Lattice

Semiconductor
Corporation

Lattice PCI Express Demo for Linux 2.4

User’s Guide

November 2007
UG03_01.0



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Lattice PCI Express Demo Overview

Introduction

This user’s guide describes how to install and run the Lattice PCI Express Endpoint IP demo on a Linux system.
The demo software runs on a Linux PC using Red Hat Enterprise Linux WS release 3 (Taroon Update 3) Kernel
2.4.21-20.ELsmp served as the development and test platform. Other revisions of Red Hat, or other Linux distribu-
tions, may also work. The complete source code for the driver and demo applications, as well as the build environ-
ment, are included with the distribution so compiling for other systems is simple.

See TN1123, Lattice PCI Express Demo Users Guide, for a description of the demo operations and board compo-
nents. The same LatticeSCM™ and LatticeECP2M™ PCI Express evaluation boards are used in Linux and Win-
dows demos.

This guide covers the theory, installation and use of the Linux device driver and demo application code on a Linux
system.
Demo Operations Overview

As mentioned, the demo executes on a standard PC running RedHat Linux OS, and accesses a Lattice PCI
Express evaluation board installed in a PCI Express slot. Figure 1 shows the relationship of the hardware and soft-
ware components of the demo.

Figure 1. PCI Express Block Diagram

PC
Lattice Evaluation Board

o e

FPGA
DIP Switches

EBR

Application Code

| C:> menu | | GUI |

A
PCle IP Drivers PCI Express
x1, x4
4 PCI
Linux Operating System Memory |[€—————
Space

The PCI Express IP core, in the Lattice FPGA on the evaluation board, acts as a PCI Express endpoint. A PCI
Express endpoint device looks like a regular PCI device to application software executing on a PC. It is a memory-
mapped device occupying a certain range(s) of the PClI memory space. When the PC boots, the BIOS and OS
probe the PCI Express and PCI buses, detect the devices present on the buses, and assign them ranges in the PCI
memory space. The PCI memory space is then mapped into the application software’s memory space by the sup-
plied driver and OS system calls. Once the mapping is done, the user-designed IP registers, sitting on top of the
PCI Express IP stack, can be read/written as memory locations by the demo application software executing on the
PC CPU. The demo software writes to the LED register, reads and displays the DIP switch setting and reads/writes
the EBR memory.

The demo software shows that the Lattice PCI Express IP core correctly handles the PCI Express protocol in a PC
through its interaction with the devices on the evaluation board. The demo exercises the following functions:

1. Displays operating system information on the detected Lattice evaluation board(s).

2. Displays information about the PCI Express IP core, such as reading and displaying all the pertinent information
in the configuration registers, extended capability registers and control registers.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

3. Performs General Purpose I/O (GPIO) Register Access: blink LEDs; read DIP switches and display value.

4. Performs Memory Access: write a pattern of values into internal FPGA EBR memory, read back and verify that
all accesses are error-free.

Current Limitations

This preliminary release of demo software and demo IP core design does not support some advanced features and
applications. The following features are not demonstrated:

e DMA

e Hardware interrupts or MSI

* Multiple VCs or traffic classes

Background Knowledge

This demo assumes the user is familiar with basic PCI Express technology and is comfortable installing new hard-
ware and software packages in a Linux PC. Some experience in these areas is helpful when installing the evalua-
tion board and software.

Installing the driver requires the root password. You may also need to rebuild the driver (and demo application) from
the source if your kernel varies from the Red Hat 2.4.21 the binaries were generated with. The kernel header files
must be installed on your system and you should be familiar with building kernel drivers from source code.

A good resource is Linux Device Drivers, by A. Rubini and J. Corbet. This book details all aspects of Linux driver
development.

Installation Guide

This section discusses the installation of the demo package, including software installation and the evaluation
board hardware. Please read this section completely before attempting to install the package so that you under-
stand the steps involved and how they apply to your situation.

The Lattice PCI Express demo package is released as a compressed Linux tar file. The package includes the Linux
driver, FPGA bitstreams, Java GUI, and all demo source code. The file must first be uncompressed and then
extracted into the final destination directory. A script can then be run to install the device driver and build the spe-
cific system files. Once this is complete, you are ready to set up an environment variable and run the executable.

