
March 2014 Reference Design RD1005

www.latticesemi.com 1 rd1005_05.8

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
There are thousands of I2C peripherals on the market today, ranging from data converters to video processors. The
I2C bus is a good choice for designs that need to communicate with low speed peripherals due to its simplicity and
low cost.

This reference design is intended to demonstrate how a fast, highly-flexible I2C Master Controller can be con-
structed and utilized in a Lattice CPLD/FPGA device. This design is intended to be a general-purpose design offer-
ing a viable solution to controlling an I2C bus. It also provides a foundation from which designers can customize the
I2C Master Controller to meet their design requirements. Customizing the Hardware Description Language (HDL)
code allows designers to meet their specific requirements, thus reducing valuable CPLD area while maintaining
speed performance.

Design Goals and Limitations
The following goals were considered during development of this reference design:

• I2C bus speeds of 100kbits/sec and 400kbits/sec

• I2C 7-bit addressing

• Multiple I2C masters on one I2C bus

• Up to 256-byte I2C transactions

• Interrupt mode or polling mode

• Generic microprocessor interface that supports various MPU speeds

• Programmable configuration registers

• Hierarchical HDL design for simple user modification

• Fully automated, self-checking HDL test bench for ease of verification.

The I2C Bus Master Controller does not support the following features:

• High speed mode 3.4 Mbps

• Mixed speed modes on one bus

• 10-bit addressing

• Master Controller cannot be used as an I2C slave device

 I2C Master Controller

I2C Master Controller

2

Theory of Operation
Overview
The I2C Master Controller is designed to interface with up to 127 different I2C slave devices. In order to accomplish
this task, the I2C Master Controller requires several components to make a complete I2C bus interface system. The
components required are a microprocessor, chip select unit and I2C slave devices (Figure 1). The microprocessor
initiates and configures all I2C bus transactions. Next, the chip select unit assures that the microprocessor's bus
cycles adhere to the I2C Master Controller requirements. Finally, the I2C slave device can be any I2C slave device
operating within the specification created by Philips Semiconductor.

Figure 1. I 2C Master Controller I/O Interface

Functional Description
The I2C Master Controller accepts commands from a microprocessor. These commands are decoded into I2C slave
device read/write cycle transactions. The I2C bus transactions can be configured to be 1 to 256 bytes in length. Fur-
thermore, the I2C Master Controller can operate in interrupt or polling mode. This means that the microprocessor
programmer can choose to poll the I2C Master for a change in status at periodic intervals or wait to be interrupted
by the I2C Master Controller when data needs to be read or written.

Table 1. I 2C Master Controller Signal Descriptions

Signal Name Signal Direction Active State Name – Definition

Microprocessor Interface

Clock Input N/A Microprocessor clock

Reset_L Input Active Low System reset

CS_L Input Active Low Chip Select – Microprocessor must keep data valid on the bus as long as
chip select is asserted. Data must be valid for at least three clocks.

Address Input N/A Address bits reading and writing to configuration and data registers.

Data Bi-Dir N/A Data bus

RW_L Input 1 = RD
0 = WR

Indicates whether the microprocessor is writing to or reading from I2C
Bus Master Controller registers.

INTR_L Output Active Low Interrupt request signal

I2C Interface

SDA Bi-Dir N/A I2C data bus line

SCL Bi-Dir N/A I2C clock line

Microprocessor
 I2C Master

Controller

Chip
Select

Data

Clock

SDA

Address

CS_L

RW_L

SCL

INTR_L

Reset_L

AS

DSACK

3

8

I2C Slave

I2C Master Controller

3

Microprocessor Interface Design Requirements
The following list contains requirements that the microprocessor must follow to ensure proper operation of the sys-
tem:

• Chip Select must be synchronized to the microprocessor clock frequency.

• Address and data must be valid the entire time chip select is asserted during a write cycle.

• Data is latched into the appropriate I2C Master Controller registers on the rising edge of the third microprocessor
clock.

• Data strobe acknowledge is controlled externally to the I2C Master Controller. It is up to the designer to insert the
appropriate wait states to achieve the requirements above.

Interfacing to the I2C Master Controller from a Microprocessor
There are several operations a user must undertake to interface to the I2C Master Controller. The first involves load-
ing the appropriate I2C Master Controller configuration registers and issuing a “go” command. The configuration
registers can be loaded in any order with one exception, the “go” bit should be asserted last. The registers that
need to be configured are the Address Data, Byte Count and Command Status. The “go” bit may be asserted at the
same time that the Command Status Register is written to. Next, the user may be required to write to the Iack reg-
ister. If the user is operating in interrupt mode, writing to the Iack register after every interrupt will be necessary.
Alternately, if the user is operating in polling mode, it will be necessary to read the Command Status Register. This
is necessary in polling mode because this is how the microprocessor knows when to read or write to the I2C Master
Controller. Finally, the user may be required to read from or write to the data bus, depending on the type of I2C
transaction. A summary of these steps is shown in Figure 2.

