
www.latticesemi.com 10-1 tn1103_02.2

June 2013 Technical Note TN1103

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
This user’s guide describes the clock resources available in the LatticeECP2™ and LatticeECP2M™ device archi-
tectures. Details are provided for primary clocks, secondary clocks and edge clocks, as well as clock elements
such as PLLs, DLLs, Clock Dividers and more.

The number of PLLs and DLLs for each package can be found in Tables 10-1 and 10-2.

Table 10-1. Number of PLLs and DLLs: LatticeECP2 Family

Table 10-2. Number of PLLs, DLLs and SERDES: LatticeECP2M Family

Clock/Control Distribution Network
The LatticeECP2/M family provides global clock distribution in the form of eight quadrant-based primary clocks and
flexible secondary clocks. The devices also provide two edge clocks on each edge of the device. Other clock
sources include clock input pins, internal nodes, PLLs, DLLs, Slave Delay Lines and Clock Dividers.

Device Description ECP2-6 ECP2-12 ECP2-20 ECP2-35 ECP2-50 ECP2-70

Number of SPLLs Standard PLL (Subset of GPLL) 0 0 0 0 2 4

Number of GPLLs General Purpose PLL 2 2 2 2 2 2

Number of DLLs General Purpose DLL 2 2 2 2 2 2

Number of DQSDLLs DLL for DDR Applications 2 2 2 2 2 2

Device Description ECP2M-20 ECP2M-35 ECP2M-50 ECP2M-70 ECP2M-100

Number of SPLLs Standard PLL (Subset of GPLL) 6 6 6 6 6

Number of GPLLs General Purpose PLL 2 2 2 2 2

Number of DLLs General Purpose DLL 2 2 2 2 2

Number of DQSDLLs DLL for DDR Applications 2 2 2 2 2

SERDES 4-Channel Quad SERDES 1 1 2 4 4

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

10-2

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

LatticeECP2/M Top Level View
Figure 10-1 shows the primary clocking structure of the LatticeECP2-50 device.

Figure 10-1. LatticeECP2-50 Clocking Structure

Figure 8-2 illustrates the primary clocking structure of the LatticeECP2M-50 device. The figure shows two SERDES
blocks. The edge clocks on the top and bottom sides stop when they reach the SERDES block boundary. Other
members of the LatticeECP2M family have a similar structure, except for the number of SERDES blocks.

Figure 10-2. LatticeECP2M-50 Clocking Structure

G
PL

L

sysIO Bank 5 sysIO Bank 4

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2

SP
LL

D
LL D
LL

QUADRANT TL QUADRANT TR

QUADRANT BRQUADRANT BL

SP
LL

G
PL

L

Primary Clocks

ECLK2

ECLK1

ECLK2

ECLK1

EC
LK

2

EC
LK

1

EC
LK

2

EC
LK

1

D
Q

SD
LL

C
LK

D
IV

C
LK

D
IV

D
Q

SD
LL

ECLK2

ECLK1

ECLK2

ECLK1

E
C

L
K

2

E
C

L
K

1 E
C

L
K

2

E
C

L
K

1

C
LK

D
IV

C
LK

D
IV

G
P

L
L

S
P

L
L

D
L

L
D

Q
S

D
L

L
S

P
L

L

SERDES
PCS

SERDES
PCS

QUADRANT TL QUADRANT TR

QUADRANT BRQUADRANT BL

Primary Clocks

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sysIO Bank 5 sysIO Bank 4

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2S

P
L

L

G
P

L
L

S
P

L
L

D
L

L
D

Q
S

D
L

L
S

P
L

L
S

P
L

L

10-3

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Primary Clocks
Each quadrant receives up to eight primary clocks. Two of these clocks provide the dynamic clock selection (DCS)
feature. The six primary clocks without DCS can be specified in the Spreadsheet View in the ispLEVER Design
Planner (or Tools > Spreadsheet View in the Lattice Diamond™ design software) as ‘Primary Pure’ and the two
DCS clocks as ‘Primary-DCS’.

The sources of the primary clocks are:

• PLL outputs

• DLL outputs

• CLKDIV outputs

• Dedicated clock pins

• Internal nodes

• SERDES TX_H_CLK (LatticeECP2M only)

Secondary Clocks
The LatticeECP2/M secondary clocks are a flexible region-based clocking resource. Each region can have four
independent clock inputs. As a regional resource, it can cross the primary clock quadrant boundaries.

There are eight secondary clock muxes per region. Each mux has inputs from four different sources. Three of these
are from internal nodes. The fourth input comes from a primary clock pin. The input sources are not necessarily
located in the same region as the Mux. This structure enables global usage of secondary clocks.

The sources of secondary clocks are:

• Dedicated clock pins on right and left sides of device (PCLKT2, PCLKT3, PCLKT6, PCLKT7)

• Internal nodes

Edge Clocks
The LatticeECP2/M has two edge clocks per side. These clocks, which have low injection times and skew, are used
to clock I/O registers. The edge clock (ECLK) resources are designed for high speed I/O interfaces with high fanout
capability. Refer to Appendix B for detailed connectivity information.

The sources of the edge clocks are:

• Left and Right Edge Clocks
– Dedicated clock pins
– PLL outputs
– DLL outputs
– Internal nodes

• Top and Bottom Edge Clocks
– Dedicated clock pins
– Internal nodes

ECLK can directly drive the secondary clock resources and general routing resources. This means that an ECLK
source clock can also route to the Primary Clock Net through general routing at the same time.

Figure 10-3 describes the secondary clock and edge clock structure.

10-4

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-3. LatticeECP2-50 Secondary Clocks and Edge Clocks

Figure 10-4. LatticeECP2M-50 Secondary Clocks and Edge Clocks

Note on Primary Clocks
The CLKOP must be used as the feedback source to optimize the PLL performance.

G
PL

L

sysIO Bank 5 sysIO Bank 4

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2

SP
LL

D
LL D
LL

SP
LL

G
PL

L

ECLK2

ECLK1

ECLK2

ECLK1

EC
LK

2

EC
LK

1

EC
LK

2

EC
LK

1

D
Q

SD
LL

D
Q

SD
LL

Secondary Clock

Secondary Clock
Region 2

Secondary Clock
Region 5Region 1

Secondary Clock
Region 6

Secondary Clock
Region 3

Secondary Clock
Region 4

Secondary Clock
Region 7

Secondary Clock
Region 8

DSP Row

DSP Row

EBR Row

sysIO Bank 5 sysIO Bank 4

sysIO Bank 0 sysIO Bank 1

sy
sI

O
 B

an
k

6
sy

sI
O

 B
an

k
7

sy
sI

O
 B

an
k

3
sy

sI
O

 B
an

k
2

SP
LL

D
Q

SD
LL

SP
LL

SP
LL

G
PL

L
D

LL

SP
LL

SERDES PCS

D
Q

SD
LL

SP
LL

SP
LL

G
PL

L
D

LL

ECLK2
ECLK1

SERDES PCS
ECLK1
ECLK2

EC
LK

2
EC

LK
1 EC

LK
2

EC
LK

1

Secondary Clock

Secondary Clock
Region 2

Secondary Clock
Region 5Region 1

Secondary Clock
Region 6

Secondary Clock
Region 3

Secondary Clock
Region 4

Secondary Clock
Region 7

Secondary Clock
Region 8

DSP Row

DSP Row

EBR Row

10-5

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Most designers use PLL for clock tree injection removal mode and the CLKOP should be assigned to the Primary
Clock. This is done automatically by the software unless the user specifies otherwise.

CLKOP can route to CLK0 to CLK5 only and CLKOS/CLKOK can route to all Primary Clocks (CLK0 to CLK7).

When CLK6 or CLK7 is used as a Primary Clock and there is only one clock input to the DCS, the DCS is assigned
as a buffer mode by the software. See the DCS section of this document for further information.

Specifying Clocks in the Design Tools
If desired, designers can specify the clock resources, primary, secondary or edge to be used to distribute a given
clock source. Figure 10-4 illustrates how this can be done in the Spreadsheet View in the ispLEVER Design Plan-
ner (or Tools > Spreadsheet View in Diamond). Alternatively the Preference file can be used, as discussed in
Appendix C.

Primary-Pure and Primary-DCS
Primary Clock Net can be assigned to either Primary-Pure (CLK0 to CLK5) or Primary-DCS (CLK6 and CLK7).

Global Primary Clock and Quadrant Primary Clock
Global Primary Clock
If a primary clock is not assigned as a quadrant clock, the software assumes it is a Global Clock.

There are six Global Primary/Pure Clocks and two Global Primary/DCS Clocks available.

Quadrant Primary Clock
Any Primary Clock may be assigned to a Quadrant Clock. The clock may be assigned to a single quadrant or to two
adjacent quadrants (not diagonally adjacent).

When a quadrant clock net is used, the user must ensure that the registers each clock drives can be assigned in
that quadrant without any routing issues.

In the Quadrant Primary Clocking scheme, the maximum number of Primary Clocks is 32, as long as all the Pri-
mary Clock sources are available.

Figure 10-5. Design Planner Spreadsheet View (see Appendix D Figure 10-39 for Diamond Equivalent)

Note on Edge Clocks
Refer to Appendix A for detailed clock network diagrams.

10-6

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

sysCLOCK PLL
The LatticeECP2/M PLL provides features such as clock injection delay removal, frequency synthesis, phase/duty
cycle adjustment, and dynamic delay adjustment. Figure 10-6 shows the block diagram of the PLL.

Figure 10-6. PLL Block Diagram

Functional Description
PLL Divider and Delay Blocks
Input Clock (CLKI) Divider
The CLKI divider is used to control the input clock frequency into the PLL block. The divider setting directly corre-
sponds to the divisor of the output clock. The input and output of the input divider must be within the input and out-
put frequency ranges specified in the device data sheet.

Feedback Loop (CLKFB) Divider
The CLKFB divider is used to divide the feedback signal. Effectively, this multiplies the output clock, because the
divided feedback must speed up to match the input frequency into the PLL block. The PLL block increases the out-
put frequency until the divided feedback frequency equals the input frequency. The input and output of the feed-
back divider must be within the input and output frequency ranges specified in the device data sheet.

Delay Adjustment
The delay adjust circuit provides programmable clock delay. The programmable clock delay allows for step delays
in increments of 130ps (nominal) for a total of 1.04ns, lagging or leading. The time delay setting has a tolerance.
See the device data sheet for details. Under this mode, CLKOP, CLKOS and CLKOK are identically affected. The
delay adjustment has two modes of operation:

• Static Delay Adjustment: In this mode, the user-selected delay is configured at power-up.

• Dynamic Delay Adjustment (DDA): In this mode, a simple bus is used to configure the delay. The bus signals
are available to the general purpose FPGA.

Output Clock (CLKOP) Divider
The CLKOP divider serves the dual purposes of squaring the duty cycle of the VCO output and scaling up the VCO
frequency into the 640MHz to 1280MHz range to minimize jitter. The CLKOP Divider values are the same whether
or not CLKOS is used.