Installation Overview
The following steps are taken to install and run the demo.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Figure 2. Demo Installation Flow

0. Install evaluation board
in PCI Express slot.

1. Uncompress and
extract files.

2. Build demo binaries if OS kernel
is incompatible.

3. Install driver.

4. Set environment variable
and run demo.

Demo Package Software Installation

The demo requires a Lattice PCI Express evaluation board to communicate with. If you do not have an evaluation
board installed in the PC, the demo will not run. The driver will not have anything to open, and the demo application
will not have anything to communicate with.

1. Obtain the gzipped tar file and place it in the directory you wish to work from.
2. Uncompress it with: > gunzip PCleDemo*.tar.gz

3. Untar it with: > tar -xvf PCleDemo*.tar

The directory structure is as follows:

Figure 3. Directory Structure

54 |CMD - telnet hwdev1

hudevl> ls
hins Docs/ Softuwarers
hudevl> 1z —-R

bins Docss Softuare

.hin:
insdrvr#* lscpcie.ko* PCle_menu®* pndryprs

-/Docs:
PCIe_Demo_Linux24.pdf*

./Softuware:
Linux2 .4/

./BoftuwaresLinux2.4:
ficcessLayers Applicationss Platforns READHME . txt* sysDefs_h=*
API~ Makefile= platform_h* wprules._make= Utilss

The bin/ directory contains pre-built Linux 2.4 binaries and driver installation scripts.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

The Docs/ directory has documentation (this file only).

The Software directory contains the source code for the demo and the driver.

1. Change to the bin/ directory of the release.

2. Become root.

3. Install the driver by using the script ./insdrvr.

4. Return to a normal user account (you will not need root privileges anymore).

5. Verify the driver installed by issuing the following commands:
— 1ls -1 /dev/lscpcie (to see a list of LatticeSCM and LatticeEC2M file names)
— cat /proc/modules (to see 1scpcie.ko listed, near the top)

— cat /proc/driver/lscpcie (for information about the evaluation boards installed and what BAR
resources they have been assigned)

To run the demo:

1. Set the environment variable PCIE_BOARD to the ID of the evaluation board installed. If you have a
LatticeECP2M installed, export PCIE_BOARD=ECH. If you have a LatticeSCM board installed, export
PCIE_BOARD=SC1.

2. Start the demo with . /PCIe_menu.

If the demo binaries will not run, see Building Demo Binaries from Source Code, later in this document, to produce
the demo binaries.

Installing Java for the GUI
1. Go to the Sun Microsystems website and download JRE 1.5.0 (www.java.com/en/download/manual.jsp).

2. Choose the Linux self-extracting file (jre-1_5_0_10-linux-i586.bin), not the RPM. Read the installation instruc-
tions located there.

Save the JRE installation file into the <demo>/bin directory (or install globally on the machine).
chmod 777 on the jre*.bin file.
f.) Jjre*.bin and install.

Tell the demo GUI where to find the Java JRE: export DEMO_JRE="./jre1.5.0_10".

N o o &~

Run the demo GUI with . /rundemo. Choose the installed board to talk to: 1 = EC1.

Un-installing the Software

If you want to remove the software from your system (i.e., to perform a clean installation of a new version), simply
run the rmdrvr script.

Delete the /dev/1scpcie/ directory and all its contents.

Delete the directory that the demo release was extracted into.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Environment Setup
This section notes any additional setup that may be necessary before running the demo.

Java

The GUI is written in Java and uses the Java Swing libraries for display. The Java 1.5.0 run-time libraries are
included in the release and installed in the demo directory. No additional setup is required and the Java files
included with the demo will not interfere with any other Java installations.

Environment Variables
The environment variable PCIE_BOARD needs to be set to indicate the Lattice PCI Express evaluation board the
demo is to connect to and operate on. The variable can be set with the bash shell command:

> export PCIE_ BOARD=SCl

The naming convention of the PCIE_BOARD boards is:
<BoardType><Instance>

Examples:

¢ SC1 = First LatticeSCM evaluation board installed
¢ SC2 = Second LatticeSCM evaluation board installed
e EC1 = First LatticeECP2M evaluation board installed

Building Demo Binaries from Source Code

In the event that the binaries in this release are incompatible with the installed Linux distribution, the binaries can
be built from the source code.

