
LatticeMico32 Tutorial

Lattice Semiconductor Corporation
5555 NE Moore Court
Hillsboro, OR 97124
(503) 268-8000

December 2011

LatticeMico32 Tutorial ii

Copyright
Copyright © 2011 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior written consent from Lattice Semiconductor
Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation
(logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, E2CMOS,
Extreme Performance, FlashBAK, FlexiClock, flexiFlash, flexiMAC, flexiPCS,
FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress,
ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV,
ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI,
ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM,
ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC,
LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP,
LatticeXP2, MACH, MachXO, MachXO2, MACO, ORCA, PAC, PAC-
Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG,
sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design,
TraceID, TransFR, UltraMOS, and specific product designations are either
registered trademarks or trademarks of Lattice Semiconductor Corporation or
its subsidiaries in the United States and/or other countries. ISP, Bringing the
Best Together, and More of the Best are service marks of Lattice
Semiconductor Corporation.

Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

LatticeMico32 Tutorial iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

LatticeMico32 Tutorial iv

LatticeMico32 Tutorial v

Contents

LatticeMico32 Tutorial 1

Introduction 1
Learning Objectives 2
Time to Complete This Tutorial 2
System Requirements 2
Accessing Online Help 4
About the Tutorial Design 4
Tutorial Data Flow 5

LatticeMico32/DSP Development Board 8

Task 1: Create a New Lattice Diamond Project 9

Task 2: Create the Development Microprocessor Platform 13
Create a New MSB Platform 13
Add the Microprocessor Core 17
Add the Off-Chip Memory 22
Add the Peripheral Components 25
Specify the Connections Between Master and Slave Ports 27
Assign Component Addresses 30
Assign Interrupt Request Priorities 32
Perform a Design Rule Check 32
Generate the Microprocessor Platform 32

Task 3: Create the Software Application Code 37
Create a New C/C++ SPE Project 38
Linker Configuration 40
Build the Project 43

Task 4: Synthesize the Platform to Create an EDIF File (Linux Only) 46
Using Synopsys Synplify Pro 46
Using Mentor Graphics Precision RTL Synthesis 46
Create the EDIF File 46

Task 5: Generate the Microprocessor Bitstream 47
Import the MSB Output File 47
Connect the Microprocessor to the FPGA Pins 48

Contents

LatticeMico32 Tutorial vi

Perform Functional Simulation 49
Perform Timing Simulation 50
Generate the Bitstream 50

Task 6: Download the Hardware Bitstream to the FPGA 50

Task 7: Debug and Execute the Software Application Code on the
Development Board 53
Software Application Code Execution Flow 53
Debug the Software Application Code on the Board 54
Insert Breakpoints 61
Execute the Software Application Code 62
Modify and Re-execute the Software Application Code 64

Task 8: Deploy the Software Code to Parallel Flash Memory 65
Parallel Flash Memory Deployment Flow 66
Create a CFI Flash Programmer Application 68
Prepare LEDTest for Flash Deployment 70

Task 9: Deploy the Production Microprocessor Bitstream to SPI Flash
Memory 79

Summary 82

Glossary 84

Recommended References 86

LatticeMico32 Tutorial 1

LatticeMico32 Tutorial

Introduction
This tutorial steps you through the basic process involved in using the
LatticeMico System software to implement a LatticeMico32 32-bit soft
microprocessor and attached components in a Lattice Semiconductor device
for the LatticeMico32/DSP development board. LatticeMico System
encompasses three tools: the Mico System Builder (MSB), the C/C++
Software Project Environment (C/C++ SPE), and the Debugger. Together,
they enable you to build an embedded microprocessor system on a single
FPGA device and to write and debug the software that drives it. Such a
microprocessor lowers cost by saving board space and increases
performance by reducing the number of external wires.

The LatticeMico System interface is based on the Eclipse environment, which
is an open-source development and application framework for building
software.

Although you can install LatticeMico System as a stand-alone tool, this tutorial
assumes that you have installed Lattice Diamond before installing LatticeMico
System. After you have created a project in Lattice Diamond, the tutorial
shows you how to use MSB to choose a Lattice Semiconductor 32-bit
microprocessor, attach components to it, and generate a top-level design,
including the microprocessor and the chosen components. Next you will use
Lattice Diamond to synthesize, map, place, and route the design and
generate a bitstream for it. You will then download this bitstream to the FPGA
on the board. The tutorial then changes to the Lattice Software Project
Environment (C/C++ SPE) and shows how to use C/C++ SPE to write and
compile the software application code that exercises the microprocessor and
components. Finally, it shows how to download and debug the code on the
board and deploy it in the parallel flash chips on the LatticeMico32/DSP
development board.

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 2

This tutorial is intended for a new or infrequent user of the LatticeMico System
software and covers only the basic aspects of it. The tutorial assumes that
you have reviewed the LatticeMico32 Development Kit User’s Guide for
LatticeECP2 to familiarize yourself with the product and to set up your board
correctly.

For more detailed information on the LatticeMico System software, see the
sources listed in “Recommended References” on page 86.

Learning Objectives
When you have completed this tutorial, you should be able to do the following:

 Use MSB to configure a Lattice Semiconductor 32-bit microprocessor for
your design, select the desired components, and connect the selected
components to the microprocessor with a shared-bus arbitration scheme,
which is the default.

 Use The Lattice Software Project Environment to create the C/C++
software application code that drives the microprocessor and
components.

 Import the Verilog or Verilog/VHDL files generated by MSB in Windows or
the EDIF file generated by a synthesis tool in Linux.

 Import an .lpf file containing the pinout.

 Synthesize, map, place, and route the design.

 Generate a bitstream of the microprocessor and download it to an FPGA
on the board.

 Compile, download, and debug the software application code on the
LatticeMico32/DSP development board.

 Program the Common Flash Interface (CFI) parallel flash memory with the
software application code.

 Debug the hardware and software on the board.

Time to Complete This Tutorial
The time to complete this tutorial is about two hours.

System Requirements
You can run this tutorial on Windows or Linux.

Windows
If you will be running this tutorial on Windows on a PC, your system must
meet the following minimum system requirements:

 Pentium II PC running at 400 MHz or faster

 Microsoft Windows 2000®, Windows XP® Professional, Windows 7, or
Windows Vista®

 USB port for use with the LatticeMico32/DSP development board

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 3

The following software is required to complete the tutorial:

 Lattice Diamond 1.3 software or later with device support for the device
used with your build of the LatticeMico32/DSP development board

 LatticeMico System version 1.3 or later

See the Lattice Diamond Installation Notice for the current release for
information on installing software on the Windows platform.

Linux
If you will be running this tutorial on Linux on a PC, your system must meet
the following minimum system requirements:

 Red Hat Enterprise Linux operating system Version 4.0 or 5.0

 Lattice Diamond version 1.0

 For mixed Verilog/VHDL support: Synopsys® Synplify Pro® 8.9 or Synplify
Pro 8.9.1 for Linux

 Linux system with USB port

See the Lattice Diamond Installation Guide for the current release for
information on installing software on the Linux platform.

