
www.latticesemi.com 16-1 tn1109_01.6

June 2013 Technical Note TN1109

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
All Lattice FPGAs provide configuration data read security, meaning that a fuse can be set so that when the device
is read all zeros will be output instead of the actual configuration data. This kind of protection is common in the
industry and provides very good security if the configuration data storage is on-chip, such as with the LatticeXP™
and MachXO™ device families. However, if the configuration bitstream comes from an external boot device it is
quite easy to read the configuration data, allowing access to the FPGA design.

For this reason the “S” versions of LatticeECP2™ and LatticeECP2M™ offer the 128-bit Advanced Encryption
Standard (AES) to protect the bitstream. The user selects and has total control over the 128-bit key and no special
voltages are required to maintain the key within the FPGA.

General Configuration Process
Figure 16-1 is a block diagram describing the LatticeECP2/M “S” version bitstream encryption data paths. Refer to
this figure as you read the following sections.

Figure 16-1. LatticeECP2/M “S” Version Bitstream Encryption Block Diagram

Lattice FPGAs are configured by using the sysCONFIG™ interface or the JTAG interface (see Table 16-1).

SRAM Fuses
00100101100100
10100101000101
101100101……

CRC Check

Decompress
SCM, SPI

MUX
PCM

Decrypt

DATA

JTAG Port

Note: The LatticeECP2M S-series devices do not support dual boot with encryption.

CFG[2:0]

Disable Readback

E
N

A
B

LE

JTAG Direct Access (1532)

User
Logic

Bitstream_Burst

PCM Readback

CONFIG_SECURE

Encryption Key

RawDecrypted Decompressed

Programmer

Decoder

Key FusesJTAG

LatticeECP2/M S-Series Configuration
Encryption Usage Guide

16-2

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Table 16-1. Configuration Ports

The sysCONFIG interface allows the user to input data serially, using serial configuration mode (SCM) or SPI
Serial Flash, or in parallel, using the parallel configuration mode (PCM). In general, the connection between the
FPGA and the configuration device consists of a clock, chip select(s), a write signal (in PCM), and data. During
configuration all data written to the FPGA is ignored until a special preamble is detected in the bitstream. Every-
thing after the preamble is configuration data. The normal preamble is BDB3 (hex), however encrypted bitstreams
contain a different preamble. When using SCM mode, any CCLK frequencies from 2.5MHz to 45MHz are sup-
ported but it is required to stop the CCLK after loading the BAB3 (hex) encryption preamble as shown below.

Figure 16-2. CCLK Timing

To ensure proper programming when using encrypted bitstreams in SPI mode only a subset of CCLK frequencies
are supported. The supported frequencies are shown in the LatticeECP2/M Family Data Sheet.

The JTAG port, which conforms to IEEE 1149.1 and IEEE 1532 standards, can input data in Bitstream-Burst mode
(Fast Program) or 1532 mode. Configuration bitstreams created for Bitstream-Burst mode (Fast Program) are iden-
tical to the configuration bitstreams created for sysCONFIG mode. The bitstream contains a header, a preamble,
configuration data, and frame data CRC. However, 1532 mode makes use of standard JTAG instructions to config-
ure the device. In other words, the configuration data file contains configuration data only. Because 1532 mode
data files do not contain a preamble, they cannot be used to input encrypted configuration files.

In addition to being a configuration interface, JTAG also allows the user to program the 128-bit encryption key. In
fact, JTAG is the only way to program the key.