Prerequisites:

* GCC and other compiler tools

» Kernel source header files
Steps:
1. Change to the Linux2.4 directory (i.e., cd PCIeDemo/Software/Linux2.4).
2. Create the PLATFORM_DIR environment variable with: export ~pwd".
3. Run the make file at the top level to build dependencies: make depends.
4. Build the source files into the executable demo: make.
5. Build the driver:
— Change to AccessLayer/drv/.
— Run make.

6. Install the driver object file 1scpcie. ko, as described previously.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Running the Demo

An operational demo is shown in Figure 4.

Figure 4. Demo Setup

This is a LatticeSCMB80 evaluation board installed in a standard PC motherboard. Note that the 16-segment display
has been set by the demo to display an “”. The four status LEDs at the top right are lit, indicating a functional PCI
Express link. The decimal point on the 16-segment display is lit, showing that PCI Express memory reads and
writes are taking place over the bus.

Note that this demo functions the same in a Windows PC and a Linux PC. The same application code and demo
API source code are used for both systems; only the OS-specific drivers differ.

Demo Setup

When the PC is powered on, the status LEDs will light to indicate a good communication link over the PCI Express
bus. All four LEDs on the top right of the board must be lit. Their functions are listed in Table 1.

Table 1. LED Functions

D5 (yellow) D6 (yellow) D7 (green) D8 (green)
PCI-E Clock LTSSM Polling LO state DL up

PLL has clock form PCI-E slot
and IP running

LTSSM completed detect state | Training sequence complete | TL ready for packets

Running the Demo (Menu Mode)

The text menu program can be started from a shell prompt. As stated, the demo uses the environment variable
PCIE_BOARD to determine which board to communicate with. If you have a LatticeECP2M board, set
PCIE_BOARD = EC1. If you have a LatticeSCM board installed, set PCIE_BOARD = SC1.




Lattice PCI Express Demo for Linux 2.4

Lattice Semiconductor

User’s Guide

Start the demo by executing . /PCIe_demo.
Figure 5. Running the Demo

MD - telnet hwdev1

hudevl > export PCIE_BOARD=SCi1i

hudevl> ./PCle_menu

Lattice PCle IP Menu

Creating an EventLog

EventLog:: constructor: shared memory

Shared Memory exists already

memFd = 3Allocated log memory B pmem=Bxh75f?BAAEventLog:: init

Creating The platform
LSC_PCIe: Device fileMame: ~sdev/lscpcierSC1

PCleDemo Platform Uersion info: B.1.8 — Jan 25 2087 14:58:82
PCleDemo info: SCi1

PCI Express Menu
PCI Config Registers
PCle Extended Capabhilities Registers
PCIle stats
LED test
DIP switch setting
1 — EBR memory test
ile> — Input file to EBR memory
ile> — Output EBR memory to file
1 [{BAR+addr> [countl]]
1 [{BAR+addr> <{data_1>...<{data_n>1]
ersion and driver info
[numl — »un a debug test num times

-

Bt C S RO -3 A=l 0

L T
AeEpgoana ||

BAR: set upper nibble of address to 8.1.2

The top lines display information about the board and the driver installation. The lower half of the screen shows the
various menu options available. Type the letter, or command string, and press <Enter> to execute. Q or X exits

back to the command prompt.

Type V to display details about the demo and driver versions, and hardware resources used. This indicates that the
evaluation board hardware was recognized as a PCI device by the PC and Linux and assigned address spaces

corresponding to the BARs programmed into the FPGA IP core.

Version and Information Commands
Figure 6. Version Command

4 |CMD - telnet hwdev1

[

PCI Driver Version:
.1 Jan 25 28@7 14:58:83 [AL]1 B.A.1 — Jan 25 2887 14:53:57

ormation:

HI

fHFEMAR Size: 8192 Mapped:d

: efbf8ABA Size: 32768 Mapped:l

Type C to display the PCI Config Type 0 registers. The standard 256 bytes of device configuration space are read

by the driver and displayed.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Figure 7. Displaying Config Registers
MD - telnet hwdev1

= [
PCI Config Registers <(B@-3f):

