
www.latticesemi.com 1 AN8077_1.3

March 2015 Application Note AN8077

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
SRAM-based FPGA devices are volatile and require configuration at power up, with the configuration data held in
an external device. Systems often task an embedded microprocessor with FPGA configuration, transferring the
data from an on-board ROM or Flash memory. However, on systems that require fast configurations, or systems
that do not have microprocessor resources readily available, a dedicated PROM is commonly used. Such PROM
devices are typically expensive and are usually sourced from a single vendor.

An alternative solution is to use a Lattice non-volatile FPGA as an FPGA Loader. The FPGA Loader, coupled with
a standard parallel Flash memory can perform the function of a PROM or microprocessor. This FPGA provides the
JTAG programming interface to the Flash, as well as control of data to the other FPGAs for configuration. Figure 1
shows a diagram of the Flash and FPGA Loader device.

Note: Unless described otherwise, the remainder of this document will use the following terminology:

• “FPGA Loader” – The non-volatile FPGA device that provides the Flash interface.

• “FPGA” – An FPGA to be configured by the FPGA Loader.

Figure 1. Flash Programmer Interface

FLASH_ADDR

FLASH_DATA

FLASH_WE

FLASH_OE

FLASH_CE

FLASH_RSTn

FLASH_BYTE

FLASH_RDY

A

DQ

WE

OE

WE

RESET

BYTE

RY/BY#

Parallel Flash
Device

MachXO, Mach XO2
LatticeXP, LatticeXP2

FPGA

Configuration

ispJTAG Port

1. Pullup resistors may be required on some Flash pins. Refer to the Flash data sheet.
2. Flash signal names may vary slightly from those used in the diagram.

Parallel Flash Programming
and FPGA Configuration

2

Parallel Flash Programming
and FPGA Configuration

Supported Devices
The following devices are supported for implementation of the Flash Programmer:

• MachXO™

• MachXO2™

Supported devices for configuration through this design include any Lattice FPGA with serial or parallel support for
conventional SRAM configuration. This includes:

• LatticeECP™

• LatticeECP2™

• LatticeECP2/M™

• LatticeECP3™

• LatticeXP™

• LatticeXP2™

• LatticeSC™

• LatticeSC/M™

• LatticeEC™

Note: Configuration from encrypted bitstreams for LatticeECP2/M 'S' series devices is currently not supported
using the methods in this application note.

A list of supported parallel Flash devices is available in the Diamond Programmer. Diamond Programmer can be
downloaded free of charge at www.latticesemi.com.

http://www.latticesemi.com/products/designsoftware/ispvmsystem/index.cfm

3

Parallel Flash Programming
and FPGA Configuration

Programming the Flash
Unlike some dedicated configuration devices, which can be reprogrammed in-circuit via IEEE 1149.1 compliant
JTAG programming tools, standard Flash memories typically do not support JTAG programming. This design, in
order to provide greater capability, provides a method for updating the Flash memory while the device is still in-cir-
cuit.

Flash programming using ispVM System software allows a unified programming environment. ispVM System con-
verts the configuration data file into a set of instructions that are executed through the ispJTAG™ port. A small
amount of additional logic in the FPGA Loader device increments the address and provides the necessary control
signals, shown in Figure 2.

Figure 2. FPGA Loader Flash Programming Block Diagram

FLASH_ADDR

FLASH_DATA

ispJTAG
Port

Data Register

Control Signal
State Machine

Address Register Load/Increment

FLASH_OE

FLASH_WE

JTAG State Machine

FLASH_CE

4

Parallel Flash Programming
and FPGA Configuration

FPGA Configuration
The FPGA device is configured automatically at power-up. While the power is ramping up to the device, a power-
on-reset is triggered, external configuration mode pins are sampled, the DONE and INIT pins are driven low, and
the internal SRAM cleared. Once the device reaches the proper voltage threshold, the INIT pin is released and
must be pulled up externally to allow the start of configuration. This process can also be initiated at any time by tog-
gling the PROGRAMn pin.

The FPGA supports several options for configuration, which can be broken down into two categories: parallel and
serial. Parallel mode provides a byte-wide interface, while serial mode is based on a bit-wide data stream. For more
details on FPGA configuration, refer to the corresponding Lattice technical note for the FPGA device of interest.

Serial Mode
In serial mode, the FPGA obtains its configuration data one bit at a time on DIN at every rising edge of CCLK. If
additional FPGA devices are present, serial data will flow out of the DOUT pin to form a configuration daisy chain.
Figure 3 shows a diagram for this mode.

Figure 3. Serial Mode FPGA Signals

Lattice FPGA
Slave Serial

CCLK

DI

DONE

INITN

DOUT

PROGRAMN

To additional
Slave Serial

FPGAs

Configuration
Device

5

Parallel Flash Programming
and FPGA Configuration

Parallel Mode
Parallel configuration mode operates with a byte-wide data bus and some additional control signals. To write to the
parallel sysCONFIG™ port, the WRITEn, CSn, and CS1n pins must all be asserted low. To facilitate multiple FPGA
configuration in parallel mode, the CSOn pin is used to assert the chip select input of the next device. The parallel
configuration connections are shown in Figure 4.