CLKOK Divider
The CLKOK divider acts as a source for the global clock nets. It divides the CLKOP signal of the PLL by the value
of the divider to produce a lower frequency clock.

DDA
CONTROL

PORTS

CLKI
Divider

CLKFB
Divider

Lock
Detect

RST

PFDDelay
Adjust

VCO/
LOOP FILTER

CLKFB

CLKI

LOCK

CLKOP

CLKOP
Divider

CLKOS

CLKOK

RSTK

Phase/Duty
Select

CLKOK
Divider

DPHASE/
DDUTY

CONTROL
PORTS

PLLCAP*

Internal Feedback

10-7

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Phase Adjustment and Duty Cycle Select
Users can program CLKOS with Phase and Duty Cycle options. Phase adjustment can be done in 22.5o steps. The
Duty Cycle resolution is 1/16th of a period. However, 1/16th and 15/16th duty cycle options are not supported to
avoid minimum pulse violation.

Dynamic Phase Adjustment (DPHASE) and Dynamic Duty Cycle (DDUTY) Select
With LatticeECP2/M device families, users can control the Phase Adjustment and Duty Cycle Select in dynamic
mode. When this mode is selected, both the Phase Adjustment and Duty Cycle Select must be in Dynamic mode.
If only one of the features is to be used in Dynamic mode, the other control inputs can be set with the fixed logic lev-
els desired.

External Capacitor
An optional external capacitor can be used with PLLs to accommodate low frequency input clocks. See the
Optional External Capacitor section of this document for further information.

PLL Inputs and Outputs
CLKI Input
The CLKI signal is the reference clock for the PLL. It must conform to the specifications in the LatticeECP2/M Fam-
ily Data Sheet for the PLL to operate correctly. The CLKI can be derived from a dedicated dual-purpose pin or from
routing.

RST Input
The PLL reset occurs under two conditions. At power-up an internal power-up reset signal from the configuration
block resets the PLL. The user-controlled PLL reset signal RST is provided as part of the PLL module that can be
driven by an internally generated reset function or a pin. This RST signal resets all internal PLL counters, flip-flops
(including M-Dividers), and the charge pump. The M-Divider reset synchronizes the M-Divider output to the input
clock. When RST goes inactive, the PLL will start the lock-in process, and will take the tLOCK time to complete the
PLL lock. Figure 10-7 shows the timing diagram of the RST Input. RST is active high.

The RESET signal is optional.

Figure 10-7. RST Input Timing Diagram

Figure 10-8 shows the timing relationship between RST and the CLKI Divider Output.

Figure 10-8. RST Input and CLKI Divider Output Timing Diagram (Example: CLKI_DIV = 4)

tLOCK

tRST

PLL_RST

LOCK

1.5 nS min.

t

RST

CLKI

1 cycleCLKI Divider Output

RSTREC

www.latticesemi.com/dynamic/view_document.cfm?document_id=21728
www.latticesemi.com/dynamic/view_document.cfm?document_id=21728

10-8

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

RSTK Input
RSTK is the reset input for the K-Divider. The K-Divider reset is used to synchronize the K-Divider output clock to
the input clock. The LatticeECP2/M has an optional gearbox in the I/O cell for both outputs and inputs. The K-
Divider reset is useful for the gearbox implementation. RSTK is active high.

Figure 10-9 shows the timing relationship between RSTK and CLKOK (example: CLKOK_DIV = 4)

Figure 10-9. RSTK Input and CLKOK Divider Output Timing Diagram (Example: CLKOK_DIV = 4)

CLKFB Input
The feedback signal to the PLL, which is fed through the feedback divider, can be derived from the Primary Clock
net (CLKOP), a preferred pin, directly from the CLKOP divider (internal feedback) or from general routing. External
feedback allows the designer to compensate for board-level clock alignment.

CLKOP Output
The sysCLOCK PLL main clock output, CLKOP, is a signal available for selection as a primary clock and an edge
clock. This clock signal is available at the CLK_OUT pin.

CLKOS Output with Phase and Duty Cycle Select
The sysCLOCK PLL auxiliary clock output, CLKOS, is a signal available for selection as a primary clock and an
edge clock. The CLKOS is used when phase shift and/or duty cycle adjustment is desired. The programmable
phase shift allows for different phases in increments of 22.5°. The duty select feature provides duty selection in
1/16th of the clock period. This feature is also supported in Dynamic Control Mode.

CLKOK Output with Lower Frequency
The CLKOK is used when a lower frequency is desired. This signal is available for selection as a primary clock.

Dynamic Delay Control/Dynamic Phase Adjustment/Dynamic Duty Cycle
Detailed information about these features are described later in this document. The I/O ports for these features are
illustrated in Table 10-3.

Table 10-3. Dynamic Delay Adjust and Dynamic Phase and Duty Cycle Adjust Ports

LOCK Output
The LOCK output provides information about the status of the PLL. After the device is powered up and the input
clock is valid, the PLL will achieve lock within the specified lock time. Once lock is achieved, the PLL lock signal will

Parameter I/O Description

DDAMODE I DDA (Dynamic Delay Adjust) Mode. 1": Pin control (dynamic), “0”: Fuse Control (static)

DDAIZR I DDA Delay Zero. “1”: delay = 0, “0”: delay = on

DDAILAG I DDA Lag/Lead. “1”: Lead, “0”: Lag

DDAIDEL[2:0} I DDA Delay Step value

DPAMODE I DPA (Dynamic Phase Adjust/Duty Cycle Select) mode. 1": Pin Pin control (dynamic), 
“0”: Fuse Control (static)

DPHASE[3:0] I DPA Phase Adjust inputs

DDUTY[3:0] I DPA Duty Cycle Select inputs

RSTK

CLKI

1 cycleCLKOK Divider Output

tRSTREC

10-9

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

be asserted. If, during operation, the input clock or feedback signals to the PLL become invalid, the PLL will lose
lock. However, when the input clock completely stops, the LOCK output will remain in its last state, since it is inter-
nally registered by this clock. It is recommended to assert PLL RST to re-synchronize the PLL to the reference
clock. The LOCK signal is available to the FPGA routing to implement generation of RST. Simulation models take
several reference clock cycles from RST release to LOCK high.

PLLCAP
This port is not included in the software module. Instead, it is hard-wired to the PLLCAP pin of the device. See the
Optional External Capacitor section of this document for further information.

PLL Attributes
The PLL utilizes several attributes that allow the configuration of the PLL through source constraints and prefer-
ence files. The following section details these attributes and their usage.

FIN
The input frequency can be any value within the specified frequency range based on the divider settings.

CLKI_DIV, CLKFB_DIV, CLKOP_DIV, CLKOK_DIV
These dividers determine the output frequencies of each output clock. The user is not allowed to input an invalid
combination. This is determined by the input frequency, the dividers and the PLL specifications.

Note: Unlike PLLs in the LatticeECP™, LatticeEC™, LatticeXP™ and MacoXO™ devices, the CLKOP Divider val-
ues are the same whether or not CLKOS is used. The CLKOP_DIV value is calculated to maximize the fVCO within
the specified range based on FIN and CLKOP_FREQ in conjunction with CLKI_DIV and CLKFB_DIV values.
These value settings are designed so that the output clock duty cycle is as close to 50% as possible.

FREQUENCY_PIN_CLKI, FREQUENCY_PIN_CLKOP, FREQUENCY_PIN_CLKOK
These input and output clock frequencies determine the divider values.

CLKOP Frequency Tolerance
When the desired output frequency is not achievable, the frequency tolerance of the clock output may be entered.

PHASEADJ (Phase Shift Adjust)
The PHASEADJ attribute is used to select Phase Shift for the CLKOS output. The phase adjustment is program-
mable in 22.5° increments.

DUTY (Duty Cycle)
The DUTY attribute is used to select the Duty Cycle for CLKOS output. The Duty Cycle is programmable at 1/16th
of the period increment. Steps 2 to 14 are supported. 1/16th and 15/16th duty cycles are not supported to avoid the
minimum pulse width violation.

FB_MODE
There are three sources of feedback signals that can drive the CLKFB Divider: Internal, CLKOP (Clock Tree) and
User Clock. CLKOP (Clock Tree) feedback is used by default. Internal feedback takes the CLKOP output at the
CLKOP Divider output (CLKINTFB) before the Clock Tree to minimize the feedback path delay. User Clock feed-
back is driven from the dedicated pin, clock pin or user specified internal logic.

DELAY_CNTL
This attribute is designed to select the Delay Adjustment mode. If the attribute is set to “DYNAMIC” the delay con-
trol switches between dynamic and static, depending upon the input logic of the DDAMODE pin. If the attribute is
set to “STATIC”, Dynamic Delay inputs are ignored in this mode.

10-10

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

PHASE/DUTY_CNTL
This attribute is designed to select the Phase Adjustment/Duty Cycle Select mode. If the attribute is set to
“DYNAMIC” the Phase Adjustment/Duty Cycle Select control switches between dynamic and static, depending
upon the input logic of the DPAMODE pin. If the attribute is set to “STATIC”, Dynamic Phase Adjustment/Duty Cycle
Select inputs are ignored in this mode.

CLKOS/CLKOK Select
Users select these output clocks only when they are used in the design.

CLKOP/CLKOS/CLKOK BYPASS
These bypasses are enabled if set. The CLKI is routed directly to the corresponding output clock.

RESET/RSTK Select
Users select these reset signals only when they are used in the design.

LatticeECP2/M PLL Modules
When the user creates a PLL module using IPexpress, the module will consist of a wrapper around the PLL library
element and any additional logic required for the module. Figure 10-10 shows a diagram of a typical PLL module.
The module port names can be different than the library element is some cases. The user will see the module port
names in the IPexpress window and also in the source code file for the generated module. These are the ports that
will be connected in the user's design. IPexpress also creates an instantiation template file that shows the user how
to instantiate the PLL module in their design. The user can import the *.LPC (or *.IPX for Diamond) file into their
project or the generated source code file.

Figure 10-10. LatticeECP2/M Typical PLL Module Generated by IPexpress

The PLL module shown in Figure 10-10 represents an example where the user has chosen to use the CLKOP and
CLKOS ports, with a PLL reset signal, PLL lock signal, and dynamic phase and dynamic duty cycle. It also uses
CLKOP feedback so the software will connect the CLKOP signal to the CLKFB port and use the primary clock tree
to route this signal. The user would connect their signals to the CLKI, RST, DPAMODE, DPHASE[3:0],
DDUTY[3:0], CLKOP, CLKOS, and LOCK signals.

LatticeECP2/M PLL Library Definitions
All LatticeECP2/M devices support two General Purpose PLLs (GPLLs) which are full-featured PLLs. In addition,
some of the larger devices have two to six Standard PLLs (SPLLs) that have a subset of the GPLL functionalities.

Two PLL library elements are defined for LatticeECP2/M PLL implementation. Figure 10-11 shows the
LatticeECP2/M PLL library symbols. The GPLL may be configured as either EPLLD or EHXPLLD. The SPLL can
be configured as EPLLD only.

