is shown in the Top-Level Port Descrip-
tion section below.

On the external side (the right in these diagrams), the SPI has a standard master or slave SPI interface:

e SCLK (serial clock) generated by the master SPI to synchronize the data transfers.
* MISO (master in, slave out), which transfers data going to the master SPI from a slave.
* MOSI (master out, slave in), which transfers data going from the master SPI to a slave.

* SS_N (slave select), which is asserted by the master SPI to start a data transfer. In master mode, the SPI has a
slave select signal (SS_NO, SS_N1, and so on) for each slave SPI. In slave mode, the SPI has a single SS_N
input.

HDL Parameter Descriptions

The SPI WISHBONE controller has a number of parameters that are used to control the configuration of the con-
troller. This allows the user to modify the configuration to meet their needs without making changes to the Verilog
code itself. Table 1 provides descriptions of the parameters used in the SPI WISHBONE controller.

Table 1. SPI WISHBONE Parameter Descriptions

Parameter Description Value
Specifies whether the SPI controller is a master or slave device.
MASTER 01
1 or True = master.

SLAVE_NUMBER Specifies the number of slave devices supported. 1-8 (32)"
DATA_LENGTH Specifies the number of serial data bits. 1-8 (32)2
Specifies whether the most significant bit or least significant bit is first.

SHIFT_DIRECTION i 0|1
0 = msb first
Specifies the clock phase of the SPI instance.
If 0, the data is latched on the leading edge of SCLK and data changes on the
CLOCK_PHASE trailing edge of SCLK. 0]1
If 1, the data is latched on the trailing edge of SCLK and data changes on the
leading edge of SCLK.
Specifies the Polarity of the SPI instance.
CLOCK_POLARITY ||f 0, the idle state for SCLK is low. 0|1
If 1, the idle state for SCLK is high.
Specifies the range limit for the clock counter. The width must be enough to)
CLKCNT_WIDTH meet the number of bits required for the slave clock (SCLK). 1-32
Specifies the factor for deriving SCLK from the processor clock CLK_I. SCLK is
CLOCK_SELS3 derived using the following equation: 0-2clkent_width_4
SCLK = CLK_I/ (2*(CLOCK_SEL+1))
Specifies the time delay factor before shifting the first bit of data after the SS_N
DELAY_TIME signal is asserted. The start delay time is derived from the following equation: 0-63
Delay = DELAY_TIME *(SCLK period/ 2)
INTERVAL_LENGTH Specifies the number of SCLK cycles for which the SS_N signal is held inactive 0-63
between SPI transmit requests.

1. The number of slave devices can be increased if a wider SPI_DAT_| bus is used.
2. The data length can support up to 32 bits by changing the width of the SPI_DAT_| bus. Please see appendix A for more details.

3. The SPI WISHBONE Controller source code file has a CLOCK_SEL parameter value of 1 in order to speed up SCLK for use in simulations.

Please check the maximum SPI clock rate for the devices you are using in determining the correct value for the CLOCK_SEL parameter.

= LATTICE SPI WISHBONE Controller

Top-Level Port Descriptions

Table 2 provides descriptions of the input/output ports of the SPI WISHBONE controller. Port names ending with
“_N” indicate an active low signal. This convention is used throughout the design.