Hardware
This tutorial requires the following hardware:

 A LatticeMico32/DSP development board for LatticeECP2

 USB cable

 AC adapter cord

Note

If you want to perform functional simulation for the mixed Verilog/VHDL flow, you must
have access to a simulator that supports mixed-mode Verilog and VHDL simulation.

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 4

Accessing Online Help
You can access the online Help for MSB, C/C++ SPE, the Debugger, or
Eclipse Workbench by choosing Help > Help Contents in the LatticeMico
System graphical user interface.

About the Tutorial Design
This tutorial uses a LatticeECP2 device, and all references are based on the
LatticeECP2 device. The tutorial design consists of the LatticeMico32
embedded microprocessor, an asynchronous SRAM controller, a GPIO, a
parallel flash memory, and a UART. After you add these components, you will
specify the connections between the master and slave ports on these
components, as shown in Figure 1.

In this design, the instruction port and the data port of the CPU are the master
ports. All other ports are slave ports. The instruction port will access the
LatticeMico asynchronous SRAM controller and the LatticeMico parallel flash
memory. The data port will access the LatticeMico asynchronous SRAM
controller, the LatticeMico GPIO, the LatticeMico parallel flash memory, and
the LatticeMico UART.

Figure 1: Desired Connections Between Master and Slave Ports

SRAM slave
device (memory
for code and
data)

GPIO slave
device (for
controlling LEDs)

UART slave
device (for host
communication)

LM32 CPU
(master ports)

Data port

Instruction
port

Parallel flash
memory (for
deploying the
application code)

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 5

Tutorial Data Flow
You will perform the following major steps to create an embedded
microprocessor system:

1. Create a new project in Lattice Diamond.

2. Create a microprocessor platform for the LatticeMico32 microprocessor in
MSB with a shared-bus arbitration scheme, which is the default.

3. Write the software application code for the microprocessor platform in
C/C++ SPE.

4. For Linux only, synthesize the platform in a synthesis tool, such as
Synopsys® Synplify Pro® or Mentor Graphics® Precision RTL Synthesis,
to generate an EDIF file.

5. Generate a bitstream of the microprocessor platform in Diamond.

6. Download the hardware bitstream to the FPGA using Diamond
Programmer.

7. Debug and execute the software application code on the board.

8. Deploy the software application code into the parallel flash memory.

9. Deploy the microprocessor bitstream.

This tutorial supports both Verilog and mixed Verilog/VHDL design flows in
Diamond for Windows and Linux users. The Windows Verilog design flow for
using LatticeMico System to create an embedded microprocessor and the
software code for it is shown in Figure 2 on page 6. The Windows mixed
Verilog/VHDL design flow is shown in Figure 3 on page 7. The difference
between the two methods is that mixed verilog/VHDL designs have a VHDL
wrapper as an output from MSB. The VHDL wrapper is an input to Synthesis
and Functional Simulation in the Diamond flow.

For Linux, the design flows are the same as those for Windows except for
synthesis and simulation. For Linux, you must synthesize the Verilog or
Verilog/VHDL source files in a synthesis tool, such as Synopsys Synplify Pro
or Mentor Graphics Precision RTL Synthesis, and import the EDIF file into
Diamond. Functional and timing simulation are performed in third-party and
simulation tools outside of Diamond.

Note

This tutorial does not show you how to debug your software application code on the
instruction set simulator, but it does show you how to debug the design by
downloading the bitstream and the application code to the board.

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 6

Figure 2: Design Flow for Windows Verilog Users

LatticeMico32 Tutorial Introduction

LatticeMico32 Tutorial 7

Figure 3: Design Flow for Windows VHDL Users, Using Mixed Verilog/VHDL Design Entry

LatticeMico32 Tutorial LatticeMico32/DSP Development Board

LatticeMico32 Tutorial 8

LatticeMico32/DSP Development Board
Figure 4 shows where some of the components mentioned in this tutorial
reside on the LatticeMico32/DSP development board.

Figure 4: The LatticeMico32/DSP Development Board

LatticeMico32 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico32 Tutorial 9

Task 1: Create a New Lattice Diamond Project
As a first step, you will create a new project in Diamond.

To create a new Lattice Diamond project:

1. Create a folder called lm32_tutor in the following directory:

 For Windows, <Diamond_install_path>\examples

 For Linux, ~/LatticeMico32

2. Start Lattice Diamond:

 On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

 On the Linux command line, run the following script:

<Diamond_install_path>/ispcpld/bin/ispgui.

3. Choose File > New > Project, and then click Next in the New Project
wizard.

4. In the New Project wizard dialog box, shown in Figure 5 on page 10,
select or specify the following:

a. In the Project Name box, enter platform1.

b. In the Location box, enter the path for the lm32_tutor directory:

 For Windows, <Diamond_install_path>\examples\lm32_tutor

 For Linux, ~/LatticeMico32/lm32_tutor

By default, Diamond uses the Project name and location for the
implementation and fills in this information. Although you can change
to a different name and directory for the first implementation, you will
use the default settings for this tutorial.

Note

If you are going to run this tutorial on the Linux platform and use Verilog, you must
install a stand-alone version of Synopsys Synplify Pro or Mentor Graphics Precision
RTL Synthesis before you create a Lattice Diamond project.

If you are going to use mixed Verilog/VHDL on the Linux platform, you must install
Synopsys Synplify Pro.

Note

In this tutorial, the directory paths follow the Windows nomenclature. For Linux,
replace the “\” character with the “/” character.

LatticeMico32 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico32 Tutorial 10

5. Click Next to proceed to the Add Source dialog box, and then click Next.
You will add the source later.

6. In Select Device dialog box, shown in Figure 6 on page 11, make the
following selections:

a. In the Family box, select LatticeECP2.

b. In the Device box, select LFE2-50E.

c. In the Speed grade box, select 6.

d. In the Package Type box, select FPBGA672.

e. In the Operating Conditions box, select Commercial.

Figure 5: New Project Wizard

LatticeMico32 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico32 Tutorial 11

The dialog box should now resemble the illustration in Figure 6

7. Click Next, and then click Finish.

In the File List, shown in Figure 7, the project name is shown at the top.
The implementation name, which has the same name as the project
name, is displayed in bold type, with the implementation icon . The

project is assigned a default strategy, Strategy1, which is also displayed in
bold type with the strategy icon . A strategy is a collection of settings

for logic synthesis, place, and route. You can view these settings by

Figure 6: New Project Wizard – Select a Device Dialog Box

LatticeMico32 Tutorial Task 1: Create a New Lattice Diamond Project

LatticeMico32 Tutorial 12

double-clicking the strategy name. The platform1 project is also assigned
a logical preference file, platform1.lpf.

