. Parallel Flash Programming
LATTICE and FPGA Configuration

March 2015 Application Note AN8077

Introduction

SRAM-based FPGA devices are volatile and require configuration at power up, with the configuration data held in
an external device. Systems often task an embedded microprocessor with FPGA configuration, transferring the
data from an on-board ROM or Flash memory. However, on systems that require fast configurations, or systems
that do not have microprocessor resources readily available, a dedicated PROM is commonly used. Such PROM
devices are typically expensive and are usually sourced from a single vendor.

An alternative solution is to use a Lattice non-volatile FPGA as an FPGA Loader. The FPGA Loader, coupled with
a standard parallel Flash memory can perform the function of a PROM or microprocessor. This FPGA provides the
JTAG programming interface to the Flash, as well as control of data to the other FPGAs for configuration. Figure 1
shows a diagram of the Flash and FPGA Loader device.

Note: Unless described otherwise, the remainder of this document will use the following terminology:

* “FPGA Loader”— The non-volatile FPGA device that provides the Flash interface.
* “FPGA” - An FPGA to be configured by the FPGA Loader.

Figure 1. Flash Programmer Interface

Parallel Flash MachXO, Mach X0O2
Device LatticeXP, LatticeXP2

A (¢ FLASH_ADDR
DQ [P FLASH_DATA

WE |« FLASH_WE T A
OE |« FLASH_OE Configuration
WE ¢ FLASH_CE —
RESET ¢ FLASH_RSTn
BYTE |« FLASH_BYTE
RY/BY# » FLASH_RDY

ispJTAG Port

1. Pullup resistors may be required on some Flash pins. Refer to the Flash data sheet.
2. Flash signal names may vary slightly from those used in the diagram.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 AN8077_1.3

[1] Parallel Flash Programming
sLATTICE and FPGA Configuration

Supported Devices

The following devices are supported for implementation of the Flash Programmer:

¢ MachXQO™
e MachXQO2™

Supported devices for configuration through this design include any Lattice FPGA with serial or parallel support for
conventional SRAM configuration. This includes:

* LatticeECP™
LatticeECP2™

* LatticeECP2/M™
* LatticeECP3™

* LatticeXP™

* LatticeXP2™

* LatticeSC™

* LatticeSC/M™

* LatticeEC™

Note: Configuration from encrypted bitstreams for LatticeECP2/M 'S’ series devices is currently not supported
using the methods in this application note.

A list of supported parallel Flash devices is available in the Diamond Programmer. Diamond Programmer can be
downloaded free of charge at www.latticesemi.com.

http://www.latticesemi.com/products/designsoftware/ispvmsystem/index.cfm

[1] Parallel Flash Programming
sLATTICE and FPGA Configuration

Programming the Flash

Unlike some dedicated configuration devices, which can be reprogrammed in-circuit via IEEE 1149.1 compliant
JTAG programming tools, standard Flash memories typically do not support JTAG programming. This design, in
order to provide greater capability, provides a method for updating the Flash memory while the device is still in-cir-
cuit.

Flash programming using ispVM System software allows a unified programming environment. ispVM System con-
verts the configuration data file into a set of instructions that are executed through the ispJTAG™ port. A small
amount of additional logic in the FPGA Loader device increments the address and provides the necessary control
signals, shown in Figure 2.

Figure 2. FPGA Loader Flash Programming Block Diagram

3

FLASH_ADDR 7 Address Register Load/Increment

FLASH_DATA < *

Y

Data Register

FLASH_WE <

P Control Signal
FLASH_OE < State Machine
FLASH_CE =«

JTAG State Machine

I
ispJTAG
Port

= ATTICE Parallel Flash Programming

and FPGA Configuration

FPGA Configuration

The FPGA device is configured automatically at power-up. While the power is ramping up to the device, a power-
on-reset is triggered, external configuration mode pins are sampled, the DONE and INIT pins are driven low, and
the internal SRAM cleared. Once the device reaches the proper voltage threshold, the INIT pin is released and
must be pulled up externally to allow the start of configuration. This process can also be initiated at any time by tog-
gling the PROGRAMN pin.