Interface Port

sysCONFIG

SPI1

SPIm1, 3

Slave Serial (SCM)2

Slave Parallel (PCM)2

ispJTAG™
IEEE 1532 (Erase, Program, Verify)3

Bitstream Burst (Fast Program)

1. Supports subset of the CCLK frequencies specified in the LatticeECP2/M
Family Data Sheet.

2. Users must adhere to the appropriate conditions for the CCLK signal as
described below.

3. Does not support encrypted bitstreams.

PROGRAMN

INITN

DI

CCLK

DONE

BAB3 Encrypted Bitstream

Stop CCLK from second
clock after BAB3

1ms min.

www.latticesemi.com/dynamic/view_document.cfm?document_id=21728
www.latticesemi.com/dynamic/view_document.cfm?document_id=21728
www.latticesemi.com/dynamic/view_document.cfm?document_id=21728

16-3

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

For detailed information on LatticeECP2/M configuration including bitstream file sizes, refer to TN1108,
LatticeECP2/M sysCONFIG Usage Guide. Note that bitstream sizes vary depending on the configuration mode.

Bitstream Encryption/Decryption Flow
The LatticeECP2/M “S” versions support both encrypted and non-encrypted bitstreams. Since the non-encrypted
flow is covered in TN1108, LatticeECP2/M sysCONFIG Usage Guide, this document will concentrate on the addi-
tional steps needed for the encrypted flow. The encrypted flow adds only two steps to the normal FPGA design
flow, encryption of the configuration bitstream and programming the encryption key into the LatticeECP2/M “S” ver-
sion devices.

Encrypting the Bitstream
As with any other Lattice FPGA design flow, the engineer must first create the design using a version of ispLEVER®

or Lattice Diamond™ design software which supports the encryption feature. You may need to request the Encryp-
tion Installer to enable access to the additional encryption software. The design is synthesized, mapped, placed
and routed, and verified. Once the engineer is satisfied with the design a bitstream is created and loaded into the
FPGA for final debug. After the design has been debugged it is time to secure the design.

The bitstream can be encrypted using an appropriate version of ispLEVER by going to the Tools pull-down menu
and selecting Security features or by using the Universal File Writer (UFW), which is part of the Lattice ispVM® Sys-
tem tool suite. The file is encrypted using ispVM as follows. To encrypt a bitstream in Diamond, refer to Appendix A.

Figure 16-3. ispVM Main Window

1. Start ispVM. You can start ispVM from within ispLEVER or from the Start -> Programs menu in Windows.
You should see a window that looks similar to Figure 16-3. Click on the UFW button on the toolbar. You will
see a window similar to Figure 16-4. ispVM cannot be invoked within Diamond.

www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
www.latticesemi.com/dynamic/view_document.cfm?document_id=21648

16-4

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Figure 16-4. Universal File Writer (Encryption Option)

2. Double click on Input Data File and browse to the non-encrypted bitstream created in ispLEVER or Dia-
mond. Double-click on Output Data File and select an output file name. Right-click on Encryption and
select ON. Right-click on Configuration Mode and select the type of device the FPGA will be configuring
from, such as SPI Serial Flash. Right-click on Encryption Key and select Edit Encryption Key. You will
see a window that looks similar to Figure 16-5.

Figure 16-5. Encryption Key Dialog Window

3. Enter the desired 128-bit key. The key can be entered in Hexadecimal or ASCII. Hex supports 0 through f
and is not case sensitive. ASCII supports all alphanumeric characters, as well as spaces, and is case sen-
sitive. Note: be sure to remember this key. Lattice cannot recover an encrypted file if the key is lost. Click
on OK to go back to the main UFW window.

4. From the menu bar, click on Project -> Generate to create the encrypted bitstream file.

5. The bitstream can now be loaded directly into non-volatile configuration storage (such as SPI Serial Flash)
using a Lattice ispDOWNLOAD® Cable, a third-party programmer, or any other method normally used to
program a non-encrypted bitstream. However, before the LatticeECP2/M can configure from the encrypted
file the 128-bit key used to encrypt the file must be programmed into the one-time programmable fuses on
the FPGA.