Figure 7: Diamond File List

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 13

Task 2: Create the Development Microprocessor
Platform

In Task 1, you created a blank Diamond project. The Diamond project is a
placeholder for the LatticeMico32 microprocessor platform. You use
LatticeMico System Builder (MSB) to create the microprocessor platform.
MSB allows you to select components to attach to the microprocessor.
Additionally, MSB allows you to customize each of the attached components.
After all components are attached to the microprocessor, you use MSB to
generate Verilog or VHDL source code that describes a microprocessor-
based System-on-a-Chip (SOC). You then enter the HDL source code into the
Diamond project in order to create the bitstream used to configure the FPGA.

The steps in this section describe how to build a LatticeMico32
microprocessor SOC that is intended for developing and debugging
LatticeMico based systems. During system development, the FPGA
resources and the firmware are in a state of flux, undergoing many changes.
When you deploy a LatticeMico32 microprocessor, as described here, you
reduce the impact the of on-going changes in the development environment.

Create a New MSB Platform
Now you will create a new platform in MSB.

If you are going to be using LatticeMico System on the Linux platform, set up
the environment to point to the location where the stand-alone synthesis tool
is installed before starting LatticeMico System, as in this example:

setenv IPEXPRESS_SYN_PATH /install/synplify/fpga_89/bin/
synplify_pro

To create a new platform:

1. From the Start menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

The Workspace Launcher dialog box, shown in Figure 8, displays a
default workspace location for the platform.

Figure 8: Workspace Launcher Dialog Box

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 14

2. Accept the default location, or click the Browse button to select a different
location. To keep the same workspace for future sessions, select the “Use
this as the default and do not ask again” option.

3. Click OK.

The LatticeMico System interface now appears, as shown in Figure 9.

4. In the upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

5. Choose File > New Platform.

6. In the New Platform Wizard dialog box, make the following selections:

a. In the Platform Name box, enter platform1.

b. In the Directory box, browse to the lm32_tutor directory and click OK:

 For Windows, <Diamond_install_path>\examples\lm32_tutor

 For Linux, ~/LatticeMico32/lm32_tutor

c. Do one of the following:

 If you are generating a platform in Verilog, leave the Create VHDL
Wrapper unselected.

Figure 9: LatticeMico System Interface

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 15

 If you are generating a platform in mixed Verilog/VHDL, select only
Create VHDL Wrapper.

d. In the Arbitration scheme box, select Shared Bus (Default) from the
drop-down menu, if it is not already selected.

e. In the Device Family section, select LatticeECP2 from the Family
menu and LFE2-50E from the Device menu.

f. In the Platform Templates box, select blank.

Templates are pre-created platforms that facilitate rapid development.
They target the LatticeMico32/DSP Development Board for
LatticeECP2. Each platform also has an associated constraint file that
you can import into Diamond to avoid the effort of creating a
constraints file. MSB gives you the flexibility of creating and adding
your own custom templates and associated constraints files for the
LatticeMico32/DSP development board or a custom board, in addition
to using the templates provided as part of the installation package.

The New Platform Wizard dialog box should look like the illustration in
Figure 10.

7. Click Finish.

Figure 10: New Platform Wizard Dialog Box

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 16

The MSB perspective now appears, as shown in Figure 11.

The MSB perspective consists of the following views:

 Available Components view, which displays all the available components
that you can use to create the design:

 A list of hardware components: microprocessor, memories,
components, and bus interfaces. Bus interfaces can be masters or
slaves (see “Specify the Connections Between Master and Slave
Ports” on page 27 for more information on masters and slaves). The
component list shown in Figure 11 is the standard list that is given for
each new platform.

 A list of preconfigured systems: demonstrations and pre-verified
configurations for a given development board or a configuration that
you previously built

You can double-click on a component to open a dialog box that enables
you to customize the component before it is added to the design. The
component is then shown in the Editor view.

 Editor view, which is a table that displays the components that you have
chosen in the Available Components view. It includes the following
columns:

 Name, which displays the names of the chosen components and their
ports

 Wishbone Connection, which displays the connectivity between
master and slave ports

 Base, which displays the start addresses for components with slave
ports. This field is editable.

Figure 11: MSB Perspective

Available
Components
view

Editor
view

Component
Attributes
view

Console view
or Component
Help view

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 17

 End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

 Size (Bytes), which displays the number of addresses available for
component access. This field is editable for the LatticeMico on-chip
memory (EBR) and the LatticeMico asynchronous SRAM controller
components only.

 Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

 IRQ, which displays the interrupt priorities of all components that have
interrupt lines connected to the LatticeMico32 microprocessor. The
LatticeMico32 microprocessor can accept up to 32 external interrupt
lines.

 Disable, which indicates whether components are temporarily
excluded from the design

 Component Help view, which displays information about the component
that you selected in the Available Components view. The Help page
displays the name of the component—for example, “LatticeMico Timer” or
“LatticeMico UART—and gives a brief description of the function of the
component. It also provides a list and explanation of the parameters that
appear in the dialog box when you double-click the component. If you
click the icon next to the component name, you can view a complete
description of the component in a PDF file.

 Console view, which displays informational and error messages output by
MSB

 Component Attributes view, which displays the name, parameters, and
values of the component selected in the Available Components view or
the Editor view. This view is read-only.

Add the Microprocessor Core
The first step in building the platform is to add the microprocessor core. In this
release, only the LatticeMico32 microprocessor is available.

You will be using the default cache setting for this task. Refer to the
LatticeMico32 Processor Reference Manual for more information on caches.

To add the microprocessor core:

1. Under CPU in the Available Components view, click LatticeMico32 to
view the information available about the LatticeMico32 microprocessor.

Information about the LatticeMico32 microprocessor, including the
parameters that you can set for it, now appears in the Component Help
view and in the Component Attributes view in the lower third of the screen.

If you click the icon in the Component Help view, you can view the
LatticeMico32 Processor Reference Manual, which provides a complete
description of the microprocessor.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 18

Similarly, if you click this icon for a memory or a peripheral component,
you can view the data sheet about that component.

2. Double-click LatticeMico32 to open the Add LatticeMico32 dialog box.
Alternatively, you can select LatticeMico32, and then click the Add
Component button ().

The parameters in the dialog box, shown in Figure 12 on page 19,
correspond to those in the table in the Component Help view.

You are defining a development LatticeMico32 microprocessor. The
LatticeMico32 microprocessor component, when the Enable Debug
Interface option is selected, has an internal Embedded Block RAM
memory attached to the Wishbone bus. This memory is automatically
initialized with LatticeMico opcodes. This means that when the
LatticeMico32 microprocessor comes out of reset, it has a valid set of
opcodes to execute. The LatticeMico32 microprocessor needs only a few
key elements to operate correctly: a good input clock, a reset strobe
assertion and de-assertion, and a set of known good opcodes. During the
development process, the Debug Monitor memory attached to the
LatticeMico32 Wishbone bus is the only guaranteed source of known
good opcodes. It is of vital importance for the Reset Exception Address to
point to this memory. By default, the Debug Port Base Address is
assigned to 0x00000000. This address can be changed, but it is important
that the Reset Exception Address be updated to match the Debug Port
Base Address.