RST CLKOP
RSTK CLKOS
CLKI CLKOK
CLKFB LOCK
DPAMODE CLKINTFB
DRPAI[3:0]
DFPAI[3:0]

Additional
Logic

RST

CLKI

DPAMODE

DPHASE[3:0]

CLKOP
CLKOS

LOCK

EPLLD

DDUTY[3:0]

10-11

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-11. LatticeECP2/M PLL Library Symbols

Dynamic Delay Adjustment (EHXPLLD Only)
The Dynamic Delay Adjustment is controlled by the DDAMODE input. When the DDAMODE input is set to “1”, the
delay control is done through the inputs, DDAIZR, DDAILAG and DDAIDEL(2:0). For this mode, the attribute
“DELAY_CNTL” must be set to “DYNAMIC”. Table 10-4 shows the delay adjustment values based on the attri-
bute/input settings.

In this mode, the PLL may come out of lock due to the abrupt change of phase. RST must be asserted to re-lock
the PLL. Upon de-assertion of RST, the PLL will start the lock-in process and will take the tLOCK time to complete
the PLL lock.

Table 10-4. Delay Adjustment

Dynamic Phase/Duty Mode
This mode sets both Dynamic Phase Adjustment and Dynamic Duty Select at the same time.

There are two modes, “Dynamic Phase and Dynamic Duty” and “Dynamic Phase and 50% Duty”.

DDAMODE = 1: Dynamic Delay Adjustment Delay 1 Tdly = 130 ps
(nominal)

DDAMODE = 0

DDAIZR DDAILAG DDAIDEL[2:0] Equivalent FDEL Value

0 1 111 Lead 8 Tdly -8

0 1 110 Lead 7 Tdly -7

0 1 101 Lead 6 Tdly -6

0 1 100 Lead 5 Tdly -5

0 1 011 Lead 4 Tdly -4

0 1 010 Lead 3 Tdly -3

0 1 001 Lead 2 Tdly -2

0 1 000 Lead 1 Tdly -1

1 Don’t Care Don’t Care no delay 0

0 0 000 Lag 1 Tdly 1

0 0 001 Lag 2 Tdly 2

0 0 010 Lag 3 Tdly 3

0 0 011 Lag 4 Tdly 4

0 0 100 Lag 5 Tdly 5

0 0 101 Lag 6 Tdly 6

0 0 110 Lag 7 Tdly 7

0 0 111 Lag 8 Tdly 8

EHXPLLD

RST
RSTK
CLKI
CLKFB
DPAMODE
DRPAI[3:0]
DFPAI[3:0]
DDAMODE
DDAIZR
DDAILAG
DDAIDEL[2:0]

CLKOP
CLKOS
CLKOK

LOCK

EPLLD

RST
RSTK
CLKI
CLKFB
DPAMODE
DRPAI[3:0]
DFPAI[3:0]

CLKOP
CLKOS
CLKOK

LOCK
CLKINTFBCLKINTFB

10-12

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

To use Dynamic Phase Adjustment with a fixed Duty Cycle, simply set the DDUTY[3:0] inputs to the desired Duty
Cycle value. Figure 10-12 illustrates an example circuit. This example assumes the user-desired Duty Cycle is
3/16.

Figure 10-12. Example Dynamic Phase Adjustment Set-up with Duty Cycle Fixed to 3/16

Dynamic Phase Adjustment/Duty Cycle Select
Phase Adjustment settings are described in Table 10-5.

Table 10-5. Dynamic Phase Adjustment Settings

Duty Cycle Select settings are described in Table 10-6.

DPHASE[3:0] Equivalent to PHASEADJ in Static Mode

0000 0

0001 22.5

0010 45

0011 67.5

0100 90

0101 112.5

0110 135

0111 157.5

1000 180

1001 202.5

1010 225

1011 247.5

1100 270

1101 292.5

1110 315

1111 337.5

DPHASE[3]

DPHASE[2]

DPHASE[1]

DPHASE[0]

DPAMODE PLL

DDUTY[3]

DDUTY[2]

DDUTY[1]

DDUTY[0]

DPHASE[3:0]

10-13

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Table 10-6. Dynamic Duty Cycle Select Settings

Optional External Capacitor
An optional external capacitor can be used with both the EHXPLLD and the EPLLD to change the frequency
response of the on-chip loop filter. When an external capacitor is used, the frequency at the phase detector inputs
(Fpd) can be as low as 2MHz, allowing the PLLs to extend the low-end of their operating ranges. Using the external
capacitor will limit the high end of the PLL operating range as shown in the LatticeECP2/M Family Data Sheet.
IPexpress™ checks the phase detector frequency to determine if an external capacitor is required.

The allowable ranges for the PLL parameters with and without the external capacitor are described in the
LatticeECP2/M Family Data Sheet.

Recommended Optional External Capacitor Specifications
Value: 5.6 nF, +/- 20%
Type: Ceramic chip capacitor, NPO dielectric
Package: 1206 or smaller

Each device has two external capacitor pins, one for the left side PLLs and one for the right side PLLs. These pins
are in fixed locations. They are dedicated function pins that are NOT shared with user I/Os.

When an external capacitor pin is used by a PLL on one side of the device, it cannot be used by any other PLLs on
the same side of the device. This means that a maximum of two PLLs per device, one on the left side and one on
the right side, can have external capacitors attached.

DDUTY[3:0]

Equivalent to DUTY in
Static Mode

(1/16 of Period) Comment

0000 0 Not Supported

0001 1 Not Supported

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15 Not Supported

www.latticesemi.com/dynamic/view_document.cfm?document_id=21728
www.latticesemi.com/dynamic/view_document.cfm?document_id=21728

10-14

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-13. External Capacitor Usage

PLL Usage in IPexpress
IPexpress is used to create and configure a PLL. Designers use the graphical user interface to select parameters
for the PLL. The result is an HDL model to be used in the simulation and synthesis flow.

Figure 10-14 shows the main window when PLL is selected. The only entry required in this window is the module
name. Other entries are set to the project settings. These entries may be changed if desired. After entering the
module name, click on Customize to open the Configuration Tab window as shown in Figure 10-15.

Figure 10-14. IPexpress Main Window (see Appendix D Figure 10-40 for Diamond Equivalent)

Configuration Tab
The Configuration Tab lists all user-accessible attributes with default values set. Upon completion, click Generate
to generate source and constraint files. The user may choose to use the *.LPC file (or *.IPX file for Diamond proj-
ects) to load parameters.

VCO

PHASE
&

FREQUENCY
DETECTOR

LOOP
FILTER

PLLCAP

Low Pass
Filter

External
Capacitor

10-15

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Modes
There are two modes for configuring the PLL in the Configuration Tab: Frequency Mode and Divider Mode.

Frequency Mode
In this mode, the user enters input and output clock frequencies and the software calculates the divider settings. If
the output frequency entered is not achievable, the nearest frequency will be displayed in the ‘Actual’ text box. After
input and output frequencies are entered, clicking the Calculate button will display the divider values.

Divider Mode
In this mode, the user sets the divider settings with the input frequency. The user must choose the CLKOP Divider
value in order to maximize the fVCO and achieve optimum PLL performance. After setting the input frequency and
divider settings, click Calculate to display the frequencies. Figure 10-15 shows the Configuration Tab.

Figure 10-15. LatticeECP2/M PLL Configuration Tab

Note: In the External Capacitor Pin, the grayed out text will automatically indicate the requirement for the external
loop capacitor based upon the PLL settings. This is used to alert the user that the external loop capacitor may be
required. The Auto setting indicates that the software will determine if the external loop capacitor is required after
the PLL is placed into an SPLL or GPLL by the Place and Route (PAR) step. Other grayed-out sections of this dia-
log box turn on as their sections are enabled.

Table 10-7 describes all user parameters in the IPexpress GUI.

10-16

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Table 10-7. User Parameters in the Configuration GUI

User Parameters Description Range Default

Frequency Mode Desired input/output frequency ON/OFF ON

Divider Mode Desired input frequency and divider
settings ON/OFF OFF

CLKI

Frequency
Without external capacitor 25 (331) MHz to 420 MHz 100 MHz

With external capacitor 2 MHz to 420 MHz2 —

Divider
Without external capacitor 1 to 16(121) 1

With external capacitor 1 to 64 —

CLKFB

Feedback Mode Feedback Mode Internal, CLKOP, User clock CLKOP

Divider
Without external capacitor 1 to 16 (121) 1

With external capacitor 1 to 10 -

CLKOP

Bypass Bypass PLL: CLKOP = CLKI ON/OFF OFF

Desired Frequency
Without external capacitor 25(331) MHz to 420 MHz 100 MHz

With external capacitor 5 MHz to 50 MHz3 —

Divider CLKOP Divider Setting (Divider Mode) 2,4,8,16,32,48, 64,80,96,112,128 8

Tolerance CLKOP tolerance users can tolerate 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0,
10.0 0.0

Actual Frequency Actual frequency achievable, Read only — —

CLKOS

Enable Enable CLKOS output clock ON/OFF OFF

Bypass Bypass PLL: CLKOS = CLKI ON/OFF OFF

Phase - Static CLKOS Static Phase Shift 0°, 22.5°, 45°, , 337.5° —

Duty - Static CLKOS Static Duty Cycle Select 2 to 14 8

Dynamic Phase
with 50% Duty Dynamic Phase and 50% Duty Cycle ON/OFF ON

Dynamic Phase
with Dynamic Duty Dynamic Phase and Dynamic Duty Cycle ON/OFF ON

CLKOK

Enable Enable CLKOK output clock ON/OFF OFF

Bypass Bypass PLL: CLKOK = CLKI ON/OFF OFF

Desired Frequency
Without external capacitor 0.195 MHz to 210 MHz 50 MHz

With external capacitor 0.016 MHz to 25 MHz3 —

Divider CLKOK Divider Setting (Divider Mode) 2 to 128 (all even numbers) 2

Tolerance CLKOK tolerance users can tolerate 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0,
10.0 0.0

Actual Frequency Actual frequency achievable, Read only — —

PLL Phase & Duty Option Dynamic/Static Mode selection Dynamic Mode/Static Mode Static Mode

Delay Adjust Dynamic/Static/No delay selection Dynamic/Static/No Delay No Delay4

Provide PLL Reset Provide PLL Reset Port ON/OFF OFF

Provide CLKOK Divider Reset Provide CLKOK Reset Port ON/OFF OFF

Import LPC to ispLEVER project Import .lpc file to ispLEVER project ON/OFF OFF

1. These values apply to SPLL. All other values apply to both GPLL and SPLL.
2. Phase Detector Input Frequency range 2 MHz to 50MHz.
3. For fIN < 5MHz, fOUT_max = 10 * fIN.
4. IPexpress gives the user the ability to select the GPLL, SPLL, or to let the software choose, based upon the settings in the Delay Adjust

section.

