= LATTICE

LatticeXP2 Memory

Usage Guide

FPGA-UG-02080-2.3

March 2020

LatticeXP2 Memory ...:LATTICE

Usage Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Contents
WYl oY o120 s F T o T I o T o ol U Ly =T o | SRS 7
O (o1 oo I3 T 4 T o U OO O P PRSPPI 8
2. MemOories iN LattiCEXP2 DBVICES.cciueieeeiee ettt ettt e s et e e e e s et et e e e s e snrer e e e e e se s nmrereeeeeeesasnnnneeeesesannnnnnne 9
T U 41 14T g Y- | 1= o TSRS 10
3.1. P EXPIESS FIOW ... tiieiiiiieeiiiee ettt e ettt e et e e sttt e e sttt e satae e e s beeeesasbeeesaseeessabeeesaassaeesasseeeennbaeesannteeesnnsaeesnnseeesnnne 10
3.2 Byte Order with Different POrt WIdthscooiiiiiiiieeiee ettt e st s aae e e s sbee e s 13
3.3. ECC N MEMOIY IMOTQUIESeiiiiieitit ettt ettt ettt ettt ettt st e sat e sat e e s at e e bt e e sab e e sabeesabeesabeesabeesabeesaneesaneenn 13
30 U 117127, OO 13
3.5. (V=Y a ot V1Y, [o e [U] LR Fa N T =Y o Tl RSSOt 13
B (V=Y 03T VN1V, oY [¥1 1TSS 14
4.1. Single Port RAM (RAM_DQ) = EBR BASEd........ceeriiiiiieiiiieniieeniieesie ettt e siteesiteesiteesiteesaaesssaeesasessseessssessssessasesnsns 14
4.2. True Dual Port RAM (RAM_DP_TRUE) — EBR BASEd.......cueeeiuieiiireiieiieeeieeeieeesteesteesveessteesaeeetaeesaeesssnsensnennes 18
4.3. Pseudo Dual Port RAM (RAM_DP) — EBR BASEd.......ccccuieiuieriiieiiieeiiieesieestreesteessaeesiteesasessseesssessnseesssessnsaesnsensn 23
4.4. Read Only Memory (ROM) — EBR BASEA.......cccueiieriiiriieiieie ettt ettt ettt e st et et st esatesae e beenbesntesntesaeesaes 27
4.5. First In First Out (FIFO, FIFO_DC) — EBR BaSEU.....cccueeiuiieiiieeciiieiiieeeiteesteestteesteeseteesiteessseessaesnsessnteesnseesnsaesnsenan 30
4.5.1. First In First OUt (FIFO) IMBIMOIY ...eiiiiiiieeeiieeeeeitee e siteeeeette e e setteeestteeeesataeeseasseeesssaeeanssseeeassaseesassesasassaneeanes 30
4.5.2. Dual Clock First In First Out (FIFO_DC) IMEIMOIY ...cccuviieeeiiieeeciieeecitteeeesteeeeeateeesstveesesasaeeeessaesssssaaessssesennns 37
4.5.3. FIFO_DC FIQES .uveeeteiiuriesieenitesteesteesteesbeesbeesateesseesateessseesabeessseesabeessseesabeesaseesssaesnseessseesnseesssessnsessnseensseess 37
4.6. Distributed Single Port RAM (Distributed_SPRAM) — PFU BaSE.......cccueeiiuiieeeiiieeccirieeecireeeeeteeeeeiveeeesvreeeennns 45
4.7. Distributed Dual Port RAM (Distributed_DPRAM) — PFU BaSEdccceeruieiieeniieiieeeieesteesreesteesevessveeeanee s 47
4.8. Distributed ROM (Distributed_ROM) — PFU BaSEUcccvueeiuiieiiieeiiiesieesiteesteesiteesteessseesteesavessseesssesssaesnsenan 49
4.9. (SR Y CR 1Y/ (=10 ¢ To T o PP PP PPN 51
4.9.1. Basic SPecifications fOr TAG IMEIMOIY ...cccccuiiiiieiiee e ciieeeecite e e eette e e sttee e e tteeeeeabeeesbbeeaasssseesessaseessseseesssaeeeanns 51
4.10. Programming Via the SPI INtEITACEoi et e e et e e et e e e s bt e e e e s ate e e eenaaeestreeaans 53
O 1Y o Y=Y]I DTy ol T o o o USRS 53
L A [T B =Y o T o} [o TSP 53
4.12.1. SErIAl DATA INPUL (S1)curiieiieeiee ettt eete ettt e et e e re et e e s tae e ba e e sateessaeesaseessseesasaeasseesnseessseesnsaesnseesnseesnseenn 54
4.12.2. Serial Data OULPUL (SO) cuuiiiciiieieeeiee ettt ste et e e rtte et e e s taeeste e e staeeesseesaee e sbeesssaeasseessseessseesnseesnseesnseesnsennn 54
4.12.3. Y=Y = o Yo o (oL I 4 RS 54
4.12.4. (00T o T =1 =Tt A (L) USSR 54
L T o I @ 1=T =) [0 13T 54
4.13.1.] o 1Y [Lo [T T OO P PO P TP POTOPPPTRPP 54
4.13.2. Y LU R T4) =] PPNt 54
4.13.3. Commands
4.14. Specifications and TimMiNG DIagIramS......ccecuuiiruieriitieite ettt ettt e ettt sete sttt e sbeessbeeesatessbeeesaeessseeessseessseesaseenees 60
4.14.1. (0N =T g o = 2L U TP 60
4.14.2. AVaAilability Of TAG IMIEIMOIYeiiiiiiiiiiiie ettt ettt sttt st e st e st e s b e st e e s bt e sabeesaseesabeesaseesabeesaneess 61
4.14.3. YO 721 =TSP 61
4.14.4. e oT={ e TanTaa T T=2 N1 o1 o -SRI 61
4.15. Programming via the JTAG INTEITACEcccuiiiiiee ettt e et et e e e s bt e e e e s abe e e e naaeessreeaens 61
LT 1o V1 = 1 4 a =8 1Y, 1= o Vo o PSS 62
5.1. INIIAlIZAtION FIlE FOMI@t...oiiiiiiieeiit ettt ettt sa b e e sbt e e sa b e e sab e e sabeesabeesabeesabeesabaesaseens 62
5.2. 2T F= TV =T SRS 62
5.3. HEX BTl ettt ettt ettt ettt e rb e st e bt e e bt e e bt e e bt e e eh b e e bt e e eh e e e he e e sh b e e ehb e e sh b e e nabee s beenareesbaesaree s 63
5.4. AArESSEA HEX ..ttt ettt ettt e e sttt e e s sa bt e e s abte e e sabb e e e e abeeesaabaee e sabbeeeeabeeeseanteeesbbaeeeabaeeeanes 63
5.5. FlashBak™ Capability....ccceueiieeeeieciieeee e e e e ee e e e e e s ettt e e e e e e e sesabtaeeeeeesessstaeseeeeeeanstaaneaaesannns 63
Appendix A. WA | oTUN I D=y 1Y [o ST UPPR 65
Al DATA WIDTH «eetiieeie ettt ettt e ettt e s e e e e ettt e e e e et e eeba s s e e e e e aasaa s seeeeetssaasseeesasssansssseesessssnnnseeerenssnnnnneees 65
A.2. REGIMIODEc.uitiiiiteitee ettt ettt ettt ettt ettt bt e bt e s bt e e bt e e sh b e e bt e e sabeesbt e e sab e e bt e e sabeesabeesabeesabeesabeenabeesabaesaneens 65
A3. RESETIMIODEeiiiteeitee ettt ettt ettt ettt sttt ettt s b e e bt e s bt e e bt e e s at e e bt e e sat e e bt e e sat e e bt e e sabeesateesabeenateesabeesaseesabaesaneens 65
A4, CSDECODEei ettt ettt ettt et sttt et e st e s bt e sa bt e e bt e sab e e eabee s e beeeaseesabeeeaseesabeesabeesa b e e eabeesabeeeabee s beenabeesabaeearee s 65
A.5. WRITEIMODE.....c it eeeeeeeeeeeeeeeeeaeeeeeaaeans 65

www.latticesemi.com/legal

http://www.latticesemi.com/legal

LatticeXP2 Memory .':LATTICE

Usage Guide

A.6. L] 3 SRR 66
A7. ASYNC_RESET _RELEASEoocutietieiieieeieste st e st e st eteeseeseaesteeteesteestesstessaesseesseenseenseassesseesseensenssesssesssesseessesnseenes 66
A.8. INIT_DATA (MachXO3LF Only) .. .66
Technical Support Assistance67

REVISTON HISTO Y 1ttt s 68

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

4 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. Simplified Block Diagram, LatticeXP2 DeVice (TOP LEVEI)eiiieieeiiiie ettt e 9
Figure 3.1. IPeXpress — IMAin WINOOWc.uuiiiciiiiiiiiee et e eetee e sttee e ettt eeseataeeessbeeeesstaeeeesssaeessseeeasssseessnssessssseseessseeennes 10
Figure 3.2. Example Generating Pseudo Dual Port RAM (RAM_DP) USING IPEXPIESSceeevvrrerireeeeiireeesiereeesveeeessveeennns 11
Figure 3.3. Example Generating Pseudo Dual Port RAM (RAM_DP) Module Customizationcccccueeeecieeesiveeeesciveeennnns 12
Figure 4.1. Single Port Memory Module Generated by IPEXPIresS......coceiiiiiiiieriiieiieriee ettt sttt saee e 14
Figure 4.2. Single Port RAM Timing Waveform — NORMAL Mode, without Output Registers........c.ccceeveerieieveeriieeeneennne 16
Figure 4.3. Single Port RAM Timing Waveform — NORMAL Mode, with Output RegIStErscccceeriviieieeriiienieeiiieeseeeane 16
Figure 4.4. Single Port RAM Timing Waveform — WRITE THROUGH Mode, without Output Registerscccccceveeeveennne 17
Figure 4.5. Single Port RAM Timing Waveform — WRITE THROUGH Mode, with Output Registers..........cccceeevvveeercrveeennns 17
Figure 4.6. True Dual Port Memory Module Generated by [PEXPIESS.......ccccuiieiiiieeeiiiieeeiiee e et e e esreeesare e e snreeeesrreeeennes 18
Figure 4.7. True Dual Port RAM Timing Waveform — NORMAL Mode, without Output Registers........ccccccvveevrveeencrveeennns 20
Figure 4.8. True Dual Port RAM Timing Waveform — NORMAL Mode, with Output Registerscceveeriieineeriieeeneennne 21
Figure 4.9. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, without Output Registerscceeueenee 22
Figure 4.10. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, with Output Registers...........ccceveevueennne 23
Figure 4.11. Pseudo Dual Port Memory Module Generated by IPEXPIeSsSc.eeviiiereeriiiieiie ettt 24
Figure 4.12. PSEUDO DUAL PORT RAM Timing Diagram — without Output REGISTErS........ccccuviiiiieeeeiciiee et e eiree e 26
Figure 4.13. PSEUDO DUAL PORT RAM Timing Diagram — with QUtpuUt REZISTEISccuviiieiiiieciieeeeciiee et etree e 27
Figure 4.14. Read-Only Memory Module Generated DY IPEXPIESScccccuiieieiiieeiiiieeeciieeeeiieeessireeeesteeeeessseesssabeeeeesseeeennns 27
Figure 4.15. ROM Timing Waveform — Without OUtPUL REGISTEIScccviiiieiiiie et ettt e et e iee e e e svee e e s rbeeeeaees 29
Figure 4.16. ROM Timing Waveform — With OULPUL REGISTEIScocuiiiiiiiiiiieiie ettt s 30
Figure 4.17. FIFO without Output Registers, Start of Data Writ€ CYClecooviiriiiiiiieniieee ettt 31
Figure 4.18. FIFO without Output Registers, End of Data Write CYClec.eiiiiiiiiiiiiieieeeeee ettt 32
Figure 4.19. FIFO without Output Registers, Start of Data Read CYCleccuviiiiiiieeciieeeecee e e 33
Figure 4.20. FIFO without Output Registers, End of Data Read CYCIEccoccuiiiiiiiiiee ettt e evee e et 33
Figure 4.21. FIFO with Output Registers, Start of Data Write CYCleuviieiiiiiiiee ettt 34
Figure 4.22. FIFO with Output Registers, ENd of Data WIite CYCIE.....cccuiiiiiiiieeeiiee ettt etee e e et e e e e e e vvee e eaees 35
Figure 4.23. FIFO with Output Registers, Start of Data Read CYCIec.coviuiiiiiiriiiieieeiie ettt 35
Figure 4.24. FIFO with Output Registers, End of Data Read CYCle......cooueiriiiiiiiiiiiiieieceeeee et 36
Figure 4.25. FIFO with Output Registers and RAEN on OUtPpUt REGISTEIScccuiiriiiieiiiiriiieie ettt 37
Figure 4.26. FIFO_DC without Output Registers, Start of Data Write CyCleoocuiieiiriiieieeeeeeeeeeee e 38
Figure 4.27. FIFO_DC without Output Registers, End of Data Write CYCle.........ccuieieiiiiiieiiie ettt 39
Figure 4.28. FIFO_DC without Output Registers, Start of Data Read CYClecccvieiiiiiiiieiiee et 40
Figure 4.29. FIFO_DC without Output Registers, End of Data Read CyCle.........cocuiiieiiiiieciiii ettt 41
Figure 4.30. FIFO_DC with Output Registers, Start of Data Write CYCIEccceiriiiiiiiiriiieie ettt 42
Figure 4.31. FIFO_DC with Output Registers, End of Data Write CYClecieviiriiiiiiiniieeee ettt 43
Figure 4.32. FIFO_DC with Output Registers, Start of Data Read CYClecoovuieriiiiiiiiriiieieree et 43
Figure 4.33. FIFO_DC with Output Registers, End of Data Read CYClecooviiriiiiiiiiiiiieie ettt 44
Figure 4.34. FIFO_DC with Output Registers and RAEn on OUtPUL REGISTEIS ...uuvviiiiieiiiiiieieeecctieree e e 45
Figure 4.35. Distributed Single Port RAM Module Generated by IPEXPress.....iiiiiciiiieeieee e e e e sevaeaeee s 45
Figure 4.36. PFU Based Distributed Single Port RAM Timing Waveform — without Output Registers..........cccccveeeecvveeennns 46
Figure 4.37. PFU Based Distributed Single Port RAM Timing Waveform — with Qutput Registers.........cccecvveveviieeeescieeennns 47
Figure 4.38. Distributed Dual Port RAM Module Generated by IPEXPress......ccocveeieriieeieiieeesiieeeeseeeesseeeeessseeeesseeeeennes 47
Figure 4.39. PFU Based Distributed Dual Port RAM Timing Waveform — without Output Registersccccceecuveeercveeennns 48
Figure 4.40. PFU Based Distributed Dual Port RAM Timing Waveform — with Output Registerscccceevveeerivveeeeniieeennns 49
Figure 4.41. Distributed ROM GeNerated DY [PEXPIESSuueiiiiiiiiiiiiieee e eeiccite e e e e e e eecarre e e e e e s e aabaeeeeeesesssbaaseeeesessnsarseeaeas 49
Figure 4.42. PFU Based ROM Timing Waveform — without Qutput RegISters........coccuiiiiiiiiiiciiiieeeee e, 50
Figure 4.43. PFU Based ROM Timing Waveform — with Output REISTErSceeviiiiiiiiiiiiei e 50
P 0 Y o VN o 4 o 11 {7 PRSP RT TR 51
Figure 4.45. GENEriC TIMING DIABIaAIM ...uuuiiiiiiiiiiiiiieie e e seititeee e e s e s sereeeeeseseseabareeeeesesssraraeeeeessasssstanaeessssssssssnneeessessasserreeees 52
Figure 4.46. READ _ID WaVE O ...ciiiiiieeiiieeceies e stee e e tte e eeete e sttt eeetteeessasteeessteeeessaeesasseeeesnseeeassseeesanseeesanseeeessseeenannes 55
Figure 4.47. WRITE_EN WaVETOIMuiiiiiiiiieceies s ctee et e ettt e sttt e e ettt e s ssete e e sateeeesstaeeeenneeeesanseaeesnseeessnseeesnnseeesansseenannes 55
Figure 4.48. WRITE_DIS WaVETOIMuuiiiiiiiieciiee ettt e e e e st e e e e e st e e e e e e e seaaataaaeeeeeeaasbaaseeeesesannsasaneaans 56