16-5

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Programming the 128-bit Key
The next step is to program the 128-bit encryption key into the one-time programmable fuses on the
LatticeECP2/M. Note that this step is separated from file encryption to allow flexibility in the manufacturing flow. For
instance, the board manufacturer might program the encrypted file into the SPI Serial Flash, but the key might be
programmed at the user’s facility. This flow adds to design security and it allows the user to control over-building of
a design. Over-building occurs when a third party builds more boards than are authorized and sells them to grey
market customers. If the key is programmed at the factory, then the factory controls the number of working boards
that enter the market. The LatticeECP2/M “S” version will only configure from a file that has been encrypted with
the same 128-bit key that is programmed into the FPGA.

To program the key into the LatticeECP2/M “S” version, proceed as follows.

1. Attach a Lattice ispDOWNLOAD cable from a PC to the JTAG connector wired to the LatticeECP2/M (note
that the 128-bit key can only be programmed into the LatticeECP2/M using the JTAG port). Apply power to
the board.

2. Start the ispVM System software. ispVM can be started from within the ispLEVER design tool (ispVM can-
not be invoked from within Diamond) or from the Start -> Programs menu in Windows. You should see a
window that looks similar to Figure 16-3. If the window does not show the board’s JTAG chain then proceed
as follows. Otherwise, proceed to step 3.

a. Click the SCAN button in the toolbar to find all Lattice devices in the JTAG chain. The chain shown
in Figure 16-3 has only one device, the LatticeECP2.

Figure 16-6. Device Information Window (Encryption Option)

16-6

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

3. Double-click on the line in the chain containing the LatticeECP2. This will open the Device Information win-
dow (see Figure 5). From the Device Access Options drop-down box select Security Mode, then click on
the Security Key button to the right. The window will look similar to Figure 16-7.

Figure 16-7. Enter the Encryption Key

4. Enter the desired 128-bit key. The key can be entered in Hexadecimal or ASCII. Hex supports 0 through f
and is not case sensitive. ASCII supports all alphanumeric characters, as well as spaces, and is case sen-
sitive. This key must be the same as the key used to encrypt the bitstream. The LatticeECP2/M will only
configure from an encrypted file whose encryption key matches the one loaded into the FPGA’s one-time
programmable fuses. Note: be sure to remember this key. Once the Key Lock is programmed, Lattice
Semiconductor cannot read back the one-time programmable key.

a. The key can be saved to a file using the Save to File button. The key will be encrypted using an 8-
character password that the user selects. The name of the file will be <project_name>.bek. In the
future, instead of entering the 128-bit key, simply click on Load from File and provide the password.

5. Programming the Key Lock secures the 128-bit encryption key. Once the Key Lock is programmed and the
device is power cycled, the 128-bit encryption key cannot be read out of the device. When satisfied, type
Yes to confirm, then click Apply.

6. From the main ispVM window (Figure 16-3) click on the green GO button on the toolbar to program the key
into the LatticeECP2/M one-time programmable fuses. When complete, the LatticeECP2/M will only con-
figure from a bitstream encrypted with a key that exactly matches the one just programmed.

Verifying a Configuration
As an additional security step when an encrypted bitstream is used, the readback path from the SRAM fabric is
automatically blocked. In this case, for all ports, a read operation will produce all zeros. However, even when the
configuration bitstream has been encrypted and readback disabled, there are still ways to verify that the bitstream
was successfully downloaded into the FPGA.

If the SRAM fabric is programmed directly, the data is first decrypted and then the FPGA performs a CRC on the
data. If all CRCs pass, configuration was successful. If a CRC does not pass, the DONE pin will stay low and INITN
will go from high to low (for more information on this type of error, refer to TN1108, LatticeECP2/M sysCONFIG
Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
www.latticesemi.com/dynamic/view_document.cfm?document_id=21648

16-7

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

If the encrypted data is stored in non-volatile configuration memory, such as SPI Serial Flash, the data is stored
encrypted. A bit-for-bit verify can be performed between the encrypted configuration file and the stored data.