AABABeRAA: B4 12 a3
ABEBEB1B: B8 68 bf
y B8 B8 68

66 B8 o8

[BA1Vendor ID: 1204

[B2 1Device ID: 5383
[B41Command: 4
[B61Status: 18

[B8 1Rev ID: 1

[@?1Class Code: ffO@
[Bc 1Cache Line Size: 18
[Bd1Latency Timer: @
[Be JHeader Type: @

[Bf IBIST: @

[1B1BARB: efhf6B66
[141BAR1: efhf8060
[181BARZ2: B8

[1ic1BAR3: @

[201BAR4: &

[241BARS: @

[28 1Cardbus CIS Pter: B
[2c 1Subsystem Uendor ID: 1284
[2e 1Subsystem ID: 5383
[3B1Exp ROM: @
341Capabilities Ptr: 48
lInterrupt Line: @
lInterrupt Pin: @
IMin Grant: @

JMax Latency: @

&

L
L
L
L
L

SRS TLRSE)
o a0

&

PCI Config Registers <(48-ff):

18
5 1%)
5 15)
a8
5 15)
a8
8
a8
5 ]5)
3 15)
5 15)
a8

The top portion of the screen displays the standard 64 bytes that contain the required PCI fields. Their values are
then displayed in a more readable format. The bottom portion of the screen shows the extended capabilities. This
area contains the PCI Express Capabilities structure and Power Capabilities structure. Remember that configura-
tion space is little endian byte order per the PCI specification.

Memory Access Commands
Use the r and w commands to read and write registers in the user space of the design. Consult the memory map of
the demo IP for register addresses. The following command reads back all GPIO registers which are in BAR 1.




Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Figure 8. Read Memory Command

MD - telnet hwdev1

> rl 10000006 8

160000B0A: 53030100 GOBRBABHEO ffopffen BEBABHOO
1800880168: B000ABRE ©BBRBABEB 1515171515 517 1% B 151515151515 1%}

The r and w commands can specify 8, 16, or 32-bit accesses using “rb”, “rs” and “rI”, respectively. The BAR to read
from is indicated in the most significant nibble. In the above command, the “1” in 10000000 indicates access offset
0 (the remaining 0000000) in BAR 1. This command format requires typing all eight digits of the 32-bit address. The
command “rl 0” reads from BARO offset 0.

This command sequence shows writing a 32-bit word (0x44332211) into the scratchpad register and then reading
it back:

Figure 9. Write Memory Command

54 |CMD - telnet hwdev1

=> wl 10888884 44332211
=> rl 1800688688 8

1AEAAAAA: 53838188 44332211 ffOOff00 DOBOROOO
180081 : BAAEEAEE GO66868688 bOBOPERG BEBERDOO

The following command sequence toggles the 16-segment LEDs on and off:
Figure 10. Write to LEDs
MD - telnet hwdev1

BAR: set upper nibble of address to 8.1.2
=> ws 10000008 ffff

=> ws 10008608 0000
=> ws 188080008 ffff

The following commands show access to the EBR memory, which is located at offset 0x1000 in BAR1. The first
command displays the current, uninitialized contents. The second command writes eight 32-bit words into memory,
and the third command displays the modified memory locations.

10



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Figure 11. Modifying Memory
MD - telnet hwdev1

=2 rl 188816808 16

18881888: B3820188 @7868584 BhBad88 BfBeBdBc
18881818: 13121118 17161514 1b1a1918 1fleldic
188810828: 23222128 27262524 2h2a2928 2f2e2dic
186818368: 33323138 37363534 3b3a3938 3f3e3d3c

=>wl 160816600 B 1 2 3 456 7 8
=> rl 10061600 16

160601006: O0000BDED GBBBEBO1 0ABBBRB2 BOBRBOO3
18881818: B006ABA4 BABBAARAES (515151515 517 [y 151515151515
1660168268: O00BBBBE 27262524 2h2a2928 2f2e2d2c
18881838: 33323138 37363534 3b3a3938 3f3e3d3c

Test Commands

EBR memory testing is performed using the m menu command. The m command alone runs a series of tests that
fill the entire 16kB EBR with various patterns and verifies every location has the correct value. The command mc
clears all contents to zeros. The command mf <hex> fills all memory locations with the same byte value.