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 4.49. ERASE_TAG WaVETOIMooiuiiiiiietiet ettt sttt sttt st e st e st e et e e st e eabee st e e easeesabeeenneesanes 56
Figure 4.50. Bit SNIFtING OFAENooeiiiii e e e e e e st e e e et ta e e eeeaaeesasaeeeaastaeeeansseeesssaeeasntseeeanstaeennnsees 57
Figure 4.51. Data Buffer to FIash Cell MAPPINGvviiiiiie ettt ee et e e et e e st e e e sata e e s e anr e e e saraeeesntseeeentaeesnnnes 57
Figure 4.52. PROGRAM _TAG WaVETOIM ...cciiiiiieiciie e cctes et e ettt e sttt e e e e e e e e atee e sataeaeasntaeeeenssaeesnsaeaesnsseeeestneesnnsnes 58
T Ul e T 2 == Vo Lo YU @] o [T SRR 58
Figure 4.54. READ_TAG WaVE O ..c...uiiiiiiiiiieiieeeit ettt ettt ettt e et e sa e st e st eeabeesabeeeabeesabeeeabeesabeeenneesares 59
FIGUIrE 4.55. STATUS WaVETOIMeiiiiiiiitieeite ettt ettt sttt st s ettt e et e st e st e e st e e eabeesa b e e eabeesabeeeabeesabeeeaseesabeeenseenares 59
Figure 4.56. DeVvice POWEr-UP WaVEOIMii ittt sttt sttt e st e s bt e s b e e bt e sabeeeneeeares 60
Figure 5.1, FIAShBaK PrimitiVecc.ueiiuiiiiieiiieeiteee ettt sttt sttt st e st e st e et e st eeabeesabeesabeesabaeeneesanes 63
Figure 5.2. FIashBak WaVEfOIM ...ccc..uiii ettt e e e sttt e e et e e s ataeeesasaeeeestaeesanssaeessnsaaeesntseeeanssneesnnnnes 64
Tables

Table 2.1. LatticeXP2 LUT and MEMOFIiES DENSITIES.....iciuiiiiiirieinieeiieesitesieesteesteesiteesibeessaeesibeessseesaseessseesssesssseesnsesssseesns 9
Table 4.1. EBR-based Single Port Memory Port DefinitioNnscocuioieiiiiiiieeieee et 14
Table 4.2. Single Port Memory Sizes for 16K Memories for LattiCEXP2coviiiiieiiiieiieeie et 15
Table 4.3. Single Port RAM Memories fOr LAattiCEXP2.......couii ittt st 15
Table 4.4. EBR-based True Port Memory for Port Definitionscocueiiiiiiiiiiiiieet e 18
Table 4.5. True Dual Port Memory Sizes for 16K Memory for LattiCeXP2c.uvieeeiiee ettt e e 19
Table 4.6. True Dual Port RAM Attributes for LattiCEXP2couiiiiiiiieiiie ettt sttt e siae st s saaeebee s
Table 4.7. EBR-based Pseudo-Dual Port Memory Port Definitions

Table 4.8. Pseudo-Dual Port Memory Sizes for 16K Memory for LattiCEXP2cccueieiiiiieeiiiee et 25
Table 4.9. Pseudo-Dual Port RAM Attributes for LAattiCEXP2.......c.uiiiiiiii ettt ere e st e e et e e esaee e s saaeee s 25
Table 4.10. EBR-based ROM POrt DEfiNITIONS ...ccccviiiiiiiireiieeeeiiee e cetee e stee et e e st e e s saae e e e sate e e ssaaaee e snnaeeesntaeessnneeessnseeenn 28
Table 4.11. ROM Memory Sizes for 16K Memory for LattiCEXP2oovuiiiiiiiiiiiieeit et 28
Table 4.12. Pseudo-Dual Port RAM Attributes for LAattiCEXP2......cccviiiieiiiiiiieciir sttt ettt sae s sae e siae e saaeenaee s 29
Table 4.13. PFU-based Distributed Single Port RAM Port Definitionscccociiieieiiii ettt e e 46
Table 4.14. PFU-based Distributed Dual-Port RAM Port Definitionsccvercveiiiiinieeniierie ettt sae e 48
Table 4.15. PFU-based Distributed ROM Port DEfinNitioNSccueiiiiiiieiiiierie ettt siae e siaesbae e seaeeree s 50
Table 4.16. User TAG Memory SigNal DESCIIPLIONcccuiiiiiieeeeciieeceiee e stee e ettt e e sere e e ssaaee e e sateeessssaeeesnnaeeesnteeesnsneeessnsseeean 51
Table 4.17. TAG MEMOIY DENSITY ..uviiiieiiie it eesiee e ettt e stee e e sttt e eeeee e e s taeeeesatetesanseeeessaeeeesseeesasseeeesnsseessnsseeesasseeeesnssenenn 51
Table 4.18. TimiNg SPECITICATIONS .. .uiii it et e e e st e e saete e e sbaeeeessteeesanseeeesnsseeeenteeesnnseeessnsseaean 52
Table 4.19. Usage 0f COMMEANASSccvoiivieericeeeeeteet ettt ettt e et er et eseese s essetesseseeseesessesessessesessesseseseneessseneersarenes 53
TaDIE 4.20. COMMANGS ..ttt ettt ettt e ettt e s eibb e e e sttt e e e aubeeesaubaeeesabbeeeeasbeeesaasbeeesabbeeeesbeeesaaseeeesabbeeeeaabaeesnanseeesnreaenn 54
Table 5.1, STFA POIt DESCIIPTIONS ...vviiiiiiiiciiitieee e e e ettt et e e e eertee et e e e eesttaaeeeeeeesaabaaraeaeeesassstresaeeesasssssaseesssesasntanneaseeesnnnses 64

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

LatticeXP2 Memory
Usage Guide

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

EBR Embedded Block RAM

ECC Error Correcting Code

PFF Programmable Functional Unit (Without RAM)
PFU Programmable Functional Unit

PMI Parameterizable Module Instantiation
RAM Random-Access Memory

ROM Read-Only Memory

VHDL VHSIC Hardware Description Language
EDIF Electronic Design Interchange Format
FIFO First In First Out

SPI Serial Peripheral Interface

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

This technical note discusses memory usage for the LatticeXP2™ device family. It is intended to be used by design
engineers as a guide for integrating the User TAG, EBR- (Embedded Block RAM) and PFU-based memories in this device
family using the ispLEVER® design tool.

The architecture of these devices provides resources for FPGA on-chip memory applications. The sysMEM™ EBR
complements the distributed PFU-based memory. Single-Port RAM, Dual-Port RAM, Pseudo Dual-Port RAM, FIFO and
ROM memories can be constructed using the EBR. LUTs and PFU can implement Distributed Single-Port RAM, Dual-Port
RAM and ROM. User TAG memories in varying sizes, depending on the specific chip, are also on the device.

The capabilities of the User TAG memory, EBR RAM and PFU RAM are referred to as primitives and are described later
in this document. You can utilize the memory primitives in two ways via the IPexpress™ tool in the ispLEVER software.
The IPexpress GUI allows users to specify the memory type and size required. IPexpress takes this specification and
constructs a netlist to implement the desired memory by using one or more of the memory primitives.

The remainder of this document discusses the use of IPexpress, memory modules and memory primitives.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE LatticeXP2 Memory

Usage Guide

2. Memories in LatticeXP2 Devices

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The
PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for
flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row.

The LatticeXP2 family of devices contains up to two rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18K
fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. Each
LatticeXP2 device also contains one dedicated row of User TAG memory with up to 451 bytes of space.

Table 2.1. LatticeXP2 LUT and Memories Densities

Parameter XP2-5 XP2-8 XP2-17 XP2-30 XP2-40
EBR Rows 1 1 1 1 2
EBR Blocks 9 12 15 21 48
EBR Bits 165888 221184 276480 387072 884736
Distributed RAM Bits 10368 18432 34560 64512 82944
Total Memory Bits 176256 239616 311040 451584 967680
syslO Buffers,
Pre-Engineered Source
Synchronous Support

On-chip
Oscillator

Programmable
Function Units

(PFUs)
SPI Port
sysMEM Block — :——- JTAG Port
RAM —
DSP Blocks
Flash

I
sysCLOCK PLLs Flexible Routing

Figure 2.1. Simplified Block Diagram, LatticeXP2 Device (Top Level)

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3 9

http://www.latticesemi.com/legal

LatticeXP2 Memory ::LATTICE

Usage Guide

3. Utilizing IPexpress

You can utilize IPexpress to easily specify a variety of memories in your designs. These modules are constructed using
one or more memory primitives along with general purpose routing and LUTs, as required. The available primitives are:
e Single Port RAM (RAM_DQ) — EBR-based

e Dual PORT RAM (RAM_DP_TRUE) — EBR-based

e Pseudo Dual Port RAM (RAM_DP) — EBR-based

e Read Only Memory (ROM) — EBR-Based

e First In First Out Memory (Dual Clock) (FIFO_DC) — EBR-based

e Distributed Single Port RAM (Distributed_SPRAM) — PFU-based

e Distributed Dual Port RAM (Distributed_DPRAM) — PFU-based

e Distributed ROM (Distributed_ROM) — PFU/PFF-based

e User TAG memory (SSPIA) — TAG-based

3.1. IPexpress Flow
For generating any of these memories, create (or open) a project for the LatticeXP2 devices.

From the Project Navigator, select Tools > IPexpress or click on the button in the toolbar when LatticeXP2 devices are
targeted in the project. This opens the IPexpress main window as shown in Figure 3.1.

‘ [startPage | = J B 1Pexpress [‘ 7
2P 2
Name Version 2
4 & Architecture_ Modules Macro Type: Version:
Qo Module Name:
&t oL 35
@ Digital CDR 1.0 Project Path: General/Diamond Projects/XP2 Mem Browse..
&% Dynamic Bank Controller 14 File Name: ram_dp_512x16
&t eFe 12
Ik ORCAstra 10 Module Output: | VHDL
&t pcs 82
@ PLL 58 Device Family:
&% Power Controller 12 Pact Name:
&t Power Guard 12
HF System_Bus 4.0 Synthesis: Latticel SE
{1t Tag Memory 20
> (23 Arithmetic_Modules
3 DSP_Modules Customize
4 &% Memory_Modules 2
4 & Distributed_RAM
{2} Distributed_DPRAM 39
i} Distributed_ROM 28
{1} Distributed_SPRAM 39
4 & EBR_Components
ft rRaM_DP 6.5
{n} RAM_DP_TRUE 75
i+ RAM_DQ 75
ot ROM 5.4
it FIFo 5.1
{2} FIFO_DC 58
{nt RAM_Based_Shift_Register 5.2
a &P
4 (& Audio, Video and Image Processing
B Pixel Converter 1.0
; 12 _
1.0 - %Conﬁgurahon ‘L %‘About ‘

Figure 3.1. IPexpress — Main Window

The left pane of this window includes the Module Tree. The EBR-based Memory Modules are under the
EBR_Components and the PFU-based Distributed Memory Modules are under Storage_Components, as shown in
Figure 3.1.

As an example, let us consider generating an EBR-based Pseudo Dual Port RAM of size 512 x 16. Select RAM_DP under
EBR_Components. The right pane changes as shown in Figure 3.2.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

10 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

LatticeXP2 Memory

Usage Guide
‘ (B startPage [7) l Reports | ‘ BY 1Pexpress [0 Z
2802 2%
Name Version G RAM DP 6.5
4 & Architecture_Modules — -
a 10 Macro Type: Module Version: 6.5
&t oL 35 Module Name: RAM_DP
%% Digital COR 1.0
@ Dynamic Bank Controller 14 ProjectPath: General/Diamond Projects/XP2 Mem
ot e 12 File Name: ram_dp_512x16
{1t ORCAstra 10
% pcs = Module Output: [VHDL -]
& pLL 58 Device Family: LatticeXP2
& Power Controller 2 PartName: LFXP2-30E-5F672C
&% Power Guard 12 '
3 System_Bus 40 Synthesis: Latticel SE
i} Tag Memory 20
> (2 Arithmetic_Modules
1 DSP_Modules
4 &% Memory_Modules =
4 & Distributed_RAM
{a} Distributed_DPRAM 39
{u} Distributed ROM 28
{u} Distributed_SPRAM 39
4 3 EBR_Components
{5 rRaM_DP 6.5
{nt RAM_DP_TRUE 75
{nt RAM_DQ 75
4 rROM 54
ot FIFO 51
fnt FIFO_DC 58
{iF RAM_Based_Shift_Register 52
4« &P
4 & Audio, Video and Image Processing
10
12

% Configuration r About [

Figure 3.2. Example Generating Pseudo Dual Port RAM (RAM_DP) Using IPexpress

In the right pane, options like the Device Family, Macro Type, Category, and Module_Name are device and selected
module dependent. These cannot be changed in IPexpress.

You can change the directory where the generated module files are placed by clicking the Browse button in the Project

Path.

The Module Name text box allows you to specify an entity name for the module they are about to generate. You must

provide this entity name.

Design entry, Verilog or VHDL, by default, is the same as the project type. If the project is a VHDL project, the selected
design entry option is “Schematic/ VHDL”, and “Schematic/ Verilog-HDL” if the project type is Verilog-HDL.

The Device pull-down menu allows you to select different devices within the same family, LatticeXP2 in this example.
By clicking the Customize button, another window opens where you can customize the RAM (Figure 3.3).

