
www.latticesemi.com 17-1 tn1113_02.2

June 2013 Technical Note TN1113

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
Soft errors occur when high-energy charged particles alter the stored charge in a memory cell in an electronic cir-
cuit. The phenomenon first became an issue in DRAM, requiring error detection and correction for large memory
systems in high-reliability applications. As device geometries have continued to shrink, the probability of soft errors
in SRAM has become significant for some systems. Designers are using a variety of approaches to minimize the
effects of soft errors on system behavior.

SRAM-based FPGAs store logic configuration data in SRAM cells. As the number and density of SRAM cells in an
FPGA increase, the probability that a soft error will alter the programmed logical behavior of the system increases.
A number of approaches have been taken to address this issue, but most involve Intellectual Property (IP) cores
that the user instantiates into the logic of their design, using valuable resources and possibly affecting design per-
formance.

This document describes the hardware based soft error detect (SED) approach taken by Lattice Semiconductor for
LatticeECP2™ and LatticeECP2M™ FPGAs.

SED Overview
The SED hardware in the LatticeECP2/M devices consists of an access point to FPGA configuration memory, a
controller circuit, and a 32-bit register to store the CRC for a given bitstream (see Figure 17-1). The SED hardware
reads serial data from the FPGA’s configuration memory and calculates a CRC. The data that is read, and the CRC
that is calculated, does not include EBR memory or PFUs used as RAM. The calculated CRC is then compared
with the expected CRC that was stored in the 32-bit register. If the CRC values match it indicates that there has
been no configuration memory corruption, but if the values differ an error signal is generated.

Figure 17-1. System Block Diagram1

SPI
Serial
Flash

LatticeECP2/M

User
Logic

OSC

Config

1. Any kind of configuration memory can be used, including the SPI configuration shown.

Logic

Logic Access

SED
Control
Circuit

32-Bit
CRC Register

LatticeECP2/M Soft Error
Detection (SED) Usage Guide

17-2

LatticeECP2/M Soft Error
Detection Usage Guide

Note that the calculated CRC is based on the particular arrangement of configuration memory for a particular
design. Consequently, the expected CRC results cannot be specified until after the design is placed and routed.
The Lattice Diamond® bitstream generation software analyzes the configuration of a placed and routed design and
updates the 32-bit SED CRC register contents during bitstream generation.

The following sections describe the LatticeECP2/M SED implementation and flow, along with some sample code to
get started with.

SED Limitations
SED should only be run when the logic of the device is held in a steady state condition to prevent false error indica-
tions. If a normal SRAM configuration command is run the SRAM CRC Error check will be terminated. Refer to
PCN 02B-12 for further details.

Hardware Description
As shown in Figure 17-2, the LatticeECP2/M SED hardware has several inputs and outputs that allow the user to
control, and monitor, SED behavior.

Figure 17-2. Signal Block Diagram

Signal Descriptions
Table 17-1. SED Signal Descriptions

SEDCLKIN
Clock input to the SED hardware.

This clock is derived from the LatticeECP2/M on-chip oscillator. The on-chip oscillator output goes through a
divider to create MCCLK. MCCLK goes through another divider to create SEDCLKIN.

The software default for MCCLK is 2.5 MHz, but this can be modified using the MCCLK_FREQ global preference in
the Global Preferences tab of the Diamond Spreadsheet View (see TN1108, LatticeECP2/M sysCONFIG Usage
Guide, for possible values of MCCLK).

Signal Name Direction Active Description

SEDCLKIN Input N/A Clock

SEDENABLE Input High SED enable

SEDCLKOUT Output N/A Output clock

SEDSTART Input High Start SED cycle

SEDINPROG Output High SED cycle is in progress

SEDDONE Output High SED cycle is complete

SEDFRCERR Input High Force an SED error flag

SEDERR Output High SED error flag

SED
Hardware

Block

SEDENABLE

SEDSTART

SEDFRCERR

SEDCLKIN

SEDCLKOUT

SEDDONE

SEDINPROG

SEDERR

(From Internal
Oscillator)

www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
www.latticesemi.com/dynamic/view_document.cfm?document_id=21648
www.latticesemi.com/dynamic/view_document.cfm?document_id=44415

17-3

LatticeECP2/M Soft Error
Detection Usage Guide

The divider for SEDCLKIN can be set to 1, 2, 4, 8, 16 or 32. The software default is 1, so the default SEDCLKIN fre-
quency is 2.5 MHz. The divider value can be set using a parameter, see the example code at the end of this docu-
ment. Care must be taken to ensure that the SEDCLKIN setting is at least 20 MHz. Refer to Appendix A for details
on MCCLK and SEDCLKIN frequencies.