File Formats
The base binary file format is the same for all non-encrypted, non-1532 configuration modes. Different file types
(hex, binary, ASCII, etc.) may ultimately be used to configure the device, but the data in the file is the same.
Table 16-2 shows the format of a non-encrypted bitstream. The bitstream consists of a comment field, a header,
the preamble, and the configuration setup and data.

Table 16-2. Non-Encrypted Configuration Data

Table 16-3 shows a bitstream that is built for encryption but has not yet been encrypted. The highlighted areas will
be encrypted. The changes between Table 16-2 and Table 16-3 include the following:

• The Program Security frame (readback disable) has been moved to the beginning of the file so that readback is
turned off at the very beginning of configuration. This is an important security feature that prevents someone
from interrupting the configuration before completion and reading back unsecured data.

• A copy of the usercode is placed in the non-encrypted comment string. This has been done to allow the user a
method to identify an encrypted file. For example, the usercode could be used as a file index or a “hint”. Note that
the usercode itself, while encrypted in the configuration data file, is not encrypted on the device. At configuration
the usercode is decrypted and placed in the JTAG Usercode register. This allows the user a method to identify
the data in the device. The JTAG Usercode register can be read back at any time, even when all SRAM readback
paths have been turned off. The usercode can be set to any 32-bit value. For information on how to set usercode,
see the ispLEVER or Diamond help facility.

• A copy of CONFIG_MODE, one of the global preferences, is placed in the non-encrypted comment string.
CONFIG_MODE can be SPI/SPIm, Slave SCM, or Slave PCM.

Frame Contents Description

Comments (Comment String) ASCII Comment (Argument) String and Terminator

Header
1111...1111 16 Dummy bits

1011110110110011 16-bit Standard Bitstream Preamble (0xBDB3)

Verify ID 64 bits of command and data

Control Register 0 64 bits of command and data

Reset Address 32 bits of command and data

Write Increment 32 bits of command and data

Data 0 Data, 16-bit CRC, and Stop bits

Data 1 Data, 16-bit CRC, and Stop bits

.

.

.

.

.

.

.

.

.

Data n-1 Data, 16-bit CRC, and Stop bits

End 1111...1111 Terminator bits and 16-bit CRC

Usercode 64 bits of command and data

SED CRC 64 bits of command and data

Program Security 32 bits of command and data

Program Done 32 bits of command and data, 16-bit CRC

NOOP 1111...1111 64 bits of NOOP data

End 1111...1111 32-bit Terminator (all ones)

Note: The data in this table is intended for reference only.

16-8

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Note that if the global COMPRESS_CONFIG option is turned ON using ispLEVER Design Planner or UFW, data
compression will be performed before encryption. To set this configuration option in Diamond, see Appendix A.

Table 16-3. Configuration File Just Before Encryption

Once encrypted, besides the obvious encryption of the data itself, the file will have additional differences from a
non-encrypted file (refer to Tables 16-4, 16-5, and 16-6).

• There are three preambles, the encryption preamble, alignment preamble, and the bitstream preamble. The
alignment preamble marks the beginning of the encrypted data. The entire original bitstream, including the bit-
stream preamble are all encrypted, per Table 16-3. The comment string, the encryption preamble, dummy data,
and alignment preamble are not encrypted.

• The decryption engine within the FPGA takes some time to perform its task; extra time is provided in one of two
ways. For master configuration modes (SPI and SPIm) the FPGA drives the configuration clock, so when extra
time is needed the FPGA stops sending configuration clocks. For slave configuration modes (Bitstream-Burst,
Slave Serial, and Slave Parallel) the data must be padded to create the extra time. Because of this there are sev-
eral different file formats for encrypted data (see Tables 16-4, 16-5, and 16-6). Note that because of the time
needed to decrypt the bitstream it takes longer to configure from an encrypted data file than it does from a non-
encrypted file. The bitstream sizes may vary depending on the configuration mode. For exact file sizes, refer to
TN1108, LatticeECP2/M sysCONFIG Usage Guide.