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3

11

http://www.latticesemi.com/legal

LatticeXP2 Memory ::LATTICE

Usage Guide

g | Py

HY Lattice FPGA Module -- RAM_DP o8] X

Configuration iGenerate Log \

RAM_DP Configuration \
= WiAddress[ol] Specity the size of RAM_DP
- RdAddress[8:0] Read Port
= Data[17:0] Address Depth [512 (2-131072) Data Width 18 {1-2586)
—HWE Write Port :
— RdClock Q[17:0] prep Address Depth 512 (2-131072) DataWidth [18 {1-256)
s—3{iBdClnckEn I~ Praovide Byte Enables e | 5 v
— t
RRee v Enable Output Register
—» 'WrClock
{7 s
— | WrClockEn Reset Mode Async Sync
Optimization Area + Speed
Estimate source Usage:
%EE ? Memory File J
Memory File Format. & Binary © Hex O Addressed Hex

[Enable ECC (not supported for Data Width > 64)

Bus Ordering Style: Stage and ERROR Outy '”—XI

Big Endian [MSE:LSE] vl

™ Import IPX to Diamond project Generate | Close I Help

~-r

Figure 3.3. Example Generating Pseudo Dual Port RAM (RAM_DP) Module Customization

The left side of this window shows the block diagram of the module. The right side includes the Configuration tab
where you can choose options to customize the RAM_DP (for example, specify the address port sizes and data widths).

You can specify the address depth and data width for the Read Port and the Write Port in the text boxes provided. In
this example, we are generating a Pseudo Dual Port RAM of size 512 x 16. You can also create RAMs of different port
widths for Pseudo Dual Port and True Dual Port RAMs.

The Input Data and the Address Control are always registered, as the hardware only supports the clocked write
operation for the EBR based RAMs. The check box Enable Output Registers inserts the output registers in the Read
Data Port. Output registers are optional for EBR-based RAMs.

You have the option to set the Reset Mode as Asynchronous Reset or Synchronous Reset. Enable GSR can be checked
to enable the Global Set Reset.

You can also pre-initialize your memory with the contents specified in the Memory File. It is optional to provide this file
in the RAM; however for ROM, the Memory File is required. These files can be of Binary, Hex or Addresses Hex format.
The details of these formats are discussed in the Initialization File section of this document.

At this point, you can click the Generate button to generate the module they have customized. A VHDL or Verilog
netlist is then generated and placed in the specified location. You can incorporate this netlist in your designs.

Another important button is the Load Parameters button. IPexpress stores the parameters specified in a
<module_name>.Ipc file. This file is generated along with the module. You can click on the Load Parameters button to
load the parameters of a previously generated module to re-visit or make changes to them.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

12 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Once the module is generated, you can either instantiate the *.Ipc or the Verilog-HDL/VHDL file in top-level module of
your design.

The various memory modules, both EBR and distributed, are discussed in detail in this document.

3.2. Byte Order with Different Port Widths

When instantiating memories that have different port widths, the following examples show the byte order as it relates
to endian of the memory input and output.

Example 1: 8-bit Write, 32-bit Read
Big Endian Write Order — Byte[31:24], Byte[23:16], Byte[15:8], Byte[7:0]
Big Endian Read Order — Word[31:0]
Little Endian Write Order — Byte[0:7], Byte[8:15], Byte[16:23], Byte[24:31]
Little Endian Read Order — Word[0:31]

Example 2: 32-bit Write, 8-bit Read
Big Endian Write Order — Word[31:0]
Big Endian Read Order — Byte[31:24], Byte[23:16], Byte[15:8], Byte[7:0]
Little Endian Write Order — Word[0:31]
Little Endian Read Order — Byte[0:7], Byte[8:15], Byte[16:23], Byte[24:31]

3.3. ECCin Memory Modules

ECC is supported in most memories. If you choose to use ECC, you have a 2-bit error signal.
e When Error[1:0]=00, there is no error.

e When Error[0]=1, it indicates that there was a 1 bit error which was fixed.

e When Error[1]=1, it indicates that there was a 2-bit error which cannot be corrected.

3.4. Utilizing PMI

Parameterizable Module Instantiation (PMI) allows experienced users to skip the graphical interface and utilize the
configurable memory modules on-the-fly from the ispLEVER Project Navigator.

The necessary parameters and control signals can be set in either Verilog or VHDL. The top-level design includes the
defined memory parameters and declared signals. The interface can then automatically generate the black box during
synthesis and ispLEVER can generate the netlist on-the-fly. Lattice memories are the same as industry standard
memories, so you can get the parameters for each module from any memory-related guide, which is available through
the online help system.

PMI modules are instantiated the same way other modules are in your HDL. The process is similar to the process for
IPexpress with the addition of setting parameters to customize the module. The ispLEVER software provides a template
for the Verilog or VHDL instantiation command that specifies the customized module ports and parameters. Refer to
the ispLEVER online help section Instantiating a PMI Module for further information.

3.5. Memory Module Inference

Finally, memories may be instantiated within Verilog or VHDL modules through inference. The HDL constructs for
memory inferencing is synthesis vendor dependent. Refer to the documentation provided by the synthesis engine
vendor for correct inference constructs and attribute settings.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Memory Modules

4.1. Single Port RAM (RAM_DQ) - EBR Based

The EBR blocks in LatticeXP2 devices can be configured as Single Port RAM or RAM_DQ. IPexpress allows users to
generate the Verilog-HDL or VHDL along EDIF netlist for the memory size as per design requirements.

IPexpress generates the memory module as shown in Figure 4.1.

Clock ——»

ClockEn ——

Reset — RAM_DQ

EBR-based Single Port

WE > Memory

Address —»

Data —

Figure 4.1. Single Port Memory Module Generated by IPexpress

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primitives, and
cascades them to create the memory sizes specified by the user in the IPexpress GUIL. For memory sizes smaller than an
EBR block, the module is created in one EBR block. For memory sizes larger than one EBR block, multiple EBR blocks can
be cascaded in depth or width (as required to create these sizes).

In Single Port RAM mode, the input data and address for the ports are registered at the input of the memory array. The
output data of the memory is optionally registered at the output.

The various ports and their definitions for the Single Port Memory are listed in Table 4.1. The table lists the
corresponding ports for the module generated by IPexpress and for the EBR RAM_DQ primitive.

Table 4.1. EBR-based Single Port Memory Port Definitions

Port Name in Generated Port Name in the EBR Block Description Active State
Clock CLK Clock Rising Clock Edge
ClockEn CE Clock Enable Active High
Address AD[x:0] Address Bus —

Data DI[y:0] Data In —

Q DO[y:0] Data Out —

WE WE Write Enable Active High
Reset RST Reset Active High

— CS[2:0] Chip Select —

Reset (or RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

Chip Select (CS) is a useful port in the EBR primitive when multiple cascaded EBR blocks are required by the memory.
The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade
eight memories easily. If the memory size specified by the user requires more than eight EBR blocks, the ispLEVER

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

software automatically generates the additional address decoding logic, which is implemented in the PFU (external to
the EBR blocks).

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) for each EBR block for the devices
are listed in Table 4.2.

Table 4.2. Single Port Memory Sizes for 16K Memories for LatticeXP2

Single Port Memory Size Input Data Output Data Address [MSB:LSB]
16K x 1 DI DO AD[13:0]

8K x 2 DI[1:0] DO[1:0] AD[12:0]

4K x 4 DI[3:0] DO[3:0] AD[11:0]

2Kx9 DI[8:0] DO[8:0] AD[10:0]

1K x 18 DI[17:0] DO[17:0] AD[9:0]

512 x 36 DI[35:0] DO[35:0] AD[8:0]

Table 4.3 shows the various attributes available for the Single Port Memory (RAM_DQ). Some of these attributes are
user-selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table 4.3. Single Port RAM Memories for LatticeXP2

User Selectable

Attribute Description Values Default Value Through IPexpress
Address depth Address Depth Read Port 16K, 8K, 4K, 2K, 1K, 512 - YES
Data Width Data Word Width Read Port 1,2,4,9,18,36 1 YES

Register Mode (Pipelining) for

Enable Output Registers Write Port NOREG, OUTREG NOREG YES

Enable GSR Enables Global Set Reset ENABLE, DISABLE ENABLE YES

Reset Mode Selects the Reset type ASYNC, SYNC ASYNC YES

Memory File Format — BINARY, HEX, ADDRESSED HEX YES

Write Mode Ezftd / Write Mode for Write |\ o\1al WRITE- THROUGH | NORMAL YES

. Chip Select Decode for Read 0b000, 06001, 06010,

Chip Select Decode Port 0b011, 0b100, 0b101, 0b000 NO
0b110, Ob111
0x000000000000000000000 | 0x000000000
00000000000000000000000 | 00000000000
00000000000000000000000 | 00000000000

Init Value Initialization value 0000000000000...... OxFFFF 00000000000 NO
FFFFFFFFFFFFFFFFFFFFF 00000000000
FFFFFFFFFFFFFFFFFFFFF 00000000000
FFFFFFFFFFFFEFFFFFFFF 00000000000
FFFFFFFFFFFFF 00000

The Single Port RAM (RAM_DQ) can be configured as NORMAL or WRITE THROUGH modes. Each of these modes
affects the data coming out of port Q of the memory during the write operation followed by the read operation at the
same memory location.

Additionally, users can select to enable the output registers for RAM_DQ. Figure 4.2, Figure 4.3, Figure 4.4, and
Figure 4.5 show the internal timing waveforms for the Single Port RAM (RAM_DQ) with these options.

It is important that no setup and hold time violations occur on the address registers (Address). Failing to meet these
requirements can result in corruption of memory contents. This applies to both read and write operations.

A Post Place and Route timing report in Lattice Diamond® or ispLEVER design software can be run to verify that no such
timing errors occur. Refer to the timing preferences in the Online Help documents.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Clock

ClockEn

WrEn

Address

Data

Reset

Clock

ClockEn

WrEn

Address

Data

L

L

o

as LATTICE

4\‘ thce_esr

YSuce_esr
Wﬂ\m\mm EBR
tsuaDDR_EBR tHADDR_EBR
Add_0 X Add_1 >< Add 0 >< Add_1 X X Add_2 >< \
Data_0 X Data_1 X X X X X X *
tsupaTa_esr T typaTa EBR |
Invalid Data

Data_0 X Data_1 X Data_2

i\
L

}—*tco EBR |

Figure 4.2. Single Port RAM Timing Waveform — NORMAL Mode, without Output Registers

GSuce_esr

L

L

o

tHCE _EBR

vl

tSuwRen_Esr :\‘\tHWREN EBR

i

tsuaDDR_EBR tHADDR EBR
Add_0 X Add_1 X XAdd_O X X Add_1 X X Add_2 X X:
| |
Data_0O X Data_1 X X X X X X X X:
tsupaTA_EBR T tHpaTa_EBR |
Invalid Data Data_0 X Data_1
| | | teoo_esr

Figure 4.3. Single Port RAM Timing Waveform — NORMAL Mode, with Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

tsuce_eer 4\‘ thce_esr
ClockEn
T tsuwRreN_EBR | tHWREN_EBR
| tSuADDR_EBR tHADDR_EBR
Address Add_0 X Add_1 X X Add_0 X X:
| | | |
Data Data_0 X Data_1 X X Data_2 X X Data_3 X X Data_4 X X:
tsupata_eBr T tHDATA ceR | | |
Q Invalid Data Data_0 Data_1 X Data_2 X Data_3 X Data_4
|‘ ‘ teo_eer | |

Figure 4.4. Single Port RAM Timing Waveform — WRITE THROUGH Mode, without Output Registers

Reset \
tSUCE_EBR I thee_esr
ClockEn
tsuwren_eBR | thwren_esr
e # _/7L UU
tsuapDR_EBR tHADDR EBR
Address Add_0 X Add_1 X X Add_0 X x
Data Data_0 X Data_1 X X Data_2 X X Data 3X X Data 4X x
tsupATA_EBR T tHDATA_EBR
Q Invalid Data >< Data_0 Data_1 X Data_2 X Data_3

| tcoo esr |

Figure 4.5. Single Port RAM Timing Waveform — WRITE THROUGH Mode, with Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.2. True Dual Port RAM (RAM_DP_TRUE) - EBR Based

The EBR blocks in the LatticeXP2 devices can be configured as True-Dual Port RAM or RAM_DP_TRUE. IPexpress allows
users to generate the Verilog-HDL, VHDL or EDIF netlists for the memory size as per design requirements.

IPexpress generates the memory module as shown in Figure 4.6.

ClockA ——» l«—— ClockB
ClockEnA ——» l«—— ClockEnB
ResetA —» |l«—— ResetB
RAM_DP_TRUE

WrA ——» [«—— WrB

EBR-based True
Dual Port Memory

AddressA ——» [—— AddressB
DatalnA —» [—— DatalnB
QA — — QB

Figure 4.6. True Dual Port Memory Module Generated by IPexpress

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than an EBR block, the
module is created in one EBR block. When the specified memory is larger than one EBR block, multiple EBR blocks can
be cascaded in depth or width (as required to create these sizes).

In True Dual Port RAM mode, the input data and address for the ports are registered at the input of the memory array.
The output data of the memory is optionally registered at the output.

The various ports and their definitions for Single Port Memory are listed in Table 4.4. The table lists the corresponding
ports for the module generated by IPexpress and for the EBR RAM_DP_TRUE primitive.

Table 4.4. EBR-based True Port Memory for Port Definitions

Port Name in Generated | Port Name in the EBR Block i .

Module Primitive Description Active State
ClockA, ClockB CLKA, CLKB Clock for PortA and PortB Rising Clock Edge
ClockEnA, ClockEnB CEA, CEB Clock Enables for Port CLKA and CLKB Active High
AddressA, AddressB ADA[x1:0], ADB[x2:0] Address Bus Port A and Port B —

DataA, DataB DIA[y1:0], DIB[y2:0] Input Data Port A and Port B —

QA, QB DOA[y1:0], DOB[y2:0] Output Data Port A and Port B —

WrA, WrB WEA, WEB Write Enable Port A and Port B Active High
ResetA, ResetB RSTA, RSTB Reset for Port A and Port B Active High

— CSA[2:0], CSB[2:0] Chip Selects for each port —

Reset (or RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.
Chip Select (CS) is a useful port in the EBR primitive when multiple cascaded EBR blocks are required by the memory.
The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. Since CS is a 3- bit bus, it can
cascade eight memories easily. However, if the memory size specified by the user requires more than eight EBR blocks,
the ispLEVER software automatically generates the additional address decoding logic, which is implemented in the PFU
external to the EBR blocks.

Each EBR block consists of 18,432 bits of RAM. The values for x’s (for address) and y’s (data) for each EBR block for the
devices are listed in Table 4.5.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.5. True Dual Port Memory Sizes for 16K Memory for LatticeXP2

Dual Port Input Data Port | Input Data Port | Output Data Output Data Address Port A | Address Port B
Memory Size A B Port A Port B [MSB:LSB] [MSB:LSB]
16K x 1 DIA DIB DOA DOB ADA[13:0] ADB[13:0]

8K x 2 DIA[1:0] DIB[1:0] DOA[1:0] DOB[1:0] ADA[12:0] ADB[12:0]

4K x 4 DIA[3:0] DIB[3:0] DOA[3:0] DOB[3:0] ADA[11:0] ADB[11:0]
2Kx9 DIA[8:0] DIB[8:0] DOA[8:0] DOB[8:0] ADA[10:0] ADB[10:0]

1K x 18 DIA[17:0] DIB[17:0] DOA[17:0] DOB[17:0] ADA[9:0] ADBI[9:0]

Table 4.6 shows the various attributes available for the Single Port Memory (RAM_DQ). Some of these attributes are
user-selectable through the IPexpress GUI. For detailed attribute definitions, refer to the Appendix A.

