
HDLC Controller Implemented in MachXO,
LatticeXP2 and LatticeECP2/M Families

June 2010 Reference Design RD1038

www.latticesemi.com 1 rd1038_01.1

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
HDLC is the abbreviation for High-Level Data Link Control published by the International Standards Organization
(ISO). This data link protocol is located at the link layer (layer 2) of the 7-layer OSI reference model. Today, a variety
of link layer protocols such as LAPB, LAPD, LLC and SDLC are all based on the HDLC protocol with a few modifi-
cations. These single-channel and multi-channel HDLC controller reference designs, targeted for the MachXO™,
LatticeXP2™, LatticeECP2™ and LatticeECP2M™ families respectively, can easily be used or modified for these
HDLC applications.

Features
• Parameterizable number of HDLC channels in multi-channel design. Each channel corresponds to a DS0

channel in the TDM (Time Division Multiplexing) PCM (Pulse Code Modulation) highway.
• CRC (Cyclic Redundancy Check) check with parameterizable FCS (Frame Check Sequence) length and

arbitrary polynomials.
• Each channel has two separate 8-bit data buses, one for the receiver and another for the transmitter. These

buses can be connected to external memory such as FIFOs or memory controller modules for interfacing
with the host processor.

• Flag insertion and detection
• Abort generation and detection
• Zero insertion and deletion
• Idle insertion
• Flag sharing between HDLC frames
• Recognize 011111101111110 as two continuous flags
• Conforms to ISO/IEC 3309
• Supports MachXO, LatticeXP2, LatticeECP2/M devices

Functional Description
The HDLC is a bit-oriented protocol with the serial transmission data encapsulated by 01111110 flags. An HDLC
frame is composed of the flag and the serial transmission data. There are five fields in an HDLC frame: flag,
address, control, information (variable length), and FCS. The FCS is calculated according to the CRC error detect-
ing scheme from the serial bit stream of address, control, and information fields. It is usually a 16-bit or 32-bit pat-
tern used for checking the frame data integrity.

In addition to separating the serial transmission data, the HDLC flag can also be used to fill the time gap when
there is no data to be transferred. Figure 1 shows the HDLC frame format and the typical HDLC bit stream.

Figure 1. HDLC Frame Format

The flag pattern, 011111110, is also a possible sequence in other HDLC fields. In order to make the flag unique to
the whole bit stream, a zero insertion and deletion technique is applied to the nonflag fields. For data transmission,
whenever there are five consecutive 1's being transmitted, an additional redundant zero bit will be inserted immedi-

Flag Addr Ctrl FCS

F

Information

F F F F F F FF FFF

01111110

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

2

ately after the five 1's. This is called “zero insertion” or “zero stuffing”. When receiving data, whenever there are five
consecutive 1's followed by a zero, the zero will be ignored. This is called “zero deletion” or “zero unstuffing”.

In some cases when there is a priority issue or a problem on the data link, the transmitter may want to abandon the
transmission of the current HDLC frame before it is fully transmitted. This is done by asserting the abort sequence,
at least seven but fewer than 15 consecutive 1's. If the number of 1's is more than 15, it will be recognized as an
idle sequence. Instead of transmitting consecutive back-to-back flags, idle sequence can also be used when no
data needs to be transferred. However, the idle sequence is usually used to support half-duplex operation. When
the idle sequence is received, the transmission direction will be reversed. The half-duplex operation is not sup-
ported in this design.

The designs treat the address, control, information, and FCS fields as transmission data. The receiver strips away
the flags of the bit stream and converts these nonflag fields (including the FCS field) from serial bit stream to paral-
lel 8-bit octets. The receiver also checks the correctness of the FCS field and reports the status at the end of the
receiving process. Contrary to the receiver, the transmitter converts the address, control, and parallel-to-serial
data, then generates the FCS, and finally encapsulates these fields with HDLC flags.

These reference designs support three most commonly used CRC polynomials. Please contact Lattice technical
support if you need a special CRC polynomial. The supported CRC polynomials are:

CRC-16 = x16 + x15 + x2 + 1
CRC-CCITT = x16 + x12 + x5 + 1
CRC-32 = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

The multi-channel design contains a programmable number of HDLC channels working in the channelized mode
which uses a synchronization pulse to subdivide the serial TDM data stream (PCM frames) into a set of 8-bit time
slots. Each time slot corresponds to a DS0 channel. Each DS0 channel associates with one HDLC channel. Also,
the synchronization framing bit can be a separate bit in the TDM data stream framing format or be asserted simul-
taneously with the last data bit in the last time slot. Figure 2 shows the difference between the two.