The FPGA supports several options for configuration, which can be broken down into two categories: parallel and
serial. Parallel mode provides a byte-wide interface, while serial mode is based on a bit-wide data stream. For more
details on FPGA configuration, refer to the corresponding Lattice technical note for the FPGA device of interest.

Serial Mode

In serial mode, the FPGA obtains its configuration data one bit at a time on DIN at every rising edge of CCLK. If
additional FPGA devices are present, serial data will flow out of the DOUT pin to form a configuration daisy chain.
Figure 3 shows a diagram for this mode.

Figure 3. Serial Mode FPGA Signals

v

Lattice FPGA
Slave Serial
» CCLK
» DI DOUT —*

Conti i To additional
onfiguration Slave Serial
Device < DONE FPGAs

< INITN
» PROGRAMN

vy v

v

= ATTICE Parallel Flash Programming

and FPGA Configuration

Parallel Mode

Parallel configuration mode operates with a byte-wide data bus and some additional control signals. To write to the
parallel sysCONFIG™ port, the WRITEn, CSn, and CS1n pins must all be asserted low. To facilitate multiple FPGA
configuration in parallel mode, the CSOn pin is used to assert the chip select input of the next device. The parallel
configuration connections are shown in Figure 4.

Figure 4. Parallel Mode FPGA Signals

INITN >
DONE ,
, D[0:7] >
CCLK >
Lattice FPGA Lattice FPGA
Slave Parallel Slave Parallel
- CCLK » CCLK
% 4P| D[0:7] P D[0:7]
DONE DONE
INITN L__| INITN
BUSY BUSY
CSON CSON[—,
.| WRITEN o] WRITEN
o] CSN o CSN
» CS1N CS1N
’—v PROGRAMN ’—v PROGRAMN
+PROGRAM | |
BUSY
JWRITEN

= ATTICE Parallel Flash Programming

and FPGA Configuration

Implementation

The FPGA Loader design can be implemented using ispLEVER® or Lattice Diamond™ design software. The
design uses approximately 220 registers and 230 LUT4s. The design source code can be compiled using the isp-
LEVER or Diamond design software to target the desired device with custom pin assignments.

Table 1. Device Resource Utilization

Design Top-level File (*.vhd, *.v) FFs' LUTs'
Programmer Only flash_prog 222 121
Programmer + Serial Configuration flash_prog_load16_ss 204 110
Programmer + Parallel Configuration flash_prog_load16_sp 230 210

1. Approximate utilization with default configuration.

Table 2. Netlist Files

Target Device' Programmer IP Netlist File
MachXO flash_programmer_xo.ngo
MachX0O2 flash_programmer_xo02.ngo
LatticeXP flash_programmer.ngo
LatticeXP2 flash_programmer_xp2.ngo

1. FPGA loader device

[1] Parallel Flash Programming
sLATTICE and FPGA Configuration

Design Fit Process Using Diamond Design Software
Requirements

» Lattice Diamond 2.1 or greater with a valid license
* ispLEVER with a valid license

Procedure
Note: This procedure assumes familiarity with the Lattice design software. For more information on using isp-
LEVER and Diamond, please see the tutorials included within the help system.

1. Extract the files from the distribution zip file for the intended implementation.

2. Launch the Diamond design tool and create a new project in the location of the files extracted in step 1.
Select the project type according to the desired use of VHDL or Verilog.

3. Select a supported device as the target.

4. Import the top-level file, according to desired function and HDL preference. Uncomment the Macro param-
eter (X0, XO2, XP2, etc...) as per the selected device as an FPGA loader.

5. Launch the Design Planner to assign I/O types and pins for each of the signals. Timing preferences are
also recommended. For example timing preferences, refer to the accompanying ‘preferences.txt’.

6. Execute the ‘Place and Route’ process to run the design flow.

7. To generate a programming file, execute the ‘Generate Data File’ process.

Implementation Notes

* When using 8/16 bit selectable Flash devices, 16-bit mode must be used during programming. Such Flash
devices typically have a dedicated input pin (i.e. BYTE#) that should be asserted to the correct polarity during
programming. After programming, either mode may be used for read access to the Flash device.

* When 8-bit only devices are supported, the lower 8 bits (FLASH_DQ[7:0]) should be connected to the Flash data
bus.