Frame Contents Description

Comments (Comment String) ASCII Comment (Argument) String and Terminator

Header
1111...1111 16 Dummy Bits

16-bit Standard Bitstream Preamble

Verify ID 64 bits of Command and Data

Control Register 0 64 bits of Command and Data

Program Security 32 bits of Command and Data

Reset Address 32 bits of Command and Data

Write Increment 32 bits of Command and Data

Data 0 Data, 16-bit CRC, and Stop Bits

Data 1 Data, 16-bit CRC, and Stop Bits

.

.

.

.

.

.

.

.

.

Data n-1 Data, 16-bit CRC and Stop Bits

End 1111...1111 Terminator Bits and 16-bit CRC

Usercode 64 Bits of Command and Data

SED CRC 64 Bits of Command and Data

Program Done 32 Bits of Command and Data, 16-bit CRC

NOOP 1111...1111 64 bits of NOOP data

End 1111...1111 32-bit Terminator (All Ones).

Note: The data in this table is intended for reference only. The shaded areas will be encrypted.

www.latticesemi.com/dynamic/view_document.cfm?document_id=21648

16-9

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Table 16-4. Encrypted File Format for a Master Mode

Table 16-5. Encrypted File Format for a Slave Serial Mode

Frame Contents Description

Comments (Comment String) ASCII Comment (Argument) String and Terminator.

Header
1111...1111 16 Dummy bits.

16-bit Encryption Preamble.

30,000 Filler Bits This allows time for the device to load and hash the 128-bit encryption key.

Alignment Preamble
16-bit Alignment Preamble.

1 1-bit Dummy Data.

Data
There are no dummy filler bits when the bitstream is generated for master program-
ming modes. The CCLK of the master device stops the clock when it needs time to
decrypt the data. It resumes the clock when ready for new data - Encrypted.

Program Done 32-bit Program Done Command - Encrypted.

End 1111...1111 32-bit Terminator (all ones) - Encrypted.

Filler Bits Filler to meet the bound requirement.

Dummy Data 1111...1111 200 bits of Dummy Data (all ones). Provides a delay to turn off the decryption
engine.

Note:The data in this table is intended for reference only. The shaded area is encrypted data.

Frame Contents Description

Comments (Comment String) ASCII Comment (Argument) String and Terminator.

Header
1111...1111 2 Dummy Bytes.

16-bit Encryption Preamble

30,000 Filler Bits This allows time for the device to load and hash the 128-bit encryption key.

Alignment Preamble
16-bit Alignment Preamble.

1 1-bit Dummy Data.

Data

128 bits of Configuration Data.

64 bits of all ones data. Provides a delay for the decryption engine to decrypt the
128 bits of data just received. If the peripheral device can provide the needed 64
clocks while pausing data, then the 64 bits of dummy data are not required, saving
file size.

...

Last 128 bits of the last Frame of Configuration Data.

64 bits of all ones data. Provides a delay for the decryption engine to decrypt the
128 bits of data just received. If the peripheral device can provide the needed 64
clocks while pausing data, then the 64 bits of dummy data are not required, saving
file size.

Program Done 32-bit Program Done Command - Encrypted.

End 32-bit Terminator (all ones) - Encrypted.

Filler Bits Filler to meet the bound requirement.

Delay 64 bits of all ones data. Delay to decrypt the Program Done command and the filler.

Dummy Data 1111...1111 200 bits of Dummy Data (all ones), to provide delay to turn off the decryption
engine.

Note:The data in this table is intended for reference only. The shaded area is encrypted data.

16-10

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Table 16-6. Encrypted File Format for a Slave Parallel Mode

Decryption Flow
From the user’s point of view, as compared to the encryption flow just discussed, the decryption flow is much sim-
pler.

When data comes into the FPGA the decoder starts looking for the preamble (see Figure 16-1) and all information
before the preamble is ignored. The preamble, along with the compression bit in Control Register 0, determines the
path of the configuration data.