Figure 12. Memory Test Commands
MD - telnet hwdev1

=2 m

=== Memory Test ===

Writing all 8@’s.. . Verifying...PASS

WUriting all FF’s.. . Uerifying...PASS

Writing all AA’s...Verifying...PASS

WUriting all 55’s...Uerifying...PASS

WUriting random pattern...Uerifying...PASS
WUriting increment pattern...Uerifying...PASS

=> mc
EBR Memory cleared to Bx00

=> mf ab
EBR Memory filled with Bxab

=> rbh 10061600 16

108A18AA: a5 a5

106804ff8 16
ab

The 16-segment LED (on certain boards) can be exercised using the L command. The segments of the LED are lit
one at a time and then shut off in reverse order. The letters LATTICE are then displayed, ending with the display of
an asterisk (*).

11



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Figure 13. LED Test Command

. |CMD - telnet hwdey1

Other Menu Functions
Figure 14. List of Menu Commands

PCI Express Menu
PCI Config Registers
PCle Extended Capahilities Registers
PCIle stats
LED test
DIP switch setting
mlcf1 — EBR memory test
i {file> — Input file to EBR memory
o {file> — Output EBR memory to file
r[bsl]l [{BAR+addr> [countl]
wlhs1l]l [{BAR+addr> <{data_1>...<{data_n>]
v — version and driver info
t[1-5]1 [num] — run a debug test num times
q.x — exit

Pty O
(I

BAR: set upper nibble of address to 8.1.2

-
=2

The i <file> and o <file> commands are used to read the contents of a file into EBR memory and to store the con-
tents of EBR memory to a file. This allows a specific pattern to be loaded into the EBR and read back to verify all
locations are operational.

The d command displays the DIP switch settings. It reads the switch 10 times over 10 seconds, allowing you to
change the switch positions in real time to see the driver respond.

The t[1-5] functions perform various repetitive tests to stress access to the EBRs and registers. These tests are
useful to capture TLP transfer anomalies using an analyzer connected to the PCI Express bus. The test specifies
an optional count argument that indicates the number of times to repeat the test. If the argument is not given, the
default number of 100000 is used. To run the test without stopping, specify -1 for the number (you will need to Ctrl-
C to abort).

¢ t1 [n] — Read the demo ID register n times. The value read is compared to 0x53030100. If it differs, the test stops
with an error.

* t2 [n] — Write a value to the scratchpad register. The same value is written over and over and is not read back.
This test can be used to monitor memory write TLPs.

* t3 [n] — Write a random 32-bit value to the scratchpad register. Read the value back and compare to what was
written. This test can be used to monitor memory write and read TLPs and verify register access to the hardware.

* t4 [n] — Write random 32-bit values to sequential memory locations in the EBR. Each value that is written is read
back to verify. This test runs the number of times specified, wrapping back to the start of EBR when in reaches
the end.

12



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

e t5 [n] — The same as t4 except the data size is in bytes, to verify byte lanes are operating properly.

Demo Design Details

This section provides technical details of the demo system design to give users a better understanding of how the
PCIl Express IP core is implemented and demonstrated. The supporting IP around the PCI Express core is
described in detail. The software application and driver design are also discussed.

IP Components

Please refer to the corresponding section in TN1123. The hardware and IP are identical for either the Linux or Win-
dows demo.

Demo Software Components Overview

The demo software consists of the command line menu (a Java GUI in the future) and a Linux device driver. The
components are divided into the hierarchical layers shown in Figure 15.

Figure 15. Demo Software Components

Future Java
GUI Application

v 1 v 1

PCI Express IP APIs

v L

Register/Memory Access

Menu Application

OS-Specific Hardware Access

. .
(Device Driver) < —p Hardware

OS-Specific Hardware Access (Linux Device Driver)

This portion of the software provides the OS driver to allow application software to “open” a device and gain access
to the evaluation board. This code is Linux kernel 2.4.x and Lattice-specific in that it will look for the PCI Device ID,
Vendor ID, etc. to know that it is talking to the Lattice PCI Express evaluation board. The driver, a Linux 2.4.x kernel
module, is loaded with the insmod command. The driver provides the mapping between the device node in user
space (found in /dev/1lscpcie/) and the hardware device (the evaluation board). Once the driver is loaded, it
searches for known Lattice devices, records device resources (how many BARs, sizes, interrupts, etc.) and maps
the BARs into user memory space that the driver code can access. The driver also provides an interface to allow
user applications to read or write data to a hardware device. The user application opens the device driver through
standard OS system calls (open, close, ioctl) The drive maps the board’s BAR into a region of memory. It is always
invoked by the user space code to perform a read/write, and the results are returned back to the user code.