* Only Flash devices that have uniform sector sizes are supported with sector erase functionality. Non-uniform
(boot) sector devices are supported with an entire chip erase function. Flash devices with uniform sectors are
strongly recommended.

* The fastest programming speeds are achieved using the USB version of the Lattice ispDOWNLOAD® cable with
a PC supporting USB2.0.

[1] Parallel Flash Programming
sLATTICE and FPGA Configuration

Using Diamond Programmer to Program the Flash Device

Diamond 2.1 and later provides support for the Parallel Flash Programmer.

1. 1.Scan the chain or manually insert the devices representing the JTAG chain. Any non-Lattice devices
should be appropriately handled by specifying instruction register lengths or importing a BSDL, SVF, or
ISC file. An example chain is shown in Figure 5.

Figure 5. Diamond Programmer

—
[File Edit View Design Window Help A
a5 @ @ 0=
Enable Status Device Family Device Operation Fie Name Fie DatefTme Checksum US| Cable Settings
1@ Machx02 LCMXO02-4000HE FLASH Erase Program, Verify Detect Cable
Cable: uUss2 ¥) I
Port: FTUse0 -
Custom Port (HEX):
1/0 Settings

© Use Defauit 1/0 Settings
Use Custom 1/0 Settings

Cable and /0 Settings

2. Double-click the device that will function as the FPGA Loader to edit the properties. The resulting window
should appear as shown in Figure 6.

Figure 6. Device Properties Dialog

. Programmer - fpga_loader_with xo2xcf * —— =@ =
Bed BBLESE
Enable Status Device Famiy Device Operation File Name Fie Date/Tme Chedisum US Cable Settings
17 MachX02 LCMX02-4000HE FLASH Erase,ProgramVerify [
Cable: [use2 -
pot o] |
Custom Port (HEX):

1/0 Settings
© Use Default 1/0 Setiings

Use Custom /O Setting
£_} MachXO2 - LCMX02-4000HE - Device Properties [0 [t A
NTN i

Device Operation
Access Mode: [Flash Programming Mode =
Operation: FLASH Erase,Program, Verify E3
Programming Optons

Programming Fie: &

cted
Devie Options
[] Renitalize part on program error SetispEN High
o)) SetispEN Lo

[E——

= ATTICE Parallel Flash Programming

and FPGA Configuration

3. From the 'Access Mode’ selection, choose “Advanced Flash Programming (FPGA LOADER)”. This opens
the ‘Flash Programmer’ dialog box, as shown in Figure 7.

Figure 7. Flash Programmer Dialog

%} Programmer - fpga_loader_with_xo2.xcf* —— o[@] & J
| im|
fed B2 &8
Enable Status Device Family Device Operation File Name File Date/Time Checksum US| Cable Settings
l‘ |52} MachX02 LCMX02-4000HE FLASH Erase,Program, Verify Detect Cable.
£} MachXO2 - LCMX02-4000HE - Device Properties R Cable: (use2 -
Device Operation Bt o -]

Access Mode: Advanced Fiash Programming (FPGA Loader) ~ | Custom Port (HEX):
Operation: SRAM Fast Program ~] 100 Setios

Device Options © Use Defauit 1/0 Settings
| Reinitialize part on program error Use Custom 1/O Settings
Advanced Flash Options (FPGA Loader)
oo [——
e E—
Devie: e s
Package: [#pntsr) K
FPGA Loader Data Fie: & TE
= 3
Fiash Data File: [(|
Flash Programming
Data File Size (Bytes):
Start Address (Hex): [oxoo000000 | B

End Address (Hex): [ox007r0000 e

[] Erase Part on Programming Error

4. Within the ‘CPLD or FPGA Device’ page, shown in Figure 8, set the following options:
Figure 8. CPLD or FPGA Device Page