The single-channel design is a derivation of more generalized multi-channel designs where only a single-channel is
used.

Figure 2. TDM System Signals and Timing Diagram

Clk

Data

Timeslot 0
(DS0 channel 0)

0 1 2 3 4 5 6 7 0 1 2 3

Sync

Timeslot 1
(DS0 channel 1)

Timeslot N
(DS0 channel N)

4 5 6 7 07

Synchronization
framing bit

Number of bits per PCM frame = (N + 1) x 8

Clk

Data

Timeslot 0
(DS0 channel 0)

0 1 2 3 4 5 6 7 0 1 2 3

Sync

Timeslot 1
(DS0 channel 1)

Timeslot N
(DS0 channel N)

4 5 6 7 FF

Synchronization
framing bit

Number of bits per PCM frame = (N + 1) x 8 + 1

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

3

Figure 3 shows how this design may be used in a system. When an HDLC frame is received, the controller will con-
vert the serial bit stream to parallel and write it to the external memory for the host processor to read. For transmis-
sion, the host processor writes the frame data into the external memory then triggers the controller to read the data
from the external memory and converts it to HDLC serial bit stream. The external memory could be any kind of
communication memory such as FIFO or multi-port memory that works as a buffer between the host processor and
the HDLC controller.

Figure 3. MC-HDLC Controller in a System

The multi-channel design includes four different modules (i.e. Rx_DEMUX, Tx_MUX, RECEIVE, and TRANSMIT
modules). The Rx_DEMUX and Tx_MUX modules will be instantiated just once in the multi-channel design, how-
ever, the RECEIVE and TRANSMIT modules will be instantiated as many times as the number of the channels.
The block diagram of the multi-channel HDLC design is shown in Figure 4.

Receive Channel 0

Receive Channel 1

Receive Channel N

Transmit Channel 0

Transmit Channel 1

Transmit Channel N

Rx_DEMUX

Tx_MUX

TDM
data

stream

TDM
data

stream

E
xt

er
na

l M
em

or
y

(F
IF

O
 o

r
M

ul
ti-

po
rt

)

Host
Processor

External
Memory
Module

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

4

Figure 4. MC-HDLC Block Diagram

Rx_DEMUX Module
The Rx_DEMUX module is used to demultiplex the incoming PCM highway bit stream to the different HDLC
receiver channels. Figure 5 shows the block diagram of this module and how it is used in the design. There are two
counters, PRE_CNT and CHANNEL_CNT, in this module. Both counters are running at RxClk clock and will be
reset to zero synchronously whenever the RxSync is high. The PRE_CNT counter is a fixed 3-bit counter. It
enables the CHANNEL_CNT counter to count up one for every eight RxClk clocks. The value of CHANNEL_CNT
will be sent to the DECODER sub-module. The DECODER output RxEnable[0:N] will then enable the transmitter of
one channel at a time.

TRANSMIT_0

R
x_

D
E

M
U

X

PCM Frame (X-1) PCM Frame (X) PCM Frame (X+1)

T
x_

M
U

X

TRANSMIT_N

PCM Frame (Y+1)PCM Frame (Y)PCM Frame (Y-1)

8

RxData

TxData

8

RxSync

RxClk

TxSync

TxClk

Reset

TxInputData[7:0][0]

TxRead_n[0]

TxAbort[0]
TxStart[0]
TxEmpty_n[0]

8
TxInputData[7:0][N]

TxRead_n[N]

TxAbort[N]
TxStart[N]
TxEmpty_n[N]

RECEIVE_0

RECEIVE_N

RxOutputData[7:0][0]

RxDataWrite_n[0]

RxStatusWrite_n[0]

8

RxOutputData[7:0][N]

RxDataWrite_n[N]

RxStatusWrite_n[N]

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

5

Figure 5. Rx_DEMUX Module in the MC-HDLC Design

RECEIVE Module
The RECEIVE module implements all the required HDLC receiver functions including flag detection, zero unstuff-
ing, abort detection, and CRC checking. The block diagram of this module is shown in Figure 6.