This tutorial will leave the Debug Port Base Address set to 0x00000000.

3. In the Add LatticeMico32 dialog box, do the following:

a. Select the General tab. If it is not already set as default, type
0x00000000 in the “Location of Exception Handlers” box to set the
LatticeMico32 reset vector, as shown in Figure 12 on page 19. This
step sets the reset exception address, which is the address from
where the microprocessor will begin fetching instructions at power-up.
This address must be aligned to a 256-byte boundary.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 19

b. Under the section Instruction Cache, select Instruction Cache
Enabled.

c. Select the Inline Memory tab. Under the section Data Inline Memory,
select Enabled. If it is not already set as default, type 0x10000000 in
the Base Address text box, as shown in Figure 13 on page 20.

d. Click OK to accept the default settings for the rest of the options.
Information about the microprocessor now appears in the Name,
Wishbone Connection, Base, End, and Size columns of the table in
the Editor view.

Figure 12: Add LatticeMico32 Dialog Box – General Tab

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 20

Figure 13: Add LatticeMico32 Dialog Box – Inline Memory Tab

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 21

The MSB perspective now shows the LatticeMico32 microprocessor in the
Editor View, as shown in Figure 14.

The Wishbone Connection column graphically displays the types of ports and
connections. Black horizontal lines with outbound arrows indicate master
ports, whereas blue horizontal lines with inbound arrows indicate slave ports.
The vertical lines are associated with master ports, and the filled circles
indicate connections between master and slave ports. The illustration shows
that the microprocessor’s slave Debug Port is connected to the master
Instruction Port and Data Port.

Figure 14: MSB Perspective with Microprocessor

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 22

Add the Off-Chip Memory
Next you will add the LatticeMico asynchronous SRAM controller and the
parallel flash memory.

Add the Asynchronous SRAM Controller
The LatticeMico asynchronous SRAM controller is required to download and
execute the software application code. The LatticeMico32/DSP development
board has two 4-megabit asynchronous SRAM modules organized as 256K x
32, giving a total of 1 megabyte of asynchronous SRAM memory. This SRAM
shares the data and address buses with the on-board parallel flash memory
chips that are organized as 8M x 32. The wen and oen common control
signals are also shared, although each memory type (SRAM, parallel flash
memory) has its own chip select.

To add the asynchronous SRAM memory to the platform:

1. Under Memory in the Available Components view, double-click Async
SRAM to open the dialog box. Alternatively, you can select Async SRAM,
and then click the Add Component button .

In the Add Async SRAM dialog box, shown in Figure 15, the SRAM size is
1 megabyte. However, it shares the address bus with the flash device pair.
The address bus size will be adjusted to the correct width when the flash
memory peripheral is configured next in the tutorial. When “Share
External Ports” is selected, the asynchronous memory component with
the largest Address Width entry defines the size of the address bus.

Figure 15: Add Async SRAM Dialog Box

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 23

2. Accept the default settings in the dialog box, and click OK.

Add the Parallel Flash Memory
The LatticeMico32/DSP development board has two 16-bit-wide, 16-
megabyte Common Flash Interface (CFI) parallel flash components. These
two flash devices together appear as a 8M x 32 flash component. This flash
pair will be used for software deployment.

To add the parallel flash component to the platform:

1. Under Memory in the Available Components view, double-click Parallel
Flash to open the dialog box. Alternatively, you can select Parallel Flash,
then click the Add Component button .

2. In the Add Parallel Flash dialog box, shown in Figure 16 on page 24, do
the following:

a. In the Base Address box, change the address to 0x02000000.

b. In the Size box, change the size to 0x02000000.

The parallel Flash memory is placed at address 0x02000000 because
of the address decode scheme used by the LatticeMico system. All
components in a LatticeMico32 platform must be aligned to an
address that corresponds to the largest Size(Bytes) entry. The
LatticeMico32 address space is divided into two 2GByte ranges.
Addresses below the 2GB boundary are memory components.
Addresses above the 2GB boundary are I/O components. The
alignment of components are based on the memory range in which
they reside. In this tutorial, the largest memory block is the 32MByte
parallel Flash component. This means that all memory components
must be 32MB-aligned. Therefore, valid base addresses for memory
components are 0x00000000, 0x2000000, 0x4000000, 0x6000000,
and so forth.

The flash address bus is shared with the SRAM address bus. The
flash is addressed as 8Mx32, but the address width must be wide
enough to address 32Mx8, so 25 address bits are required. Make sure
that the FLASH Address Width option is set to 25 bits wide to ensure
that there are enough address bits to access the 1Mx8 SRAM block
and the 32Mx8 flash memory block.

Note

You can delete a component from the Editor view by right-clicking the component
in the Editor view and selecting Remove Component from the pop-up menu. If
you cannot remove a component, this command will be unavailable on the menu.

Note

The read and write latencies of the Async SRAM controller are based on the read and
write latencies of the Async SRAM on the board. They are measured in WISHBONE
clock cycles and therefore the clock frequency of the design. The current design
operates at 25 MHz and a read/write latency of 1 is sufficient for the Async SRAM on
the board. For every 25 Mhz increase in clock frequency, the read/write latencies must
be increased by 1. For example, if the design were operating at 50 MHz, the read/write
latencies would be set to 2.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 24

c. Click OK to accept the default settings for the rest of the options.

Figure 16: Add Parallel Flash Dialog Box

Note

NOTE: The read and write latencies of the Parallel Flash controller are based on the
read and write latencies of the Parallel Flash on the board. They are measured in
WISHBONE clock cycles and therefore the clock frequency of the design. The current
design operates at 25 MHz and a read/write latency of 1 is sufficient for the Parallel
Flash on the board. For every 25 Mhz increase in clock frequency, the read/write
latencies must be increased by 1. For example, if the design were operating at
50 MHz, the read/write latencies would be set to 2.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 25

Add the Peripheral Components
Now you will add the peripheral components to the platform.

Add the GPIO
The first peripheral component that you will add is the LatticeMico GPIO
component, which provides a memory-mapped interface between a
WISHBONE port and general-purpose I/O ports. The I/O ports connect either
to on-chip user logic or to I/O pins that connect to devices external to the
FPGA.

To add the GPIO to the platform:

1. Under IO in the Available Components view, double-click GPIO.
Alternatively, you can select GPIO, then click the Add Component button

.

2. In the Add GPIO dialog box, shown in Figure 17 on page 25, do the
following:

a. In the Instance Name box, change the name of the GPIO to LED.

For this tutorial, the GPIO block must be named LED. Failure to name
the GPIO block LED will cause mismatches in the FPGA I/O pin
names. The example C source code uses this instance name to
access the GPIO registers.

b. Change the setting of the Data Width option to 8.

c. Click OK to accept the default settings for the rest of the options.