Table 2. SPI WISHBONE Controller Port Descriptions

Signal ‘ Type Active Description
WISHBONE Interface
CLK_I Input High Input Clock signal
RST_I Input High System Reset signal
SPI_ADR_I[7:0] Input N/A Slave address bus
SPI_DAT_I[7:0] Input N/A Slave data input bus
SPI_DAT_Q[7:0] Output N/A Slave data output bus
SPI_WE_I Input High Slave write enable signal
SPI_CYC_I Input High Slave cycle signal
SPI_STB_I Input High Slave strobe signal
SPI_SEL_I[3:0] Input High Slave select signal
SPI_CTI_I[2:0] Input High Slave cycle-type indicator signal
SPI_BTE_I[1:0] Input High Slave burst type signal
SPI_LOCK_I Input High Slave bus locked signal
SPI_ACK_O Output High Slave acknowledge signal
SPI_ERR_O Output High Slave error signal
SPI_RTY_O Output High Slave retry signal
SPLINT_O Output High Slave interrupt request signal
SPI Interface
MISO_MASTER Input High Master input/slave output
MOSI_MASTER Output High Master output/slave input
SCLK_MASTER Output Selectable Serial clock - user-selectable
SS_N_MASTER Output Low SPI slave select (active low)
MISO_SLAVE Output High Master input/slave output
MOSI_ SLAVE Input High Master output/slave input
SCLK_ SLAVE Input Selectable Serial clock - user-selectable
SS_N_ SLAVE Input Low SPI slave select (active low)

Register Descriptions

The SP1 WISHBONE controller has five registers which are used to interact with the WISHBONE bus. A description
of each of these registers is shown in Table 3. Further definition of the status and control registers can be found in
Tables 4 and 5.

Table 3. SPI WISHBONE Register Descriptions

Register Address Width WISHBONE Access Description
REG_RXDATA 0x00 8! Read only Data from SPI port
REG_TXDATA 0x04 8! Read/write Data to SPI port, SSMASK or control register
REG_STATUS 0x08 8 Read only Status register
REG_CONTROL 0x0C 8 Read/write Control register
REG_SSMASK 0x10 8! Read/write Slave select register

1. The width can be increased to support up to 32 bits with modifications. Please see appendix A for details.

s LATTICE SPI WISHBONE Controller

Table 4. SPI WISHBONE Status Register Bit Definitions

Bit Name Bit Description
Reserved 1:0 Not used
ROE 2 Receive overrun error: 1 = error. Error indicates that the RXDATA register received new data before

the previous data was read. The previous data was lost if this occurs.
Transmit overrun error: 1 = error. Error indicates that the TXDATA register received new data before

TOE 3 the previous data was moved to the shift register. The new data is discarded if this occurs.

T™T 4 Transmit shift register is empty: 1 = empty. When the transmit shift register is empty the next data
will be transferred from the TXDATA register unless it is empty.

TRDY 5 Transmit ready status: 1 = empty. Indicates that the TXDATA register is empty and can accept new
data from the WISHBONE bus. New data will be blocked until TRDY = 1.

RRDY 6 Receive ready status: 1 = data available. Indicates that the RXDATA register has data and is ready
to be read. Reading the RXDATA register clears RRDY.

E 7 Error bit: 1 = error. This bit indicates that an overrun error has occurred. The E bit is the logical OR

of the ROE and TOE status bits.

Table 5. SPI WISHBONE Control Register Bit Definitions

Bit Name Bit Description
IROE 0 Set to 1 to enable interrupt requests for receive overrun errors.
ITOE 1 Set to 1 to enable interrupt requests for transmit overrun errors.
Reserved 2 Not used
ITRDY 3 Set to 1 to enable interrupt requests for transmitter ready conditions.
IRRDY 4 Set to 1 to enable interrupt requests for receiver ready conditions.
IE 5 Set to 1 to enable interrupt requests for transmit or receive overrun errors.
Reserved 6 Not used

In a master SPI, set to 1 to assert the SS_N outputs according to the mask in the slave select reg-
SSO 7 ister. SSO holds the slave select signal after it would normally be de-asserted. The SPI will con-
tinue to exchange data frames until SSO is cleared.

SPI WISHBONE Controller Operation

The Controllers WISHBONE interface supports only classic cycle transfers, which means that the System master
CTI_O is fixed at 000. The interface does not support cache line wrap; the System master BTE_O s fixed at 00.
The slave port does not have RTY_O and ERR_O signals. The RTY_O and ERR_O signals are terminated low.
The slave adds an interrupt port (SPI_INT_O) to the master (processor). If the SPI WISHBONE Controller is con-
figured for 32-bit operation, only a master processor with 32-bit operation is supported; S_SEL_I is not supported.