Figure 6. RECEIVE Module Block Diagram

Data Receiving
Once the F_DETECT sub-module detects the HDLC flag, after eight RxClk clocks, the Z_UNSTUFF and
A_DETECT sub-modules will be enabled for zero unstuffing and abort detection respectively. Once enabled, the
Z_UNSTUFF sub-module will keep track of the incoming bit stream and disable the downstream logic for one clock
if a zero bit is followed by five consecutive 1's. So, the zero bit inserted to make the 01111110 flag unique will be

PCM Frame (X-1)

PCM Frame (X)

PCM Frame (X+1)

DECODER

CHANNEL_CNT

Receive Channel 0

Rx_DEMUX
Receive Channel 1

Receive Channel N

P
R

E
_C

N
T

RxSync

RxClk

Reset

R_BUFFER R_SHIFT

F_DETECT

RxD

Z_UNSTUFF

A_DETECT

CRC_CHK

BIT_CNT

R_CONTROL

8S
TA

T
U

S

RxOutputData[7:0]

7 0 07

R_DATA

RxDataWrite_n

RxStatusWrite_n

RxEnable To All
Internal
Flip-Flops

RxClk
Reset

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

6

unstuffed from the bit stream. The original data without zero bits insertion will then be shifted into the R_SHIFT
sub-module. The RxOutputData[7:0] bus will output the R_SHIFT data value once eight bits of data are collected.
When this happens, the RxDataWrite_n signal will be asserted for one RxClk clock period to indicate that to the
external memory. The FCS data at the end of the receiving HDLC frame will also be transmitted through the RxOut-
putData[7:0] bus with RxDataWrite_n asserted.

Receiving Frame Status Generation
The BIT_CNT and CRC_CHK sub-modules are used for detecting the error of the receiving HDLC frame. The
BIT_CNT sub-module will report the octet error if the total number of bits received after zero unstuffing is not a mul-
tiple of eight (i.e. mis-aligned byte count). The CRC-CHK sub-module will check the FCS field to see if there is a
CRC error. The RxOutputData[7:0] bus will output these results along with the result of the abort detection. This
status will be reported after the entire HDLC frame is received or the abort is detected. The RxStatusWrite_n signal
will be asserted for one RxClk clock period to indicate that the value present on RxOutputData[7:0] is the status
instead of the data. The bit assignment of this status byte is shown in Figure 7.

Figure 7. Status Bit Definition

Receive Module Signals and Timings
Both the received data and the status are transmitted through the same bus. The signals RxDataWrite_n and
RxStatusWrite_n will be asserted exactly one RxClk clock to indicate what type of information is on the RxOutput-
Data[7:0] bus. The functional simulation timing waveforms of the receiver module are shown in Figure 8. For depic-
tion purposes, this example simulates a single channel instead of a multi-channel receiver.

Figure 8. Single-Channel Receiving Timing

Tx_MUX Module
The Tx_MUX module multiplexes the outgoing bit streams of the HDLC transmitter channels to the PCM highway.
Figure 9 shows the block diagram of this module and how it is used in the design. Similar to the Rx_DEMUX mod-
ule, the Tx_MUX module contains the PRE_CNT counter, the CHANNEL_CNT counter, and the DECODER sub-
module. In addition, a multiplexer is used for multiplexing the outgoing serial bit streams of the transmitter channels
to the PCM high way output.

Bit7 - Bit3 Bit2 Bit1 Bit0

Bit7-Bit3: Reserved
Bit2: Abort Detected
Bit1: Octet Error
Bit0: CRC Error

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

7

Figure 9. Tx_MUX Module in the MC-HDLC design

TRANSMIT Module
The TRANSMIT module implements all the required HDLC transmission functions such as flag insertion, zero stuff-
ing, abort generation, and FCS generation for CRC check. The block diagram of this module is shown in Figure 10.

Figure 10. TRANSMIT Module block diagram

Data Transmitting
Before the transmission starts, the data needs to be stored in advance in the external memory such as FIFOs. The
F_INSERT sub-module will keep asserting HDLC flags until TxStart is asserted. Once a high TxStart is detected,
the TRANSMIT module will start reading the first octet from the external memory. It asserts TxRead_n signal for
one TxClk clock and then latches the TxInputData[7:0] data into the T_BUFFER at the next TxClk clock. Once the

PCM Frame (X-1)

PCM Frame (X)

PCM Frame (X+1)