Figure 17: Add GPIO Dialog Box

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 26

Add the UART
The final component that you will add is a LatticeMico universal asynchronous
receiver-transmitter (UART), a core that contains a receiver and a transmitter.
The receiver performs serial-to-parallel conversion of the asynchronous data
frame received at its serial data input pin. The transmitter performs parallel-to-
serial conversion on the 8-bit data received from the CPU.

To add the UART to the platform:

1. Under IO in the Available Components view, double-click UART to open
the dialog box. Alternatively, you can select UART, and then click the Add
Component button .

2. In the Add UART dialog box, shown in Figure 18, click OK to accept the
default settings.

Figure 18: Add UART Dialog Box

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 27

The MSB perspective now resembles the illustration in Figure 19.

Specify the Connections Between Master and
Slave Ports
The connections that you will make between the master and slave ports in the
Editor view will reflect the access scheme shown in Figure 1 on page 4.

The following information applies to master and slave ports in the Editor view:

 There are two types of ports: master ports and slave ports.

 A master port can initiate read and write transactions.

 A slave port cannot initiate transactions but can respond to
transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

 A master port can be connected to one or more slave ports.

 A component can have one or more master ports, one or more slave
ports, or both.

 Horizontal lines with outbound arrows sourced from a component port
indicate a master port.

Figure 19: MSB Perspective After Addition of All Components in a Shared-Bus Arbitration Scheme

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 28

 Horizontal lines with inbound arrows targeting a component port indicate a
slave port.

 The vertical lines are associated with horizontal lines with outbound
arrows (that is, master ports) to facilitate "connectivity" from a master port
to a slave port. A circle represents the intersection of the vertical line and
a horizontal line associated with a slave port.

 A filled circle indicates a connection between the master port represented
by the vertical line and the slave port represented by the horizontal line
associated with the filled circle.

 A hollow circle indicates an absence of connection between the master
port represented by the vertical line and the slave port represented by the
horizontal line associated with the hollow circle. This can be seen in
Figure 19 on page 27, where only the LatticeMico32 microprocessor
Wishbone ports are connected.

 The numbers next to the lines representing the master ports are the
priorities in which the master ports can access the slave ports. You can
change the priority of these connections by following the instructions in
the online Help for LatticeMico System.

To specify the connections between master and slave ports:

1. Connect the instruction and data ports to the LatticeMico asynchronous
SRAM controller slave port by clicking both circles in the Wishbone
Connection column of the ASRAM Port row.

2. Connect the instruction and data ports to the LatticeMico parallel flash
slave port by clicking both circles in the Wishbone Connection column of
the Data Port row.

3. Connect the data port to the LatticeMico GPIO slave port by clicking the
circle in the Wishbone Connection column of the GP I/O Port row.

4. Connect the data port to the LatticeMico UART slave port by clicking the
circle in the Wishbone Connection column of the UART Port row.

Figure 20 on page 29 shows the resulting connections in the Editor view.

This tutorial example uses the shared-bus arbitration scheme. For information
about bus arbitration schemes, refer to the LatticeMico32 Software
Developer's User Guide. The master ports are represented by black lines, and
the slave ports are represented by blue lines. Both the instruction and data
ports connect to the LatticeMico asynchronous SRAM controller and the

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 29

parallel flash controller, but only the data port connects to the LatticeMico
GPIO and the LatticeMico UART.

Figure 21 shows the connections generated by MSB. MSB automatically
generates the arbiter, depending on which arbitration scheme is selected. In
the case of the shared-bus arbitration scheme, it generates the
microprocessor platform to allow multiple master ports access to multiple
slave ports over a single shared bus. In the diagram, the instruction port
accesses the LatticeMico asynchronous SRAM controller and the flash
controller. The data port accesses the LatticeMico asynchronous SRAM

Figure 20: Connections for Shared Bus Arbitration

Master ports

Slave ports

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 30

controller, the LatticeMico GPIO, the LatticeMico parallel flash controller, and
the LatticeMico UART.

Assign Component Addresses
The next step is for MSB to generate an address for each component with
slave ports. Addresses are specified in hexadecimal notation. Components
with master ports are not assigned addresses.

You will not assign individual addresses. There are only two addresses that
need to be manually assigned: the Debug Memory and the Parallel Flash
Memory.

During the creation of the Parallel Flash component, you explicitly assigned
an address (0x02000000) to the parallel flash component and the Inline Data
memory. You must lock the parallel flash address so that MSB will not
automatically assign it a new address. You do not want the flash address to
change for this example, because that is where the final software application
code will reside.

To lock the address:

1. In the Lock column, select the box for the parallel flash (flash).

Figure 21: Connections Generated by MSB

LM32 CPU
(master ports)

Instruction
port

Data port

Shared Bus
Arbiter

UART slave
device (for host
communication)

Data port

Instruction port

SRAM slave
device (memory
for code and
data)

GPIO slave
device (for
controlling LEDs)

Parallel flash
memory (for
deploying the
application code)

Note

You can only edit the addresses in the Base column in the Editor View. You cannot edit
the addresses in the End column. The value of the end address is equivalent to the
value of the base address plus the value of the size.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 31

2. In the Lock column, select the box for the Debug Port.

To automatically assign component addresses:

 Choose Platform Tools > Generate Address, or click the Generate
Base Address button (), or right-click in the Editor view and choose
Generate Address from the pop-up menu.

The addresses now appear in the Base and End columns in the Editor
view, in hexadecimal notation. Slave components that are not memories
are assigned addresses within the 0x80000000-0xFFFFFFFF memory
range. The Generate Address command sets A31 of each of the I/O
components to ‘1’.

Your MSB perspective should now resemble the example shown in
Figure 22. The base addresses that you see in your Editor view might be
different from those shown.

Note

Address and size values that appear in italic font in the Editor view cannot be
changed.

Figure 22: MSB Perspective After Assignment of Addresses in a Shared-Bus Arbitration Scheme

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 32

Assign Interrupt Request Priorities
The interrupt request priority is the order in which hardware components
request computing time from the CPU. Now you will assign an interrupt
request priority (IRQ) to all components that feature a dash in the IRQ column
of the Editor view. You cannot assign interrupt priorities to components lacking
this dash in the IRQ column, such as memories and CPUs.

To assign interrupt priorities for all components providing interrupt
functionality:

 Choose Platform Tools > Generate IRQ, or click the Generate IRQ
button (), or right-click in the Editor view and choose Generate IRQ
from the pop-up menu.

If you accidentally assign duplicate priorities, MSB will issue an error
message in the Console view when you select Platform Tools > Generate
IRQ.

Perform a Design Rule Check
You will want to perform a design rule check to verify that components in the
platform have valid base addresses, interrupt request values, and other
fundamental properties.

To perform a design rule check:

 Choose Platform Tools > Run DRC, or click the Run DRC button (),
or right-click in the Editor view and choose Run DRC from the pop-up
menu.

In the Console view, MSB shows that there are no errors in the platform.

