

LatticeSC/M Broadcom® 1-Gigabit Ethernet Physical Layer Interoperability Over CX-4

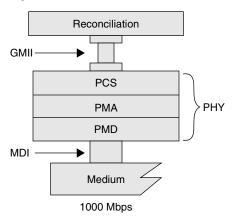
August 2007 Technical Note TN1157

Introduction

This technical note describes a 1000BASE-X physical layer Gigabit Ethernet interoperability test between a LatticeSC/M device and the Broadcom BCM56800 network switch. The test was limited to the physical layer (up to GMII) of the Gigabit Ethernet protocol stack.

Specifically, the document discusses the following topics:

- Overview of LatticeSC™ and LatticeSCM™ devices and Broadcom BCM56800 network switch
- 1000BASE-X physical layer interoperability setup and results


One significant aspect of the interoperability test needs to be highlighted: The BCM56800 uses a CX-4 HiGig[™] port, whereas the LatticeSC Communications Platform Evaluation Board provides an SMA connector. A CX-4 to SMA conversion board was used as a physical medium interface to create a physical link between both boards. The SMA side of the CX-4 to SMA conversion board has four differential TX/RX channels (10 Gbps bandwidth total), but only one SMA channel (channel 0) was connected to the LatticeSC side.

Gigabit Ethernet Physical Layer

The IEEE 802.3-2002 Gigabit Ethernet standard is organized along architectural lines, emphasizing the large-scale separation of the system into two parts: the Media Access Control (MAC) sublayer of the Data Link Layer and the Physical Layer.

Figure 1 highlights the sub-layers that constitute the Gigabit Ethernet Physical Layer.

Figure 1. Gigabit Ethernet Physical Layer

According to the 802.3-2002 standard, two important compatibility interfaces are defined within what is architecturally the Physical Layer:

- Medium Dependent Interfaces (MDI). To communicate in a compatible manner, all stations shall adhere rigidly
 to the exact specification of physical media signals defined in Clause 8 (and beyond) in the IEEE 802.3-2002
 standard and to the procedures that define correct behavior of a station. Local Area Network requires complete
 compatibility at the Physical Medium interface (that is, the physical cable interface). In the LatticeSC/M and
 Broadcom interoperability, the physical medium is a CX-4 to SMA conversion board.
- Gigabit Media Independent Interface (GMII). The GMII is designed to connect a gigabit-capable MAC or

Lattice Semiconductor

repeater unit to a gigabit PHY. While conformance with implementation of this interface is not strictly necessary to ensure communication, it is highly recommended because it allows maximum flexibility in intermixing PHYs and DTEs at gigabit speeds. The GMII is intended for use as a chip-to-chip interface. No mechanical connector is specified for use with the GMII. The GMII is optional.

The 1000BASE-X Gigabit Ethernet standard specifies a 1-Gbps data rate (1.25-Gbps aggregated rate).

Also, the LatticeSC/M and BCM56800 interoperability exercises the whole physical layer, including GMII.

LatticeSC/M and flexiPCS Overview

LatticeSC/M Features

The LatticeSC/M family, equipped with ASIC-based system level building blocks, was designed as a platform technology to facilitate the implementation of the many connectivity challenges that designers face today. This family of devices includes features to meet the needs of today's communication network systems. These features include up to 7.8 Mbits of embedded block RAM, dedicated logic to support system level standards such as Rapid IO, Hyper-Transport, SPI4.2, SFI-4, UTOPIA, XGMII and CSIX. Furthermore, the devices in this family feature clock multiply, divide, and phase shift PLLs, numerous DLLs and dynamic glitch-free clock MUX that are required in today's highend system designs.

All LatticeSC/M devices also feature up to 32 channels of embedded SERDES with associated Physical Coding Sublayer (PCS) logic called flexiPCS. The flexiPCS logic can be configured to support numerous industry-standard high-speed data transfer protocols.

Each channel of flexiPCS logic contains dedicated transmit and receive SERDES

flexiPCS Gigabit Ethernet Features

The Gigabit Ethernet mode of the flexiPCS (flexible Physical Coding Sublayer) block supports full 1000BASE-X compatibility, from the Serial I/O to the GMII interface of the IEEE 802.3-2002 Gigabit Ethernet standard.