If the decoder detects a standard bitstream preamble in the bitstream it knows that this is a non-encrypted data file.
The decoder then examines Control Register 0 in the bitstream to determine if the file has been compressed. If the
file has not been compressed then the Raw data path is selected (see Figure 16-1). If the file has been com-
pressed then the Decompressed path is selected; CRC is then checked and the SRAM fuses programmed.

If the decoder detects an encryption preamble in the bitstream it knows that this is an encrypted data file. If an
encryption key has not been programmed, the encrypted data is blocked and configuration fails (the DONE pin
stays low), if the proper key has been programmed then configuration can continue. The next block read contains
30,000 clocks of filler data. This delay allows time for the FPGA to read the key fuses and prepare the decryption
engine. The decoder keeps reading the filler data looking for the alignment preamble. Once found, it knows that the
following data needs to go through the decryption engine. It first looks for the standard preamble. Once found, then
it reads the Control Register 0 frame. The decoder then examines the decrypted Control Register 0 contents to
determine if the file has been compressed. If the file has not been compressed then the Decrypted data path is
used, if the file has been compressed then the decrypted data is passed through the decompression engine and
the Decompressed path is selected (refer to the block diagram, Figure 16-1). CRC is then checked and the SRAM
fuses programmed once the bitstream preamble is read. The decryption and decompression engines are turned off

Frame Contents Description

Comments (Comment String) ASCII Comment (Argument) String and Terminator.

Header
1111...1111 2 Dummy Bytes.

2-byte Encryption Preamble.

30,000 Filler Bytes This allows time for the device to load and hash the 128-bit encryption key.

Alignment Preamble
2-byte Alignment Preamble.

11111111 1-byte Dummy Data.

Data

16 bytes of Configuration Data.

64 bytes (clocks) of all ones data. Provides a delay for the decryption engine to
decrypt the 16 bytes of data just received. If the peripheral device can provide the
needed 64 clocks while pausing data, then the 64 bytes of dummy data are not
required, saving file size.

...

16 bytes of Configuration Data.

64 bytes (clocks) of all ones data. Provides a delay for the decryption engine to
decrypt the 16 bytes of data just received. If the peripheral device can provide the
needed 64 clocks while pausing data, then the 64 bytes of dummy data are not
required, saving file size.

Program Done 4-byte Program Done Command - Encrypted.

End 4-byte Terminator (all ones) - Encrypted.

Filler Bits Filler to meet the bound requirement.

Delay 64 bytes of all ones data. Delay to decrypt the Program Done command and the
filler.

Dummy Data 1111...1111 200 bytes of Dummy Data (all ones), to provide delay to turn off the decryption
engine.

Note:The data in this table is intended for reference only. The shaded area is encrypted data.

16-11

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

when the internal Done bit is set at the end of configuration. This is done so that if there is any data overflow (to
other devices in a chain) the downstream devices will receive raw data from configuration storage.

But what happens if the key in the FPGA does not match the key used to encrypt the file? Once the data is
decrypted, the FPGA expects to find a valid standard bitstream preamble (BDB3), along with proper commands
and data that pass CRC checks. If the keys do not match then the decryption engine will not produce a proper con-
figuration bitstream; either configuration will not start because the preamble was not found (the INITN pin stays
high and the DONE pin stays low) or CRC errors will occur, causing the INITN pin to go low to indicate the error
(see TN1108, LatticeECP2/M sysCONFIG Usage Guide, for more information on INITN and DONE).

References
• TN1108, LatticeECP2/M sysCONFIG Usage Guide

• Federal Information Processing Standard Publication 197, Nov. 26, 2001. Advanced Encryption Standard (AES)

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

April 2006 01.0 Initial release.

September 2006 01.1 Added information throughout for LatticeECP2M support.

Updated screen shots based on the latest software version.

Provided clarification in Table 1.

Changed Bitstream Preamble to Alignment Preamble through out the
document.

Reworded sections of the document to provide additional informa-
tion/clarification.