Register/Memory Access

This portion of the software provides an OS-independent set of functions to read and write to a hardware device.
The upper layers of the application code can then be designed to be OS independent and can be built to run on
Windows or Linux. This layer is similar to Windows HAL.

PCI Express IP APIs
These API functions provide simplified access (helper functions) to the standard PCI configuration registers and
the Lattice PCI Express demo IP specific registers. The APIs access:

1. PCI configuration registers — BARs, device ID

2. Extended capabilities registers

13



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

3. Demo GPIO registers — scratchpad, LEDs, switches, EBR
4. Driver version information

Application Software

The application software is the demo or test code that is used to demonstrate PCI Express operations with a Lat-
tice FPGA. The demo software is either a Java GUI or a simple console-based text menu. Both applications use the
APIs provided to access the PCI Express driver to:

1. Perform memory reads/writes to access the LEDs and switches to show real-time control.

2. Stress test the PCI Express interface via high-throughput accesses to the EBR Memory and memory tests to
verify that the contents are correct.

The Java GUI application uses JNI methods to invoke functions in a DLL that, in turn, call the APIs. The JNI meth-
ods allow the C code to be invoked by Java. The advantage is that most of the elementary demo operations are
handled by the API library which is shared by the text menu and the GUI. Functional changes only need to be
made in one place, and the user can be assured that the operations in the GUI and menu are equivalent.

Linux Device Driver Design

This section describes the implementation of a Linux kernel module device driver for accessing the registers and
memory resources on a PCl Express board. The driver is designed to be generic. The details of the hardware
design are deferred to the user space software. The driver provides the most basic services to the user space cli-
ent: read and write memory. This design is not intended for use in a commercial, production board. For a commer-
cial product, most of the device functionality is encapsulated in the driver, and the user space interacts at a higher
level (sending packets, receiving packets, clearing the screen, etc.), and the driver does all this internally.

The driver is one piece in a larger demo infrastructure, designed to be portable and adaptable to many different
hardware platforms.

Implementation Decisions

The driver is intended to be a generic interface to the hardware device. The driver does not contain any specific
knowledge of the hardware design implemented in the FPGA. It does not know the address of the LED registers or
the EBR memory. It is intended to be as basic as possible so that new IP designs and/or demo changes do not
require the driver to be modified.

The decision to have all demo knowledge reside at the API and application (menu) level is by design. The most
basic function the driver can implement is providing access to the hardware through memory reads and writes. All
knowledge of which device is at which address is contained in the API, not the driver.

The units of access are BARs. Each PCI Express device can have up to six BARs defined in the configuration
space registers. Each BAR is a memory window into the device. Each BAR is associated with a device minor num-
ber.

Memory accesses are done by mapping the device driver's memory windows to the BAR into locked pages of the
application space, through the mmap system call. This brings the memory mapped registers of the devices into the
address space of the application. Page tables are set up in the application’s memory space to directly translate the
address into the bus address where the BAR resides.

/dev/lscpcie/ Architecture: The user space code needs handles to identify the device it wants to open. This is the
common Unix approach to hardware; everything is viewed as a file. Identifying hardware is done through special
file names in the /dev directory. The Lattice PCI Express demo creates a new directory named /dev/1lscpcie/
and populates it with a number of files that name potential LatticeSCM or LatticeECP2M boards that can be
installed in the system. Four boards of each type are created and each board can have up to six BARs. The file
names are of the format:

14



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

SC[n]_[bar]

EC[n]_[bar]

e SC = LatticeSCM PCI Express evaluation board

e EC = LatticeECP2M PCI Express evaluation board

* n = board number 1-4
bar = PCI BAR number 0-5

Boards are identified by their type (LatticeECP2M or LatticeSCM) and enumeration order. SC1 = the first Lat-
ticeSCM board detected in the system. EC2 = the second LatticeECP2M board. If a board does not exist (i.e., there
is no LatticeECP2M board installed or there are not two LatticeECP2M boards, only one) then the open() call will
fail for that device.