I2C Master Controller

4

Figure 2. Programming Flow for the I 2C Master Controller

Register Transfer Level (RTL) Implementation
Functional Blocks
The HDL code for the I2C Master Controller reference design contains the following functional blocks:

• I2C master top level

• Microprocessor interface

• Interrupt controller

• Counter

• I2C start/stop control

• I2C clock generator

• I2C synchronizer

• I2C arbiter

• I2C controller state machine

Write Address Register
Byte Count Register

Write Command Status Register
with “Go” Bit = 1

Wait for Interrupt

End

Yes

NoNo

Read Write

Yes

No

Interrupt
Mode

Polling
Mode

Read Command
Status Register

Read Data Write Data

Receive
Buffer Full

or
Transmit

Buffer Empty

I2C
Transaction

Count =
Byte Count

I2C Master Controller

5

Figure 3. The I 2C Master Controller Block Diagram

Register Definitions
The I2C Master Controller uses the following registers:

Data Buffer

Address Data Register

Command/Status Register (when written by MPU)

Bit MPU Direction Name Description

7-0 Write/read Data_Buffer Stores I2C read/write data

Bit MPU Direction Name Description

7-1 Write Low_Address_Reg Holds the first seven address bits of the I2C slave device

0 Write 12C_RW_Bit I2C read/write bit

Bit MPU Direction Name Description

7 Write Go Starts the I2C transaction. This is asserted after the MPU has finished writing to
all configuration registers.

6 Write Abort Stops an I2C transaction currently in progress.

5 — Reserved Reserved

4 — Reserved Reserved

3 Write I2C_Mode 0 = standard mode, 100kbits/sec, 1 = fast mode, 400 kbits/sec

2 — Reserved —

1 Write Trans_IE Interrupt enable for transmission

0 Write Receive_IE Interrupt enable for receive

Counter

I2C Master Controller Top

Interrupt
Controller

Microprocessor
Interface

I2C Start/Stop
Control

I2C
Synchronizer

I2C Clock
Generator

I2C Controller
State Machine

I2C
Arbitration

Unit

I2C Master Controller

6

Command/Status Register (when read by MPU)

Byte Count

Iack

I2C Master Controller Top
This is the top-level HDL block of the I2C Master Controller reference design. This block was created to instantiate
all modules of the design and control the tri-state drivers of the SDA and SCL signals.

Microprocessor
This module is the main interface between the microprocessor and the I2C Master Controller. This block has three
main functions.

• Accepts write data from the microprocessor and latches the data into the appropriate registers.

• Controls data being sent to the microprocessor from the I2C Master Controller.

• Resets the Interrupt Acknowledge, Transmit Buffer Empty and Read Buffer Full flags at the appropriate time.

Interrupt Controller
This block generates an interrupt signal when either Transmit Buffer Empty flag or Receive Buffer Full flag are set
(assuming the appropriate configuration bits are set).

Counter
The Counter module contains two counters. The first is a 3-bit counter (Bit Counter) used for counting each bit of
an eight-bit packet transmission or reception during an I2C bus packet transaction. The second counter is an 8-bit
counter (Byte Counter) that keeps track of the number of bytes that have been written or read during the I2C trans-
action. The second counter increments after each byte has been written to or read from the I2C slave device. The
count is then compared with the Byte Count Register. If the value is a match, the I2C Master Controller considers
the transaction complete, issues a stop signal on the I2C bus, asserts the “done” flag and waits for the next transac-
tion to be initiated from the microprocessor.

I2C Start/Stop Control
The Start/Stop Control block generates and detects start and stop events on the I2C bus. The detection of start and
stop events is necessary to determine whether or not the I2C bus is in use by another master on the bus when the

Bit MPU Direction Name Description

7 Read I2C_Bus_Busy I2C bus busy

6 Read Error I2C transaction error

5 Read Abort_Ack Abort completed by I2C controller

4 Read Lost_Arb Lost arbitration bit

3 Read Done Transaction done

2 Read Reserved Reserved

1 Read Trans_Buffer_Empty Transmit buffer empty

0 Read Receive_Buffer_Full Receive buffer full

Bit MPU Direction Name Description

7-0 Write Byte_Count Number of data bytes for the current transaction

Bit MPU Direction Name Description

0 Write Iack Interrupt Acknowledge

I2C Master Controller

7

primary master gets a go signal from the microprocessor. Furthermore, the start detection is necessary for the pri-
mary I2C Master Controller because it cannot proceed with a transaction until the start condition has been
accepted by the I2C bus. As for the start and stop generation block, the I2C Master Controller uses this block to gen-
erate start and stop events at the appropriate times during the I2C transaction.