Table 4.6. True Dual Port RAM Attributes for LatticeXP2

User Selectable

Attribute Description Values Default Value Through IPexpress
Port A Address depth Address Depth Port A 16K, 8K, 4K, 2K, 1K — YES
Port A Data Width Data Word Width Port A 1,2,4,9, 18 1 YES
Port B Address depth Address Depth Port B 16K, 8K, 4K, 2K, 1K — YES
Port B Data Width Data Word Width Port B 1,2,4,9,18 1 YES
Port.A Enable Output Register Mode (Pipelining) NOREG, OUTREG NOREG VES
Registers for Port A
Port. B Enable Output Register Mode (Pipelining) NOREG, OUTREG NOREG VES
Registers for Port B
Enable GSR Enables Global Set Reset | ENABLE, DISABLE ENABLE YES
Reset Mode Selects the Reset type ASYNC, SYNC ASYNC YES
Memory File Format — BINARY, HEX, ADDRESSED — YES
HEX
Port A Write Mode Tad/wr'te Mode for Port) \ e MAL, WRITE- THROUGH | NORMAL YES
Port B Write Mode Ezftd; Write Mode for |\ e MAL, WRITE- THROUGH | NORMAL YES
Chip Select Decode f Chip Select Decode f 0b000, 05001, 0b010,
P oselect Decode Tor P oelect Decode Tor 1 obo11, 0b100, 0b101, 0b000 NO
Port A Port A
0b110, Ob111
Chip Select Decode fi Chip Select Decode f 05000, 0b001, 06010,
b elect Decode for P oelect Decode Tor 1 obo11, 0b100, 0b101, 0b000 NO
Port B Port B
0b110, Ob111
0x00000000000000000000 0x000000000
0000000000000000000000 00000000000
0000000000000000000000 00000000000
Init Value Initialization value 0000000000000000...... OxF 00000000000 NO
FFFFFFFFFFFFFFFFFFFF 00000000000
FFFFFFFFFFFFFFFFFFFF 00000000000
FFFFFFFFFFFFFFFFFFFF 00000000000
FFFFFFFFFFFFFFFFFFF 00000

The True Dual Port RAM (RAM_DP_TRUE) can be configured as NORMAL or WRITE THROUGH modes. Each of these
modes affects what data comes out of the port Q of the memory during the write operation followed by the read
operation at the same memory location. The detailed discussions of the WRITE modes and the constraints of the True
Dual Port can be found in Appendix A.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

as LATTICE

Additionally, users can select to enable the output registers for RAM_DP_TRUE. Figure 4.7 through Figure 4.10 show
the internal timing waveforms for the True Dual Port RAM (RAM_DP_TRUE) with these options.

It is important that no setup and hold time violations occur on the address registers (AddressA and AddressB). Failing to
meet these requirements can result in corruption of memory contents. This applies to both read and write operations.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such
timing errors occur. Refer to the timing preferences in the Online Help documents.

ClockA

ClockEnA

WrEnA

AddressA

DataA

ClockB

ClockEnB

WrEnB

AddressB

DataB

QB

L

L

L

H
H

-* thce_esr

tSuce_eer
i Wj\tHWRENEBR

tsuapDR_EBR tHADDR_EBR
Add_A0 XAdd AlX XAdd AOX XAdd AlX XAdd_AZX *
Data_AO XData A1X X X X X X X x

tsupATA_EBR T tHDATA_EBR |

Invalid Data Data_AO0 X Data_Al XData_AZ
teo_esr

O\

tsuce_esr

L

R

thee_eer

tsuwREN_EBR

j\tHWREN EBR

i

tsuADDR_EBR tHADDR EBR
Add_BO Add BlX Add BOX XAdd BlX XAdd_BZX X:
| |
Data_BO XData BIX X X X X X X:
tSupara_eer T tHDATA_EBR |
Invalid Data Data_BO X Data_B1 XData_BZ
J tco_eer

Figure 4.7. True Dual Port RAM Timing Waveform — NORMAL Mode, without Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

Reset

ClockA

ClockEnA

WrEnA

AddressA

DataA

ClockB

ClockEnB

WrEnB

AddressB

DataB

QB

|
L

tsuce_esr

o

O\

L

L

thce_esr

Wj\tHWREN)

fH

tsuaDDR_EBR THADDR EBR
Add_A0 Add AlX XAdd_AOX XAdd AlX X/—\dd AZX *
Data_AO XData AIX X X X X X x
tsupaTA_EBR T THDATA EBR |

Invalid Data

Data_AO

Data_Al

<

L

tsuce_esr

L

L

B

jtcoo EBR

tHee_eer

W:\{ tHwREN_EBR

fH

tsuaDDR_EBR tHADDR_EBR
Add_BO XAdd B1 X XAdd_BOX XAdd BIX XAdd BZX x
Data_BO XData BlX X X X X X *
tsubaTA_EBrR f tHpATA_E8R

Invalid Data

Data_BO

X Data_B1

Jtcoo EBR

Figure 4.8. True Dual Port RAM Timing Waveform — NORMAL Mode, with Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

ClockA

ClockEnA

WrEnA

AddressA

DataA

ClockB

ClockEnB

WrEnB

AddressB

DataB

QB

L

tsuce_er |

O\

L

as LATTICE

thce_esr

o
W

tsuADDR_EBR

tSuwREN_EBR

tHADDR_EBR

o\

HCTr

Add_A0 XAdd A1>< >< Add_A0 >< x
Data_AO XData Al Data AZX XData_A3X XData A4X *
tsupaTa_esr T THoATA £BR
Invalid Data >< Data_AO Data_A1l X Data_A2 X Data_A3 X Data_A4

L

tsuce_esr F——1

tco_eer

L

thee_esr

o
EnWne

tsuaDDR_EBR

tSUWREN_EBR

tHADDR_EBR

{ tuwren _EBR

O\
o\

T ol

Add_BO XAd d_B1 >< >< Add_BO >< x
Data_BO XData B1 X XData BZX XD ata_B3 X XD ata_B4X *
tsubaTA_EBR i tHpATA. EBR
Invalid Data >< Data_BO

tco_esr

|
Data_B1 X Data_B2 X Data
| |

|
_B3 X Data_B4
|

Figure 4.9. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, without Output Registers

www.latti

icesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Reset

ClockA

ClockEnA

WrEnA

AddressA

DataA

ClockB

ClockEnB

WrEnB

AddressB

DataB

QB

tsuce_esr F—

L

H

L

thee_esr

U
s

tsuwren_eBr

|

-\

tHWREN_EBR

o/

(T

tsuaDDR_EBR tHADDR_EBR
Addl_ 0 X Addl_1 >< >< AdH_0 >< x
Datp_0 XData_l X XData_Z X X Datp_3 X X Datp_4 X x
tsupaTA_EBR tHDATA EBR
Inyalid Data < Data| |1 X Data [2 X Data_3

L

tsuce_esr

—

L

THee_EBrR

U
s

|

LSuwREN_eBR

L

ﬁ‘\—/i

([

tsuapDR_EBR tHADDR EBR
Add_0 X Add_1 X X Add_0 X x
Data_0 XData_l X X Data_2 X X Data_3 X X Data_4 X x
I
tsupATA_EBR } tupATA. EBR | | | |
Invalid Data >< Data_0

tcoo_esr

Data_1 X Data_2 X Data_3
| |

Figure 4.10. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, with Output Registers

4.3.

Pseudo Dual Port RAM (RAM_DP) - EBR Based

The EBR blocks in LatticeXP2 devices can be configured as Pseudo-Dual Port RAM or RAM_DP. IPexpress allows users to

generate the Verilog-HDL or VHDL along with EDIF netlists for the memory size as per design requirements.

IPexpress generates the memory module as shown in Figure 4.11.

www.latti

cesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

WrClock — l&—— RdClock

WrClockEn ——p| l&——— RdClockEn

Reset ——»|

WE—»

WrAddress —

Data —b

RAM_DP

EBR based Pseudo
Dual Port Memory

l&—— RdAddress

—Q

Figure 4.11. Pseudo Dual Port Memory Module Generated by IPexpress

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than an EBR block, the
modaule is created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks can be
cascaded in depth or width (as required to create these sizes).

In Pseudo Dual Port RAM mode, the input data and address for the ports are registered at the input of the memory
array. The output data of the memory is optionally registered at the output.

The various ports and their definitions for the Single Port Memory are listed in Table 4.7. The table lists the
corresponding ports for the module generated by IPexpress and for the EBR RAM_DP primitive.

Table 4.7. EBR-based Pseudo-Dual Port Memory Port Definitions

Port Name in Generated Port Name in the EBR Block — .

Module Primitive Description Active State
RdAddress ADR[x1:0] Read Address —

WrAddress ADW|[x2:0] Write Address —

RdClock CLKR Read Clock Rising Clock Edge
WrClock CLKW Write Clock Rising Clock Edge
RdClockEn CER Read Clock Enable Active High
WrClockEn CEW Write Clock Enable Active High

Q DO[y1:0] Read Data —

Data DI[y2:0] Write Data —

WE WE Write Enable Active High
Reset RST Reset Active High

— CS[2:0] Chip Select —

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

Chip Select (CS) is a useful port when multiple cascaded EBR blocks are required by the memory. The CS signal forms the MSB for the
address when multiple EBR blocks are cascaded. Since CS is a 3-bit bus, it can cascade eight memories easily. However, if the
memory size specified by the user requires more than eight EBR blocks, the ispLEVER software automatically generates the

additional address decoding logic, which is implemented in the PFU external to the EBR blocks.

Each EBR block consists of 18,432 bits of RAM. The values for x’s (for address) and y’s (data) for each EBR block for the devices are as

in Table 4.8.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.8. Pseudo-Dual Port Memory Sizes for 16K Memory for LatticeXP2

ezl el Input Data Port | Input Data Port | Output Data Output Data e Bl e Gl Ll
Port Memory Port A Port B

. A B Port A Port B
Size [MSB:LSB] [MSB:LSB]
16K x 1 DIA DIB DOA DOB RAD[13:0] WAD[13:0]
8K x 2 DIA[1:0] DIB[1:0] DOA[1:0] DOBJ[1:0] RAD[12:0] WAD[12:0]
4K x 4 DIA[3:0] DIB[3:0] DOA[3:0] DOBJ3:0] RAD[11:0] WAD[11:0]
2Kx9 DIA[8:0] DIB[8:0] DOA[8:0] DOBI8:0] RAD[10:0] WAD[10:0]
1K x 18 DIA[17:0] DIB[17:0] DOA[17:0] DOB[17:0] RADI[9:0] WAD[9:0]
512 x 36 DIA[35:0] DIB[35:0] DOA[35:0] DOBJ[35:0] RADI8:0] WAD[8:0]

Table 4.9 shows the various attributes available for the Pseudo-Dual Port Memory (RAM_DP). Some of these
attributes are user-selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table 4.9. Pseudo-Dual Port RAM Attributes for LatticeXP2

Attribute

Description

Values

Default Value

User Selectable
Through IPexpress

Address Depth Read

FFFFFFFFFFFFF

Read Port Address Depth Port 16K, 8K, 4K, 2K, 1K, 512 — YES
Read Port Data width | D32 WordWidth)\, ') o 1 36 1 YES
Read Port
Write Port Address Address Depth Write 16K, 8K, 4K, 2K, 1K _ VES
Depth Port
Write Port Data Width | D32 WordWidth 1,) g 1g 36 1 YES
Write Port
. Register Mode
Write Port Enable (Pipelining) for Write| NOREG, OUTREG NOREG YES
Output Registers
Port
Enable GSR Enables Global Set | ¢\ o F pisaBLE ENABLE YES
Reset
Reset Mode i;ﬁ?tStheReset ASYNC, SYNC ASYNC YES
Memory File Format — BINARY, HEX, ADDRESSED HEX — YES
Read Port Write Mode | Read/ Write Mode |\ oo NORMAL YES
for Read Port
Write Port Write Mode | R62d/ Write Mode | o0 NORMAL YES
for Write Port
Chip Select Decode for Chip Select Decode | 0b000, 0b001, 0b010, 0b011,
0b000 NO
Read Port for Read Port 0b100, 0b101, 0b110, Ob111
Chip Select Decode for Chip Select Decode | 0b000, 0b001, 0b010, 0b011,
. . 0b000 NO
Write Port for Write Port 0b100, 0b101, 0b110, Ob111
0x0000000000000000000000000 0x000000000000
000000000000000000000000000 00000000000000
Init Value Initialization value A 0000000000000 NO
gEEFﬁ?ﬁ??????:?????ﬁiﬁ?fF 0000000000000
FFFFFFFFFFFFFFFFFFFFFFFF 0000000000000
000000000000

www.latticesemi.com/legal

http://www.latticesemi.com/legal

as LATTICE

Users have the option to enable the output registers for Pseudo-Dual Port RAM (RAM_DP). Figure 4.12 and
Figure 4.13 show the internal timing waveforms for Pseudo-Dual Port RAM (RAM_DP) with these options. It is
important that no setup and hold time violations occur on the address registers (RdAddress and WrAddress).
Failing to meet these requirements can result in corruption of memory contents. This applies to both read and write

operations.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such
timing errors occur. Refer to the timing preferences in the Online Help documents.

WrClock

WrClockEn

RdClock

RdClockEn

WrAddress

RdAddress

Data

1
1
1
1
1
1
1
tquce_esr

1
1 1thce_esr

Iniimt

tsuce_egr | f—

L

thee_esr

1
tsuappr_EBrR

1

1

1
1
1 tHADDR_EBR

UrI T

T

]

]
tSUAl)DRiEBR

£ 0 0 0 G

!thapor_eer

—

O el)

tSU[?ATA_EBR

=] e

tHDATA EBR

=

Invalid Data

Data_0 X Data_1 aDat

2

1 |) tCO—EFR

Figure 4.12. PSEUDO DUAL PORT RAM Timing Diagram — without Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

] \]]]]
] 1]]]]
i i i i | |
WrClock H ! H ! ! !
] |]]]]
]]]]]]
d 1 1 1 1tHce_EBr 1 |
) [l T [}] |
WrClockEn I : I : /
] 1]]
4]
]]
))
RdClock
- - : : : :
I : I tsuce_esr 1 ! ' thee_esr
1 1 1 1 1 1
RdClockEn : ! ! 1 1 [
)
tSUAE)DR_EBR tHADDR EBR
WrAddress E Add_0 >< Add_1 >< >< >< Add_2 \
1 ! \
tsuabor_esr thapDR_EBR | | !
]
RdAddress ! / X >< >< XAdd 0 >< XAdd_l X X Add_z><
i
]
) x
Data : Data_0 XData 1 X X X X X X Data ZX
]
tSUPATA*EBR tHDATA EBR
Q Invalid Data Data_0 aDalt

- - T T | e
| H H H H h COO_|EBR

Figure 4.13. PSEUDO DUAL PORT RAM Timing Diagram — with Output Registers

4.4. Read Only Memory (ROM) - EBR Based

The EBR blocks in the LatticeXP2 devices can be configured as Read Only Memory or ROM. IPexpress allows users to
generate the Verilog-HDL or VHDL and the EDIF netlist for the memory size, as per design requirements. Users are
required to provide the ROM memory content in the form of an initialization file.