Figure 4. Parallel Mode FPGA Signals

Lattice FPGA
Slave Parallel

CCLK

D[0:7]

DONE

INITN

CSON

CS1N

PROGRAM

BUSY

WRITEN

CSN

PROGRAMN

Lattice FPGA
Slave Parallel

CCLK

D[0:7]

DONE

INITN

CS1N

BUSY

WRITEN

CSN

PROGRAMN

CSON

INITN
DONE

D[0:7]

CCLK

BUSY
WRITEN

6

Parallel Flash Programming
and FPGA Configuration

Implementation
The FPGA Loader design can be implemented using ispLEVER® or Lattice Diamond™ design software. The
design uses approximately 220 registers and 230 LUT4s. The design source code can be compiled using the isp-
LEVER or Diamond design software to target the desired device with custom pin assignments.

Table 1. Device Resource Utilization

Table 2. Netlist Files

Design Top-level File (*.vhd, *.v) FFs1 LUTs1

Programmer Only flash_prog 222 121

Programmer + Serial Configuration flash_prog_load16_ss 204 110

Programmer + Parallel Configuration flash_prog_load16_sp 230 210

1. Approximate utilization with default configuration.

Target Device1 Programmer IP Netlist File

MachXO flash_programmer_xo.ngo

MachXO2 flash_programmer_xo2.ngo

LatticeXP flash_programmer.ngo

LatticeXP2 flash_programmer_xp2.ngo

1. FPGA loader device

7

Parallel Flash Programming
and FPGA Configuration

Design Fit Process Using Diamond Design Software
Requirements

• Lattice Diamond 2.1 or greater with a valid license

• ispLEVER with a valid license

Procedure
Note: This procedure assumes familiarity with the Lattice design software. For more information on using isp-
LEVER and Diamond, please see the tutorials included within the help system.

1. Extract the files from the distribution zip file for the intended implementation.

2. Launch the Diamond design tool and create a new project in the location of the files extracted in step 1.
Select the project type according to the desired use of VHDL or Verilog.

3. Select a supported device as the target.

4. Import the top-level file, according to desired function and HDL preference. Uncomment the Macro param-
eter (XO, XO2, XP2, etc...) as per the selected device as an FPGA loader.

5. Launch the Design Planner to assign I/O types and pins for each of the signals. Timing preferences are
also recommended. For example timing preferences, refer to the accompanying ‘preferences.txt’.

6. Execute the ‘Place and Route’ process to run the design flow.

7. To generate a programming file, execute the ‘Generate Data File’ process.

Implementation Notes

• When using 8/16 bit selectable Flash devices, 16-bit mode must be used during programming. Such Flash
devices typically have a dedicated input pin (i.e. BYTE#) that should be asserted to the correct polarity during
programming. After programming, either mode may be used for read access to the Flash device.

• When 8-bit only devices are supported, the lower 8 bits (FLASH_DQ[7:0]) should be connected to the Flash data
bus.

• Only Flash devices that have uniform sector sizes are supported with sector erase functionality. Non-uniform
(boot) sector devices are supported with an entire chip erase function. Flash devices with uniform sectors are
strongly recommended.

• The fastest programming speeds are achieved using the USB version of the Lattice ispDOWNLOAD® cable with
a PC supporting USB2.0.

8

Parallel Flash Programming
and FPGA Configuration

Using Diamond Programmer to Program the Flash Device
Diamond 2.1 and later provides support for the Parallel Flash Programmer.

1. 1.Scan the chain or manually insert the devices representing the JTAG chain. Any non-Lattice devices
should be appropriately handled by specifying instruction register lengths or importing a BSDL, SVF, or
ISC file. An example chain is shown in Figure 5.

Figure 5. Diamond Programmer

2. Double-click the device that will function as the FPGA Loader to edit the properties. The resulting window
should appear as shown in Figure 6.

Figure 6. Device Properties Dialog

9

Parallel Flash Programming
and FPGA Configuration

3. From the 'Access Mode’ selection, choose “Advanced Flash Programming (FPGA LOADER)”. This opens
the ‘Flash Programmer’ dialog box, as shown in Figure 7.

Figure 7. Flash Programmer Dialog

4. Within the ‘CPLD or FPGA Device’ page, shown in Figure 8, set the following options:

Figure 8. CPLD or FPGA Device Page

FPGA Loader Application Specific Data File – Browse to the JEDEC or bit stream file created by Diamond.

Operation – Select the appropriate programming option for the FPGA Loader device. If the device has already
been configured with the correct file, the ‘Bypass’ operation can be used to skip this step.

10

Parallel Flash Programming
and FPGA Configuration

5. Browse to the data file to program into the Flash device. If targeting a single Lattice FPGA, the bit stream
(.bit) file may be used. Otherwise, choose the file as one of the supported PROM formats.

Figure 9. Configuration Data Setup Page

11

Parallel Flash Programming
and FPGA Configuration

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

March 2015 1.3 Updated Introduction section. Revised Figure 1, Flash Programmer
Interface. Removed LatticeECP, LatticeECP2.