Data Transmit and Receive

Both of the data transmit and receive paths within the Lattice SPI WISHBONE controller use two registers: a hold-
ing register and a shift register. This double buffering allows the paths to hold one data frame while another is being
shifted in or out. The holding registers, TXDATA and RXDATA, are addressable and can be written to or read
through the WISHBONE bus.

In the transmit path, TXDATA is written to (or read) through the WISHBONE bus. Writing to TXDATA clears the
transmitter ready status bit (TRDY) to 0, blocking any new data until the previous data has moved to the shift regis-
ter. If no serial transfer is in process, TXDATA immediately moves its data to the shift register and sets TRDY to 1. If
a serial transfer is in process, TXDATA holds the new data until the previous data has shifted out. If new data
comes in while TRDY is 0, the new data is blocked and the transmit overrun error status bit (TOE) is set.

In the receive path, the shift register, when full, immediately moves its data to the holding register, RXDATA, and
sets the receiver ready status bit (RRDY) to 1. RXDATA can be read through the WISHBONE bus. Reading

s LATTICE SPI WISHBONE Controller

RXDATA clears the RRDY status bit. If new data comes in while RRDY is set, RXDATA is overwritten with the new
data and the receive overrun error status bit (ROE) is set.

SPI operations are always full duplex, so every data transfer operation transmits and receives at the same time. If
you just want to receive, your software must load TXDATA with appropriate dummy data to transmit. Your software
must also use or ignore the received data as appropriate.

The registers in this SPI WISHBONE controller are eight bits wide but can be configured up to 32 bits wide. See
Appendix A for more details. The transmit and receive logic can be configured to assume the data is either least-
significant bit (LSB) first or most-significant bit (MSB) first.

Status and Control

The SPI WISHBONE controller includes status and control registers. These are mainly used to trigger interrupt
requests. The master SPI also has a slave-select register that is used to select a slave SPI and start a data trans-
fer.

To check the status of the SPI WISHBONE controller, read the status register. It reports conditions such as receive
and transmit overrun, transmit shift register empty, and transmitter and receiver ready. For details, see Table 4.

To set up an interrupt request on the SPI_INT_O output, set one or more of the interrupt enable bits in the control
register. These bits enable interrupt requests for most of the conditions reported in the status register. For details,
see Table 5.

To clear an interrupt request, clear the associated bit in the control register. Writing any value to the control register
clears the overrun error status bits (ROE, TOE, and E). Writing the TXDATA register clears the transmit ready sta-
tus bit (TRDY). Reading the RXDATA register clears the receiver ready status bit (RRDY).

To start a data transfer, load the slave select register of the master SPI with a slave mask and then load the
TXDATA register. Loading TXDATA triggers the next data transfer. The slave select register has one bit for each
SS_N output. Setting the bit to 1 asserts the active-low SS_N. For example, a binary slave mask of 00010000
asserts SS_NB5, selecting that slave SPI. It is possible to assert more than one slave select signal, but you must
take care to prevent contention on the MISO bus.

The SPI WISHBONE controller uses a SPI_DAT_I bus which is has an 8-bit width. If the application requires more
than eight SPI Slave devices, then the designer must modify the design to use an alternate encoding scheme and
also add some logic to decode the slave selected from the SPI_DAT_I bus using the selected encoding scheme. If
the design is modified to accept a wider SPI_DAT_I bus then it is not necessary to change the existing encoding
scheme. See Appendix A for more details.

To have a data transfer longer than the transmit and receive registers, set the SSO bit in the control register to 1.
SSO holds the slave select signal after it would normally be de-asserted. The SPIs will continue to exchange data
frames until SSO is cleared. SCLK stops toggling between frames. Before clearing SSO to end the data transfer,
make sure the transmit shift register is empty by checking the TMT status bit.

A slave SPI cannot start a data transfer. When the SPI's SS_N input goes low, the Slave SPI Controller immedi-
ately begins the data transfer.

Clocking Sources

The master SPI generates SCLK to synchronize the data transfers. SCLK is only available during the data transfer,
while SS_N is asserted.