March 2007 01.2 Added “S” series encryption information throughout.

August 2007 01.3 Updated for “S” series reduced frequency support and special require-
ment for CCLK and TCK on LatticeSCM, and PCM and JTAG configura-
tion modes.

June 2010 01.4 Updated for Lattice Diamond design software support.

August 2012 01.5 Updated document with new corporate logo.

Removed references to dual boot with encryption.

June 2013 01.6 Updated Technical Support Assistance information.

www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
mailto: techsupport@latticesemi.com
http://www.latticesemi.com

16-12

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Appendix A. Lattice Diamond Usage Overview
Setting Global Preferences in Diamond
To set any of the Global preferences in Table 16-7, do the following in Diamond:

• Invoke the Spreadsheet View by selecting Tools > Spreadsheet View.

• Select the Global Preferences Tab beneath the Spreadsheet View pane as shown in Figure 16-8.

• Right-click on the Preference Value to be set. In the drop-down menu, select the desired value.

Table 16-7. Global Preferences

Preference Name Values

PERSISTENT ON
Off

CONFIG_MODE

SLAVE_SERIAL
JTAG
NONE
SLAVE_PARALLEL
SPI
SPIm

DONE_OD ON
Off

DONE_EX OFF

MCCLK_FREQ

2.5
5.4
10
34
41
45

CONFIG_SECURE OFF
ON

WAKE_UP An integer between 1 and 25

COMPRESS_CONFIG OFF
ON

INBUF OFF
ON

ENABLE_NDR OFF
ON

16-13

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Figure 16-8. Global Preferences Tab

Setting Bitstream Generation Options in Diamond
To set any of the Bitstream Generation options listed in Table 16-8, do the following:

• In the File List pane, double-click the left mouse button on a Strategy to invoke the Strategy settings window.

• In the Process pane, left-click on Bitstream. All options related to generating a bitstream can be set in this win-
dow.

16-14

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Table 16-8. Bitstream Generation Options

Figure 16-9. Bitstream Generation Options

• Double-click the left mouse button on the Value you want to set. Select the desired value from the drop-down
menu.

 Note: An explanation of the option is displayed at the bottom of the window. The Help button also invokes online
help for the option.

• Select OK. You can then run the Bitstream File process.

Preference Name Values

Chain Mode
Disable (default)
Bypass
Flowthrough

Create bit file True

No Header True
False

Output Format

Bit File (Binary)
Mask and Readback File (ASCII)
Mask and Radback File (Binary)
Raw Bit file (ASCII)

PROM Data Output Format Intel Hex 32-bit
Motorola Hex 32-bit

Reset Config RAM in re-configuation True
False

Run DRC True
False

Search Path (Enter a value or browse to specify the search path)

16-15

LatticeECP2/M S-Series
Configuration Encryption Usage Guide

Setting Security Options in Diamond
Prior to setting security options in Diamond, you must have installed the Encryption Control Pack. You must also
have selected an encrypted device in your project.

To Set Security Settings, do the following:

• Select the Tools > Security Setting option. The following dialog box appears:

• If desired, select Change and enter a password.

• Select OK. A dialog window appears to enter an encryption key.

• If you do not want to enable an encryption key, select OK.

• If you do want to enable an encryption key, select the Advanced Security Settings checkbox, enter the Key
Format, and then enter the Encryption Key.

• Select OK to create the encryption files.

	LatticeECP2/M S-Series Configuration Encryption Usage Guide
	Introduction
	General Configuration Process
	Bitstream Encryption/Decryption Flow
	Encrypting the Bitstream
	Programming the 128-bit Key
	Verifying a Configuration

	File Formats
	Decryption Flow

	References
	Technical Support Assistance
	Revision History
	Appendix A. Lattice Diamond Usage Overview
	Setting Global Preferences in Diamond
	Setting Bitstream Generation Options in Diamond
	Setting Security Options in Diamond