Updated Implementation section. Revised Table 2, Netlist Files.
Removed LatticeECP2 target device.

September 2013 01.2 Updated for Lattice Diamond design software support.

Added support for MachXO2.

Updated corporate logo.

Updated Technical Support Assistance information.

August 2007 01.1 Updated to support non-S version of LatticeECP2/M device family only
under device support.

February 2007 01.0 Initial release.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

12

Parallel Flash Programming
and FPGA Configuration

Appendix A. 16-bit Flash to Slave Serial Configuration

Figure 10. FPGA Loader Logic Diagram for Flash to Serial Configuration

VHDL toplevel file flash_prog_load16_ss.vhd

Verilog toplevel file flash_prog_load16_ss.v

Flash interface Standard, 16-bit asynchronous

FPGA interface Slave Serial

INITn

CCLK

Address
Counter

Control

Shift
Register NID]0:51[ATAD_HSALF

FLASH_ADDR[25:0]

DONE FLASH_CE

FLASH_OE

FLASH_RSTn

13

Parallel Flash Programming
and FPGA Configuration

Figure 11. FPGA Loader to Slave Serial FPGA Configuration Signal Connections

Note: Master mode may also be used with applicable devices, where the clock source is from the FPGA. Only one
FPGA should be designated as master, while any others connected in a daisy chain should be slaves.

Configuration Speed
The maximum allowed configuration frequency is dependent upon the Flash device used and the setup and clock-
to-output times of the FPGA Loader device:

• Flash access time, or address-to-data time (tFLASH). Standard parallel Flash devices are typically available in
speeds from 60ns to 120ns.

• FPGA Loader data input setup time requirement (tSU_DATA)

• FPGA Loader delay from the clock input to the F_ADDRESS output (tCO_ADDRESS)

Note: tSU and tCO timing can be found using the Timing Analyzer tool within ispLEVER or Diamond after imple-
menting the design.

Since the FPGA Loader uses a word look-ahead scheme, accesses to the Flash do not impose register-to-register
timing restrictions on every clock. The Flash access is absorbed over 16 clock cycles, as reflected in the calculation
below:

Lattice FPGA
Slave Serial

FPGA Loader
Device

CCLK

DIN

DONE

INITn

PROGRAMn

DOUT

CCLK

DIN

INITn

DONE

Flash
Interface

To Additional
Slave Serial

FPGAs

CCLKmax =
-1tCO_ADDRESS + tFLASH + tSU_DATA

16

14

Parallel Flash Programming
and FPGA Configuration

Appendix B. 16-bit Flash to Slave Parallel Configuration

Figure 12. FPGA Loader Logic Diagram for Flash to Parallel Configuration

VHDL toplevel file flash_prog_load16_sp.vhd

Verilog toplevel file flash_prog_load16_sp.v

Flash interface Standard, 16-bit asynchronous read

FPGA interface 8-bit Parallel

CE

CE

CE

Address
Counter

WRITEn

D[7:0]

FLASH_ADDR

CCLK

FLASH_DATA[7:0]

FLASH_DATA[15:8]

DONE

WRITEn

CS1n

CSn

INITn FLASH_RSTn

15

Parallel Flash Programming
and FPGA Configuration

Figure 13. FPGA Loader to Slave Parallel FPGA Configuration Signal Connections

Configuration Speed
The maximum allowed configuration frequency is dependent upon the Flash device used and the setup and clock-
to-output times of the FPGA Loader device:

• Flash access time, or address-to-data time (tFLASH). Standard parallel Flash devices are typically available in
speeds from 60ns to 120ns.

• FPGA Loader data input setup time requirement (tSU_DATA)

• FPGA Loader delay from the clock input to the F_ADDRESS output (tCO_ADDRESS)

Note: tSU and tCO timing can be found using the Timing Analyzer tool within ispLEVER or Diamond after imple-
menting the design.

Since the FPGA Loader uses a word look-ahead scheme, accesses to the Flash do not impose register-to-register
timing restrictions on every clock. The Flash access is absorbed over two clock cycles, as reflected in the calcula-
tion below:

Lattice FPGA
Slave Parallel

FPGA Loader
Device

Flash
Interface

To Additional
Slave Parallel

FPGAs

CCLK

D[0:7]

DONE
INITn

CS1n

WRITEn

CSn

PROGRAMn

CSOn

CCLK

D[0:7]

INITn

WRITEn

CSn

DONE

CS1n

CCLKmax =
-1tCO_ADDRESS + tFLASH + tSU_DATA

2

	Parallel Flash Programming and FPGA Configuration
	Introduction
	Supported Devices
	Programming the Flash
	FPGA Configuration
	Serial Mode
	Parallel Mode

	Implementation
	Design Fit Process Using Diamond Design Software
	Implementation Notes

	Using Diamond Programmer to Program the Flash Device
	Technical Support Assistance
	Revision History
	Appendix A. 16-bit Flash to Slave Serial Configuration
	Configuration Speed

	Appendix B. 16-bit Flash to Slave Parallel Configuration
	Configuration Speed