10-17

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Frequency Calculation
Table 10-8 illustrates the Frequency limits at the Phase Detector inputs. Users must select CLKI Divider and
CLKFB Divider values so that the Phase Detector Frequency falls within the range.

Let M = CLKI divider value
N = CLKFB divider value
V = CLKOP divider value

The basic equations are:

CLKOP Frequency = CLKI Frequency * N/M
fVCO (VCO Frequency) = CLKOP Frequency * V
fPFD (PFD Frequency) = CLKI Frequency / M = CLKFB Frequency (= CLKOP Frequency) / N

Example: If CLKI frequency is 25 MHz without external capacitor, the CLKI divider value can be only 1.

Table 10-8. Phase Detector Frequency (fPFD) Range

PLL Modes of Operation
PLLs have many uses within logic design. The two most popular are clock injection removal and clock phase
adjustment. These two modes of operation are described below.

PLL Clock Injection Removal
In this mode, the PLLs are used to reduce clock injection delay. Clock injection delay is the delay from the input pin
of the device to a destination element such as a flip-flop. The phase detector of the PLL aligns the CLKI with
CLKFB. If the CLKFB signal comes from the clock tree (CLKOP), then the PLL delay and the clock tree delay is
removed. Figure 10-16 Illustrates an example block diagram and waveform.

PLL Type External Capacitor Frequency Range

GPLL
Without external capacitor 25 MHz to 420 MHz

With external capacitor 2 MHz to 50 MHz1

SPLL
Without external capacitor 33 MHz to 420 MHz

With external capacitor 2 MHz to 50 MHz1

1. For fIN < 5MHz, fOUT_max = 10 * fIN.

10-18

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-16. Clock Injection Delay Removal Application

PLL Clock Phase Adjustment
In this mode, the PLLs are used to create fixed phase relationships in 22.5o increments. Creating fixed phase rela-
tionships are useful for forward clock interfaces where a specific relationship between the clock and data is
required.

The fixed phase relationship can be used between CLKI and CLKOS or between CLKOP and CLKOS.

Figure 10-17. CLKOS Phase Adjustment from CLKOP

sysCLOCK DLL
The LatticeECP2/M DLL provides features such as clock injection delay removal, delay match, time reference delay
(90o phase delay), and output phase adjustment. The DLL performs clock manipulation by adding delay to the CLKI
input signal to create specific phase relationships. There are two types of outputs of the DLL. The first are clock sig-
nals similar to the PLL CLKOP and CLKOS. The other type of output is a delay control vector (DCNTL[8:0]). The
delay control vector is connected to a Slave Delay Line (DLLDEL) element located in the I/O logic which matches
the delay cells in the DLL. This delay vector allows the DLL to dynamically delay an input signal by a specific
amount. Figure 10-18 provides a block diagram of the LatticeECP2/M DLL.

CLKI

Clock at
CLOCK TREE
without PLL

CLKOP/CLKOS
at CLOCK TREE
with PLL

Clock Injection Delay

PLL

CLKI

CLKFB

CLKOP

CLOCK TREE

CLKI

CLKOP

CLKOS with 90 O

Phase Shift

PLL

CLKI

CLKFB

CLKOP

CLKOS

10-19

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-18. LatticeECP2/M DLL Block Diagram

Both clock injection delay removal and output phase adjustment use only the clock outputs of the DLL. Time refer-
ence delay and delay match modes use the delay control vector output. Specific examples of these features are
discussed later in this document.

DLL Overview
The LatticeECP2/M DLL is created and configured by IPexpress. The following is a list of port names and descrip-
tions for the DLL. There are two library elements used to implement the DLL: CIDDLLA (Clock Injection Delay), and
TRDDLLA (Time Reference Delay). IPexpress will wrap one of these library elements to create a customized DLL
module based on user selections.

DLL Inputs and Outputs
CLKI Input
The CLKI signal is the reference clock for the DLL. The CLKI input can be sourced from any type of FPGA routing
and pin. The DLL CLKI input has a preferred pin per DLL which provides the lowest latency and best case perfor-
mance.

CLKFB Input
The CLKFB input is available only if the user chooses to use a user clock signal for the feedback or in clock delay
match mode. If internal feedback or CLKOS/CLKOP is used for the feedback, this connection will be made inside
the module. In Clock Injection Delay Removal mode, the DLL will align the input clock phase with the feedback
clock phase by delaying the input clock.

In Clock Injection Delay Match mode, the DLL will calculate the delta between the CLKI and CLKFB signals. This
delay value is then output on the DCNTL vector. The DLL CLKFB input has a preferred pin per DLL which is dis-
cussed later in this document. The preferred pin provides the lowest latency and best case performance.

CLKOP Output
An output of the DLL based on the CLKI rate. The CLKOP output can drive primary and edge clock routing.

CLKOS Output
An output of the PLL based on the CLKI rate which can be divided and/or phase shifted. The CLKOS output can
drive the primary and edge clock routing.

DCNTL[8:0] Output
This output of the DLL is used to delay a signal by a specific amount. The DCNTL[8:0] vector connects to a Slave
Delay Line element. The DLL can then control multiple input delays from a single DLL.

CLKOP

CLKOS

LOCK

RSTN

CLKFB

CLKI

ALUHOLD

DCNTL[8:0]

UDDCNTL

DCNTL
Control

ALU

DELAY
CHAIN

DUTY
50

D4

D2

PFD
PHASE
ADJUST

DUTY
50

D4
D2

10-20

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

UDDCNTL Input
This input is used to enable or disable updating of the DCNTL[8:0]. To ensure that the signal is captured by the syn-
chronizer in the DLL block, it must be driven high for a time equal to at least two clock cycles when an update is
required. If the signal is driven high and held in that state, the DCNTL[8:0] outputs are continuously updated.

ALUHOLD Input
This active high input stops the DLL from adding and subtracting delays to the CLKI signal. The DCNTL[8:0],
CLKOP, and CLKOS outputs will still be valid, but will not change from the current delay setting.

LOCK Output
Active high lock indicator output. The LOCK output will be high when the CLKI and CLKFB signal are in phase. If
the CLKI input stops the LOCK output will remain asserted. The clock is stopped so there is no clock to de-assert
the LOCK output. Note that this is different from the operation of the PLL where the VCO continues to run when the
input clock stops.

RSTN
Active low reset input to reset the DLL. The DLL can optionally be reset by the GSRN as well. It is recommended
that if the DLL requires a reset, the reset should not be the same as the FPGA logic reset. Typically, logic requires
that a clock is running during a reset condition. If the data path reset also resets the DLL, the source of the logic
clock will stop and this may cause problems in the logic.

DLL Attributes
The LatticeECP2/M DLL utilizes several attributes that allow the configuration of the DLL through source con-
straints, IPexpress and preference files. The following section details these attributes and their usage.

DLL Lock on Divide by 2 or Divide by 4 CLKOS Output
Usually, the DLL is a ‘times one’ device, allowing neither frequency multiplication or division. But the
LatticeECP2/M DLL allows ‘divide by 2’ or ‘divide by 4’ CLKOS outputs. Two optional ‘divide by 2’ and ‘divide by 4’
blocks are placed at the CLKI input as well as the CLKOS and this enables the use of divided CLKOS in the DLL
feedback path. This allows the DLL to perform clock injection removal on a ‘divide by 2’ or ‘divide by 4’ clock, which
is useful for DDRX2 and DDRX4 modes of I/O buffer operation.

When this optional clock divider is used only in the CLKOS output path, it allows the DLL to output two time-aligned
clocks at different frequencies. When the divider is set to divide by 2 or divide by 4, a ‘dummy’ delay is inserted in
the CLKOP output path to match the clock to Q delay of the CLKOS divider.

Optional Clock Fine Phase Shift
The optional fine phase shift in the CLKOS output path is built from a delay block that matches the other four blocks
in the main delay chain. This delay block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25
degrees relative to its normal position.

GSR
The DLL can be reset by the GSR, if enabled. The GSR keyword can be set to ENABLED/DISABLED. This option
is provided in the IPexpress GUI. Below is an example of the use of this preference.

ASIC “dll/dll_0_0” TYPE “CIDDLLA” GSR=DISABLED;

DLL Lock Time Control
The DLL will lock when the CLKI and CLKFB phases are aligned. In a simulation environment, the lock time is fixed
to 100µs (default). This value can be changed through an HDL parameter or preference (for the back annotation
simulation). The DLL contains a parameter named LOCK_DELAY which accepts an integer value for the total time
in µs until the lock output goes high. Below is an example of how to set this value for front-end simulation.

10-21

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Verilog:

defparam mydll.mypll_0_0.LOCK_DELAY=500;
mydll dll_inst(.CLKI(clkin), .CLKOP(clk1), .CLKOS(clk2),

VHDL:

Not supported. For back annotation simulation LOCK_DELAY needs to be set in the preference file. Below is an
example for the PLL.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” LOCK_DELAY=200;

DLL Library Symbols

Figure 10-19. DLL Library Symbols

DLL Library Definitions
The Lattice library contains library elements to allow designers to utilize the DLL. These library elements use the
DLL attributes defined in the “DLL Attributes” section.

The two modes of operation are presented as library elements as listed below.

Table 10-9. DLL Library Elements

DLL Library Element I/Os
Table 10-10. DLL Library Element I/O Descriptions

Library Element
Name Mode of Operation Description

TRDLLA Time Reference Delay DLL This mode generates four phases of the clock, 0°, 90°, 180°, 270°, along
with the control setting used to generate these phases.

CIDDLLA Clock Injection Delay DLL
(Four Delay Cell Mode)

This mode removes the clock tree delay, aligning the external feedback
clock to the reference clock. It has a single output coming from the fourth
delay block.

Signal I/O Description

CLKI I Clock input pin from dedicated clock input pin, other I/O or logic block.

CLKFB I Clock feedback input pin from dedicated feedback input pin, internal feedback, other I/O or
logic block. This signal is not user selectable.

RSTN I Active low synchronous reset. From dedicated pin or internal node.

ALUHOLD I “1” freezes the ALU. For TRDLLA and CIDDLLA.

UDDCNTL I Active high synchronous enable signal from CIB for updating digital control to PIC delay. It
must be driven high at least two clock cycles.

DCNTL[8:0] O Digital delay control code signals.

CLKOP O The primary clock output for all possible modes.

CLKOS O The secondary clock output with finer phase shift and/or division by 2 or by 4.

LOCK O Active high phase lock indicator. Lock means the reference and feedback clocks are in phase.

Note: Refer to device data sheet for frequency specifications.

TRDLLA

CLKI
RSTN
ALUHOLD
UDDCNTL

CLKOP
CLKOS

LOCK
DCNTL

CIDDLLA

CLKI
CLKFB
RSTN
ALUHOLD

CLKOP
CLKOS

LOCK

10-22

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

DLL Modes of Operation
Clock Injection Removal Mode (CIDDLLA)
The DLL can be used to reduce clock injection delay (CIDDLLA). Clock injection delay is the delay from the input
pin of the device to a destination element such as a flip-flop. The DLL will add delay to the CLKI input to align CLKI
to CLKFB. If the CLKFB signal comes from the clock tree (CLKOP, CLKOS) then the delay of the DLL and the clock
tree will be removed from the overall clock path. Figure 10-20 shows a circuit example and waveform.