IPexpress generates the memory module as shown in Figure 4.14.

OutClock ——»
OutClockEn ———» ROM
EBR based Read Only
Reset — Memory

Address —»

Figure 4.14. Read-Only Memory Module Generated by IPexpress

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than an EBR block, the
module is created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks can be
cascaded, in depth or width (as required to create these sizes).

In ROM mode, the address for the port is registered at the input of the memory array. The output data of the memory
is optionally registered at the output.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The various ports and their definitions for the ROM are listed in Table 4.10. The table lists the corresponding ports for
the module generated by IPexpress and for the ROM primitive.

Table 4.10. EBR-based ROM Port Definitions

Port Name Port Name in the EBR block . .

X .. Description Active State

in Generated Module Primitive

Address AD[x:0] Read Address —

OutClock CLK Clock Rising Clock Edge
OutClockEn CE Clock Enable Active High
Reset RST Reset Active High

— CS[2:0] Chip Select —

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

Chip Select (CS) is a useful port when multiple cascaded EBR blocks are required by the memory. The CS signal forms
the MSB for the address when multiple EBR blocks are cascaded. Since CS is a 3-bit bus, it can cascade eight memories
easily. However, if the memory size specified by the user requires more than eight EBR blocks, the ispLEVER software
automatically generates the additional address decoding logic, which is implemented in the PFU external to the EBR
blocks.

While generating the ROM using IPexpress, the user must provide the initialization file to pre-initialize the contents of
the ROM. These files are the *.mem files and they can be of Binary, Hex or the Addressed Hex formats. The
initialization files are discussed in detail in the Initializing Memory section of this document.

Users have the option of enabling the output registers for Read Only Memory (ROM). Figures 23 and 24 show the
internal timing waveforms for the Read Only Memory (ROM) with these options.

Each EBR block consists of 18,432 bits of RAM. The values for x’s (for address) and y’s (data) for each EBR block for the
devices are as per Table 4.11.

Table 4.11. ROM Memory Sizes for 16K Memory for LatticeXP2

ROM Output Data Address Port [MSB:LSB]
16K x 1 DOA WADI[13:0]

8K x 2 DOA[1:0] WADI[12:0]

4K x 4 DOA[3:0] WAD[11:0]

2K x9 DOA[8:0] WAD[10:0]

1K x 18 DOA[17:0] WADI[9:0]

512 x 36 DOA[35:0] WADI8:0]

Table 4.12 shows the various attributes available for the Read Only Memory (ROM). Some of these attributes are user-
selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.12. Pseudo-Dual Port RAM Attributes for LatticeXP2

I |
Attribute Description Values Default Value LRl Stk
Through IPexpress
16K, 8K, 4K, 2K, 1K,
Address depth Address Depth Read Port 512 — YES
Data Width Data Word Width Read Port 1,2,4,9,18, 36 1 YES
Enable Output Registers | cgister Mode (Pipelining) for |\ ner o o rreG NOREG YES
Write Port
Enable GSR Enables Global Set Reset ENABLE, DISABLE ENABLE YES
Reset Mode Selects the Reset type ASYNC, SYNC ASYNC YES
. BINARY, HEX,
Memory File Format — ADDRESSED HEX YES
Chip Select Decode for Read 0b000, 0b001, 0b010,
Chip Select Decode Po'r‘: elect Decode for Rea 0b011, 0b100, 0b101, | 0bOOO NO
0b110, 0b111

Users have the option to enable the output registers for Read Only Memory (ROM). Figure 4.15 and Figure 4.16 show
the internal timing waveforms for ROM with these options.

It is important that no setup and hold time violations occur on the address registers (Address). Failing to meet these
requirements can result in corruption of memory contents. This applies to both read operations in this case.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such
timing errors occur. Refer to the timing preferences in the Online Help documents.

OutClock

B R

tsuce_eBR [

]

L

thce_esr
OutClockEn
Address Add_0 X Add_1 X X Add_2 X X Add_3 X X Add_4 X *
tsuaDDR_EBR } tuaooR R | | | |
Q Invalid Data Data_0 X Data_1 Data_2 X Data_3 XData_4

tco_esr

Figure 4.15. ROM Timing Waveform — Without Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

as LATTICE

ol 1 1 1 1 1 1
YSuce e — thce_eer
OutClockEn

R e 20 68 3 60 2 (0 5 0 €0
B

1:S UADDR_EBR

HADDR_EBR

Data_3

Q Invalid Data X Data_0 Data_1 X Data_2

| tcoo_esr

Figure 4.16. ROM Timing Waveform — With Output Registers

4.5. First In First Out (FIFO, FIFO_DC) — EBR Based

FIFOs are not supported in certain devices such as the LatticeECP/EC, LatticeECP2/M, LatticeXP and MachXO. The
hardware has Embedded Block RAM (EBR) which can be configured in Single Port (RAM_DQ), Pseudo-Dual Port
(RAM_DP) and True Dual Port (RAM_DP_TRUE) RAMs. The FIFOs in these devices can be emulated FIFOs that are built
around these RAMs. The IPexpress point tool in the ispLEVER design software allows users to build a FIFO and FIFO_DC
around Pseudo Dual Port RAM (or DP_RAM).

Each of these FIFOs can be configured with (pipelined) and without (non-pipelined) output registers. In the pipelined
mode, you have an extra option to enable the output registers by the RdEn signal. We will discuss the operation in the
following sections.

Let us take a look at the operation of these FIFOs.

4.5.1. First In First Out (FIFO) Memory

The FIFO, or the single clock FIFO, is an emulated FIFO. The address logic and the flag logic is implemented in the FPGA
fabric around the RAM.

The ports available on the FIFO are:

e Reset

e Clock

e WrEn

e RdEn

e Data

e Q

e Full Flag

e Almost Full Flag
e Empty Flag
e Almost Empty Flag

Let us first discuss the non-pipelined or the FIFO without output registers. Figure 4.17 shows the operation of the FIFO
when it is empty and the data starts to get written into it.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

o
H

| (e e T T

Q < InvallidQ I I \
Almost i i i
i | |
Almost i i i i i
ul i i i i i

Figure 4.17. FIFO without Output Registers, Start of Data Write Cycle

The WrEn signal must be high to start writing into the FIFO. The Empty and Almost Empty flags are high to begin and
Full and Almost Full are low.

When the first data is written into the FIFO, the Empty flag de-asserts (or goes low), as the FIFO is no longer empty. In
this figure we assume that the Almost Empty setting flag setting is 3 (address location 3). So the Almost Empty flag gets
de-asserted when the third address location is filled.

Now let us assume that we continue to write into the FIFO to fill it. When the FIFO is filled, the Almost Full and Full
Flags are asserted. Figure 4.18 shows the behavior of these flags. In this figure we assume that FIFO depth is 'N'.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

LatticeXP2 Memory ::LATTICE

Usage Guide

Reset _\ ; ; ; ; ;
AN S S N Gy
A

o (= T S S

Empty

Almost
Empty

Full

Almost F ull

Figure 4.18. FIFO without Output Registers, End of Data Write Cycle

In this case, the Almost Full flag is in the 2 location before the FIFO is filled. The Almost Full flag is asserted when the
N-2 location is written, and the Full flag is asserted when the last word is written into the FIFO.

Data_X data inputs do not get written as the FIFO is full (the Full flag is high).

Now let us look at the waveforms when the contents of the FIFO are read out. Figure 4.19 shows the start of the read
cycle. RdEn goes high and the data read starts. The Full and Almost Full flags are de-asserted, as shown.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

32 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Reset

Clock

WrEn

RdEn

Data

(RN S R~
/

I

[RRIPRIRVES N SRR UV S

[RSPRPR FIV NP VR A
A

Invalid Data

Invali dData | pata_1 >> ><na(a_z >\

a><Data_3 >>>

=1

Empty

Almost
Empty

Full

Almost F ull

B el bl il il Ll bl

B s bl il el Tl

o e e e e e] e e e] e] e ed

————] —— —] ——] -] o]

Figure 4.19. FIFO without Output Registers, Start of Data Read Cycle

Similarly, as the data is read out and FIFO is emptied, the Almost Empty and Empty flags are asserted.

Reset

Clock

WrEn

Data

Empty

Almost
Empty

Full

Almost F ull

Invalid Data

=TI

Figure 4.20. FIFO without Output Registers, End of Data Read Cycle

www.latticesemi.com/legal

http://www.latticesemi.com/legal

LatticeXP2 Memory ::LATTICE

Usage Guide

Figure 4.17, Figure 4.18, Figure 4.19, and Figure 4.20 show the behavior of non-pipelined FIFO or FIFO without output
registers. When we pipeline the registers, the output data is delayed by one clock cycle. There is also the extra option
for Output registers to be enabled by the RdEn signal.

Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24 show the similar waveforms for the FIFO with output register and
with output register enable with RdEn. It should be noted that flags are asserted and de-asserted with similar timing to
the FIFO without output registers. However, it is only the data out 'Q' that is delayed by one clock cycle.

Reset \

Clock

WrEn

Z
g

e M N

Invalid Q >

o
Q
&
. T

T
1
1
Empty :

/

Almost
Empty

Full

Almost
Full

Figure 4.21. FIFO with Output Registers, Start of Data Write Cycle

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

34 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Reset

o
o
O
=~
—
-
RSP . SOV

RdEn
) Y omana \\XMQNJ\»>>\ MaN>>V > .y >> >Xnmx \>>\
H H H H H
Q < Invalid Q
i i i i i
1 1 1 1 1
Empty i i i i i
1 1 1 1 1
i i i i i
Almost
Empty
1 1 1 1 1
1 1 1 T T
Ful : : P/ : :
Almost F ull | / 1 1] 1
1 / 1 1 1 1
—_— T 1 1 1 1
1 1 1 1 1
Figure 4.22. FIFO with Output Registers, End of Data Write Cycle
]]]]]
1 1 1 1 1
]]]]]
Reset ! ! ! ! !
Clock —_
(] \ (] \ n (] 1
1 1 1 1 1

WrEn _\
RdEn

Data |:< Invalid Data

T T T T
1 1 1 1
H WV “ \
Q < Invalid Data > Data_1 >> :>>< Data_2 \ >>/>< Data_3 >
Empty
Almost
Empty
1 1 1 1 1
- T 1 1 1 1
Full \

Almost F ull

Figure 4.23. FIFO with Output Registers, Start of Data Read Cycle

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Reset

Clock

WrEn

RdEn

Data

Empty

Almost
Empty

Full

Almost F ull

= LATTICE

e e T —————

[NV M FRpEIL =SS M

[PV NN RV, = R F

< Invalid Data >
O e i

Figure 4.24. FIFO with Output Registers, End of Data Read Cycle

And finally, if you select the option enable output register with RdEn, it still delays the data out by one clock cycle (as
compared to the non-pipelined FIFO). The RdEn should also be high during that clock cycle, otherwise the data takes an
extra clock cycle when the RdEn goes true.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE LatticeXP2 Memory

Usage Guide

Reset

-

1
e = D e I e I e T T

Q < Invalid Data > Data_1 >>)
Empty \

Almost
Empty

=10

Full

Almost
Full

B e BT P CEE Ty Py P

Figure 4.25. FIFO with Output Registers and RdEn on Output Registers

4.5.2. Dual Clock First In First Out (FIFO_DC) Memory

The FIFO_DC or the dual clock FIFO is also an emulated FIFO. Again, the address logic and the flag logic is implemented
in the FPGA fabric around the RAM.

The ports available on the FIFO_DC are:

e Reset

e RPReset
e WrClock
e RdClock
e WrEn

e RdEn

e Data

e Q

e Full Flag

e Almost Full Flag
e Empty Flag
e Almost Empty Flag

4.5.3. FIFO_DC Flags

The FIFO_DC, as an emulated FIFO, required the flags to be implemented in the FPGA logic around the block RAM.
Because of the two clocks, the flags were required to change clock domains from read clock to write clock and vice
versa. This adds latency to the flags either during assertion or de-assertion. The latency can be avoided only in one of
the cases (either assertion or de-assertion) or distributed among these cases.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3 37

http://www.latticesemi.com/legal

= LATTICE

In the current emulated FIFO_DC, there is no latency during assertion of these flags which we feel is more important.
Thus, when these flags are required to go true, there is no latency. However, due to the design of the flag logic running
on two clock domains, there is latency during the de-assertion.

Let us assume that we start to write into the FIFO_DC to fill it. The write operation is controlled by WrClock and WrEn,
however, it takes extra RdClock cycles for de-assertion of the Empty and Almost Empty flags.

On the other hand, de-assertion of Full and Almost Full result in the reading out of the data from the FIFO_DC. It takes
extra WrClock cycles, after reading this data, for the flags to come out.

With this in mind, let us look at the FIFO_DC without output registers waveforms. Figure 4.26 shows the operation of
the FIFO_DC when it is empty and the data starts to be written into it.

: 1 : 1 : 1 : 1 1 : 1
i o o : o
Reset | 1| i i i i i
e ; ; ; ;
1 1 1 1 1 1
WrClock i \ I_\— i i i \ '—_
1 1 1 1 1 1
i i i _ i N] i
! ! ! ! ! [
1 [l 1 [I [I 1 [oy
RdClock | | :f Lo i | \ :;
— . —_—
™
RPReset \
WrEn
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
Ragn 1\ : : : : :
1 1 1 1 1 1
1 T T T T T
1 1 i - 1 _ . 1 i 1 1
Data <Invalid Data ><Data_1 /\> >) Data_2 > §)>>>{;Data_3 >
I I I S I N I] 7
Q Invalid Q >
T T T T T T
; ; ; ; i i
i i i i i i
EmPY 1y i i i i i
1 : 1 :] : 1 : 1 ; L] ;
& B B B B
EmpYy i i i i [S
i i i i i i
1 1 1 1 1 1
Full ! ! ! ! ! !
1 1 1 1 1 1
] 1 1 1 1 1
Almost : : : : : :
Full i i i i i i
i i i i i i

Figure 4.26. FIFO_DC without Output Registers, Start of Data Write Cycle

The WrEn signal must be high to start writing into the FIFO_DC. The Empty and Almost Empty flags are high to begin
and Full and Almost full are low.

When the first data is written into the FIFO_DC, the Empty flag de-asserts (or goes low), as the FIFO_DC is no longer
empty. In this figure we assume that the Almost Empty setting flag setting is 3 (address location 3). So the Almost
Empty flag is de-asserted when the third address location is filled.

Now let us assume that we continue to write into the FIFO_DC to fill it. When the FIFO_DC is filled, the Almost Full and
Full Flags are asserted. Figure 4.27 shows the behavior of these flags. In this figure the FIFO_DC depth is 'N".