Generate the Microprocessor Platform
You are now ready to generate the microprocessor platform. During the
generation process, MSB creates the following files in the
..\Tutorial\lm32_tutor\platform1\soc directory:

 A platform1.msb file, which describes the platform. It is in XML format and
contains the configurable parameters and bus interface information for the
components.

 A platform1.v (Verilog) file, which is used by both Verilog and mixed
Verilog/VHDL users:

 For Verilog users, the platform1.v file is used in both simulation and
implementation. It instantiates all the selected components and the

Note

To reassign an interrupt priority for a specific component, go to the IRQ column in the
row for the component, click on the current interrupt priority number, and choose the
new priority number from the drop-down menu. Explicitly assigned interrupt priorities
will not be overridden by the interrupt generator tool. The Lock control does not affect
IRQ assignment; it only prevents auto-assignment of the Base Address.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 33

interconnect described in the MSB graphical user interface. This file is
the top-level simulation and synthesis RTL file passed to Diamond. It
includes the .v files for each component in the design. These .v files
are used to synthesize and generate a bitstream to be downloaded to
the FPGA. The first time Generate is run, the Verilog source for each
component in the platform, which is located in
<Diamond_install_path>/micosystem/components/<component>, is
copied into a subdirectory called “components.” The components
subdirectory is a sibling to the soc subdirectory.

 For mixed Verilog/VHDL users, the platform1.v file is used in
simulation only.

A mixed-mode Verilog and VHDL simulator, such as Aldec® Active-
HDL™, is needed for functional simulation.

 A platform1_vhd.vhd (VHDL) file is created if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
mixed Verilog/VHDL design. The platform1_vhd.vhd contains the top-level
design used for synthesis. This top-level design file instantiates the
platform1 component.

 A platform1.ngo file, if you selected both the Create VHDL Wrapper and
the Create VHDL NGO File options in the New Platform Wizard dialog
box. The .ngo file is required for Linux Verilog/VHDL users. It is a
synthesized version of platform1.v.

The contents of the platform1.msb file are used by the C/C++ development
tools. The C/C++ source code build process extracts the base address
information and the size of each component and uses the information to build
GNU LD linker files. Each time the Generate function is run, it causes the C/
C++ compiler to consider the C/C++ source code to be out of date. This
means that the source code will be rebuilt from scratch after each Generate
process.

To generate the microprocessor platform:

 Click anywhere in the Editor view and choose Platform Tools > Run
Generator, or click the Run Generator button (), or right-click and
choose Run Generator from the pop-up menu.

The Console view displays the output as MSB processes the design.

If you are using Verilog, you will see Finish Generator in the Console
view when the generator is finished. If the project was created with the
“Create VHDL Wrapper” option selected, the project is a mixed Verilog/
VHDL flow and the generator silently launches Synplify synthesis and
Diamond to create the wrapper. If you are using mixed Verilog/VHDL, you
must wait for the Finish VHDL Wrapper message to appear in the
Console view.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 34

The MSB perspective now looks like the illustration in Figure 23. The
assigned addresses for the components other than the parallel flash might
differ.

Figure 23: MSB Perspective After Building the Microprocessor Platform in a Shared-Bus

Arbitration Scheme

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 35

As shown in Figure 24, MSB generates a platform1_inst.v file, which contains
the Verilog instantiation template for use in a design where the platform is not
the top-level module. For a mixed Verilog/VHDL project, no equivalent file is
generated.

Figure 25 on page 36 shows the structure of the directory that MSB
generates. The directory structure is created the first time the Generate
process is run. The contents of the components subdirectory is only written
the very first time the Generate function is run. After the first run it remains
static. There is an exception: when a MSB project is opened after installing a
new version of the LatticeMico System Builder, a new component version
might exist. You are given an opportunity to update to the new component.
Accepting the update will modify the components subdirectory.

Figure 24: Verilog Instantiation Template

platform1 platform1_u (
.clk_i(clk_i),
.reset_n(reset_n)
, .sramsram_csn(sramsram_csn) //
, .sramsram_be(sramsram_be) // [4-1:0]
, .flashsram_csn(flashsram_csn) //
, .flashsram_be(flashsram_be) // [4-1:0]
`ifdef FLASH_BYTE_ENB
, .flashsram_byten(flashsram_byten) //
`endif // FLASH_BYTE_ENB
`ifdef FLASH_WP_ENB
, .flashsram_wpn(flashsram_wpn) //
`endif // FLASH_WP_ENB
`ifdef FLASH_RST_ENB
, .flashsram_rstn(flashsram_rstn) //
`endif // FLASH_RST_ENB
, .LEDPIO_OUT(LEDPIO_OUT) // [10-1:0]
, .uartSIN(uartSIN) //
, .uartSOUT(uartSOUT) //
, .sramflashOEN(sramflashOEN)
, .sramflashWEN(sramflashWEN)
, .sramflashADDR(sramflashADDR)// [24:0]
, .sramflashDATA(sramflashDATA)// [31:0]

Note

Figure 25 shows an example platform. The figure does not show the entire directory
and file structure.

LatticeMico32 Tutorial Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 36

Figure 25: MSB Directory Structure

<install_path>

examples

lm32_tutor

platform1

components

soc

lm32_top

rtl

Verilog

lm32_top.v top-level processor file

platform1.msb

platform1.v

asram_top

uart_core

drivers

device

peripheral.mk file

*.c, *.h files

Platform project directory

Components repository

Hardware implementation

Software implementation

Platform definition/implementation directory

Platform definition (also for software flow)

Verilog platform implementation (for Diamond)

LatticeMico-specific make files for
managed-make software builds

gnu

platform1_inst.v Verilog instantiation template (for Diamond)

gpio

platform1_vhd.vhd VHDL wrapper (if mixed Verilog/VHDL design)

lm32_debug.v and other debug module *.v files

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 37

Task 3: Create the Software Application Code
In this task, you create the software application by using C/C++ in the
LatticeMico System Software Project Environment (C/C++ SPE). The
software application is the code that runs on the LatticeMico32
microprocessor to control the components, the bus, and the memories. The
application is written in C/C++.

C/C++ SPE is based on the Eclipse environment and provides an integrated
development environment for developing, debugging, and deploying C/C++
applications. C/C++ SPE uses the GNU C/C++ tool chain (compiler,
assembler, linker, debugger, and other necessary utilities) that has been
customized for the LatticeMico32 microprocessor.

C/C++ SPE uses the same LatticeMico System interface as MSB, but it uses
a different perspective called the C/C++ perspective.

To activate the C/C++ perspective:

In the upper left-hand corner of MSB graphical user interface, select
C/C++.

The C/C++ perspective is shown in Figure 26.