I2C Clock Generator
This block generates an I2C clock signal. The I2C Master Controller can be programmed to generate an I2C clock
that will run in either standard mode (100kbits/sec) or fast mode (400kbits/sec). The mode that the clock runs in
depends on the value of the mode bit in the command register. Due to the nature of the I2C bus, the actual SCL
clock that is seen by all devices on the bus may not be running at the same frequency that the master requests or
generates. This is because the I2C SCL clock line will run at the speed of the slowest clock being generated by a
master. Please refer to the Philips I2C specification for further information regarding the I2C bus.

I2C Synchronizer
This block synchronizes the SCL and SDA signals with the system clock and protects against metastability. Nor-
mally, asynchronous signals can cause a synchronous system to become unstable by violating setup and hold
times. This reference design avoids this by sending the SCL and SDA signals through two registers before using
the signals.

I2C Arbiter
This reference design supports the multi master feature of the I2C bus specification. The Arbiter block contains the
code necessary to perform arbitration on the I2C bus.

I2C Main State Machine
The Main State Machine block controls most of the other blocks and serves as the interface between the I2C Mas-
ter Controller and the I2C bus. This block contains three state machines and many control signals. The three state
machines are: main, read and write. The main state machine controls the other two and is where the I2C transac-
tions begin. The read and write state machines shift I2C data into or out of the appropriate registers. All three state
machines are one hot encoded and are therefore more efficient at driving the various output control signals.

Address Map
The microprocessor can control the I2C Master Controller by writing to and reading from configuration registers.
The I2C Master Controller configuration registers are located at the following addresses:

HDL Verification
Overview
This test suite provides a way of verifying the functionality of the I2C Master Controller reference design at the Reg-
ister Transfer Level (RTL) as well as the gate level. The test suite was designed to test one- and two-byte I2C read
and writes utilizing both interrupt and polling modes. This is accomplished by calling the appropriate functions in
the microprocessor model. The microprocessor model initiates all I2C transactions. The I2C Slave model emulates
an I2C serial EPROM and responds to the requests of the I2C Master Controller.

Address 2-0 Description

000 Data buffer

001 Address data register

010 Reserved

011 Reserved

100 Command status register

101 Byte Count

110 Interrupt Acknowledge

I2C Master Controller

8

Functional Blocks of the HDL Test Suite
The HDL code for the I2C Master Controller reference design test suite contains the following functional blocks:

• I2C Master Controller test bench

• Microprocessor model

• I2C slave model

• Clock/reset generation block

• Acknowledge generation block

• The device-under-test (I2C Master Controller)

Figure 4. The I 2C Master Controller Test Suite

I2C Master Controller Top Level Test Bench
This is the module that instantiates all the other modules of the test suite. The HDL Test Bench is a fully automated
and self-checking test environment.

The Device-Under-Test (The I2C Master Controller)
The Device-Under-Test (DUT) is the I2C Master Controller reference design.

Microprocessor Model
The microprocessor model is the part of the test suite that simulates the microprocessor in an I2C Master Controller
system and is where the designer can issue commands to the I2C Master Controller. This module was used to initi-
ate a two-byte read or a two-byte write I2C transaction using both interrupt and polling modes. The module is made
up of several tasks that can be easily reconfigured to stimulate a variety of other I2C bus transactions.

I2C Slave Model
The I2C Slave model simulates an I2C Slave serial EPROM. This part of the test suite provides the I2C Master Con-
troller with an I2C Slave device with which to communicate.

Clock/Reset Generation Block
The Clock/Reset block generates the system clock. It also generates an initial reset when the simulation starts. The
module has different clock parameters that can easily be interchanged to generate different system clock rates.

I2C Master Controller
(DUT)

Microprocessor
Model

I2C Slave
Model

I2C Master Controller
(DUT)

Acknowledge
Generation

Clock/Reset
Generation

I2C Master Controller Test Bench

I2C Master Controller

9

Acknowledge Generation Block
The acknowledge block is used to generate and send an acknowledge signal back to the microprocessor model
four clock cycles after every microprocessor transaction. This is necessary because without this block, the micro-
processor may not be able to terminate its bus cycle. The functionality of this module may need to be modified or
duplicated in the Chip Select unit of the I2C Master Controller system to ensure proper timing and operation of a
particular microprocessor.