The LatticeSC/M flexiPCS in Gigabit Ethernet mode supports the following operations:

Transmit Path (from LatticeSC/M device to line):

- Cyclic Redundancy Check (CRC) generation and insertion into Gigabit Ethernet frame
- Transmit State Machine, which performs 8-bit data encapsulation and formatting, including the auto-negotiation code word insertion and outputting the correct 8-bit code/data word and k control characters according to the IEEE 802.3-2002 specification
- 8b10b encoding

Receive Path (from line to LatticeSC/M device):

- Word Alignment based on IEEE 802.3-2002 defined alignment characters
- · 8b10b decoding
- Link State Machine functions compliant with the IEEE 802.3-2002 specification
- Clock Tolerance Compensation logic capable of accommodating clock domain differences
- Receive State Machine including Auto-Negotiation support compliant with the IEEE 802.3-2002 specification
- · CRC checking

Broadcom BCM56800 Overview

BCM56800 Features

The BCM56800 network switch is a high-density, 10-Gigabit Ethernet switching chip solution with 20 ports. Each of these flexible ports supports 10-Gigabit Ethernet or 1-Gigabit Ethernet. Additionally, the BCM56800 integrates all the SERDES required to interface to applicable copper and fiber physical interfaces. The integrated SERDES functionality includes 10-Gbps XAUI interfaces and 1-Gbps SGMII PHY interfaces. The integrated SERDES complies with the CX-4 standard and PICMG3.1 standard, which ensures interoperability with Ethernet line cards in an Advanced TCA chassis.

BCM56800 GbE Ports

The BCM56800 has 20 10-GbE/1-GbE ports. The BCM56800 is based on StrataXGS® field-proven, robust architecture. It has integrated high-performance SERDES – integrated XAUI SERDES for all 20 10-GbE ports, and it uses single SERDES lane per port at GbE speeds. The device supports 200-Gbps switching capacity at line rate.

Test Equipment

Below is the equipment used in the interoperability tests:

Broadcom BCM56800 Network Switch

Figure 2 shows the BCM56800 network switch.

Figure 2. Broadcom BCM56800 Network Switch

One can configure the Broadcom ports by connecting its serial port to a PC and starting a HyperTerminal session. Figure 2 shows a serial cable connected to the serial port at the back of the BCM56800.

Figure 2 also shows a CX-4 connector inserted into one of the four 10 GbE/HiGig ports available on the front right side of the BCM56800.

This port, referred to as xe0, was selected for the interoperation with the LatticeSC/M device. It was configured in 1-Gigabit Ethernet mode. In this mode, only channel 0 of the port was used.

Agilent 81130A Pulse/Data Generator

The Agilent 81130A pulse/data generator was used to supply an external 125-MHz reference clock source to the LatticeSC/M flexiPCS.

For more information on this module, refer to Agilent's website: www.agilent.com.

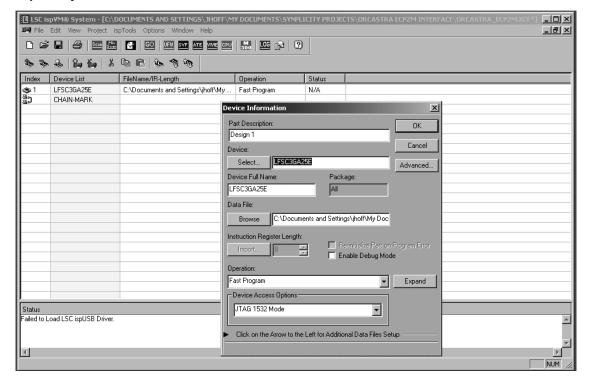
LatticeSC Communications Platform Evaluation Board

The LatticeSC Communications Platform Evaluation Board provides a stable yet flexible platform designed to help the user quickly evaluate the performance of the LatticeSC/M FPGA or aid in the development of custom designs. Each LatticeSC Communications Platform Evaluation Board contains, among others:

- LFSC3GA25E-6F900C FPGA device
- SMA test points for high-speed SERDES and Clock I/O
- · Onboard power connections and power sources
- Onboard interchangeable clock oscillator
- Onboard reference clock management using Lattice ispClock™ devices
- · Various high-speed layout structures
- · Onboard Flash configuration memory
- Various LEDs, switches, connectors, headers, SMA connections for external clocking, and on-board power control

Figure 3 shows the LatticeSC Communications Platform Evaluation Board.