Figure 26: C/C++ Perspective

C/C++
Projects
view or
Navigator
view

Problems view, Console view, Properties view, Debug view, Tasks view, or Search view

Editor
view

Outline

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 38

The C/C++ perspective consists of the following views:

 C/C++ Projects view, which lists C/C++ SPE projects that have been
created

 Navigator view, which shows all of the file system's files under the
workspace directory

 Editor view, which is similar to the Editor view in the MSB perspective

 Outline view, which displays the structure of the file currently open in the
Editor view

 Problems view, which displays any error, warning, or informational
messages output by C/C++ SPE

 Console view, which displays informational messages output by the
C/C++ SPE build process

 Properties view, which displays the attributes of the item currently
selected in the C/C++ Projects view. This view is read-only.

 Search view, which displays the results of a search when you choose
Search > File.

 Tasks view, which shows the tasks running concurrently in the background

 Make Targets view, which is not used in LatticeMico C/C++ projects

Create a New C/C++ SPE Project
You will create a new project in C/C++ SPE, import the platform1.msb file into
the project, select the application code template to use so that you do not
have to write the code yourself, and compile the code.

To create a new C/C++ SPE project:

1. In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

2. In the New Project dialog box, make the following selections:

a. In the Project Name box, enter LEDTest.

b. In the Location box, browse to the following directory:

 For Windows, <Diamond_install_path>\examples\lm32_tutor

 For Linux, ~/LatticeMico32/lm32_tutor/platform1

c. In the MSB System box, browse to the following location, select the
platform1.msb file in the dialog box, and click Open.

 For Windows,
<Diamond_install_path>\examples\lm32_tutor\platform1\soc\
platform1.msb

 For Linux,
~/LatticeMico32/lm32_tutor/platform1/soc/platform1.msb

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 39

d. In the Select Project Templates box, select LEDTest as the template
for the application code.

The New Project dialog box should resemble the figure shown in
Figure 27.

3. Click Finish.

Note

Project templates are packaged software application files that are copied to the
new project and provide a starting point for building an application. Some
templates have specific requirements, as described in the description pane. If
these hardware and software requirements are not met, the application built may
not function correctly and may require you to debug the application by using the C/
C++ SPE debug interface. C/C++ SPE enables you to create templates in addition
to those included with the installation.

Figure 27: New Project Dialog Box

Note

The directory shown in the Location box in the Project Contents field is where the
software project directory will be created. Your user files will be placed in this
directory.

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 40

Now you see the source code in the middle pane of the C/C++ perspective, as
shown in Figure 28.

Linker Configuration
A new C project is almost ready to be compiled and linked. Before you
compile the source code, it is necessary to configure the linker. Every C/C++/
assembly file has, at a minimum, three fundamental sections that need to be
placed.

The compiler splits the source code into an instruction section, a read-only
data section, and a read-write section by default. The first two sections can
be placed in either read-only or read-write memories, while the final section
must be placed in a read-write memory. The C/C++ SPE provides you with an
easy-to-use feature for selecting memories for each region.

Your platform contains three memory components: a data inline memory, a
parallel flash memory, and an asynchronous SRAM memory. You will build the
LEDTest application to run from the asynchronous SRAM memory and data
inline memory.

The Properties dialog box enables you to select and change where the linker
places each of the sections.

Figure 28: Source Code in C/C++ Perspective

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 41

To modify how the linker assigns each section:

1. Make sure that the LEDTest is selected in the C/C++ Projects view.

2. Choose Project > Properties.

The Properties for LEDTest dialog box now appears, as shown in
Figure 29.

You can select from the list on the left side of the Properties window to
open one of the following panes:

 Info – provides basic project location information.

 Builders – provides information on the builder system used for this
managed build project. It is preconfigured to use the LatticeMico
builder system.

 C/C++ Build – enables you to select and manage the compiler,
assembler, and linker settings.

 C/C++ Indexer – enables you to specify the indexing method for
searches: fast, full, or no indexer.

 Platform – provides information on the platform used by this project, in
addition to other information such as the linker section setting.

 Project References – enables you to manage other projects
referenced by the current project. Project References cannot be used
for the LatticeMico C/C++ SPE managed build environment.

3. Select the Platform pane.

Figure 29: Properties for LEDTest Dialog Box

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 42

The Target Hardware Platform text box shows the current MSB platform.
You can change the hardware platform used by the software application,
but you must rebuild the software application.

The options in the Linker Script section enable you to select your own
linker script. However, for this tutorial you will use the auto-generated
(default) linker script. For the auto-generated linker script, you can specify
the memories that will be used for the linker sections. The C/C++ SPE
managed build process inspects the specified MSB platform to determine
the available memory regions. As a default, the C/C++ SPE managed
build process selects the largest read/write memory available to contain
all the sections. For this tutorial, you will select the SRAM for program and
read/write data memory sections, and it will select Data Inline Memory for
read-only data memory sections.

4. In the Linker Script section, make the following selections from the drop-
down menus, as shown in Figure 30:

 For Program memory, select sram.

 For Read-only data memory, select Data_IM.

 For Read/write data memory, select sram.

5. Click OK to return to the C/C++ perspective.

Figure 30: Platform Pane of the Properties for LEDTest Dialog Box

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 43

Build the Project
The next step is to build the project, in which C/C++ SPE compiles,
assembles, and links your application code, as well as the system library code
provided by C/C++ SPE.

To compile the project:

 In the C/C++ Projects view (left-hand pane), select LEDTest and choose
Project > Build Project. Do not click on any of the buttons in the Build
Project dialog box.

The compilation process generates the following files, among others, in the
LEDTest\platform1 directory:

 A C header file, DDStructs.h, that describes the device-driver structures
for the applicable devices, in addition to the relevant platform settings,
such as the microprocessor clock frequency

 A C source file, DDStructs.c, that describes the component instance
parameters required by the device drivers in appropriate structures

 A C source file, DDInit.c, that invokes specified device initialization
routines for putting the relevant instantiated components in a known state

 A linker script, linker.ld (in LEDTest\platform1\Debug), that contains the
location and size of the memory components and the rules for generating
an executable file image, as required by the GNU linker. C/C++ SPE uses
this information to ensure that the program code and data are located at
the correct addresses. Although it is not covered in this tutorial, the
LatticeMico C/C++ SPE enables you to easily specify a custom linker
script to be used in lieu of the generated script for the managed build.

 A LatticeMico software executable linked formal file (.elf). The .elf file
contains the Mico instructions, debug information, and information about
the pre-initialized data. This tutorial generates a file called platform1.elf.

These files are included in the directory that C/C++ SPE generates in the
background. The structure of this directory is shown in Figure 31 on page 44.

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 44

The contents of this directory are dynamically generated, and any changes to
them are overwritten from build to build.

The platform1 library directory shown in Figure 31 contains platform-specific
information for the building of an application.

Note

Only the most important files are shown in Figure 31.

Figure 31: C/C++ SPE Directory Structure

LEDTest

debug

*.elf

*.o

makefile

drivers.mk

debug

*.o

platform1

Project directory

Build configuration project output directory

Application executable

User-source object files

Application makefile

Makefile defining peripheral
include/source paths for application

Output directory for platform sources
compiled by application makefile

Library source object files compiled by
application makefile

Platform library directory

libplatform1.a
Platform library file containing platform-
specific drivers

LatticeMico32 Tutorial Task 3: Create the Software Application Code

LatticeMico32 Tutorial 45

Figure 32 shows the automatically generated files in this directory that are
required to build an application. The contents of this directory are generated
dynamically, and any changes to them are not preserved from build to build.