Note that SEDCLKIN is an internally generated signal, so it should not be included as an input in the user design.
See the examples at the end of this document. Also note that while inputs to the SED block are clocked using SED-
CLKIN, no attempt has been made to synchronize between clock domains. If this is a concern for a particular
design then the designer will need to provide synchronization.

SEDENABLE
Active high input to the SED hardware, sampled on the rising edge of SEDCLKIN.

Table 17-2. SEDENABLE

SEDCLKOUT
Gated version of SEDCLKIN, SEDCLKOUT is gated by SEDENABLE.

SEDSTART
Active high input to the SED hardware, sampled on the rising edge of SEDCLKIN.

Table 17-3. SEDSTART

SEDFRCERR
Active high input to the SED hardware, sampled on the rising edge of SEDCLKIN.

Table 17-4. SEDFRCERR

SEDINPROG
Active high output from the SED hardware, clocked out on the rising edge of SEDCLKOUT.

Table 17-5. SEDINPROG

State Description

1 Enables output of SEDCLKOUT, arms SED hardware.

0 Aborts SED and forces all SED hardware outputs low.

State Description

1 Start error detection. Must be high a minimum of one SEDCLKIN period.

0 No action.

State Description

1 Forces SEDERR high, simulating an SED error.

0 No action.

State Description

1 SED checking is in progress, goes high on the clock following SEDSTART
high.

0 SED checking is not active.

17-4

LatticeECP2/M Soft Error
Detection Usage Guide

SEDDONE
Active high output from the SED hardware, clocked out on the rising edge of SEDCLKOUT.

Table 17-6. SEDDONE

SEDERR
Active high output from the SED hardware, clocked out on the rising edge of SEDCLKOUT.

Table 17-7. SEDERR

State Description

1 SED checking is complete. Reset by a high on SEDSTART or a low on
SEDENABLE.

0 SED checking is not complete.

State Description

1 SED has detected an error. Reset by SEDENABLE going low.

0 SED has not detected an error.

17-5

LatticeECP2/M Soft Error
Detection Usage Guide

SED Flow
Figure 17-3. Timing Diagram

The general SED flow is as follows.

1. User logic sets SEDENABLE high. This signal may be tied high if desired.
2. User logic sets SEDSTART high. SEDINPROG goes high. If SEDDONE is already high it is driven low.

SEDSTART may be tied high to enable continuous SED checking.
3. SED starts reading back data from the configuration SRAM.

SEDCLKIN

SEDINPROG

SEDENABLE

SEDDONE

SEDCLKOUT

SEDSTART

SEDFRCERR

SEDERR

SEDCLKIN

SEDINPROG

SEDENABLE

SEDDONE

SEDCLKOUT

SEDSTART

SEDFRCERR

SEDERR

Normal Failure

Failure Forced With SEDFRCERR

17-6

LatticeECP2/M Soft Error
Detection Usage Guide

4. SED finishes checking. SEDERR is updated, SEDINPROG goes low, and SEDDONE goes high.
5. If SEDERR is driven high there are only two ways to reset it, drive SEDENABLE low or reconfigure the

FPGA.
The user has two choices when an error is detected, ignore the error, and possibly log it, or reconfigure the FPGA.
Reconfiguration can be accomplished by driving the PROGRAMN pin low; this can be done with external logic or
by wiring one of the FPGA’s general purpose I/Os to the PROGRAMN pin and toggling the pin with user logic, per-
haps something as simple as inverting SEDERR. If a general purpose I/O is tied to PROGRAMN it is recom-
mended that the I/O Type be set to open drain and an external pull-up resistor be connected to the pin.