Notes on Board Order: The order is determined by how the OS implements the PCI and PCI Express bus probing
on a motherboard. The numbering of buses can be logical, and not physically tied to a slot. Some experimentation
may be necessary to determine which of two identical boards is actually the “first”. The simplest thing to do is run
the demo on SC1 and blink the LEDs to identify which board is physically in SC1.

The LatticeECP2M or LatticeSCM boards are identified by the unique Device ID code in the configuration registers.
They each have the same vendor number (Lattice) but different Device IDs.

The /dev/1lscpcie/ device directory is populated with every possible board and BAR configuration, even if only
one (or no) board is installed. This provides for future growth (i.e., more BARs used in the demo or more boards
installed) without regenerating the device nodes or driver. Stated another way, the /dev/1scpcie/ nodes provide
access to the potential devices installed and does not represent the physical hardware that is installed at any one
time.

Device Major Numbers: The device major number is dynamically allocated when the Iscpcie.ko module is
installed. This avoids potential collisions with other device drivers the user may have installed that use a fixed major
number. The major number chosen can be seen by cat'ing the /proc/modules file. An install script is used to per-
form the following tasks:

1. Remove any old device nodes under /dev/1lscpcie/ (their major numbers may change).
2. Install the driver module into the kernel (get new major number) with insmod.

3. Read the dynamically assigned major number from the /proc/modules file.

4. Generate [SC|EC][n]_[bar] entries in /dev/1lscpcie/ using the new major number.

Device Minor Numbers: The device minor number is used to indicate to the driver the type of device
(LatticeECP2M or LatticeSCM), the instance of the device (1-4) and the BAR (0-5). Each device entry has the
same major number (all use the same driver, Iscpcie.ko) and a unique minor number. The minor numbers are
encoded as:

Minor_Number = [Device]*100+[Instance]*10+[BAR]
Device: SC=0,EC =1

Instance: 1 - 4

BAR:0-5,9

The following show some example minor numbers encoding and the devices they refer to:

* 010 = LatticeSCM, first one, BARO
e 122 = LatticeECP2M, second one installed, BAR2
* 019 = Globab PCI resources of LatticeSCM board 1 (configuration registers., IRQ, etc.)

15



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

* 000 = Not valid
e 210 = Not valid - no device type = 2
* 100 = Not valid - LatticeECP2M device type, but 0’th one installed is wrong.

The evaluation board reference/numbering system is similar to the approach taken with hard drives. In Linux, sda
refers to the first SCSI disk drive as a whole; sda1 refers to partition 1 of that drive; sda2 refers to the second parti-
tion, etc. The disk driver knows how to read and write sectors to the disk, and its the file system that implements the
real use of the disk and partitions.

Note: Major and minor numbers and the device node are created using the system call mknod. For example:
mknod /dev/Iscpcie/SC1_0 ¢ 241 10.

This creates a special character device node file in /dev/1scpcie/ named SC1_0 with a major number of 241
and a minor number of 10. You can see the major/minor numbers assigned to each device by executing an 1s -1
/dev/1lscpcie.

Driver Install Script

A shell script is used to install the driver module and handle the administrative tasks of discovering the assigned
major number and generating the device nodes using that major number. The script must be run as root because
the system calls need administrator privileges. The script is located in the /bin directory and the Soft-
ware/Linux24/AccessLayer/drvr/ directory.

Driver __init

The entry point of the driver when it is installed using insmod. The driver detects all Lattice evaluation boards in the
system and assigns them names based on their type (LatticeSCM or LatticeECP2M) and their discovery order, i.e.
SC1, SC2. The init module also records the PCI resources the board has been allocated.

Driver __exit

Driver open()

Opening a device with a sub number (_0, _1) causes the address range of that BAR number to be mapped into the
kernel’s space. This is done in preparation for mmap()’ing the devices hardware into the user’s space through
mmap().

Driver close()
Closing a device BAR causes the mapping to be released. Closing a device (SC1 or EC1) causes the PCI to dis-
able the device.