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE LatticeXP2 Memory

Usage Guide

O I S = T i e

e

Invalid Q >

Empty

Almost
Empty

Full

Almost
Full

Figure 4.27. FIFO_DC without Output Registers, End of Data Write Cycle

In this case, the Almost Full flag is in the 2 location before the FIFO_DC is filled. The AlImost Full flag is asserted when
the N-2 location is written, and the Full flag is asserted when the last word is written into the FIFO_DC.

Data_X data inputs do not get written as the FIFO_DC is full (the Full flag is high).
Note that the assertion of these flags is immediate and there is no latency when they go true.

Now let us look at the waveforms when the contents of the FIFO_DC are read out. Figure 4.28 shows the start of the
read cycle. RAEn goes high and the data read starts. The Full and Almost Full flags are de-asserted, as shown. In this
case, note that the de-assertion is delayed by two clock cycles.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3 39

http://www.latticesemi.com/legal

= LATTICE

Reset

WrClock

RPReset

Full

Almost
Full

Figure 4.28. FIFO_DC without Output Registers, Start of Data Read Cycle

Similarly, as the data is read out, and FIFO_DC is emptied, the Almost Empty and Empty flags are asserted.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

—
Reset

/ / L 7
WrClock i i 1 i
o i \ noi \ i

e '_/. __/. __ ! __ ! | | _

RPReset

WrEn

7 7 7 7 7

RdEn / / / / /
1 'I
i

ta

=TT

o =TT =TT

Empty

Data / Invalid
H

Almost
Empty

Full

Almost
Full

Figure 4.29. FIFO_DC without Output Registers, End of Data Read Cycle

Figure 4.29 show the behavior of non-pipelined FIFO_DC or FIFO_DC without output registers. When we pipeline the
registers, the output data is delayed by one clock cycle. There is an extra option for the output registers to be enabled
by the RdEn signal.

Figure 4.30, Figure 4.31, Figure 4.32, and Figure 4.33 show the similar waveforms for the FIFO_DC with output register
and without output register enable with RAEn. Note that flags are asserted and de-asserted with similar timing to the
FIFO_DC without output registers. However, it is only the data out 'Q' that is delayed by one clock cycle.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Data < Invalid Data ><Data_1 \ w >>> ,w

Invalid Q

Empty

Figure 4.30. FIFO_DC with Output Registers, Start of Data Write Cycle

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Reset

WrClock / \ /
) i \ \ I

Rd Clock | J \ / \ “‘/ { “\ / o / _

RPReset

WrEn

RdEn

Data | 1) > / ‘><Dara7er >

Q / Invalid Q >

Empty

Almost
Empty

Full

Almost
Full

Figure 4.31. FIFO_DC with Output Registers, End of Data Write Cycle

Reset

WrClock |

Rd Clock _/ / | \ / /

RPReset

WrEn -\

RdEn !
J ! ! ! ! !

Data { Invalid Data
1 1 ‘ . i . ‘
Q Invalid Q / Data_1 >)} > . Data_2 \) >X Data_3 >> \“ \< Data_d > | > | Data_s >
/ J\ M / L N

Empty

Almost
Empty

Full

Almost
Full

Figure 4.32. FIFO_DC with Output Registers, Start of Data Read Cycle

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Reset

WrClock

Rd Clock / ‘ x/ | \ | . / \] _

RPReset

WrEn

RdEn]]]]]

Invalid Data

Il) e e

Data

e

Empty

Almost
Empty

Full

Almost
Full

Figure 4.33. FIFO_DC with Output Registers, End of Data Read Cycle
And finally, if you select the option to enable the output register with RdEn, it still delays the data out by one clock

cycle (as compared to the non-pipelined FIFO_DC). The RdEn should also be high during that clock cycle, otherwise the
data takes an extra clock cycle when the RdEn is goes true.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Reset

WrClock | _\—l__—_

RPReset

WrEn

v]
RdEn \ I
\ 1

[A

Data Invalid Data >

Q Invalid Q

Empty

Almost
Empty

Full

Almost
Full

Figure 4.34. FIFO_DC with Output Registers and RdEn on Output Registers

4.6. Distributed Single Port RAM (Distributed_SPRAM) - PFU Based

PFU-based Distributed Single Port RAM is created using the 4-input LUT (Look-Up Table) available in the PFU. These
LUTs can be cascaded to create larger Distributed Memory sizes.

Figure 4.35 shows the Distributed Single Port RAM module as generated by IPexpress.

Clock ——»
ClockEn ———»
Reset — PFU based
WE —» Memory
Address ——»

Data —»

Figure 4.35. Distributed Single Port RAM Module Generated by IPexpress

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The generated module makes use 4-input LUT available in the PFU. Additional logic like Clock, Reset is generated by
utilizing the resources available in the PFU.

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn), are not available in the hardware primitive.
These are generated by IPexpress when the user wants to enable the output registers in their IPexpress configuration.

The various ports and their definitions for the memory are as per Table 4.13. The table lists the corresponding ports for
the module generated by IPexpress and for the primitive.

Table 4.13. PFU-based Distributed Single Port RAM Port Definitions

Port Name in Generated Port Name in the PFU — .

Module Primitive Description Active State
Clock CK Clock Rising Clock Edge
ClockEn — Clock Enable Active High
Reset — Reset Active High

WE WRE Write Enable Active High
Address AD[3:0] Address —

Data DI[1:0] Data In —

Q DOJ[1:0] Data Out —

Ports such as Clock Enable (ClockEn) are not available in the hardware primitive. These are generated by IPexpress
when the user wishes to enable the output registers in the IPexpress configuration.

Users have the option of enabling the output registers for Distributed Single Port RAM (Distributed_SPRAM). Figure 4.36 and
Figure 4.37 show the internal timing waveforms for the Distributed Single Port RAM (Distributed_SPRAM) with these options.

clock 1 1 1 1 1 1
ClockEn / \
t
SUWRE N_PFU f——) tyWRE N_PFU
WE
tHADDR _PFU tsuADDR_PFU
Address Add_0 ><Add_1 >< ><Add_o X ><Add_1 >< X Add_2 >< X:|
Data Data_0 XData_l X X X X X X X X:|
t ¥k
SUDATA_PFU } tHDATA_PFU | | | |
Q Invalid Data t Data_0 X Data_1 X Data_2 >
| tcoram_pru | | |

Figure 4.36. PFU Based Distributed Single Port RAM Timing Waveform — without Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

Reset \
ok 1 1 1 1 1 1
ClockEn / \
tsu wRe N_PFU F— tHwRe N_PFU
WE
tSUADDR_PFU tHADDR_PFU

Address Add_0 XAdd 1 X Add 0 X XAdd 1
Data Data_0 XData 1 X X

tsupATA_PFU tHOATA_PFU

Q Invalid Data ' Data_0 X Data_1 X Data_2

Figure 4.37. PFU Based Distributed Single Port RAM Timing Waveform — with Output Registers

> ST

e

4.7. Distributed Dual Port RAM (Distributed_DPRAM) - PFU Based

PFU-based Distributed Dual Port RAM is also created using the 4-input LUT (Look-Up Table) available in the PFU. These
LUTs can be cascaded to create a larger Distributed Memory sizes.

WrAddress ——»|
RdAddress ——»

RdClock ——»
RdClockEn ——»
PFU based
Reset —» —» Q
Memory

WrClock ——»
WrClockEn ——»

WE —»

Data —»

Figure 4.38. Distributed Dual Port RAM Module Generated by IPexpress

www.latticesemi.com/legal

http://www.latticesemi.com/legal

as LATTICE

The generated module makes use of the 4-input LUT available in the PFU. Additional logic like Clock and Reset is
generated by utilizing the resources available in the PFU.

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn), are not available in the hardware primitive.
These are generated by IPexpress when the user wants to enable the output registers in the IPexpress configuration.

The various ports and their definitions for memory are as per Table 4.14. The table lists the corresponding ports for the
module generated by IPexpress and for the primitive.

Table 4.14. PFU-based Distributed Dual-Port RAM Port Definitions

Port Name in Generated Port Name in the EBR Block — .

Module Primitive Description Active State
WrAddress WAD[3:0] Write Address —

RdAddress RAD[3:0] Read Address —

RdClock — Read Clock Rising Clock Edge
RdClockEn — Read Clock Enable Active High
WrClock WCK Write Clock Rising Clock Edge
WrClockEn — Write Clock Enable Active High

WE WRE Write Enable Active High

Data DI[1:0] Data Input -

Q RDO[1:0] Data Out —

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware primitive.
These are generated by IPexpress when you want to enable the output registers in the IPexpress configuration.
Users have the option of enabling the output registers for Distributed Dual Port RAM (Distributed_DPRAM). Figure 4.39 and
Figure 4.40 show the internal timing waveforms for the Distributed Dual Port RAM (Distributed_DPRAM) with these options.

B Y R

H

j\HCE EBR

WrClock 1
tsuce_esr
WrClockEn
WE ,
tsuADDR_EBR
WrAddress

RdAddress -4<

{thapDr_EBR
Add_0 * Add_1

Data

tsyDATA EBR

Data_0

\
z)
B
)

H DATA EBR

Invalid Data

Data_0 XData 1 X XData 2 ><
tcoram_pru

Figure 4.39. PFU Based Distributed Dual Port RAM Timing Waveform — without Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

Reset \

WrAddress

] 1] |
1 1 1 |
} 1 } |
] 1] |
] 1] |
] }]]
[} 1 [} |
WrClock 1 Ai_\; AE_\; AE_\; AE_\;
i i i i i
1 1 Ituwnzwipru 1 |
1)] 1 |
WrClockEn : : 1 : :
\ 1 1 1
]]]] |
1 1]] |
]]
rce ﬂﬂﬂﬂﬂﬂ

4 1]] 1] |

: : : touce pr '_{ : tice_pru
[} [} 1]]]
RdClockEn H ! ! H ! !
]]] 1 } |
[} 1 [} 1 [} |
- : : ! |
WE | \! | | ! |
1 “ 1 1) 1
4] 1 1 1
[} 1 [} [} |
[R PR ! Thaoor_pru I ! ! !

A0 XAdd s >< >< >< >< >< ><

L —<

oL

Data

e e 5 W 5 O
o 0 /e e x
' s

Q Invalid Data Data_0

Data_1

[i [i [i T

Figure 4.40. PFU Based Distributed Dual Port RAM Timing Waveform — with Output Registers

4.8. Distributed ROM (Distributed_ROM) - PFU Based

PFU-based Distributed ROM is also created using the 4-input LUT (Look-Up Table) available in the PFU. These LUTs can
be cascaded to create larger Distributed Memory sizes.

Figure 4.41 shows the Distributed ROM module as generated by IPexpress.

Address ———

OutClock ——
PFU-based

Distributed ROM
OutClockEn ——»

Reset —

Figure 4.41. Distributed ROM Generated by IPexpress

The generated module makes use of the 4-input LUT available in the PFU. Additional logic like Clock and Reset is
generated by utilizing the resources available in the PFU.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

as LATTICE

Ports such as Out Clock (OutClock) and Out Clock Enable (OutClockEn) are not available in the hardware primitive.
These are generated by IPexpress when the user wants to enable the output registers in the IPexpress configuration.

The various ports and their definitions for memory are as per Table 4.15. The table lists the corresponding ports for the
module generated by IPexpress and for the primitive.

Table 4.15. PFU-based Distributed ROM Port Definitions

Port Name in Generated Port Name in the PFU Block . .

Lo Description Active State
Module Primitive
Address AD[3:0] Address —
OutClock — Out Clock Rising Clock Edge
OutClockEn — Out Clock Enable Active High
Reset — Reset Active High
Q DO Data Out —

Users have the option to enable the output registers for Distributed ROM (Distributed_ROM). Figure 4.42 and
Figure 4.43 show the internal timing waveforms for the Distributed ROM with these options.

Address

tsuapDR_PFU

EOECOE .

tHADDR_PFU
Add_0

Invalid Data

Data_0

X Data_1

X Data_2

tcoram_prU |

Figure 4.42. PFU Based ROM Timing Waveform — without Output Registers

Reset

OutClock

OutClockEn

Address

o\

o\

o\

\
o
]

{SUADDR_PFU

|
HADDR_PFU

[

Add_0

I

XﬁJX

XﬁﬁX

Invalid Data

Data_0 X Data_1

CORAM_PFU

Figure 4.43. PFU Based ROM Timing Waveform — with Output Registers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.9. User TAG Memory

The TAG memory is an area on the on-chip Flash which can be used for non-volatile storage. It is accessed in your
design as if it were an external SPI Flash. Both SPI bus operation modes 0 (0,0) and 3 (1,1) are supported.

SI —

CLK SSPIA — SO

Figure 4.44. SSPIA Primitive

Table 4.16. User TAG Memory Signal Description

Primitive Port Name Description
Sl Data input
SO Data output
CLK Clock

CS Chip select

4.9.1. Basic Specifications for TAG Memory

There is one full page of TAG memory in each LatticeXP2 device. Page size ranges from 56 to 451 bytes.

Table 4.17. TAG Memory Density

Device TAG Memory (Bits) TAG Memory (Bytes)
XP2-5 632 79

XP2-8 768 96

XP2-17 2184 273

XP2-30 2640 330

XP2-40 3384 423

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 4.18. Timing Specifications

as LATTICE

Symbol Parameter Min Max Units
fMAXSPI Slave SPI CCLK Clock Frequency — 25 MHz
tRF Clock and Data Input Rise and Fall Time — 20 ns
tescelk Slave SPI CCLK Clock High Time 20 - ns
tsocbo Slave SPI CCLK Clock Low Time 20 — ns
tscs CSSPIN High Time 25 - ns
tscss CSSPIN Setup Time 25 — ns
tSCSH CSSPIN Hold Time 25 — ns
tsTSu Slave SPI Data In Setup Time 5 - ns
tsTH Slave SPI Data In Hold Time 5 - ns
tSTVO Slave SPI Output Valid (after WRITE_EN) — 20 ns

Slave SPI Output Valid (without WRITE_EN)(1) 20 us
tsTco Slave SPI Output Hold Time 0 — ns
tspis Slave SPI Output Disable Time 100 ns

Note:

If the READ_TAG command is issued without first loading the WRITE_EN command, the device will need extra time, up to 20us

maximum, to transfer the data from TAG Flash to the data-shift register.

CSSPIS N

CCLK

SISPI

SO

tscs
0€—Command —> 7 8€—3.ByteD ummy —>3132 € Byte Bounded DataOut —>(pn.1)th
tcscu< |4— tsocoo l— tscsk
4 tsTsu —» [« tsTsu & >
TVO
Pl tsess tsth P |4
HI-Z
8 Command
Shifting Clocks P Data Shifting Clocks .
> Bl

Bl

Figure 4.45. Generic Timing Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.10. Programming via the SPI Interface

Since the SSPIA module is an internal module, 1/Os can be treated as I/Os of any other soft module. Therefore, they can
be routed to other internal modules, or they can go out to I/0O pads. The recommended routing is to the sysCONFIG
port pins.

Table 4.19. Usage of Commands?