SCLK is derived from the system clock, CLK_I, by dividing the frequency. The divisor and other aspects of SCLK
can be selected when the SPI is configured, as shown in Table 1.

s LATTICE SPI WISHBONE Controller

Module Description

The state machine used in the Master mode of this design is shown in Figure 4. The Slave mode does not use a
state machine. This state machine starts in the ST_IDLE state (at top) and waits until there is pending data indicat-
ing that a write operation has been initiated. The pending data status is indicated by the microprocessor writing a
value of 0x04 to the address register across the WISHBONE bus and then asserting the SPI_STB_I, SPI_WE_]I,
and SPI_CYC_I signals. The state machine then transitions through the various states until the write has been
completed when it return to the ST_IDLE state.

Figure 4. State Machine

Else

(Clock_cnt = Clock_sel) &&

(Data_cnt = Interval length) Pending_data

Else

(Clock_cnt = Clock_sel)
&& (Interval_length)

(Clock_cnt = Cléck_sel)

&& (! Interval_length) Else

Delay time =0

Else

(Clock_cnt = Clock_sel) &&
DPata_cnt = Actual_max) &&

Bclk_master != Clock_polarity) (Clock_cnt = Clock_sel) &&

(Data_cnt = Delay_time — 1)

Test Bench Description

The test bench for this design consists of a single module called spi_tf (the filename is spi_wb_tb1.v). This module
instantiates the SPI WISHBONE Controller and provides the stimulus inputs for the WISHBONE ports as well as
the CLK_| and RST_I signals. This test bench is used for a Master SPI implementation of the SPI WISHBONE
Controller. The CLK_I is generated at 50 MHz in the test bench.

The SPI WISHBONE Controller source code file has a CLOCK_SEL parameter value of 1 in order to speed up
SCLK_MASTER for use in the simulation. A hardware implementation of this design may require this parameter to

s LATTICE SPI WISHBONE Controller

be changed for successful SPI communications to occur. Please check the maximum SPI clock rate for the devices
you are using in determining the value for the CLOCK_SEL parameter.

Design Flow

Lattice design tools are used for synthesis, simulation and place and route. In addition to the place and route/fitter
engine, the Lattice ispLEVER® design tool includes Synplify®/Synplify Pro® from Synplicity® for synthesis, and
Active-HDL® from Aldec® for simulation. The details of the design flow can be found in the rd1044_readme.txt file
that comes with the reference design.

Timing Diagrams

The RTL Simulation timing diagram (Figure 5) shows a series of write commands being executed by the micropro-
cessor across the WISHBONE bus with the SPI Controller in a Master configuration. The SPI WISHBONE Control-
ler source code file has a CLOCK_SEL parameter value of 1 in order to speed up SCLK for use in simulations.
Please check the maximum SPI clock rate for the devices you are using in determining the correct value for the
CLOCK_SEL parameter.

Before writing data to the SPI WISHBONE Controller, the microprocessor reads the status register to insure that
the controller is ready to accept data as indicated by the TRDY status bit (bit 5 of the Status register). Then the
microprocessor sends the data and address across the SPI_DAT_| and SPI_ADR_1I lines while asserting the write
enable signal, SPI_WE_I, and the strobe, SPI_STB_I. Note that the SPI_CYC_1I signal must also be asserted. For
this example, the SPI_CYC_I signal is asserted at the beginning of the simulation and left asserted for the duration
of the transaction.

In Figure 5, the cursor at 600 ns shows that the SCLK_MASTER signal is just beginning to clock the data out from
the transfer register to the SPI device. The value of the data being sent, 11011010, is also shown in the SPI_DAT _|I
register (in the value column) since no data has overwritten it yet. The SPI_ADR_I register value is 0x08 which
specifies a read status register command was executed at the last SPI_STB_|I transition. The result of the status
read is shown in the SPI_DAT_O register, 00100000 (in the value column), and this indicates that the SPI Control-
ler is ready to accept new data (TRDY = 1). Therefore the next transaction will be a transmit and the SPI_WE_1I is
asserted, the SPI_ADR_I value is changed to 0x04 (transmit data), and the value of 11110111 is written to the
SPI_DAT_I register. This value is the next value that will be sent out the SPI port. The process then repeats by
reading the status register repeatedly to determine when the controller is ready to accept new data. For this simu-
lation, the data reads occur every 140 ns until the TRDY bit has changed state and the write process can begin
again. This simulates a microprocessor transaction which does not use the interrupt from the SPI Controller,
SPI_INT_O.