Figure 17-4. Example Schematic

SED Run Time
The amount of time needed to perform an SED check depends on the density of the device and the frequency of
SEDCLKIN. There will also be some overhead time for calculation, but it is fairly short in comparison. An approxi-
mation of the time required can be found by using the following formula:

Maxbits / SEDCLKIN = Time

Maxbits is in mega-bits and depends on the density of the FPGA (see Table 17-8). SEDCLKIN is frequency in MHz.
Time is in seconds

For example, if the design is using a LatticeECP2 with 50K look-up tables and the SEDCLKIN is set in the software
to be 20 MHz:

8.9 Mbits / 20 MHz = 0.445 seconds

In this example, SED checking will take approximately 0.445 seconds. Remember that this happens in the back-
ground and does not affect user logic performance.

Note that the internal oscillator used to generate SEDCLKIN can vary by ±30%.

PROGRAMN

GPIO
Open Drain
Output

LatticeECP2/M

VCC

10K

17-7

LatticeECP2/M Soft Error
Detection Usage Guide

Table 17-8. SED Run Time

Sample Code
The following simple example code shows how to instantiate the SED. In the example the SED is always on and
always running, and the outputs of the SED hardware have been routed to FPGA output pins.

Note that the SEDAA primitive is part of ispLEVER 6.0 or later.

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity example is
 port (

Sed_Done : out std_logic;
Sed_In_Prog : out std_logic;
Sed_Clk_out : out std_logic;
Sed_out : out std_logic);

end;

architecture behavioral of example is

 component SEDAA -- SED component
 generic (OSC_DIV : integer := 1); -- set SEDCLKIN divider
 port (

SEDENABLE : in std_logic;
SEDSTART : in std_logic;
SEDFRCERR : in std_logic;
SEDERR : out std_logic;
SEDDONE : out std_logic;
SEDINPROG : out std_logic;
SEDCLKOUT : out std_logic) ;

 end component;

 begin

Density Bitstream Size (Mb) Run Time1 (ms)

ECP2-6 1.5 75

ECP2-12 2.9 145

ECP2-20 4.5 225

ECP2-35 6.3 315

ECP2-50 8.9 445

ECP2-70 13.3 665

ECP2M-20 5.9 295

ECP2M-35 9.8 490

ECP2M-50 15.8 790

ECP2M-70 19.8 990

ECP2M-100 25.6 1280

1. Based on SEDCLKIN = 20 MHz.

17-8

LatticeECP2/M Soft Error
Detection Usage Guide

 isnt1: SEDAA
generic map (OSC_DIV=> “1”)
port map (

SEDENABLE => ‘1’, -- tied high
SEDSTART => ‘1’, -- tied high
SEDFRCERR => ‘0’, -- tied low
SEDERR => Sed_out, -- wired to an output
SEDDONE => Sed_Done, -- wired to an output
SEDINPROG => Sed_In_Prog, -- wired to an output
SEDCLKOUT => Sed_Clk_out) ; -- wired to an output

end behavioral ;

Verilog Example
module example (
 Sed_Done,
 Sed_In_Prog,
 Sed_Clk_out,
 Sed_out) ;

output Sed_Done;
output Sed_In_Prog;
output Sed_Clk_out;
output Sed_out;

assign V_hi = 1’b1;
assign V_lo = 1’b0;

SEDAA
#(.OSC_DIV(1))

SED_IP(
 .SEDENABLE(V_hi), // always high
 .SEDSTART(V_hi), // always high
 .SEDFRCERR(V_lo), // always low
 .SEDERR(Sed_out), // wired to an output
 .SEDDONE(Sed_Done), // wired to an output
 .SEDINPROG(Sed_In_Prog), // wired to an output
 .SEDCLKOUT(Sed_Clk_out)); // wired to an output

endmodule

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

17-9

LatticeECP2/M Soft Error
Detection Usage Guide

Revision History
Date Version Change Summary

April 2006 01.0 Initial release.

April 2006 01.1 Fixed VHDL code

September 2006 01.2 Changed FPGA family naming to show support for LatticeECP2M.

April 2007 01.3 Updated SED Flow timing diagram.

September 2007 01.4 Updated SEDCLKIN frequency setting.

February 2008 01.5 Updated Timing Diagram.