Command Name OPCODE Bytes 1-3%2 Data Description

READ_TAG Ox4E Dummy Out Read TAG memory

PROGRAM_TAG Ox8E Dummy In Program TAG memory

ERASE_TAG OxO0E Dummy — Erase TAG memory
Notes:

1. Data bytes are shifted with most significant bit first.

2. Byte 1-3 are dummy clocks to provide extra timing for the device to execute the command. The data presented at the Sl pin
during these dummy clocks can be any value and do not have to be 0x00 as shown.

3. Refer to the Flash Erase Time in the data sheet for delay times.

4.11. General Description
The LatticeXP2 family of devices is designed with instant-on, standalone TAG memory that is always available.

TAG memory is organized as a one-page Flash non-volatile memory accessible by the hardwired Serial Peripheral
Interface port or the JTAG port.

The standalone TAG memory is ideal for use as scratch pad memory for critical data, board serialization, board revision
logs and programmed pattern identification.

The integration of TAG memory into the LatticeXP2 device family saves chip count and board space. It also can be used
to replace obsoleted low-density SPI EEPROM devices.

The hardwired SPI interface does not require the device to pre-program the configuration Flash first to enable the SPI
interface. The interface is already enabled when the device is shipped from Lattice, saving board test time.

The hard-wired SPI interface allows the TAG memory to retain its independent identity or accessible always in spite of
the TAG Memory Flash is embedded into the LatticeXP2 devices.

The hard-wired SPI interface is also important for field upgrades so that critical data can be maintained on the TAG
memory and guaranteed to be accessible even if the device is field upgraded to a new pattern.

The instant-on capability is achieved by enabling the SPI interface when the devices are shipped from Lattice. Unlike
the configuration Flash, the security setting of the device, standard or advanced, has no effect on the accessibility of
the TAG memory. Therefore, the TAG memory is always accessible.

The TAG memory, same as other Flash fuses, can also be programmed using the IEEE 1532 compliant programming
flow on the JTAG port for production programming support or for system debugging.

4.12. Pin Descriptions

The pins described below are not dedicated pins. If the TAG memory feature is not required, these pins can be regular
user 1/0 pins. If the TAG memory feature is required, the TAG memory can be accessed by the internal SPI interface
through the core. The internal SPI interface makes the TAG Memory capable of supporting advanced applications. For
example:

1. Use an I’C to SPI translator to convert the SPI TAG memory to be an I2C TAG memory device.
2. Route the four SPI interfaces to the other four user 1/Os.

Selections are made using the ispLEVER design tool. By default, the external SPI interface is enabled and TAG memory is
selected.

The functional descriptions of the pins below are applicable to both the internal and external SPI interfaces.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.12.1. Serial Data Input (SI)

The SPI Serial Data Input pin provides a means for commands and data to be serially written to (shifted into) the
device. Data is latched on the rising edge of the serial clock (CLK) input pin.

4.12.2. Serial Data Output (SO)

The SPI Serial Data Output pin provides a means for status and data to be serially read out (shifted out of) the device.
Data is shifted out on the falling edge of the serial clock (CLK) input pin.

4.12.3. Serial Clock (CLK)

The SPI Serial Clock Input pin provides the timing for serial input and output operations.

4.12.4. Chip Select (CS)

The SPI Chip Select pin enables and disables SPI interface operations. When the Chip Select is high the SPI interface is
deselected and the Serial Data Output (SO) pin is at high impedance. When it is brought low, the SPI interface is
selected and commands can be written into and data read from the device. After power up, CS must transit from high
to low before a new command can be accepted.

4.13. SPI Operations

4.13.1. SPI Modes

The SPI interface is accessible through the SPI-compatible bus consisting of four signals: Serial Clock (CLK), Chip Select
(CS), Serial Data Input (SI) and Serial Data Output (SO). Both SPI bus operation Modes 0 (0,0) and 3 (1,1) are supported.
The primary difference between Mode 0 and Mode 3 concerns the normal state of the CLK pin when the SPI master is
in standby and data is not being transferred to the device’s SPI interface. For Mode 0 the CLK is normally low and for
Mode 3 the CLK signal is normally high. In either case, data input on the SI pin is sampled only during the rising edge.
Data output on the SO pin is clocked out only on the falling edge of CLK.

4.13.2. Status Register
The SPI interface can access the 1-bit status register required to support TAG Memory Flash programming.

The programming complete status register: This is the single bit status register for pooling. If the programming or erase
operation is complete, then the status bit is set to 1, otherwise it is set to 0 for more programming or erase time.

4.13.3. Commands

Table 4.20. Commands

Command Name Byte 1 (Opcode)| Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 n-Byte
READ_ID 0x98 0x00 0x00 0x00 (D0-D7) (D8-D15) (D24-D31)
WRITE_EN O0xAC 0x00 0x00 0x00 — — —
WRITE_DIS 0x78 0x00 0x00 0x00 — — —
ERASE_TAG Ox0E 0x00 0x00 0x00 — — —
PROGRAM_TAG Ox8E 0x00 0x00 0x00 D7-D0O Next Byte Last Byte
READ_TAG Ox4E 0x00 0x00 0x00 (D7-D0) (Next Byte) (Continue)
STATUS Ox4A 0x00 0x00 0x00 &i’;’;’;’;’;’;’; - —

Notes:

1. Data bytes are shifted with least significant bit first. Byte field with data in parenthesis () indicate data being read from the SO

pin.

2. Byte 2-4 are dummy clocks to provide extra timing for the device to execute the command. The data presented at the Sl pin
during these dummy clocks can be any value and do not have to be 0x00 as shown.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. The READ_ID command reads out the 32 bits JTAG IDCODE of the device. The first bit shifted out on SO pin is thus bit 0 of the
JTAG IDCODE and the last bit is bit 31 of the IDCODE.

4. The PROGRAM_TAG command supports page programming only. The programming data shift into the TAG Memory must be
exactly the same size as the one page of the TAG Memory. Under shifting or over shifting will cause erroneous data
programmed into the TAG Memory. The Last Byte shown on the n-Byte column indicates the last byte of the data must be
shifted into the device before driving the Chip Select to high to start the programming action.

5. The STATUS command read from the single bit status register. When read from the register, only the first bit is valid, the other
bits are dummies and should be ignored.

4.13.3.1. READ_ID (98h)

The READ_ID command captures the IEEE 1149.1 JTAG IDCODE out of the device on the SO pin. This command is
commonly used to verify whether communication is established with the SPI bus. After the 8-bit READ_ID command is
received, the device ignores the data presented at the Serial Data Input (SI) pin. The Serial Output (SO) pin is enabled
on the falling edge of clock 31 to drive out the first bit of the IDCODE. After 32 bits of the IDCODE are shifted out,
additional clocking will cause dummy data to be shifted out on SO.

s\ /

o TN«
0 LR P 0 88

8 Bits READ_ID 32 Bits JTAG IDCODE
Command

24 Bits Dummy

»le
»

A
A 4
A
A 4

Figure 4.46. READ_ID Waveform

4.13.3.2. WRITE_EN (ACh)

The WRITE_EN command enables the TAG memory for programming. If the WRITE_EN command has not been shifted
into the device first, the PROGRAM_TAG, ERASE_TAG and STATUS commands do not take effect. This is to prevent the
TAG memory from erroneous erase or program.

The command is executed when the Chip Select pin is driven from low to high after the 24th dummy clock. Any extra
dummy clocks, if presented before driving the Chip Select pin to high, are ignored. After the Chip Select pin is driven
from low to high, a minimum of three clocks are required to complete the execution of the command.

The effect of this command is terminated by the WRITE_DIS command.

Optional Extra Clocks ¢ >

Three Clocks To Initiate And Complete > <

(&) _\ /

JUUUUTIULJUL

CLK
Sl
HIGH IMPEDANCE
SO
8 Command
Shifting Clocks
< >

Figure 4.47. WRITE_EN Waveform

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.13.3.3. WRITE_DIS (78h)
The WRITE_DIS command disables the TAG memory for programming. It does not nullify the READ_TAG and READ_ID
commands.

The command is executed when the Chip Select pin is driven from low to high after the 24th dummy clock. Any extra
dummy clocks, if presented before driving the Chip Select pin to high, are ignored. After the Chip Select pin is driven
from low to high, a minimum of three clocks are required to complete the execution of the command.

A
A 4

Optional Extra Clocks
Three Clocks to Initiate And Complete —> [—

cs A\ /

si L\ |

SO

HIGH IMPEDANCE

8 Command
Shifting Clocks

A
y

Figure 4.48. WRITE_DIS Waveform

4.13.3.4. ERASE_TAG (OEh)

The ERASE_TAG command is enabled after the command WRITE_EN has been shifted into the device and executed.
The ERASE_TAG command erases all the TAG Memory Flash cells.

The command is executed when the Chip Select pin is driven from low to high after the 24th dummy clock. Any extra
dummy clocks, if presented before driving the Chip Select pin to high, are ignored. After the Chip Select pin is driven
from low to high, a minimum of three clocks is required to initiate the erase action. After the three clocks, extra clocks
are optional. Once the erase action is initiated, it is carried out until it is done. There is no mechanism to terminate the
erase action.

This command sets the STATUS bit to 0 when the erase action begins. The programming engine sets the status bit to 1
when the erase is done successfully.

A
A 4

Optional Extra Clocks
Three Clocks to Initiate the Erase Action ~——» —

cs _\ /

WWM&MHHMHJLML

HIGH IMPEDANCE

CLK

N

N}

8 Command
Shifting Clocks

hl >

Figure 4.49. ERASE_TAG Waveform

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.13.3.5. PROGRAM_TAG (8Eh)

The PROGRAM_TAG is enabled after the command WRITE_EN has been shifted into the device and executed. The
PROGRAM_TAG command programs the entire TAG memory page at once.

After the command is shifted into the device on the Sl pin, and followed by 24 dummy clocks, the TAG memory column
decoder serves as the data buffer for the programming data to be shifted into serially. The shifting direction is from left
to right, as shown. The first bit to be shifted out closest to the SO pin appears on the right-most side of the shift
register. The data buffer functions like a FIFO (First In First Out) serial data shift register. In order to make sure that bit
0 is read out first, data bit 0 must be shifted into the right-most location of the data shift register. To achieve this, the
data buffer must be filled up completely. Consequently, over-filling the data buffer will cause overflow of the data
buffer, resulting in loss of data.

The SO pin stays in the HIGHZ state throughout this command.

Bit N-1 Bit 0
P A P P TITe TP o

Figure 4.50. Bit Shifting Order

S|

When the data buffer has filled up to one page of data, driving the Chip Select pin to high terminates the data shifting.
After the Chip Select pin is driven from low to high, a minimum of three clocks are required to initiate the programming
action. In the programming action, the data buffer content is copied in parallel from the data buffer into the TAG
memory Flash cells. The status bit is set to 0 when the programming actions begin. The status bit is set to 1 when the
programming action is done successfully.

Bit N-1 BitO

Flash y
Cell N-1 | X

X«

Y Y V¥V V¥V | Flash
¥ % ¢ FlashMemory Cells X X X X |cello

Figure 4.51. Data Buffer to Flash Cell Mapping

When the programming action complete, the STATUS bit is set to 1. The exact same image is written into the Flash cells
of the TAG Memory block when the programming action complete.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Optional Extra Clocks
Three Clocks To Initiate The Program Action —> 4

cs S /

w TTUUUUTL T UUUUL JU LTI, L
(

.

HIGH IMPEDANCE

SO
8 Command
Shifting Clocks

A4

«

Figure 4.52. PROGRAM_TAG Waveform

4.13.3.6. READ_TAG (4Eh)

The READ_TAG command enables the Flash programming engine to transfer data programmed in the Flash cells to the
data buffer. The transfer action starts on the third dummy clock after the 8-bit opcode. The delay time derived from
the 21 dummy clocks is the time required to transfer the Flash cells data into the data buffer. The transfer action, once
initiated, does not need the clock to continue to run. The clock count is only required to enable the SO pin. If the Flash
circuitry is not yet enabled, the device needs extra delay time to enable the Flash circuitry before transfer can take
place. This extra delay must be provided after the third dummy clock and before the 24th dummy clock.

If the READ_TAG command is preceded by the WRITE _EN command, then it is fast read. The device does not require
extra delay to enable the Flash circuitry.

The 20 dummy clocks after the transfer is initiated to before enabling the SO pin are considered delay clocks.
Delay time = 20 x 1/frequency.

The transfer delay time, including the extra delay time to enable the Flash circuitry, is 5uS minimum. The clock
frequency can then be set to 2.5 MHz if continuous clocking is desired.

When all the data captured into the data buffer are shifted out, additional clocks will shift out dummy data. The Sl pin
is not connected to the input of the data buffer when the READ_TAG command is shifted into the device. While the
data in the data buffer is shifted out to the direction of SO, dummy data is shifted into the data buffer. Consequently,
when over-shifting occurs, dummy data of unknown value is shifted out.

Bit N-1 Bit O

C':I?S':_l XXX XXX Flash Memory Cells X X X X 2:”52

Bit N-1 Bit 0

MM_’ SO

Figure 4.53. Readout Order

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

CS

CLK

Sl

SO

[4—— Time elapsed must be 5us

—>

If the clockiis too fast
add delay before

[4—— Enable SO on 24th Dummy Clock.
Bit 0 is valid.

—

S\ K

21st clock

[

Data capture
starts at
21st clock

HI-Z

8 Bits READ_TAG
Command

24 Bits Dummy

TAG Memory Data

A

d »

4.13.3.7. STATUS (4Ah)

The STATUS command allows the single-bit status register to be read. This command can be loaded at any time after
the WRITE_EN command has already been shifted into the device first. This command does not terminate the
programming or erase action. It is used to report the progress of the programming or erase action.

Figure 4.54. READ_TAG Waveform

HI-Z

The status register actual size is only 1 bit. Dummy data is shifted out on the SO pin if extra data shifting clocks are
applied. The command can be shifted into the device again to capture the status bit and then read out.

During the interval of shifting the command, the additional programming or erase time is provided by driving the Chip
Select pin to high and holding the CLK pin low. Clocking while holding the Chip Select pin high is optional.

If the maximum programming time or erasure has expired and the status bit still is not set to 1, then erase or
programming has failed.

cs

CLK

N

SO

M

Enable SO On 24th Dummy Clock

Capture Startson Third Dummy Clock

—

—

Provide Device Additional Erase

Or Programming Time

<&
<

[\

JUUL

HI-Z

8 Bits READ_TAG
Command

».

24 Bits Dummy

A

A

A 4

)

<4— Status Bit

Figure 4.55. STATUS Waveform

HI-Z

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.14. Specifications and Timing Diagrams

4.14.1. Powering Up

TAG memory is available when the boot-up either from the internal embedded Flash or from the external SPI Flash
boot PROM is complete. If the embedded Flash is blank, the boot up will not work. It is recommended to wait for the
same amount of delay as if the embedded configuration has been programmed before accessing the TAG memory. If
the boot-up is from external SPI Flash, longer delay time should be given or check the DONE pin for a high first before
accessing the TAG memory.

The SPI interface needs the low-to-high transition on the Chip Select pin to reset. During power-up, the low-to-high

transition is assured by requiring the CLK pin tracking the VCC. The other method is to drive the Chip Select pin to high
then low then high to reset the SPI interface before shifting the first command into the device.