Figure 10-20. Clock Injection Delay Removal via DLL

Clock injection removal mode can also provide a DCNTL port. In this mode, the delay added to the CLKI signal is
output on the DCNTL port so that other input signals can be delayed by the same amount. This is very useful if sev-
eral clocks are used in the same circuit to minimize the number of DLLs required. When using the DCNTL, the DLL
delay will be limited to the range of the DCNTL vector. Therefore, IPexpress will restrict the CLKI rate from 300MHz
to 700MHz.

Time Reference Delay Mode (TRDLLA: 90-Degree Phase Delay)
The Time Reference Delay (TRDDLLA) mode of the DLL is used to calculate 90 degrees of delay to be placed on
the DCNTL vector. This is a useful mode in delaying a clock 90 degrees for use in clocking a DDR type interface.

Figure 10-21 provides a circuit example of this mode.

Figure 10-21. Time Reference Delay Circuit Example

In this mode, CLKI accepts a clock input. The DLL produces a DCNTL vector that will delay an input signal by 90
degrees of a full period of the CLKI signal. This DCNTL vector can then be connected to a Slave Delay Line (DLL-
DELA) to delay the signal by 90 degrees of the full period of CLKI.

CLKI

Clock at
CLOCK TREE
without DLL

CLKOP/CLKOS
at CLOCK TREE
with DLL

Clock Injection Delay

CIDDLL

CLKI

CLKFB

CLKOP

CLOCK TREE

Delay

CLK

CLKI

Data

DLLDEL

TRDLL

DCNTL

D Q

ECLK

ECLK Injection

10-23

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

DLL Usage in IPexpress
IPexpress is used to create and configure a DLL. The IPexpress graphical user interface allows users to select
parameters for the DLL. The result is an HDL model to be used in the simulation and synthesis flow.

Configuration Tab

• Usage Mode – Select the mode of the DLL (Time Reference Delay [TRDLLA] or Clock Injection Delay Removal
[CIDDLLA]). This selection will enable or disable further options in the GUI.

• CLKI Frequency – The rate of the CLKI input in MHz.

• CLKOS Divider – Set the divider for the CLKOS output to be either no divide, divide by 2, or divide by 4.

• CLKOS Phase Shift – Set the phase offset of the CLKOS to the CLKOP output. CLKOP will lead CLKOS by the
amount of phase shift selected. The phase increment is 11.25 degrees. The pull-down list numbers are abbrevi-
ated to a decimal point.

• CLKFB Feedback Mode – Sets the feedback mode of the DLL to either CLKOP, CLKOS or User Clock. If
CLKOP/CLKOS is selected, the clock tree injection delay for the specific output clock will be removed. If User
Clock is selected, the user will be provided with the CLKFB port on the DLL.

• CLKFB Frequency – This is used only with User Clock Feedback Mode.

• Provide RSTN Port – The RSTN port allows the user to reset the DLL through a user signal.

PLL/DLL Cascading
It is possible to connect several arrangements of PLLs and DLLs. There are three possible cascading schemes:

• PLL to PLL

• PLL to DLL

• DLL to DLL

It is not possible to connect the DLL to a PLL. The DLL produces abrupt changes on its output clocks when chang-
ing delay settings. The PLL sees this as radical phase changes that prevent the PLL from locking correctly.

IPexpress Output
There are two outputs of IPexpress that are important for use in the design. The first is the <module_name>.[v|vhd]
file. This is the user-named module that was generated by the tool to be used in both synthesis and simulation
flows. The second file is a template file <module_name>_tmpl.[v|vhd]. This file contains a sample instantiation of
the module. This file is only provided for the user to copy/paste the instance and is not intended to be used in the
synthesis or simulation flows directly.

For the PLL/DLL, IPexpress sets attributes in the HDL module created that are specific to the data rate selected.
Although these attributes can easily be changed, they should only be modified by re-running the GUI so that the
performance of the PLL/DLL is maintained. After the map stage in the design flow, FREQUENCY preferences will
be included in the preference file to automatically constrain the clocks produced from the PLL/DLL.

Clock Dividers (CLKDIV)
The clock divider divides the high-speed clock by 2, 4 and 8. The divided output can then be used as a primary
clock or secondary clock input. The clock dividers are used for providing the low-speed FPGA clocks for shift regis-
ters (x2, x4, x8) and DDR/SPI4 I/O logic interfaces. There are two clock dividers, one on each side.

CLKDIV Library Element Definition
Users can instantiate CLKDIV in the source code as defined in this section. Figure 10-22, Table 10-11 and
Table 10-12 describe the definition of CLKDIVB.

10-24

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-22. CLKDIV Library Symbol

Table 10-11. CLKDIVB Port Definitions

Table 10-12. CLKDIVB Attribute Definition

CLKDIV Declaration in VHDL Source Code
COMPONENT CLKDIVB
-- synthesis translate_off
 GENERIC (
 GSR : in String);
-- synthesis translate_on
 PORT (
 CLKI,RST, RELEASE:IN std_logic;
 CDIV1, CDIV2, CDIV4, CDIV8:OUT std_logic);
END COMPONENT;

attribute GSR : string;
attribute GSR of CLKDIVinst0 : label is “DISABLED”;

begin

CLKDIVinst0:CLKDIVB
-- synthesis translate_off
 GENERIC MAP(

GSR => “disabled”
);

-- synthesis translate_on
PORT MAP(

 CLKI => CLKIsig,
RST => RSTsig,
RELEASE => RELEASEsig,

Name Description

CLKI Clock input

RST1 Reset input, asynchronously forces all outputs low.

RELEASE1 Releases outputs synchronously to input clock.

CDIV1 Divided by 1 output

CDIV2 Divided by 2 output

CDIV4 Divided by 4 output

CDIV8 Divided by 8 output

1. Note: Unused RST must be tied to ground. Unused RELEASE must be tied to VCC.

Name Description Value Default

GSR GSR Enable ENABLED/DISABLED DISABLED

CLKDIVB

CDIV1

CDIV2

CDIV4

CDIV8

CLKI

RST

RELEASE

10-25

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

 CDIV1 => CDIV1sig,
CDIV2 => CDIV2sig,
CDIV4 => CDIV4sig,
CDIV8 => CDIV8sig
);

end

CLKDIV Usage with Verilog - Example
module clkdiv_top(RST,CLKI,RELEASE,CDIV1,CDIV2,CDIV4,CDIV8);

input CLKI,RST,RELEASE;
output CDIV1,CDIV2,CDIV4,CDIV8;

CLKDIVB CLKDIBinst0 (.RST(RST),.CLKI(CLKI),.RELEASE(RELEASE),
 .CDIV1(CDIV1),.CDIV2(CDIV2),.CDIV4(CDIV4),.CDIV8(CDIV8));

defparam CLKDIBint0.GSR = "DISABLED";

endmodule

CLKDIV Example Circuits
The clock divider (CLKDIV) can divide a clock by 2 or 4 and drives a primary clock network. The clock dividers are
useful for providing the low-speed FPGA clocks for I/O shift registers (x2, x4) and DDR (x2, x4) I/O logic interfaces.
Divide by 8 is provided for slow speed/low power operation.

To guarantee a synchronous transfer in the I/O logic, the CLKDIV input clock must come from an edge clock and
the output drives a primary clock. In this case, they are phase matched. This is especially useful for synchronously
resetting the I/O logic when Mux/DeMux gearing is used in order to synchronize the entire data bus as shown in
Figure 10-23. Using the low skew characteristics of the edge clock routing, a reset can be provided to all bits of the
data bus to synchronize the Mux/DeMux gearing.

The second circuit shows that a DLL can replace CLKDIV for x2 and x4 applications.

10-26

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-23. CLKDIV Application Examples

Release Behavior
The port “Release” is used to synchronize all outputs after RST is de-asserted. Figure 10-24 illustrates the Release
behavior.

Figure 10-24. CLKDIV Release Behavior

CLKDIV

ECLK

Data
D Q

GEARING
(2x)

RST

Primary
Clock

8 16

CLKOP

 DLL
CLKOS

CLK

Data
D Q

SCLK
(System Clock)

8 16GEARING
(2x)

CLKI

RST

RELEASE

CDIV1

CDIV2

CDIV4

CDIV8

De-asserted RST
registered

Clock start counting
Release synchronizes

outputs

10-27

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

DLLDEL (Slave Delay Line)
The Slave Delay line is designed to generate the desired delay in DDR/SPI4 applications. The delay control inputs
(DCNTL[8:0]) are fed from the general purpose DLL outputs. The library element definitions are described in
Figure 10-25 and Table 10-13.

Figure 10-25. DLLDELA Library Symbol

Table 10-13. DLLDELA I/O

DLLDELA Declaration in VHDL Source Code
COMPONENT DLLDELA

PORT (
CLKI :IN std_logic;
DCNTL0 :IN std_logic;
DCNTL1 :IN std_logic;
DCNTL2 :IN std_logic;
DCNTL3 :IN std_logic;
DCNTL4 :IN std_logic;
DCNTL5 :IN std_logic;
DCNTL6 :IN std_logic;
DCNTL7 :IN std_logic;
DCNTL8 :IN std_logic;
CLKO :OUT std_logic
);

END COMPONENT;

begin
DLLDELAinst0: DLLDELA1

PORT MAP (
CLKI => clkisig,
DCNTL0 => dcntl0sig,
DCNTL1 => dcntl1sig,
DCNTL2 => dcntl2sig,
DCNTL3 => dcntl3sig,
DCNTL4 => dcntl4sig,
DCNTL5 => dcntl5sig,
DCNTL6 => dcntl6sig,
DCNTL7 => dcntl7sig,
DCNTL8 => dcntl8sig,

Name I/O Description

CLKI I Clock Input

DCNTL[8:0] I Delay Control Bits

CLKO O Clock Output

DLLDELA

CLKOCLKI
DCNTL0
DCNTL1
DCNTL2
DCNTL3
DCLTL4
DCNTL5
DCNTL6
DCNTL7
DCLTL8

10-28

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

CLKO => clkosig
);

end

DLLDELA Usage with TRDLLA - Verilog - Example
Note: DLL0(TRDLLA) must be generated by IPexpress as a sub-module

module ddldel_top (rst,d,clkin,clkin2,clkout,aluhold,uddcntl,q);

input rst,d,clkin,clkin2,aluhold,uddcntl;
output clkout,q;

wire [8:0]DCntl_int;
reg qint;

DLL0 dllinst0 (.clk(clkin2), .aluhold(aluhold), .uddcntl(uddcntl), .clkop(),
.clkos(),

 .dcntl(DCntl_int),.lock());
DLLDELA delinst0 (.CLKI(clkin),.DCNTL0(DCntl_int[0]),.DCNTL1(DCntl_int[1]),
 .DCNTL2(DCntl_int[2]), .DCNTL3(DCntl_int[3]), .DCNTL4(DCntl_int[4]),
 .DCNTL5(DCntl_int[5]), .DCNTL6(DCntl_int[6]), .DCNTL7(DCntl_int[7]),
 .DCNTL8(DCntl_int[8]), .CLKO(clk90)); //synthesis syn_black_box

assign clkout = clk90;
assign q = qint;

always@(posedge clk90 or negedge rst)

if (~rst)
qint =1'b0;

else
qint = d;

endmodule

DLLDELA Application Example
Figure 10-26 shows an example DLLDEL application. As shown in the timing diagram, DLLDEL shifts the clock by
90 degrees to center both edges in the middle of data window.