§_ Programmer - fpga_loader_with xo2xcf* —— lolE] =
| im|
He|d B e B
Enble Status Device Family Device Operation File Name File Date/Tme Checksum US| Cable Settings
l‘ |52} MachX02 LCMXO02-4000HE FLASH Erase,Program, Verify b Cable
£} MachX02 - LCMX02-4000HE - Device Properties [P [t Cable: [usez =
Device Operation Port: |FTuss-0 -/
Access Mode: (Advanced Fiash Programming (FPGA Loader) | Custom Port (HEX):
G e —— T
Device Optins © Use Default 1/0 Settings
[] Reinitiaiize part on program error Use Custom 1/O Settings
Advanced Flash Options (FPGA Loader) INITN Pin Connected
Famiy: Paralel Fiash - e
Vendor: SPANSION v
RST Hg
Device: 52560601 - -
Package: 48-pin TSOP 5
Operation: (Erase,Program, Verify -]

FPGA Loader Data Fl: r_with _x02/fpga_loader_with_x02_fpga_loader_with_x02.bt .|

Flash Data Fie: &
Flash Programming
Data File Size (Bytes):
Start Address (Hex): 0x00000000 v R
End Address (Hex): e I — -

7] Erase Part on Programming Error

o) (o

FPGA Loader Application Specific Data File — Browse to the JEDEC or bit stream file created by Diamond.

Operation — Select the appropriate programming option for the FPGA Loader device. If the device has already
been configured with the correct file, the ‘Bypass’ operation can be used to skip this step.

= LATTICE

Parallel Flash Programming
and FPGA Configuration

5. Browse to the data file to program into the Flash device. If targeting a single Lattice FPGA, the bit stream
(.bit) file may be used. Otherwise, choose the file as one of the supported PROM formats.

Figure 9. Configuration Data Setup Page

£ Programmer - fpga_loader_with_xo2xcf * —— [=[E] =)
| im|
Pet A BB L oE
Enable Status Device Famiy Device Operation File Name Fie Date/Time Checksum US| Cable Settings
1| [v] MachX02 LCMX02-4000HE FLASH Erase, Program, Verify [m
I {..} MachXO2 - LCMXO2-4000HE - Device Properties A== Cable: [uss2. -]
Device Operation port: [Fruseo 1)
Access Mode: ‘Advanced Flash Programming (FPGA Loader) | Custom Port (HEX):
Operaton: [RAMFastProgam _+] 1/0 Settings
Device Options © Use Default 1/O Settings
[7] Reiniialze part on program error Les Qe L0 Settos
‘Advanced Flash Options (FPGA Loader) i co
Vendor: (spansion v
Device: [s2sGL04 2)
Package: [®pntsr 4] 3
reren T — =
FPGA Loader Data Fie: 2r_with_x02/fbga_loader_with_xo2_fpga_loader_with_x02.bit [.] %
Fiash Data File: ENTAI {_project_diamond_ t.bit] \:\ [°]
Flash Programming
Data File Size (Bytes): 3802229
Start Address (Hex): {0x00000000 - Debug Mode.
End Address (Hex): [ooomoo0]
7] Erase Part on Programming Error
=
m

10

= LATTICE

Parallel Flash Programming
and FPGA Configuration

Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

Revision History

Date Version Change Summary

March 2015 1.3 Updated Introduction section. Revised Figure 1, Flash Programmer
Interface. Removed LatticeECP, LatticeECP2.
Updated Implementation section. Revised Table 2, Netlist Files.
Removed LatticeECP2 target device.

September 2013 01.2 Updated for Lattice Diamond design software support.

Added support for MachXO2.
Updated corporate logo.
Updated Technical Support Assistance information.

August 2007 01.1 Updated to support non-S version of LatticeECP2/M device family only
under device support.

February 2007 01.0 Initial release.

11

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

= LATTICE

Parallel Flash Programming

and FPGA Configuration

Appendix A. 16-bit Flash to Slave Serial Configuration

VHDL toplevel file

flash_prog_load16_ss.vhd

Verilog toplevel file

flash_prog_load16_ss.v

Flash interface

Standard, 16-bit asynchronous

FPGA interface

Slave Serial

Figure 10. FPGA Loader Logic Diagram for Flash to Serial Configuration

COLK >—— 17—

e
I

Address

Counter

FLASH_DATA[15:0] [>——MN—M—n—|

e
I

Control J

Shift

[FLASH_ADDRI[25:0]

Register

INITn >

>

I

[> DIN

DONE >

> FLASH_RSTn

> FLASH_CE

L [> FLASH_OE

12

[1] Parallel Flash Programming
sLATTICE and FPGA Configuration

Figure 11. FPGA Loader to Slave Serial FPGA Configuration Signal Connections

@) >
FPGA Loader Lattice FPGA To Additional
Device Slave Serial Slave Serial
FPGAs
< CCLK |« » CCLK
Flash DIN » DIN DOUT |—
Interface g
—>
DONE DONE
INITn @ INITn
» PROGRAMnN

Yvy

Note: Master mode may also be used with applicable devices, where the clock source is from the FPGA. Only one

FPGA should be designated as master, while any others connected in a daisy chain should be slaves.