July 2008 01.6 Added note to SED Flow timing diagram.

January 2009 01.7 Updated Verilog Example code.

September 2009 01.8 Updated VHDL Example in the Sample Code section.

April 2010 01.9 Changed minimum operating frequency of SEDCLKIN to be at least
20 MHz.

Updated SED Run Time table.

Corrected formula for data in SED Run Time table to use SEDCLKIN =
20 MHz.

January 2012 02.0 Added Appendix A.

October 2012 02.1 Added SED Limitations section.

Updated document with new corporate logo.

June 2013 02.2 Updated Technical Support Assistance information.

17-10

LatticeECP2/M Soft Error
Detection Usage Guide

Appendix A. Calculating Exact MCCLK and SEDCLKIN Values
This appendix deals with the interdependency of the SEDCLKIN, MCCLK and the internal oscillator frequency.
Figure 17-5 shows the hardware block diagram, including the internal oscillator, the MCCLK divider and the SED-
CLKIN divider. The base frequency is generated by the DAC, which generates one out of four base frequencies.
The internal oscillator frequency and the MCCLK and SEDCLKIN frequencies are generated by applying proper
divider values to the DAC base frequency. The DAC is capable of generating only one of the four values: 260 MHz,
270 MHz, 300 MHz or 330 MHz. The selection of the base DAC frequency depends upon the internal oscillator fre-
quency and this, in turn, affects the MCCLK and SEDCLKIN frequencies. The DAC base frequency is set by the
control register CR0[5:0] values. The CR0 values can be observed in the Lattice ispVM™ System software. To see
CR0 values in the ispVM tool, select ispTools > ispVM Editors > “Control Register0 Editor..”. The CR0[5:0] val-
ues corresponding to the DAC base frequency include:

• 011110 for 260 MHz

• 010001 for 270 MHZ

• 001001 for 300 MHz

• 000001 for 330 MHz

See the ispVM Help system for more details on the ControlRegister0 Editor.

Figure 17-5. Internal Clocking Scheme

The CR0 values are selected based on the selection of valid NOM_FREQ values of the OSCD primitive for the
internal oscillator. See the LatticeECP2/M Family Data Sheet for more details on the OSCD primitive.

Tables 17-9 to 17-12 show valid NOM_FREQ values and corresponding CR0[5:0] values, resulting in one of the
four DAC base frequencies.

Table 17-9. NOM_FREQ Values and CR0[5:0] Values that Result in a 260 MHz DAC Base Frequency

NOM_FREQ
in OSCD Primitive (MHz)

Resulting CR0[5:0]
Setting

Resulting Frequency
(MHz)

2.5

011110 260

4.3

5.4

6.9

8.1

9.2

10

13

26

MCCLK

(Set by the user in
the design)

(Set by the
control register
CR0[5:0] values)

OSC_DIV
(Set by the user in

the SEDAA primitive)

OSC Frequency
(NOM_FREQ value)

DAC

(Set by the user in
the OSCD primitive)

÷ ÷

÷

SEDCLKIN

www.latticesemi.com/dynamic/view_document.cfm?document_id=21657

17-11

LatticeECP2/M Soft Error
Detection Usage Guide

Table 17-10. NOM_FREQ Values and CR0[5:0] Values that Result in a 270 MHz DAC Base Frequency

Table 17-11. NOM_FREQ Values and CR0[5:0] Values that Result in a 300 MHz DAC Base Frequency

Table 17-12. NOM_FREQ Values and CR0[5:0] Values that Result in a 330 MHz DAC Base Frequency

The default value of NOM_FREQ is 2.5 MHz, or when the OSCD primitive is not explicitly instantiated. In that case,
the CR0[5:0] value is 011110, resulting in 260 MHz of DAC base frequency. If the OSCD primitive is instantiated in
the design, and the NOM_FREQ value is 30 MHz, then as per Table 17-10, the tool will set the CR[5:0] value as
001001, which results in a DAC base frequency of 300 MHz.