10-29

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-26. SPI4.2 and DDR Registers Interface Application

DQSDLL and DQSDEL
There is another combination of DLL and Slave Delay Line, DQSDLL and DQSDEL, in the LatticeECP2/M device
family. This pair is similar in design and function to DLL and DLLDEL, but usage is limited to DDR implementation.
For additional information, see TN1102, LatticeECP2/M sysIO Usage Guide.

DCS (Dynamic Clock Select)
DCS is a global clock buffer incorporating a smart multiplexer function that takes two independent input clock
sources and avoids glitches or runt pulses on the output clock, regardless of where the enable signal is toggled.
There are two DCSs for each quadrant. The outputs of the DCS then reach primary clock distribution via the feed-
lines. Figure 10-27 shows the block diagram of the DCS.

Data +
Injection Delay

90 O Shift +
Injection Delay

1.2 ns

CLK at Pin

Data at Pin

1.2 nS

FD: Fixed Delay
DD: Dynamic Delay
Users can select the delay setting in IPexpress.

Data

CLKDIV

E
C

LK
1

E
C

LK
2

DLL CLKOP

DLLDEL

DCNTL[8:0]

CLK

FD DD

Data/ CLK

Core
Logic

840 Mbps

420 MHz

840 Mbps/ 420 MHz

www.latticesemi.com/dynamic/view_document.cfm?document_id=21639

10-30

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-27. DCS Library Symbol

DCS Library Element Definition
Table 10-14 defines the I/O ports of the DCS block. There are eight modes available. Table 10-15 describes how
each mode is configured.

Table 10-14. DCS I/O Definition

Table 10-15. DCS Modes of Operations

DCS Timing Diagrams
Each mode performs its unique operation. Clock output timing is determined by input clocks and the edge of the
SEL signal. Figure 10-28 describes the timing of each mode.

I/O Name Description

Input

SEL Input Clock Select

CLK0 Clock input 0

CLK1 Clock Input 1

Output DCSOUT Clock Output

Attribute Name Description

Output

ValueSEL = 0 SEL = 1

DCS MODE

Rising edge triggered, latched state is high CLK0 CLK1 POS

Falling edge triggered, latched state is low CLK0 CLK1 NEG

Sel is active high, disabled output is low 0 CLK1 HIGH_LOW

Sel is active high, disabled output is high 1 CLK1 HIGH_HIGH

Sel is active low, disabled output is low CLK0 0 LOW_LOW

Sel is active low, disabled output is high CLK0 1 LOW_HIGH

Buffer for CLK0 CLK0 CLK0 CLK0

Buffer for CLK1 CLK1 CLK1 CLK1

DCS

DCSOUT

CLK0

SEL

CLK1

10-31

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-28. Timing Diagrams by DCS MODE

CLK0

CLK1

SEL

DCSOUT

SEL Falling edge:

- Wait for CLK1 falling edge,

 latch output & remain low

- Switch output at CLK0 falling edge

SEL Rising edge:

- Wait for CLK0 falling edge,

 latch output & remain low

- Switch output at CLK1 falling edge

DCS MODE = NEG

CLK0

CLK1

SEL

DCSOUT

SEL Falling edge:

- Wait for CLK1 rising edge,

 latch output & remain high

- Switch output at CLK0 rising edge

SEL Rising edge:

- Wait for CLK0 rising edge,

 latch output & remain high

- Switch output at CLK1 rising edge

DCS MODE = POS

10-32

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-28. Timing Diagrams by DCS MODE (Cont.)

CLK1

SEL

DCSOUT

- Switch low @CLK1 falling edge.

- If SEL is low, output stays low at on

 CLK1 rising edge. SEL must not

 change during setup prior to rising clock.

DCS MODE = HIGH_LOW

CLK0

SEL

DCSOUT

- Switch low @CLK0 falling edge.

- If SEL is high, output stays low at

 on CLK0 rising edge.

DCS MODE = LOW_LOW

CLK1

SEL

DCSOUT

- Switch high @CLK1 rising edge.
- If SEL is low, output stays low high

 on CLK1 falling edge.

DCS MODE = HIGH_HIGH

CLK0

SEL

DCSOUT

- Switch high @ CLK0 rising edge.
- If SEL is high, output stays high on

 CLK0 falling edge.

DCS MODE = LOW_HIGH

10-33

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

DCS Usage with VHDL - Example
library ecp2m;
use ecp2m.components.all;
library IEEE;
use IEEE.std_logic_1164.all;

entity DCStest is port
(clksel : in std_logic;
 dcsclk0 : in std_logic;
 sysclk1 : in std_logic;
 dcsclk : out std_logic
);
end DCStest;
architecture DCStest_arch of DCStest is
 COMPONENT DCS
 -- synthesis translate_off
 GENERIC
 (DCSMODE : string := "POS"
);
 -- synthesis translate_on
 PORT
 (CLK0 :IN std_logic;
 CLK1 :IN std_logic;
 SEL :IN std_logic;
 DCSOUT :OUT std_logic
);
 END COMPONENT;

 attribute DCSMODE : string;
 attribute DCSMODE of DCSinst0 : label is "POS";

begin
 DCSInst0: DCS
 -- synthesis translate_off
 GENERIC MAP
 (DCSMODE => "POS"
)
 -- synthesis translate_on
 PORT MAP
 (SEL => clksel,
 CLK0 => dcsclk0,
 CLK1 => sysclk1,
 DCSOUT => dcsclk
);
end DCStest_arch;

10-34

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

DCS Usage with Verilog - Example
module dcs(clk0,clk1,sel,dcsout);

input clk0, clk1, sel;
output dcsout;

DCS DCSInst0 (.SEL(sel),.CLK0(clk0),.CLK1(clk1),.DCSOUT(dcsout));
defparam DCSInst0.DCSMODE = "CLK0";

endmodule

Oscillator (OSCD)
There is a dedicated oscillator in the LatticeECP2/M devices whose output is made available for users. The oscilla-
tor frequency is programmable with a range of 2.5 to 130MHz. The output of the oscillator can also be routed as an
input clock to the clock tree. The oscillator frequency output can be further divided by internal logic (user logic) for
lower frequencies, if desired. The oscillator is powered down when not in use. The output of this oscillator is not a
precision clock. It is intended for use as an extra clock that does not require accurate clocking.

Library Element Name: OSCD

Table 10-16. OSCD Port Definition

Table 10-17. OSCD Attribute Definition

Please refer to the LatticeECP2/M Family Data Sheet for detailed specifications.

OSC Library Symbol (OSCD)
Figure 10-29. OCS Symbol

I/O Name Description

Output OSC Oscillator Clock Output

User Attribute Attribute Name Value (MHz)
Default
Value

Nominal Frequency NOM_FREQ 2.5, 4.3, 5.4, 6.9, 8.1, 9.2, 10.0, 13.0, 15.0, 20.0, 26.0, 30.0, 34.0, 41.0,
45.0, 55.0, 60.0, 130.0 2.5

OSCD

CFGCLK

www.latticesemi.com/dynamic/view_document.cfm?document_id=21728

10-35

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

OSC Usage with VHDL - Example
COMPONENT OSCD
-- synthesis translate_off

GENERIC(NOM_FREQ: string);
-- synthesis translate_on
PORT (CFGCLK:OUT std_logic);

END COMPONENT;

attribute NOM_FREQ : string;
attribute NOM_FREQ of OSCins0 : label is “2.5”;

begin

OSCInst0: OSCD
-- synthesis translate_off

GENERIC MAP (NOM_FREQ => “2.5”)
-- synthesis translate_on
 PORT MAP (CFGCLK=> osc_int);

end

OSC Usage with Verilog - Example
module OSC_TOP(OSC_CLK);

output OSC_CLK;

OSCD OSCinst0 (.CFGCLK(OSC_CLK));

defparam OSCinst0.NOM_FREQ = "2.5";

endmodule

10-36

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Input Clock Sharing
The reference clock from the pads can be shared in LatticeECP2/M PLLS and DLLS as shown in Figures 10-30
and 10-31. This feature is useful when only one clock source is available for multiple PLLs/DLLs.

Figure 10-30. Input Clock Sharing (LatticeECP2-50 and LatticeECP2-70)

LatticeECP2-70

SPLL PIO

GPLL PIO

SPLL PIO

SPLL

CLKI

SPLL

CLKI

GPLL

CLKI

DLL

CLKI

DLL PIO

SPLL PIO

GPLL PIO

SPLL PIO

SPLL

CLKI

SPLL

CLKI

GPLL

CLKI

DLL

CLKI

DLL PIO

LatticeECP2-50

GPLL PIO

SPLL PIO

SPLL

CLKI

GPLL

CLKI

DLL

CLKI

DLL PIO

GPLL PIO

SPLL PIO

SPLL

CLKI

GPLL

CLKI

DLL

CLKI

DLL PIO

10-37

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-31. Input Clock Sharing (LatticeECP2M with Six SPLLs)

Setting Clock Preferences
Clock preferences allow designers to implement clocks to the desired performance. Preferences can be set in the
ispLEVER Design Planner Spreadsheet View (or Tools > Spreadsheet View in Diamond) or in preference files.
Frequently used preferences are described in Appendix C. For additional information see the ispLEVER or Dia-
mond on-line Help system.

Power Supplies
Each PLL has its own power supply. On the LatticeECP2-6, LatticeECP2-12, and LatticeECP2-20 devices the PLL
power supply has been combined with the package VCC for better performance. There will only be VCC pins on
these devices.

On the larger LatticeECP2 and all LatticeECP2M devices, the PLL power supply has its own power supply pins,
VCCPLL. Since VCC and VCCPLL are normally the same 1.2V, it is recommended that they are driven from the
same power supply on the circuit board, thus minimizing leakage. In addition, each of these supplies should be
independently isolated from the main 1.2V supply on the board using proper board filtering techniques to minimize
the noise coupling between them.

The DLL is powered from the FPGA core power supply.

DLL PIO

CLKI

DLL

CLKI

GPLL

GPLL PIO

CLKI

SPLL

SPLL PIO

DLL PIO

CLKI

DLL

CLKI

GPLL

GPLL PIO

CLKI

SPLL

SPLL PIO

QUADRANT TL QUADRANT TR

QUADRANT BL QUADRANT BR

CLKI

SPLL

SPLL PIO

CLKI

SPLL

SPLL PIO

CLKI

SPLL

SPLL PIO

CLKI

SPLL

SPLL PIO

10-38

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

February 2006 01.0 Initial release.