TAG Memory Is Fully
Chip Select Must Track VCC. Accessible.

Boot Up From The
Embedded FLASH.

VCCAUX Or VCC
Whichever IsThe
VCCmin Last.

Power Up Timing And Voltage Level

Figure 4.56. Device Power-up Waveform

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.14.2. Availability of TAG Memory

TAG memory is available most of time on the Slave SPI interface with the following exceptions:
e When the SRAM fuses are being accessed by the JTAG port, Slave SPI interface or refreshing
e When the other Flash cells are being accessed through the JTAG port or Slave SPI interface
e While JTAG BSCAN testing is taking place

e The Slave SPl interface is disabled with the persistent fuse programmed (set to off)

4.14.3. AC Timing

e 25 MHz maximum CLK

e 5uS minimum read command delay

e 2 mS minimum delay from VCCmin to shifting in the first command

4.14.4. Programming Timing
e 1 sec. maximum erase time
e 5mS maximum programming time

4.15. Programming via the JTAG Interface

.VME files can be generated for the ispVM System software which only programs the TAG memory. These .VME files
are handled according to the standard ispVME flow.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. Initializing Memory

In the EBR based ROM or RAM memory modes and the PFU based ROM memory mode, it is possible to specify the
power-on state of each bit in the memory array. Each bit in the memory array can have one of two values: 0 or 1.

5.1. Initialization File Format

The initialization file is an ASCII file, which users can create or edit using any ASCII editor. IPexpress supports three
types of memory file formats:

e Binaryfile
e Hex File
e Addressed Hex

The file name for the memory initialization file is *.mem (<file_name>.mem). Each row depicts the value to be stored in
a particular memory location and the number of characters (or the number of columns) represents the number of bits
for each address (or the width of the memory module).

The Initialization File is primarily used for configuring the ROMs. The EBR in RAM mode can optionally use this
Initialization File also to preload the memory contents.

The TAG memory uses hex or binary non-addressed files. Since it is a SPI, it cannot use the addressed hex file.

5.2. Binary File

The file is essentially a text file of 0’s and 1’s. The rows indicate the number of words and columns indicate the width of
the memory.

Memory Size 20x32 00100000010000000010000001000000
00000001000000010000000100000001
00000010000000100000001000000010
00000011000000110000001100000011
00000100000001000000010000000100
00000101000001010000010100000101
00000110000001100000011000000110
00000111000001110000011100000111
00001000010010000000100001001000
00001001010010010000100101001001
00001010010010100000101001001010
00001011010010110000101101001011
00001100000011000000110000001100
00001101001011010000110100101101
00001110001111100000111000111110
00001111001111110000111100111111
00010000000100000001000000010000
00010001000100010001000100010001
00010010000100100001001000010010
00010011000100110001001100010011

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.3. HexFile

The Hex file is essentially a text file of Hex characters arranged in a similar row-column arrangement. The number of
rows in the file is same as the number of address locations, with each row indicating the content of the memory
location.

Memory Size 8x16 A001

0BO3

1004

CEO6 0007

040A

0017

0274

5.4. Addressed Hex

Addressed Hex consists of lines of address and data. Each line starts with an address, followed by a colon, and any
number of data. The format of memfile is address: data data data data ... where address and data are hexadecimal

numbers.
-A0 : 03 F3 3E 4F
-B2 : 3B 9F

The first line puts 03 at address A0, F3 at address A1, 3E at address A2, and 4F at address A3. The second line puts 3B at
address B2 and 9F at address B3.

There is no limitation on the values of address and data. The value range is automatically checked based on the values
of addr_width and data_width. If there is an error in an address or data value, an error message is printed.

Users need not specify data at all address locations. If data is not specified at certain address, the data at that location
is initialized to 0. IPexpress makes memory initialization possible both through the synthesis and simulation flows.

5.5. FlashBak™ Capability

The LatticeXP2 FPGA family offers FlashBak capability, which is a way to store the data in the EBRs to the Flash memory
upon user command. This protects the user’s data from being lost when the system is powered off. The FlashBak
module (STFA primitive) has a single-command-two-operation process (see Figure 65). When the FlashBak operation is
initiated, an erase-UFM-Flash signal is enabled to erase the Flash, followed by the transfer-to- flash operation. Once the
transfer is done, the Flash controller sends a transfer-done signal back to the user logic. During the FlashBak operation,
the EBRs are not accessible. There is no difference between the regular EBR RAM configuration and the shadow Flash
(UFM) EBR RAM configuration in the ispLEVER GUI. The presence of the STFA (FlashBak) primitive in a design
determines the EBR RAM configuration. FlashBak cannot be used if the soft-error detect (SED) is operating in an Always
mode. Since there is no addressing but just a ‘dump’ of all EBR to Flash, only one STFA module is necessary. Multiple
modules are not necessary or allowed.

— STOREN UFMFAIL ——

UFMBUSYN ——

STFA

Figure 5.1. FlashBak Primitive

www.latticesemi.com/legal

http://www.latticesemi.com/legal

LatticeXP2 Memory ::LATTICE

Usage Guide

Minimum pulse width =780ns

STOREN —| |
UFM BUSYN | ,7

1.85us delay regardless of
whether STOREN is released

Figure 5.2. FlashBak Waveform

Table 5.1. STFA Port Descriptions

Port Name gg::e;:::edmg Hardware 1/0 Description

STOREN storecmdn | Initiates to store the EBR content to Flash

UFMFAIL ufm_fail (0] Store to Flash operation failed

UFMBUSYN fl_busyn (0] Tells the user whether the Flash is in the busy state or not

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

64 FPGA-UG-02080-2.3

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Attribute Definitions

A.1. DATA_WIDTH

Data width is associated with the RAM and FIFO elements. The DATA_WIDTH attribute defines the number of bits in
each word. It takes the values defined in the RAM size tables in each memory module.

A.2. REGMODE

REGMODE, or the Register mode attribute, is used to enable pipelining in the memory. This attribute is associated with
the RAM and FIFO elements. The REGMODE attribute takes the NOREG or OUTREG mode parameter that disables and
enables the output pipeline registers.

A.3. RESETMODE

The RESETMODE attribute allows users to select the mode of reset in the memory. This attribute is associated with the
block RAM elements. RESETMODE takes two parameters: SYNC and ASYNC. SYNC means that the memory reset is
synchronized with the clock. ASYNC means that the memory reset is asynchronous to clock.

A.4. CSDECODE

CSDECODE, or the Chip Select Decode attributes, are associated to block RAM elements. Chip Select (CS) is a useful port
when multiple cascaded EBR blocks are required by the memory. The CS signal forms the MSB for the address when
multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily.

CSDECODE takes the following parameters: 000, 001, 010, 011, 100, 101, 110, and 111. CSDECODE values determine
the decoding value of CS[2:0]. CSDECODE_W is chip select decode for write and CSDECODE_R is chip select decode for
read for Pseudo Dual Port RAM. CSDECODE_A and CSDECODE_B are used for true dual port RAM elements and refer to
the A and B ports.

A.5. WRITEMODE

The WRITEMODE attribute is associated with the block RAM elements. It takes the NORMAL, WRITETHROUGH, and
READBEFOREWRITE mode parameters.

In NORMAL mode, the output data does not change or get updated during the write operation. This mode is supported
for all data widths.

In WRITETHROUGH mode, the output data is updated with the input data during the write cycle. This mode is
supported for all data widths.

In READBEFOREWRITE mode, the output data port is updated with the existing data stored in the write address, during
a write cycle. This mode is supported for x9 and x18 data widths.

WRITEMODE_A and WRITEMODE_B are used for dual port RAM elements and refer to the A and B ports in case of a
True Dual Port RAM.

For all modes of the True Dual Port module, simultaneous read access from one port and write access from the other
port to the same memory address is not recommended. The read data may be unknown in this situation.

Also, simultaneous write access to the same address from both ports is not recommended. When this occurs, the data
stored in the address becomes undetermined when one port tries to write an 'H' and the other tries to write an 'L".

It is recommended that users implement control logic to identify this situation if it occurs and then either:

e Implement status signals to flag the read data as possibly invalid, or

e Implement control logic to prevent the simultaneous access from both ports.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

A.6. GSR

GSR, the Global Set/ Reset attribute, is used to enable or disable the global set/reset for the RAM element.

A.7. ASYNC_RESET_RELEASE

When RESETMODE is set to ASYNC, the ASYNC_RESET_RELEASE attribute allows users to select how the reset is
de-asserted/released: When set to SYNC, the reset is de-asserted synchronously to the clock. When set to

ASYNC, the memory reset is released asynchronously (without relation to the clock).

A.8. INIT_DATA (MachXO3LF Only)

The INIT_DATA attribute allows the user to specify how EBR initialization values are stored and accessed. When set to
STATIC, the EBR initialization values are compressed by the software and stored in a variable location in UFM (User
Flash Memory). When set to DYNAMIC, the initialization values are not compressed, and stored in a user-accessible,
fixed location in UFM.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE LatticeXP2 Memory

Usage Guide

Technical Support Assistance

Submit a technical support case via www.latticesemi.com/techsupport.

© 2015-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02080-2.3 67

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Revision History
Revision 2.3, March 2021

= LATTICE

Section

Change Summary

Utilizing IPexpress

e Newly added the Byte Order with Different Port Widths, ECC in Memory Modules,
Utilizing PMI, and Memory Module Inference sections.

Memory Modules

e Removed the original ECC support description.

Revision 2.2, October 2018

Section

Change Summary

All

Changed document number from TN1137 to FPGA-UG-02080.

All

Changed to the latest template.

Acronyms in This Document

Newly added.

Table 4.20

Changed “most” to “least” in the notes.

Revision 2.1, June 2015

Section

Change Summary

Programming via the SPI
Interface

e Removed Delay Time column in Table 20, Usage of Commands.
e Added footnote 3.

Technical Support Assistance

Updated.

Revision 02.0, August 2013

Section

Change Summary

All

e Updated corporate logo.
e Updated the following waveform figures:
e Generic Timing Diagram
e READ_ID Waveform
e WRITE_EN Waveform
e WRITE_DIS Waveform
e ERASE_TAG Waveform
e PROGRAM_TAG Waveform
e READ_TAG Waveform
e STATUS Waveform

Serial Data Input (SI)

Updated.

Technical Support Assistance

Updated.

Revision 01.9, July 2011

Section

Change Summary

All

Added the setup and hold requirements for addresses to EBR-based memories.

Revision 01.8, November 2008

Section

Change Summary

All

Updated the following waveform figures:
e Generic Timing Diagram

e READ_ID Waveform

e WRITE_EN Waveform

e WRITE_DIS Waveform

e ERASE_TAT Waveform

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Section

Change Summary

e PROGRAM_TAW Waveform
e READ_TAG Waveform
e STATUS Waveform.

Serial Data Input (SI)

Updated.

Memory Modules

Updated.

Revision 01.7, June 2008

Section

Change Summary

All

Added TAG memory timing waveforms and instructions.

Revision 01.6, June 2008

Section

Change Summary

All

Removed Read-Before-Write sysMEM EBR mode.

First In First Out (FIFO, FIFO_DC)
— EBR Based

Updated

Revision 01.5, July 2008

Section

Change Summary

All

Added FlashBAK waveform diagram.

Revision 01.4, February 2008

Section

Change Summary

All

Updated FIFO_DC without Output Registers (Non-Pipelined) diagram.

Revision 01.3, January 2008

Section

Change Summary

All

e Updated Read_Tag Commands Waveform diagram.

e Changed minimum delay between the 3rd and 24th dummy clock from 3ps to
Sus.

Revision 01.2, November 2007

Section

Change Summary

All

TAG memory added.

Revision 01.1, July 2007

Section

Change Summary

All

Added FlashBak Capability section.

Revision 01.0, February 2007

Section

Change Summary

All

Initial release

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

http://www.latticesemi.com/

	LatticeXP2 Memory
	Acronyms in This Document
	1. Introduction
	2. Memories in LatticeXP2 Devices
	3. Utilizing IPexpress
	3.1. IPexpress Flow
	3.2. Byte Order with Different Port Widths
	3.3. ECC in Memory Modules
	3.4. Utilizing PMI
	3.5. Memory Module Inference

	4. Memory Modules
	4.1. Single Port RAM (RAM_DQ) – EBR Based
	4.2. True Dual Port RAM (RAM_DP_TRUE) – EBR Based
	4.3. Pseudo Dual Port RAM (RAM_DP) – EBR Based
	4.4. Read Only Memory (ROM) – EBR Based
	4.5. First In First Out (FIFO, FIFO_DC) – EBR Based
	4.5.1. First In First Out (FIFO) Memory
	4.5.2. Dual Clock First In First Out (FIFO_DC) Memory
	4.5.3. FIFO_DC Flags

	4.6. Distributed Single Port RAM (Distributed_SPRAM) – PFU Based
	4.7. Distributed Dual Port RAM (Distributed_DPRAM) – PFU Based
	4.8. Distributed ROM (Distributed_ROM) – PFU Based
	4.9. User TAG Memory
	4.9.1. Basic Specifications for TAG Memory

	4.10. Programming via the SPI Interface
	4.11. General Description
	4.12. Pin Descriptions
	4.12.1. Serial Data Input (SI)
	4.12.2. Serial Data Output (SO)
	4.12.3. Serial Clock (CLK)
	4.12.4. Chip Select (CS)

	4.13. SPI Operations
	4.13.1. SPI Modes
	4.13.2. Status Register
	4.13.3. Commands
	4.13.3.1. READ_ID (98h)
	4.13.3.2. WRITE_EN (ACh)
	4.13.3.3. WRITE_DIS (78h)
	4.13.3.4. ERASE_TAG (0Eh)
	4.13.3.5. PROGRAM_TAG (8Eh)
	4.13.3.6. READ_TAG (4Eh)
	4.13.3.7. STATUS (4Ah)

	4.14. Specifications and Timing Diagrams
	4.14.1. Powering Up
	4.14.2. Availability of TAG Memory
	4.14.3. AC Timing
	4.14.4. Programming Timing

	4.15. Programming via the JTAG Interface

	5. Initializing Memory
	5.1. Initialization File Format
	5.2. Binary File
	5.3. Hex File
	5.4. Addressed Hex
	5.5. FlashBak™ Capability

	Appendix A. Attribute Definitions
	A.1. DATA_WIDTH
	A.2. REGMODE
	A.3. RESETMODE
	A.4. CSDECODE
	A.5. WRITEMODE
	A.6. GSR
	A.7. ASYNC_RESET_RELEASE
	A.8. INIT_DATA (MachXO3LF Only)

	Technical Support Assistance
	Revision History
	Revision 2.3, March 2021
	Revision 2.2, October 2018
	Revision 2.1, June 2015
	Revision 02.0, August 2013
	Revision 01.9, July 2011
	Revision 01.8, November 2008
	Revision 01.7, June 2008
	Revision 01.6, June 2008
	Revision 01.5, July 2008
	Revision 01.4, February 2008
	Revision 01.3, January 2008
	Revision 01.2, November 2007
	Revision 01.1, July 2007
	Revision 01.0, February 2007