= LATTICE SPI WISHBONE Controller

Figure 5. RTL Simulation Timing Diagram

Waveform Editor 1 *

pace Desgn Smuaton Waveform Toos Window belp e x

FELKEBAMYORO 58D |[rrr 100 Hem s » =iz

[¢BR|vs AL QQAQ & WM ud | 3% %]

Nams Valus Sl 200 | s, r:mi , 1000 » 1200 , 1400 4 1600 ¢ 1800 , 2000 + 2200 , 2400 , 2500 | 2800 , 3000 , J200 , 3400 , 3600 , 3800 n:
ReRST_| 0 =
Re CLE_| 0
R MISO_MASTER |0

L ;'r.i'dé'|:;t$.'§féém5'lm W I —

a SCLK_MASTER 1

ReSCLKSLAVE [0

7 U I i
SPLSTB| 0

F= SPIWE_I i

BRSPLADR |08

@R SPI_BTE_| n

IE|R= SPI_CTII o
R SPI_CYC.| h

T e e o T

@ SPI_DAT_0 omoooou S I Ypo0oo000 Y ¥ 00000 ¥) G (I W yoooioo
T LIl m .]

BRSPILSELL 0 @

| 55 masTER 0 a o
L T

4 Blujo]w S

There is a total of four bytes of data sent from the SPI Controller in the timing diagram of Figure 5, and the fifth byte
is loaded into the controller to be sent out in the next cycle. The data cycle shown is: 11011010, 11110111,
11100111, 111000011, 11000011. Please note that the SS_N_MASTER signal was driven low earlier by writing a
value of 00000001 to the SPI_DAT_I signal, and a value of 0x10 to the SPI_ADR_1I signal.

s LATTICE SPI WISHBONE Controller

Implementation

This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 6. Performance and Resource Utilization’

Architecture

Device Family Language Speed Grade Utilization? fmax (MHz) I/0s® Resources
Verilog-LSE -6 126 LUTs >60 38 N/A
9 Verilog-Syn -6 121 LUTs >60 38 N/A
MachXO3L
VHDL-LSE -6 123 LUTs >60 38 N/A
VHDL-Syn -6 121 LUTs >60 38 N/A
4 Verilog -6 118 LUTs >45 38 N/A
MachX0O2™
VHDL -6 119 LUTs >45 38 N/A
Verilog -5 113 LUTs >45 38 N/A
MachXQ™ 5
VHDL -5 114 LUTs >45 38 N/A
) Verilog -6 119 LUTs >45 38 N/A
LatticeECP3™ 6
VHDL -6 120 LUTs >45 38 N/A
i . Verilog -5 119 LUTs >45 38 N/A
Latticexp2™
VHDL -5 120 LUTs >45 38 N/A
. ® s Verilog -5 (ns) 94 Macrocells >45 38 N/A
isp)MACH®™ 4000ZE
VHDL -5 (ns) 94 Macrocells >45 38 N/A

1. This utilization is for a WISHBONE interface with 8-bit address and data buses.

2. For LUT counts using Lattice Diamond® design software, the strategy option under Synplify Pro was set to Area=True.

3. The number of I/Os is for the SPI WISHBONE Controller reference design utilized as a master device with a single slave SPI device. A sin-
gle external SPI port uses only five 1/Os plus the clock and reset inputs. The remainder are WISHBONE 1/Os which will normally be con-
nected internally within the device.

. Performance and utilization characteristics are generated using LCMX02-1200HC-6TG144C with Lattice Diamond 1.2 design software.