Calculating MCCLK Frequency
The MCCLK_FREQ is 2.5 MHz by default; however, this can be set in the attributes of the SED HDL component
(see sample code section or Diamond help files) and Global Constraints tab of the Diamond Spreadsheet View.
Whenever the user selects a particular MCCLK frequency, the most appropriate divider value is selected, based on
the DAC base frequency. As mentioned in the previous section, the DAC base frequency depends upon the OSCD
NOM_FREQ value selected. Table 17-13 shows the divider values to generate the nearest MCCLK frequency,
based on the DAC frequency.

NOM_FREQ
in OSCD Primitive (MHz)

Resulting CR0[5:0]
Setting

Resulting Frequency
(MHz)

15

010001 27034

45

NOM_FREQ
in OSCD Primitive (MHz)

Resulting CR0[5:0]
Setting

Resulting Frequency
(MHz)

30 001001 300

NOM_FREQ
in OSCD Primitive (MHz)

Resulting CR0[5:0]
Setting

Resulting Frequency
(MHz)

20

000001 33041

55

17-12

LatticeECP2/M Soft Error
Detection Usage Guide

Table 17-13. Divider Values to Generate Nearest MCCLK Frequency, Based on DAC Frequency

Table 17-13 shows all the valid divider values which exist in the LatticeECP2/M device. Because of these integer
divider values, the exact MCCLK frequencies may not be observed in several cases. The actual MCCLK frequency
is obtained by dividing the DAC base frequency by the divider value under that column, while the row corresponds
to the desired MCCLK frequency.

For example, if the desired MCCLK value is 9.2 MHz, and the DAC base frequency is 300 MHz (CR0[5:0] =
001001), then the divider value would be 32. Thus, the MCCLK value would be 300/32 = 9. Similarly, with a DAC
base frequency of 260 MHz, if MCCLK_ FREQ is 41, 45 or 55, the same divider value is selected, resulting in the
same output frequency.

Calculating the SEDCLKIN
Once the MCCLK frequency has been calculated, the SEDCLKIN is calculated by dividing the MCCLK by a valid
set of divider values, as defined by OSC_DIV parameter of the SEDAA primitive. In effect, SEDCLKIN =
MCCLK/OSC_DIV. Due to the discrete nature of divider values and four different DAC Base frequencies, the exact
SEDCLKIN cannot be expected. The variation can go up to ±30% as mentioned in the DC and Switching Charac-
teristics section of the LatticeECP2/M Family Data Sheet. Figure 17-6 shows the steps required to calculate the
SEDCLKIN frequency.

CR0[5:0] Setting 011110 010001 001001 000001

DAC Base
Frequency (MHz) 260 270 300 330

MCCLK_FREQ
(MHz)

2.5 104 108 120 128

4.3 60 62 70 76

5.4 48 50 56 62

6.9 38 40 44 48

8.1 32 34 38 40

9.2 28 30 32 36

10 26 28 30 34

13 20 20 24 26

15 18 18 20 22

20 14 14 16 16

26 10 10 12 12

30 8 10 10 12

34 8 8 8 10

41 6 6 6 8

45 6 6 6 8

55 6 6 6 8

60 4 4 6 6

130 2 2 2 2

www.latticesemi.com/dynamic/view_document.cfm?document_id=21657

17-13

LatticeECP2/M Soft Error
Detection Usage Guide

Figure 17-6. Calculating SEDCLKIN Frequency

User Inputs
MCCLK_FREQ, OSC_DIV

Determine DAC Base Frequency
Use Tables 17-9 to 17-12, default = 260 MHz

Determine Exact MCCLK Frequency
Refer to Table 17-16

Calculate SEDCLKIN
Divide MCCLK_FREQ by OSC_DIV value

(minimum 20 MHz)

	LatticeECP2/M Soft Error Detection (SED) Usage Guide
	Introduction
	SED Overview
	SED Limitations
	Hardware Description
	Signal Descriptions
	SEDCLKIN
	SEDENABLE
	SEDCLKOUT
	SEDSTART
	SEDFRCERR
	SEDINPROG
	SEDDONE
	SEDERR

	SED Flow
	SED Run Time
	Sample Code
	VHDL Example
	Verilog Example

	Technical Support Assistance
	Revision History
	Appendix A. Calculating Exact MCCLK and SEDCLKIN Values
	Calculating MCCLK Frequency
	Calculating the SEDCLKIN