April 2006 01.1 Removed unsupported devices, removed DLL SMI phrases, rephrased
DDUTY support due to software incomplete.

September 2006 01.2 Added detailed clock network descriptions.

Added IPexpress GUI quick reference table.

Added LatticeECP2M information throughout.

OSC divider value range updated.

January 2007 01.3 Updated Frequency range.

Described CLKOP and CLKOK synchronous timing relationship with
respective reset signals.

January 2007 01.4 Updated IPexpress Main Window screen shot.

Updated LatticeECP2/M Configuration Tab screen shot.

Updated User Parameters in the Configuration GUI table.

June 2007 01.5 Corrected reference to EXHPLLD in Optional External Capacitor sec-
tion (changed to EHXPLLD).
Updated GSR section of Attributes.

August 2008 01.6 Updated the LatticeECP2/M PLL Configuration tab screen shot.

Updated the Port names for the LatticeECP2/M PLL Library symbols.

Added LatticeECP2/M PLL Modules section.

Corrected the External Capacitor section.

Removed the DLL operation mode CIMDLLA since it is not available on
LatticeECP2/M.

Updated Power Supplies section.

March 2009 01.7 Updated “DCS Usage with VHDL - Example” code.

October 2009 01.8 Updated Input Clock Sharing (LatticeECP2-50 and LatticeECP2-70) fig-
ure.

February 2010 01.9 Reconciled LOCK description among MachXO, LatticeXP2,
LatticeECP2/M and LatticeECP3.

May 2010 02.0 Specified dedicated clock pins in the Secondary Clocks text section.

June 2010 02.1 Updated for Lattice Diamond design software support.

June 2013 02.2 Updated document with new corporate logo.

Updated Technical Support Assistance information.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

10-39

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Appendix A. Primary Clock Sources and Distribution
Figure 10-32. LatticeECP2 Primary Clock Sources and Distribution

Figure 10-33. LatticeECP2 Primary Clock Muxes

Primary Clocks in Center Switch Box

LatticeECP2

SPLL1 : Available in LatticeECP2-70
SPLL2 : Available in LatticeECP2-50 and larger devices

General
Routing

QUADRANT TL

General
Routing

QUADRANT TR

2 3

CLK0 CLK2 CLK4
 CLK1 CLK3 CLK5CLK6 CLK7

DCS

36:136:1 36:1 36:1 36:1 36:1 32:132:1 32:1 32:1

DCS

CLK6CLK7

DCS

36:1 36:136:136:136:136:132:1 32:132:132:1

DCS

CLK5 CLK3 CLK1
 CLK4 CLK2 CLK0

General
Routing

QUADRANT BL

General
Routing

QUADRANT BR

2 3

CLK0 CLK2 CLK4
 CLK1 CLK3 CLK5

CLK6 CLK7

DCS

36:136:1 36:1 36:1 36:1 36:1 32:132:1 32:1 32:1

DCS

CLK6CLK7

DCS

36:1 36:136:136:136:136:132:1 32:132:132:1

DCS

CLK5 CLK3 CLK1
 CLK4 CLK2 CLK0

GPLL
CLKOP
CLKOS
CLKOK

DLL
CLKOP
CLKOS
CLKOK

SPLL2*
CLKOP
CLKOS
CLKOK

SPLL1*
CLKOP
CLKOS
CLKOK

PCLKT7

CLKDIV

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8
PCLKT6

GPLL
CLKOP
CLKOS
CLKOK

DLL
CLKOP
CLKOS
CLKOK

SPLL2*
CLKOP
CLKOS
CLKOK

SPLL1*
CLKOP
CLKOS
CLKOK

PCLKT2

CLKDIV

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8

PCLKT3

P
C

LK
T

0

P
C

LK
T

1

P
C

LK
T

4

P
C

LK
T

5

CLK0 - 5

18 PLL outputs*

4 DLL outputs

8 CLKDIV outputs

4 PCLK pins

General Routing

*LatticeECP2-50 has twelve PLL outputs

VCC

36
:1

CLK6 - 7

15 PLL outputs*

3 DLL outputs

8 CLKDIV outputs

4 PCLK pins

2 from General
Routing

*LatticeECP2-50 has ten PLL outputs

32
:1

D
C

S

10-40

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-34. LatticeECP2M Primary Clock Sources and Distribution

LatticeECP2M

Primary Clocks in Center Switch Box

General
Routing

QUADRANT TL

General
Routing

QUADRANT TR

2 3

CLK0 CLK2 CLK4
 CLK1 CLK3 CLK5CLK6 CLK7

DCS

46:146:1 46:1 46:1 46:1 46:1 41:141:1 41:1 41:1

DCS

CLK6CLK7

DCS

46:1 46:146:146:146:146:141:1 41:141:141:1

DCS

CLK5 CLK3 CLK1
 CLK4 CLK2 CLK0

PCLKT7 PCLKT2

P
C

LK
T

0

P
C

LK
T

1

SERDES TX_H_CLK availability
UR: all devices
LR: LatticeECP2M-50 or larger devices
UL/LL: LatticeECP2M-70 or larger devices.

GPLL

CLKOP
CLKOS
CLKOK

DLL
CLKOP
CLKOS
CLKOK

SPLL2
CLKOP
CLKOS
CLKOK

SPLL1
CLKOP
CLKOS
CLKOK

CLKDIV

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8
PCLKT3
SERDES_LR*
TX_H_CLK

SERDES_UR*
TX_H_CLK

SPLL3*
CLKOP
CLKOS
CLKOK

GPLL

CLKOP
CLKOS
CLKOK

DLL
CLKOP
CLKOS
CLKOK

SPLL2
CLKOP
CLKOS
CLKOK

SPLL1
CLKOP
CLKOS
CLKOK

CLKDIV

CLKDIV1
CLKDIV2
CLKDIV4
CLKDIV8
PCLKT6

 SERDES_LL*
 TX_H_CLK

 SERDES_UL*
 TX_H_CLK

SPLL3*
CLKOP
CLKOS
CLKOK

General
Routing

QUADRANT BL

General
Routing

QUADRANT BR

2 3

CLK0 CLK2 CLK4
 CLK1 CLK3 CLK5

CLK6 CLK7

DCS

46:1 46:1 46:1 46:1 41:141:1 41:1 41:1

DCS

CLK6CLK7

DCS

46:1 46:146:146:146:146:141:1 41:141:141:1

DCS

CLK5 CLK3 CLK1
 CLK4 CLK2 CLK0

P
C

L
K

T
4

P
C

L
K

T
5

46:1 46:1

10-41

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-35. LatticeECP2M Primary Clock Muxes

46
:1

D
C

S

CLK6 - 7

20 PLL outputs

3 DLL outputs

8 CLKDIV outputs

4 PCLK pins

2 from General
 Routing

41
:1CLK0 - 5

24 PLL outputs

4 DLL outputs

8 CLKDIV outputs

4 PCLK pins

General Routing

*LatticeECP2M-50 has two SERDES TX CLK outputs

VCC

4 SERDES
 TX CLKs*

4 SERDES
 TX CLKs*

10-42

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Appendix B. PLL, DLL, CLKIDV and ECLK Locations and Connectivity
Figure 10-36 shows the locations, site names, and connectivity of the PLLs, DLLs, CLKDIVs and ECLKs

Figure 10-36. PLL, DLL, CLKIDV and ECLK Locations and Connectivity

L
C

L
K

D
IV

R
C

L
K

D
IV

E
C

LK
1

E
C

LK
2

ECLK1

ECLK2
In

te
rn

a
l N

od
e

In
te

rn
a

l N
od

e

ECLK2

ECLK1

In
te

rn
a

l N
od

e

In
te

rn
a

l N
od

e

E
C

L
K

1

E
C

L
K

2

PCLKT7

LGPLL_IN

LDLL_DEL

Internal Node

Internal Node

Internal Node

Internal Node

 CLKOP

 CLKOSLGPLL

 CLKOP

 CLKOSLDLL

PCLKT6

PCLKT2

LGPLL_IN

RDLL_DEL

Internal Node

Internal Node

Internal Node

Internal Node

 CLKOP

 CLKOSRGPLL

 CLKOP

 CLKOSRDLL

PCLKT3

P
C

L
K

T
4

P
C

L
K

T
5

P
C

LK
T

0

P
C

LK
T

1

10-43

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Appendix C. Clock Preferences
A few key clock preferences are introduced below. Refer to the software “Help” file for other preferences and
detailed information.

ASIC
The following preference command assigns a phase of 90° to the TRDLLA_CLKOS:

ASIC "my_dll" TYPE "TRDLLA" CLKOS_PHASE=90;

FREQUENCY
The following physical preference command assigns a frequency of 100 MHz to a net named clk1:

FREQUENCY NET "clk1" 100 MHz;

The following preference specifies a hold margin value for each clock domain:

FREQUENCY NET "RX_CLKA_CMOS_c" 100.000 MHz HOLD_MARGIN 1 ns;

MAXSKEW
The following command assigns a maximum skew of 5ns to a net named NetB:

MAXSKEW NET "NetB" 5 NS;

MULTICYCLE
The following command will relax the period to 50ns for the path starting at COMPA to COMPB (NET1):

MULTICYCLE "PATH1" START COMP "COMPA" END COMP "COMPB" NET "NET1" 50 NS ;

PERIOD
The following command assigns a clock period of 30ns to the port named Clk1:

PERIOD PORT "Clk1" 30 NS;

PROHIBIT
This command prohibits the use of a primary clock to route a clock net named bf_clk:

PROHIBIT PRIMARY NET "bf_clk";

USE PRIMARY
Use a primary clock resource to route the specified net.

USE PRIMARY NET clk_fast;
USE PRIMARY DCS NET "bf_clk";
USE PRIMARY PURE NET “bf_clk” QUADRANT_TL;

USE SECONDARY
Use a secondary clock resource to route the specified net.

USE SECONDARY NET "clk_lessfast" QUADRANT_TL;

USE EDGE
Use a edge clock resource to route the specified net.

USE EDGE NET “clk_fast”;

CLOCK_TO_OUT
Specifies a maximum allowable output delay relative to a clock.

10-44

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Here are two preferences using both the CLKPORT and CLKNET keywords showing the corresponding scope of
TRACE reporting.

The CLKNET will stop tracing the path before the PLL, so you will not get PLL compensation timing numbers.

CLOCK_TO_OUT PORT "RxAddr_0" 6.000000 ns CLKNET "pll_rxclk" ;

The above preference will yield the following clock path:

 Physical Path Details:
 Clock path pll_inst/pll_utp_0_0 to PFU_33:
 Name Fanout Delay (ns) Site Resource
 ROUTE 49 2.892 ULPPLL.MCLK to R3C14.CLK0 pll_rxclk

 2.892 (0.0% logic, 100.0% route), 0 logic levels.