Performance and utilization characteristics are generated using LCMX02280C-5FT256C with Lattice Diamond 1.2 design software.

Performance and utilization characteristics are generated using LFE3-70EA-6FN484C with Lattice Diamond 1.2 design software.

Performance and utilization characteristics are generated using LFXP2-5E-5FT256C with Lattice Diamond 1.2 design software.

. Performance and utilization characteristics are generated using LC4256ZE-5TN144C with Lattice ispLEVER® Classic 1.4 software.

. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C, with Lattice Diamond 3.1 using Synplify Pro®
and LSE (Lattice Synthesis Engine).

©®NoOO A

References

¢ WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores Revision: B.3, Released:
September 7, 2002

¢ Freescale Semiconductors, M6BHC11 Microcontroller Reference Manual - M68BHC11RM/D Rev. 6.1, Section 8,
Synchronous Serial Peripheral Interface.
Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

10

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

= LATTICE

SPI WISHBONE Controller

Revision History

Date Version Change Summary
February 2009 01.0 Initial release. This design was adapted from the LatticeMico32™ SPI
core. The Address bus, Data_in, and Data_out buses were reduced
from 32 bits to 8 bits to interface with the LatticeMico8™ Microcontroller
reference design.
July 2009 01.1 Added support for ispMACH 4000ZE CPLD family.
August 2009 01.2 Added support for VHDL language.
December 2009 01.3 Added support for LatticeXP2 device family.
Updated for ispLEVER 8.0.
November 2010 01.4 Added support for MachXO2 device family.
Added support for Lattice Diamond and ispLEVER 8.1 SP1 software.
January 2011 01.5 Added Address column to SPI WISHBONE Register Descriptions table.
April 2011 01.6 Added support for the LatticeECP3 device family.
Added support for Lattice Diamond 1.2 design software.
March 2014 01.3 Updated Table 6, Performance and Resource Utilization.
- Added support for MachXO3L device family.
- Added support for Lattice Diamond 3.1 design software.
Updated corporate logo.
Updated Technical Support Assistance information.

11

= LATTICE

SPI WISHBONE Controller

Appendix A. Using the SPI WISHBONE Controller with a 32-Bit Data Bus

If the designer wishes to use the SPI WISHBONE Controller reference design in a processor application that sup-
ports 32-bit data accesses, the SPI_DAT_I and SPI_DAT_O buses must be modified in the Verilog code in addition
to changing the DATA_LENGTH parameter value. There are also two registers that need to be modified as shown
below.

The SPI_ADR_I bus does not need to be changed. However, please note that this reference design uses a different
SPI_ADR_I bus arrangement than is used by the LatticeMico32 SPI controller design.

Table 7. Ports and Registers that Must be Changed to Support a WISHBONE 32-Bit Data Bus Processor

input [31:0] SPI_DAT_I; //change from 8-bit width to 32-bit
output [31:0] SPI_DAT_O; //change from 8-bit width to 32-bit
reg [31:0] SPI_DAT_O; //change from 8-bit width to 32-bit
reg [31:0] latch_s_data; //change from 8-bit width to 32-bit

The SS_Nx signal is decoded from the SPI_DAT_I bus using a one-hot encoding scheme in the SPI WISHBONE
Controller reference design. Each bit position represents the SS_Nx signal for an individual Slave SPI device.
Changing the SPI_DAT_I bus to a 32-bit width also allows the designer to use up to 32 SPI slave devices without
requiring additional changes to the design.

12

	SPI WISHBONE Controller
	Introduction
	Theory of Operation
	Overview
	HDL Parameter Descriptions
	Top-Level Port Descriptions
	Register Descriptions

	SPI WISHBONE Controller Operation
	Data Transmit and Receive
	Status and Control
	Clocking Sources
	Module Description
	Test Bench Description

	Design Flow
	Timing Diagrams
	Implementation
	References
	Technical Support Assistance
	Revision History
	Appendix A. Using the SPI WISHBONE Controller with a 32-Bit Data Bus