Configuration Speed

The maximum allowed configuration frequency is dependent upon the Flash device used and the setup and clock-

to-output times of the FPGA Loader device:

* Flash access time, or address-to-data time (tg aogy)- Standard parallel Flash devices are typically available in
speeds from 60ns to 120ns.

* FPGA Loader data input setup time requirement (tsy parta)

* FPGA Loader delay from the clock input to the F_ADDRESS output (tco appress)

Note: tgy and tcp timing can be found using the Timing Analyzer tool within ispLEVER or Diamond after imple-
menting the design.

Since the FPGA Loader uses a word look-ahead scheme, accesses to the Flash do not impose register-to-register
timing restrictions on every clock. The Flash access is absorbed over 16 clock cycles, as reflected in the calculation
below:

tco_ADDRESS + tFLASH + tSU_DATA) -1

CCLKmax = (16

13

= ATTICE Parallel Flash Programming

and FPGA Configuration

Appendix B. 16-bit Flash to Slave Parallel Configuration

VHDL toplevel file flash_prog_load16_sp.vhd

Verilog toplevel file flash_prog_load16_sp.v

Flash interface Standard, 16-bit asynchronous read
FPGA interface 8-bit Parallel

Figure 12. FPGA Loader Logic Diagram for Flash to Parallel Configuration

FLASH_DATA[15:8][_>

WRITEn
——Q|CE ™
| O D[7:0]
FLASH_DATA[7:0] CO——- 1
—P—P—Q CE o
e pN—
]
L T— I
Address
Counter _| > FLASH_ADDR
————]—0O|CE
cek [—
INTn ? [FLASH_RSTn
——— > WRITEn
DONE [—{> csn

—{ > csin

14

= LATTICE

Parallel Flash Programming
and FPGA Configuration

Figure 13. FPGA Loader to Slave Parallel FPGA Configuration Signal Connections

FPGA Loader Lattice FPGA
Device Slave Parallel
COLK |« »| CCLK
D[0:7] P D[0:7]
To Additional
Slave Parallel
« WRITEn > WRITEn FPGAs
Flash CSn » CSn CSOnt+——»
Interface CS1n » CSin
—>
DONE DONE
INITn INITn
» PROGRAMN

YvyYy

Configuration Speed

The maximum allowed configuration frequency is dependent upon the Flash device used and the setup and clock-

to-output times of the FPGA Loader device:

* Flash access time, or address-to-data time (tg agy)- Standard parallel Flash devices are typically available in
speeds from 60ns to 120ns.

* FPGA Loader data input setup time requirement (tsy parta)

* FPGA Loader delay from the clock input to the F_ADDRESS output (tco appress)

Note: tgyy and tcp timing can be found using the Timing Analyzer tool within ispLEVER or Diamond after imple-
menting the design.

Since the FPGA Loader uses a word look-ahead scheme, accesses to the Flash do not impose register-to-register
timing restrictions on every clock. The Flash access is absorbed over two clock cycles, as reflected in the calcula-
tion below:

tco_ADDRESS + tFLASH + tSU_DATA) -1

CCLKmax = (2

15

	Parallel Flash Programming and FPGA Configuration
	Introduction
	Supported Devices
	Programming the Flash
	FPGA Configuration
	Serial Mode
	Parallel Mode

	Implementation
	Design Fit Process Using Diamond Design Software
	Implementation Notes

	Using Diamond Programmer to Program the Flash Device
	Technical Support Assistance
	Revision History
	Appendix A. 16-bit Flash to Slave Serial Configuration
	Configuration Speed

	Appendix B. 16-bit Flash to Slave Parallel Configuration
	Configuration Speed