DECODER

CHANNEL_CNT

Transmit Channel 0

Tx_MUX
Transmit Channel 1

Transmit Channel N

P
R

E
_C

N
T

TxSync

TxClk

Reset

T_CONTROL

CRC_GEN

8
TxInputData[7:0]

TxD
Z_STUFF

TxRead_n

F_INSERT

01111110

TxAbort

TxEnable

0 7

0 7

T_BUFFER

T_SHIFT

A_INSERT

TxStart
TxEmpty_n

To All
Internal
Flip-Flops

TxClk
Reset

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

8

external memory samples a low TxRead at the rising edge of the TxClk clock, the data needs to be valid before the
next TxClk rising edge and satisfy the setup time so that the data can be latched properly into the transmit module's
T_BUFFER. The latched data will then be loaded into T_SHIFT and be shifted out of the shift register, through the
Z_STUFF and the F_INSERT sub-modules to the TxD output. Before the first octet is completely shifted out
through the TxD output, the second TxRead_n will be asserted to get the second octet. And then the third octet,
the fourth octet, and so on. When latching the TxInputData bus, the active low signal TxEmpty_n will be examined
as well. If it is low, the octet being latched into the T_BUFFER will be considered as the last octet of the current
transmission frame. After this last octet is loaded into the T_SHIFT and shifted out, the MUX will switch from the
T_SHIFT to the CRC_GEN and then shift the FCS out. The A_INSERT sub-module is used for asserting the abort-
ing sequence (more than eight consecutive 1's) whenever a high TxAbort signal is sampled. The TxAbort signal
needs to be asserted for at least one TxClk clock period. Idle assertion requires more than 15 consecutive 1's to be
asserted and the TxAbort must be asserted for more than 15 TxClk clocks. The transmission aborting will be dis-
cussed later.

Transmitter Module Signals and Timing Waveforms
The functional simulation timing waveforms of the transmitter module are shown in Figure 11. For depiction pur-
poses, the following example simulates a single channel rather than a multi-channel transmitter. CRC-CCITT
checking is selected in all timing waveform examples in this document.

Figure 11. Single-Channel Transmitting Timing

Transmission Abort
Once the host processor begins transmission through the assertion of TxStart, the controller will assert TxRead_n
many times to obtain the transmitting octets until a low TxEmpty_n is sampled, indicating that this is the last octet of
the frame. Theoretically, the host processor doesn't need to do anything after it asserts the TxStart. However, if the
host processor needs to terminate the transmission before the whole HDLC frame is transmitted, the TxAbort sig-
nal can be used. The TxAbort signal must be asserted for at least one TxClk clock period. Once asserted, the
transmission will be abandoned and an HDLC abort sequence will be transmitted followed by the HDLC flag.

Figure 12 shows both the waveforms of the transmitter and receiver when the abort is issued. The transmitter TxD
signal is connected to the receiver RxD signal and both the transmitter and receiver are running the same clock.
The following example simulates a single-channel rather than a multi-channel transmitter.

Figure 12. Single-Channel Transmission Abort Timing

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

9

Controller Channel Configuration
This design is a multi-channel HDLC controller. The multi-channel design is a multi-channel HDLC controller. The
design is divided into several modules with clean-cut functions. It is very easy to obtain a single-channel HDLC
controller by instantiating only the RECEIVE and TRANSMIT modules on the top level. Any combination of receiver
and transmitter channels can be obtained by proper instantiations of the RECEIVE and TRANSMIT modules.

When targeting MachXO, LatticeXP2 and LatticeECP2/M devices, a 6-channel HDLC controller, including both
receiver and transmitter functions, can be implemented easily into these devices.

Figure 13 shows the timing simulation waveforms of a 6-channel HDLC controller. For depiction purposes, the
PCM high way TxData output is connected back to the PCM high way RxData input and both the TxClk and the
RxClk are running at the same clock.

Figure 13. Multi-channel HDLC Transmitting and Receiving Timing

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

10

Pin Descriptions
Name Type Description

RxClk I Receive Serial Clock: This signal provides the clock for the RECEIVE modules and the
RX_DEMUX module in this design.

RxData I Receive Serial Data: Serial data is received at this PCM input port.

RxSync I Receive Serial Sync: This active high signal provides the synchronization reference for the
receiving PCM frame. It can be a bit asserted simultaneously with the last data bit of the
PCM frame or be a dedicated bit separated from the data bits of the PCM frame.

TxClk I Transmit Serial Clock: This signal provides the clock for the TRANSMIT modules and the
Tx_MUX module in this design.

TxData O Transmit Serial Data: Serial data is transmitted through this PCM output port.

TxSync I Transmit Serial Sync: This active high signal provides the synchronization reference for the
transmitting PCM frame. It can be a bit asserted simultaneously with the last data bit of the
PCM frame or be a dedicated bit separated from the data bits of the PCM frame.

RxOutputData[N:0][7:0]
(for multi-channel)

RxOutputData_0(7:0)
(for single-channel)

O Receiver Data Output: This is an 8-bit data bus. One for each HDLC channel. The value
present on this bus could be either frame data or frame status depending on the waveforms
of RxDataWrite_n and RxStatusWrite_n.

RxDataWrite_n[N:0]
(for multi-channel)

RxDataWrite_n
(for single-channel)

O Receive Data Write Enable: This active low output indicates that the value currently present
on bus RxOutputData is the HDLC frame data or FCS.