If CLKPORT is used, the trace is complete back to the clock port resource and provides PLL compensation timing
numbers.

CLOCK_TO_OUT PORT "RxAddr_0" 6.000000 ns CLKPORT "RxClk" ;

The above preference will yield the following clock path:

 Clock path RxClk to PFU_33:
 Name Fanout Delay (ns) Site Resource
 IN_DEL --- 1.431 D5.PAD to D5.INCK RxClk
 ROUTE 1 0.843 D5.INCK to ULPPLL.CLKIN RxClk_c
 MCLK_DEL --- 3.605 ULPPLL.CLKIN to ULPPLL.MCLK pll_inst/pll_utp_0_0
 ROUTE 49 2.892 ULPPLL.MCLK to R3C14.CLK0 pll_rxclk

 8.771 (57.4% logic, 42.6% route), 2 logic levels.

INPUT_SETUP
Specifies an setup time requirement for input ports relative to a clock net.

INPUT_SETUP PORT "datain" 2.000000 ns HOLD 1.000000 ns CLKPORT "clk"
PLL_PHASE_BACK ;

PLL_PHASE_BACK
This preference is used with INPUT_SETUP when the user needs a Trace calculation based on the previous clock
edge.

This preference is useful when setting the PLL output Phase Adjustment. Since there is no negative phase adjust-
ment provided, the PLL_PHASE_BACK preference works as if negative phase adjustment is available.

For example:

If a Phase Adjustment of -90° of CLKOS is desired, the user can set the Phase to 270° and set the INPUT_SETUP
preference with PLL_PHASE_BACK.

PLL_PHASE_BACK Usage in Pre-Map Preference Editor: The Pre-Map Preference Editor can be used to set
the PLL_PHASE_BACK attribute.

1. Open the Design Planner (Pre-Map).
2. In the Design Planner control window, select Spreadsheet View under View.
3. In the Spreadsheet View window, select Input_setup/Clock_to_out…
4. The INPUT_SETUP/CLOCK_TO_OUT Preference window is shown in Figure 10-37.

10-45

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-37. INPUT_SETUP/CLOCK_TO_OUT Preference Window (see Appendix D Figure 10-41 for 
Diamond Equivalent)

10-46

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Appendix D. Lattice Diamond Usage Overview
This appendix discusses the use of Lattice Diamond design software for projects that include the LatticeECP2M
SERDES/PCS module .

For general information about the use of Lattice Diamond, refer to the Lattice Diamond Tutorial.

If you have been using ispLEVER software for your FPGA design projects, Lattice Diamond may look like a big
change. But if you look closer, you will find many similarities because Lattice Diamond is based on the same toolset
and work flow as ispLEVER. The changes are intended to provide a simpler, more integrated, and more enhanced
user interface.

Converting an ispLEVER Project to Lattice Diamond
Design projects created in ispLEVER can easily be imported into Lattice Diamond. The process is automatic
except for the ispLEVER process properties, which are similar to the Diamond strategy settings, and PCS modules.
After importing a project, you need to set up a strategy for it and regenerate any PCS modules.

Importing an ispLEVER Design Project
Make a backup copy of the ispLEVER project or make a new copy that will become the Diamond project.

1. In Diamond, choose File > Open > Import ispLEVER Project.

2. In the ispLEVER Project dialog box, browse to the project’s .syn file and open it.

3. If desired, change the base file name or location for the Diamond project. If you change the location, the
new Diamond files will go into the new location, but the original source files will not move or be copied. The
Diamond project will reference the source files in the original location.

The project files are converted to Diamond format with the default strategy settings.

Adjusting PCS Modules
PCS modules created with IPexpress have an unusual file structure and need additional adjustment when import-
ing a project from ispLEVER. There are two ways to do this adjustment. The preferred method is to regenerate the
module in Diamond. However this may upgrade the module to a more recent version. An upgrade is usually desir-
able but if, for some reason, you do not want to upgrade the PCS module, you can manually adjust the module by
copying its .txt file into the implementation folder. If you use this method, you must remember to copy the .txt file
into any future implementation folders.

Regenerate PCS Modules
1. Find the PCS module in the Input Files folder of File List view. The module may be represented by an .lpc,

.v, or .vhd file.

2. If the File List view shows the Verilog or VHDL file for the module, and you want to regenerate the module,
import the module’s .lpc file:

a. In the File List view, right-click the implementation folder () and choose Add > Existing File.

b. Browse for the module’s .lpc file, <module_name>.lpc, and select it.

c. Click Add. The .lpc file is added to the File List view.

d. Right-click the module’s Verilog or VHDL file and choose Remove.

3. In File List, double-click the module’s .lpc file. The module’s IPexpress dialog box opens.

4. In the bottom of the dialog box, click Generate. The Generate Log tab is displayed. Check for errors and
close.

10-47

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

In File List, the .lpc file is replaced with an .ipx file. The IPexpress manifest (.ipx) file is new with Diamond. The .ipx
file keeps track of the files needed for complex modules.

Using IPexpress with Lattice Diamond
Using IPexpress with Lattice Diamond is essentially same as with ispLEVER.

The configuration GUI tabs are all the same except for the Generation Options tab. Figure 10-38 shows the Gener-
ation Options tab window.

Figure 10-38. Generation Options Tab

Table 10-18. SERDES_PCS GUI Attributes – Generation Options Tab

GUI Text Description

Automatic Automatically generates the HDL and configuration(.txt) files as needed. Some
changes do not require regenerating both files.

Force Module and Settings Generation Generates both the HDL and configuration files.

Force Settings Generation Only Generates only the attributes file. You get an error message if the HDL file also
needs to be generated.

Force Place & Route Process Reset Resets the Place & Route Design process, forcing it to be run again with the
newly generated PCS module.

Force Place & Route Trace Process Reset Resets the Place & Route Trace process, forcing it to be run again with the newly
generated PCS module.

Note:
Automatic is set as the default option. If either Automatic or Force Settings Generation Only and no sub-options (Process Reset Options) are
checked and the HDL module is not generated, the reset pointer is set to Bitstream generation automatically.

After the Generation is finished, the reset marks in the process window will be reset accordingly.

10-48

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Creating a New Simulation Project Using Simulation Wizard
This section describes how to use the Simulation Wizard to create a simulation project (.spf) file so you can import
it into a standalone simulator.

1. In Project Navigator, click Tools > Simulation Wizard. The Simulation Wizard opens.

2. In the Preparing the Simulator Interface page click Next.

3. In the Simulator Project Name page, enter the name of your project in the Project Name text box and
browse to the file path location where you want to put your simulation project using the Project Location
text box and Browse button.

When you designate a project name in this wizard page, a corresponding folder will be created in the file
path you choose. Click Yes in the popup dialog that asks you if you wish to create a new folder.

4. Click either the Active-HDL® or ModelSim® simulator check box and click Next.

5. In the Process Stage page choose which type of Process Stage of simulation project you wish to create
Valid types are RTL, Post-Synthesis Gate-Level, Post-Map Gate-Level, and Post-Route Gate-level+Timing.
Only those process stages that are available are activated.

Note that you can make a new selection for the current strategy if you have more than one defined in your
project.

The software supports multiple strategies per project implementation which allow you to experiment with
alternative optimization options across a common set of source files. Since each strategy may have been
processed to different stages, this dialog allows you to specify which stage you wish to load.

6. In the Add Source page, select from the source files listed in the Source Files list box or use the browse
button on the right to choose another desired source file. Note that if you wish to keep the source files in
the local simulation project directory you just created, check the Copy Source to Simulation Directory
option.

7. Click Next and a Summary page appears and provides information on the project selections including the
simulation libraries. By default, the Run Simulator check box is enabled and will launch the simulation tool
you chose earlier in the wizard in the Simulator Project Name page.

8. Click Finish.

The Simulation Wizard Project (.spf) file and a simulation script DO file are generated after running the wizard. You
can import the DO file into your current project if desired. If you are using Active-HDL, the wizard will generate an
.ado file and if you are using ModelSim, it creates and .mdo file.

Note: PCS configuration file, (.txt) must be added in step 6.

10-49

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-39. Diamond Spreadsheet View (see Figure 10-5 for ispLEVER Equivalent)

Figure 10-40. Diamond IPexpress Main Window (see Figure 10-14 for ispLEVER Equivalent)

10-50

LatticeECP2/M sysCLOCK
PLL/DLL Design and Usage Guide

Figure 10-41. Diamond INPUT_SETUP Preference Window (see Figure 10-37 for ispLEVER Equivalent)

	LatticeECP2/M sysCLOCK PLL/DLL Design and Usage Guide
	Introduction
	Clock/Control Distribution Network
	LatticeECP2/M Top Level View
	Primary Clocks
	Secondary Clocks
	Edge Clocks
	Note on Primary Clocks
	Specifying Clocks in the Design Tools
	Primary-Pure and Primary-DCS
	Global Primary Clock and Quadrant Primary Clock
	Note on Edge Clocks

	sysCLOCK PLL
	Functional Description
	PLL Divider and Delay Blocks
	PLL Inputs and Outputs
	PLL Attributes
	LatticeECP2/M PLL Modules
	LatticeECP2/M PLL Library Definitions
	Dynamic Delay Adjustment (EHXPLLD Only)
	Dynamic Phase/Duty Mode
	Dynamic Phase Adjustment/Duty Cycle Select
	Optional External Capacitor

	PLL Usage in IPexpress
	Configuration Tab
	Modes

	Frequency Calculation
	PLL Modes of Operation
	PLL Clock Injection Removal
	PLL Clock Phase Adjustment

	sysCLOCK DLL
	DLL Overview
	DLL Inputs and Outputs
	DLL Attributes
	DLL Library Definitions
	DLL Library Element I/Os
	DLL Modes of Operation
	DLL Usage in IPexpress

	Clock Dividers (CLKDIV)
	CLKDIV Library Element Definition
	CLKDIV Declaration in VHDL Source Code
	CLKDIV Usage with Verilog - Example
	CLKDIV Example Circuits
	Release Behavior
	DLLDEL (Slave Delay Line)

	DQSDLL and DQSDEL
	DCS (Dynamic Clock Select)
	DCS Library Element Definition
	DCS Timing Diagrams
	DCS Usage with VHDL - Example
	DCS Usage with Verilog - Example

	Oscillator (OSCD)
	OSC Library Symbol (OSCD)
	OSC Usage with VHDL - Example
	OSC Usage with Verilog - Example

	Input Clock Sharing
	Setting Clock Preferences
	Power Supplies
	Technical Support Assistance
	Revision History
	Appendix A. Primary Clock Sources and Distribution
	Appendix B. PLL, DLL, CLKIDV and ECLK Locations and Connectivity
	Appendix C. Clock Preferences
	Appendix D. Lattice Diamond Usage Overview
	Converting an ispLEVER Project to Lattice Diamond
	Importing an ispLEVER Design Project
	Adjusting PCS Modules
	Regenerate PCS Modules
	Using IPexpress with Lattice Diamond
	Creating a New Simulation Project Using Simulation Wizard