Figure 3. LatticeSC Communications Platform Evaluation Board

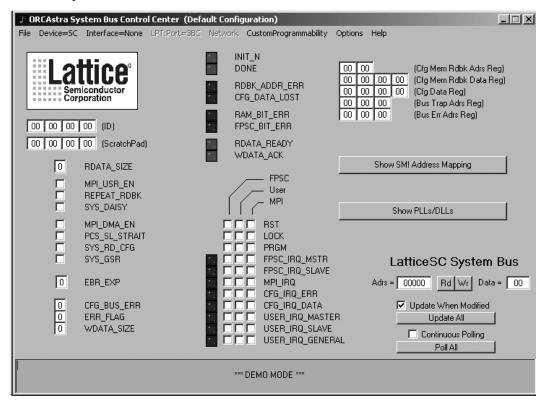

ispVM System

The ispVM® System is included with Lattice's ispLEVER® software and is also available as a stand-alone device programming manager. The ispVM System is a comprehensive design download package that provides an efficient method of programming ISP™ devices using JEDEC and bitstream files generated by Lattice Semiconductor and other design tools. This complete device programming tool allows the user to quickly and easily download designs through an ispSTREAM to devices and includes features that facilitate ispATE™, ispTEST, and ispSVF programming as well as gang-programming with DLxConnect.

The ispVM system is used in this interoperability test to download the LatticeSC/M bitstream, which configures the flexiPCS in 1 Gigabit Ethernet mode.

Figure 4 shows a screen shot of the ispVM system.

Figure 4. ispVM System


ORCAstra System

The Lattice ORCAstra software is a PC-based graphical user interface that allows the user to configure the operational mode of an FPGA by programming control bits in the on-chip registers. This helps users quickly explore configuration options without going through a lengthy recompile process or making changes to their board.

Configurations created in the GUI can be saved to memory and reloaded for later use. A macro capability is also available to support script-based configuration and testing. The GUI can also be used to display system status information in real time. Use of the ORCAstra software does not interfere with the programming of the FPGA portion of the LatticeSC/M.

Figure 5 is a screen shot of the ORCAstra System.

Figure 5. ORCAstra System

Interoperability Testing

This section provides details on the 1000BASE-X 1 Gigabit Ethernet Physical Layer interoperability between a LatticeSC/M device and the Broadcom BCM56800 network switch. This interoperability tests the correct processing of Gigabit Ethernet data from the BCM56800 network switch to the LatticeSC/M flexiPCS GMII interface and then back in the other direction. Particularly, the test verifies the ability to transfer packets across the system in an asynchronous way.

Test Setup

Figure 6 shows the LatticeSC Communications Platform Evaluation Board and Broadcom Board connections.

Figure 7 is a block diagram of the test setup.

The setup includes:

- · The Broadcom BCM56800 network switch
- The LatticeSC Communications Platform Evaluation Board. In 1-Gigabit Ethernet, the Agilent 811130A
 Data/Pulse Generator provides an external 125-MHz reference clock to the LatticeSC/M flexiPCS. The flexiPCS
 multiplies the reference clock by 10 to achieve a 1.25-Gbps aggregated rate.
- A PC for software control/monitoring
- A CX-4 to SMA conversion board was used as a physical medium interface to create a physical link between both boards (see Figure 6). The SMA side of the CX-4 to SMA conversion board has four differential TX/RX channels or 16 SMA connectors for a total bandwidth of 10 Gbps (12.5-Gbps aggregated rate). However, for 1-Gigabit Ethernet, only one differential TX/RX channel (channel 0 with 4 SMA connectors) was connected to the LatticeSC side (as shown in Figure 6).