Driver read() and write()

The standard read() and write() system calls are not implemented for this driver. They do not directly map to ran-
dom access memory map accessible devices. Read and write are intended for file or stream type devices. This
implementation is a pure memory mapped, register-based device.

Device memory is instead accessed using a user space pointer that is mmap()’ed to point directly into the BAR
address range that is mapped onto the PCI Express bus.

Driver mmap()

Implements the Unix standard mmap() system call for this device (the evaluation boards). This system call is made
by the demo code to map the base address of the hardware registers into a C pointer that is then used to read/write
all demo IP in the FPGA.

Driver ioctl()
Implements the Unix standard ioctl() system call for this device. The only implemented function at the moment
returns a structure containing the PCI resource details of the board. This is used to display information in the menu.

16



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

Troubleshooting

This section outlines some debug procedures to follow if you experience trouble installing or running the demo.

Trouble Installing the Demo Software Package
The most likely issue that could arise is the issue of permissions when installing

Trouble with the Board

Ensure the board is installed in a PCI Express slot. It can physically fit into a PCI slot. This could damage the board
or PC if power is applied when it is in the wrong type of slot.

Ensure the board has a valid PCI Express bitstream loaded in the SPI Flash and for LatticeECP2M that the Mode
DIP switches are set to program from SPI Flash (does not apply to LatticeSCM evaluation boards).

Ensure the four Status LEDs are on, indicating the board is seen as a PCI Express endpoint. If the two yellow LEDs
and two green LEDs are not on, the board will not be recognized by the PC BIOS or Windows. You can try installing
in a different PCI Express slot to see if that fixes the link-up problem. You can also try pressing the evaluation
board’s reset button immediately after the PC boots.

Ensure the board is seen by Linux. Check /proc/pci to see that a Lattice board is present
Verify the Vendor ID and Device ID are valid.

Trouble with the Driver
You will need root permission to install the device driver module and create the device nodes.

Trouble Running the Demo

The evaluation board must be installed in the PC, and seen by Linux, for the driver to be installed/loaded. The driver
must be loaded by Linux in order to run the demo.

Debug Tools
Linux offers some utilities to interrogate the operation of hardware devices. Use these tools to verify the evaluation

board device driver is loaded and running.
Iproc/pci
Iproc/modules

Iproc/bus/pci

dmesg

17



Lattice PCI Express Demo for Linux 2.4
Lattice Semiconductor User’s Guide

References

The following documents provide more information on topics discussed throughout this user’s guide:

* LatticeSCM PCI Express x1, x4 IP Core User's Guide

 LatticeSC Standard x8 PCI Express Evaluation Board Users Guide
* LatticeECP2M PCI Express Evaluation Board User’s Guide

* Linux Device Drivers”, A. Rubini & J. Corbet, ISBN 0-569-00008-1

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-5083-268-8001 (Outside North America)

e-mail:  techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Revision History

Date Version Change Summary
November 2007 01.0 Initial release.

18



	Lattice PCI Express Demo Overview
	Introduction
	Demo Operations Overview
	Current Limitations
	Background Knowledge

	Installation Guide
	Installation Overview
	Demo Package Software Installation
	Installing Java for the GUI

	Un-installing the Software
	Environment Setup
	Java
	Environment Variables

	Building Demo Binaries from Source Code

	Running the Demo
	Demo Setup
	Running the Demo (Menu Mode)
	Version and Information Commands
	Memory Access Commands
	Test Commands
	Other Menu Functions


	Demo Design Details
	IP Components
	Demo Software Components Overview
	OS-Specific Hardware Access (Linux Device Driver)
	Register/Memory Access
	PCI Express IP APIs
	Application Software

	Linux Device Driver Design
	Implementation Decisions
	Driver Install Script
	Driver __init
	Driver __exit
	Driver open()
	Driver close()
	Driver read() and write()
	Driver mmap()
	Driver ioctl()


	Troubleshooting
	Trouble Installing the Demo Software Package
	Trouble with the Board
	Trouble with the Driver
	Trouble Running the Demo
	Debug Tools
	/proc/pci
	/proc/modules
	/proc/bus/pci
	dmesg


	References
	Technical Support Assistance
	Revision History