RxStatusWrite_n[N:0]
(for multi-channel)

RxStatusWrite_n
(for single-channel)

O Receive Status Write Enable: This active low output indicates that the value currently pres-
ent on bus RxOutputData is the HDLC frame status.

TxInputData[N:0][7:0]
(for multi-channel)

TxInputData_0(7:0)
(for single-channel)

I Transmitter Data Input: This is an 8-bit data bus. One for each HDLC channel. The HDLC
frame octets to be transmitted are read into the controller through this bus.

TxRead_n[N:0]
(for multi-channel)

TxRead_n
(for single-channel)

O Transmit Data Read Enable: This active low output, one for each HDLC channel, indicates
to the external memory module that the controller is going to read the transmission octet in
through TxInputData at the next TxClk rising edge.

TxStart[N:0]
(for multi-channel)

TsStart
(for single-channel)

I Transmit Start: This is an active high input, one for each channel. TxStart indicates to the
controller that the transmission data of the HDLC frame is ready and the transmitting pro-
cess can be started. This signal needs to be asserted for at least one TxClk clock period and
be negated before the HDLC frame is completely transmitted. Once active, the HDLC trans-
mitter will start asserting TxRead_n to read the octets from the external memory module.

TxAbort[N:0]
(for multi-channel)

TxAbort
(for single-channel)

I Transmit Frame Abort: This is an active high input, one for each channel. TxAbort indicates
to the controller that the host wants to abort the transmission of the current HDLC frame.
This signal needs to be asserted for at least one TxClk clock period. TxAbort can also be
used for the idle assertion by asserting it for more than 15 TxClk clock periods.

TxEmpty_n[N:0]
(for multi-channel)

TxEmpty_n
(for single channel)

I Transmit Data Empty: This is an active low input, one for each channel. TxEmpty_n indi-
cates that the value currently present on the TxInputData bus is the last octet of the HDLC
frame. It will be sampled together with TxInputData.

Reset I Master Reset: This active high reset input will reset all internal registers in the design to
their initial state.

HDLC Controller Implemented in MachXO
Lattice Semiconductor LatticeXP2 and LatticeECP2/M Families

11

Parameter
This reference design provides the following user-programmable parameter.

Implementation

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History

Name Description

NumOfChannel Number of HDLC Channels: This defines the total number of HDLC channels.

Device Family Language Number of Channels
Utilization

(LUTS) Registers Slices
fMAX (MHz)

Tx Clk/Rx Clk

LatticeECP2™ 1
VHDL

Single channel 104 144 95 >150

Multi-channel (6) 729 890 629 >150

Verilog
Single channel 104 144 95 >150

Multi-channel (6) 734 894 637 >150

LatticeECP2M™ 2
VHDL

Single channel 104 144 95 >150

Multi-channel (6) 729 890 629 >150

Verilog
Single channel 104 144 95 >150

Multi-channel (6) 734 894 637 >150

LatticeXP2™ 3
VHDL

Single channel 104 144 95 >150

Multi-channel (6) 729 890 629 >150

Verilog
Single channel 104 144 95 >150

Multi-channel (6) 734 894 637 >150

MachXO™ 4
VHDL

Single channel 100 144 79 >150

Multi-channel (6) 674 883 486 >150

Verilog
Single channel 100 144 79 >150

Multi-channel (6) 674 883 486 >150

1. Performance and utilization characteristics are generated using LFE2-70E-5F672C, with Lattice ispLEVER® 8.0 SP1 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

2. Performance and utilization characteristics are generated using LFE2M50E-5F484C, with Lattice ispLEVER 8.0 SP1 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

3. Performance and utilization characteristics are generated using LFXP2-17E-5F484C, with Lattice ispLEVER 8.0 SP1 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

4. Performance and utilization characteristics are generated using LCMXO2280C-5FT324C, with Lattice ispLEVER 8.0 SP1 software. When
using this design in a different device, density, speed, or grade, performance and utilization may vary.

Date Version Change Summary

September 2008 01.0 Initial release.

June 2010 01.1 Added RTL source code and Verilog support.

http://www.latticesemi.com/

	Introduction
	Features
	Functional Description
	Rx_DEMUX Module
	RECEIVE Module
	Data Receiving
	Receiving Frame Status Generation
	Receive Module Signals and Timings

	Tx_MUX Module
	TRANSMIT Module
	Data Transmitting
	Transmitter Module Signals and Timing Waveforms

	Transmission Abort
	Controller Channel Configuration
	Pin Descriptions
	Parameter
	Implementation
	Technical Support Assistance
	Revision History