- Cables
 - SMA for LatticeSC/M flexiPCS channel 0
 - SMA for Agilent clock generator
 - CX-4 for BCM56800 HiGig port xe0
 - ispVM JTAG cable for downloading LatticeSC bitstream and ORCAstra GUI access
 - Serial Cable for BCM56800 HyperTerminal access

Figure 6. Board Connections

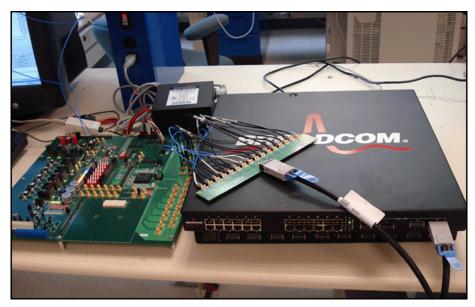
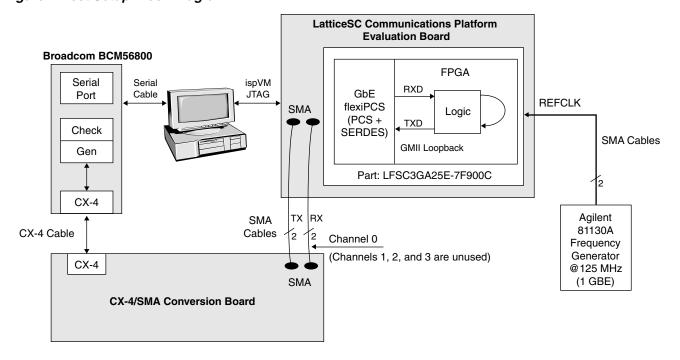



Figure 7. Test Setup Block Diagram

Test Description

This section describes how each interoperability partner is set up for Gigabit Ethernet physical layer interoperability.

BCM56800

The BCM56800 switch generates and checks full protocol compliant Gigabit Ethernet packets. The BCM56800 is configured in 1 Gigabit Ethernet.

Figure 8 illustrates the sequence of events performed in a HyperTerminal from start-up to configure HiGig port 0 (xe0) of BCM56800 in 1-Gigabit Ethernet, while disabling auto-negotiation. This means that only one channel (channel 0) on this port is used.

Figure 8. Configuring BCM56800 Port 0 in 2.5 Gigabit Ethernet

LatticeSC Communications Platform Evaluation Board

The Agilent 811130A Data/Pulse Generator provides an external 125-MHz reference clock to the LatticeSC/M flex-iPCS 1 Gigabit Ethernet. The flexiPCS multiplies the reference clock by 10 to achieve a 1-Gbps data rate (1.25-Gbps aggregated rate).

In the RX direction, The LatticeSC/M SERDES recovers the 1000BASE-X packets from the BCM56800 device, and the flexiPCS converts them into GMII format.

The GMII loopback logic in the FPGA portion loops the GMII data back into the TX direction. The LatticeSC/M device then transmits the 1000BASE-X packets back to the BCM56800 device.

Results

As shown in Figure 8, HiGig port 0 (xe0) of BCM56800 was configured for 1-Gigabit Ethernet.

The HyperTerminal "tx" command generated 100 million 9000-byte Ethernet packets from the BCM56800 to the LatticeSC Communications Platform Evaluation Board.

The "show counter" command was then used to monitor the status of BCM56800 TX and RX packet (GTPKT.xe0 and GRPKT.xe0) and byte (GTBYT.xe0 and GRBYT.xe0) counters. Figure 8 does not show any error counters. This is an indication that the error counters have remained at a zero value during the test. Additionally, the Lattice ORCAstra System GUI (shown in Figure 5) was monitored for proper flexiPCS Gigabit Ethernet link state machine synchronization.

Lattice Semiconductor

The results showed that all 100 million Ethernet packets (900 billion bytes) were successfully transmitted to the LatticeSC/M and recovered at the BCM56800 error-free.

Summary

In conclusion, the LatticeSC/M FPGA family offers users a built-in 1000BASE-X 1 Gigabit Ethernet Physical Layer support and is fully interoperable with Broadcom BCM56800 network switch.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Date	Version	Change Summary
June 2007	01.0	Initial release.