I2C Master Controller Transaction Waveforms
The following waveforms illustrate the typical operation of the I2C Master Controller reference design. All the wave-
forms were taken from RTL simulations.

Figure 5. Microprocessor Write Cycle to Low Address Register

Figure 6. Microprocessor Read Cycle from Status Register

Figure 7. I 2C Slave Address Write Cycle

Implementation
This design is implemented in VHDL. When using this design in a different device, density, speed, or grade, perfor-
mance and utilization may vary. Default settings are used during the fitting of the design.

I2C Master Controller

10

Table 1. Performance and Resource Utilization

References
• Philips I2C Bus Specification version 2.1

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Device Family Language Speed Grade
Utilization

(LUTs) fMAX I/O
Architecture
Resources

ECP5™ 7 VHDL -6 198 >33 18 N/A

LatticeECP3™ 1 VHDL -6 200 >33 18 N/A

MachXO3L™ 8

Verilog-LSE -6 204 >33 18 N/A

Verilog-Syn -6 190 >33 18 N/A

VHDL-LSE -6 200 >33 18 N/A

VHDL-Syn -6 191 >33 18 N/A

MachXO2™ 2 VHDL -4 191 >33 18 N/A

MachXO™ 3 VHDL -3 192 >33 18 N/A

LatticeXP2™ 4 VHDL -5 201 >33 18 N/A

ispMACH® 4000ZE5 VHDL -5 (ns) 154 >33 18 N/A

Platform Manager™ 6 VHDL -3 192 >33 18 N/A

1. Performance and utilization characteristics are generated using LFE3-17EA-6FTN256C with Lattice Diamond® 3.1 design software.
2. Performance and utilization characteristics are generated using LCMXO2-256HC-4TG100C with Lattice Diamond 3.1 design software with

LSE (Lattice Synthesis Engine).
3. Performance and utilization characteristics are generated using LCMXO256C-3T100C with Lattice Diamond 3.1 design software with LSE.
4. Performance and utilization characteristics are generated using LFXP2-5E-5M132C with Lattice Diamond 3.1 design software.
5. Performance and utilization characteristics are generated using LC4256ZE-5TN144C with Lattice ispLEVER® Classic 1.4 software.
6. Performance and utilization characteristics are generated using LPTM10-1247-3TG128CES with Lattice Diamond 3.1 design software.
7. Performance and utilization characteristics are generated using LFE5U-45F-6MG285C with Lattice Diamond 3.1 design software with LSE.
8. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C with Lattice Diamond 3.1 design software with

LSE and Synplify Pro®.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

I2C Master Controller

11

Revision History
Date Version Change Summary

— — Previous Lattice releases

February 2009 05.2 Added support for Aldec simulator.

July 2009 05.3 Added support for ispMACH 4000ZE device family.

December 2009 05.4 Added support for LatticeXP2 device family.

December 2010 05.5 Added support for Platform Manager device family.

Added support for Lattice Diamond 1.1 and ispLEVER 8.1 SP1 design
software.

April 2011 05.6 Added support for LatticeECP3 and MachXO2 device families.

Added support for Lattice Diamond 1.2 design software.

February 2012 05.7 Updated document with new corporate logo.

March 2014 05.8 Updated Table 1, Performance and Resource Utilization.

- Added support for ECP5 device family.

- Added support for MachXO3L device family.

- Added support for Lattice Diamond 3.1 design software.

Updated Technical Support Assistance information.

	I2C Master Controller
	Introduction
	Design Goals and Limitations
	Theory of Operation
	Overview
	Functional Description
	Microprocessor Interface Design Requirements
	Interfacing to the I2C Master Controller from a Microprocessor

	Register Transfer Level (RTL) Implementation
	Functional Blocks
	Register Definitions
	I2C Master Controller Top
	Microprocessor
	Interrupt Controller
	Counter
	I2C Start/Stop Control
	I2C Clock Generator
	I2C Synchronizer

	I2C Arbiter
	I2C Main State Machine

	Address Map
	HDL Verification
	Overview
	Functional Blocks of the HDL Test Suite
	I2C Master Controller Top Level Test Bench
	The Device-Under-Test (The I2C Master Controller)
	Microprocessor Model
	I2C Slave Model
	Clock/Reset Generation Block
	Acknowledge Generation Block
	I2C Master Controller Transaction Waveforms

	Implementation
	References
	Technical Support Assistance
	Revision History