Note

Only the most important files are shown in Figure 32.

Figure 32: LEDTest\Platform1 Library Directory Structure

platform1

Debug

drivers.mk

inherited_settings. mk

linker.ld

linker_settings.mk

makefile

platform_rules.mk

settings.xml

.c/.s

*.h

DDInit.c

DDStructs.c

DDStructs.

crt0ram.s

Platform library directory

Build-configuration platform library output
directory

Makefile that identifies peripheral
makefiles for library build

Build settings inherited from application
build settings

Makefile identifying linker script to use

Makefile for building platform library

Platform build variables inherited from
application settings

Default linker script for this platform

Platform library build-settings file

Platform-specific driver sources

Platform-specific driver header files

Driver initialization source file

Peripheral instance-specific data
structures

Peripheral-specific data structures

LatticeMico boot/startup assembly source
file

system_conf.h System configuration manifest header file

LatticeMico32 Tutorial Task 4: Synthesize the Platform to Create an EDIF File

LatticeMico32 Tutorial 46

Task 4: Synthesize the Platform to Create an EDIF File
(Linux Only)

If you are performing this tutorial on Linux, you must now synthesize your
platform to create an EDIF file. However, before you use Synopsys Synplify
Pro or Mentor Graphics Precision RTL Synthesis to do this, you must take
some preliminary steps.

Using Synopsys Synplify Pro
Before you use Synopsys Synplify Pro to generate an EDIF file, add the
platform1.v file to your Synplify Pro project. If you are generating a platform
using mixed Verilog/VHDL, also add the platform1_vhd.vhd file.

Using Mentor Graphics Precision RTL
Synthesis
Before you use Mentor Graphics Precision RTL Synthesis to generate an
EDIF file, do the following:

1. Add the platform1.v file to your Precision RTL Synthesis project If you are
generating a platform using mixed Verilog/VHDL, also add the
platform1_vhd.vhd file.

2. Add the following directory paths to your Precision RTL Synthesis search
path:

 <platform_name>/soc

 <platform_name>/components/lm32_top/rtl/verilog

 <platform_name>/components/<uart_core>/rtl/verilog, where
<uart_core> is the name of the UART

 <platform_name>/components/wb_sdr_ctrl>/rtl/verilog, where
<wb_sdr_ctrl> is the name of the SDRAM controller

If your platform includes an OPENCORES I2CM component, you must
add another directory to the search path as follows:

<platform_name>/components/i2cm_opencores/rtl/verilog

Create the EDIF File
Now you can create the EDIF file.

To create an EDIF file using your synthesis tool, follow these general steps:

1. Start the synthesis tool.

2. Create a new project in the tool.

3. Add the Verilog HDL file output by MSB to the project. If your platform
uses mixed Verilog/VHDL, also add the <platform_name>.vhd.vhd file.

4. If you are using Precision RTL Synthesis, add the search paths.

5. Set the target device and the options.

LatticeMico32 Tutorial Task 5: Generate the Microprocessor Bitstream

LatticeMico32 Tutorial 47

6. Compile the project and specify the timing objectives.

7. Synthesize the design to generate an EDIF (.edn or .edf) file.

See the Synthesis Data Flow Tutorial for step-by-step information about
synthesizing designs in Precision RTL Synthesis and Synplify Pro.

Task 5: Generate the Microprocessor Bitstream
The next step in the flow is to generate the microprocessor bitstream file. This
bitstream file is then downloaded to the FPGA on the circuit board. To
generate the bitstream file, return to Diamond.

Import the MSB Output File
First, you must import the Verilog file output by MSB, the Verilog and VHDL
files for mixed Verilog/VHDL, or the EDIF file created by the synthesis tool into
Diamond.

The process of importing the generated platform file into Diamond is the same
for Verilog and mixed Verilog/VHDL, except that you must import the VHDL
wrapper file in addition to the Verilog file for mixed Verilog/VHDL.

Configure the Lattice Diamond Environment
The Diamond build process has the ability to operate in two different modes.
One is to copy all HDL source files into the Diamond project directory, and the
other is to reference them in their current directory structure. The LatticeMico
build requires that the source files remain in the directory structure created by
MSB. The default Diamond behavior is to leave the files where they are, but it
is advisable to verify that Diamond is configured correctly.

1. In Diamond, choose Tools > Options.

2. Under Environment, in the left pane of the Options dialog box, select
General.

3. If the option "Copy file to Implementation's Source directory when adding
existing file" is selected, clear this option and click OK.

Importing the Source Files on Windows
On Windows, you import the HDL source files generated by MSB into
Diamond. If your design is in Verilog only, you will import the platform1.v file. If
your design is a mixed Verilog/VHDL design, you will import both the
platform1_vhd.vhd file and the platform.v file.

To import the Verilog or Verilog/VHDL files for the tutorial example:

1. In Diamond, choose File > Add > Existing File.

2. In the dialog box, browse to the ..\platform1\soc directory:

 For Windows,
<Diamond_install_path>\examples\lm32_tutor\platform1\soc

 For Linux, ~/LatticeMico32/lm32_tutor/platform1/soc/

LatticeMico32 Tutorial Task 5: Generate the Microprocessor Bitstream

LatticeMico32 Tutorial 48

3. Do one of the following:

 Select the platform1.v file (Verilog), and click Add.

 If your design is mixed Verilog/VHDL, select both the platform1.v file
and the platform1_vhd.vhd file and click Add.

4. If your design is mixed Verilog/VHDL, perform the following additional
steps:

a. Choose Project > Property Pages.

b. In the dialog box, select the project name that appears in bold type
next to the implementation icon .

c. In the right pane, click inside the Value cell for “Top-Level Unit” and
select <platform1>_vhd from the drop-down menu.

d. Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

e. In the dialog box, click the New Search Path button , browse to the
<platform1>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

g. Click OK to return to the Diamond main window.

Importing the EDIF File on Linux
On Linux, you import the EDIF file generated by the synthesis tool into
Diamond.

To import the EDIF (.edn or .edf) file:

1. If you generated your platform using the VHDL wrapper, perform the
following steps before importing the EDIF file. If you generated your
platform in Verilog, skip these steps and proceed to Step 2.

a. Choose Project > Property Pages.

b. In the Macro Path text box on the right, type platform1\soc and click
OK.

2. Choose File > Add Existing File.

3. Navigate to the location of your .edn or .edf file and click Add.

Connect the Microprocessor to the FPGA Pins
You have two options for connecting the microprocessor to the FPGA pins:

 Manually create the pin constraints and import them into Diamond.

 Import a preconfigured preference file into Diamond.

LatticeMico32 Tutorial Task 5: Generate the Microprocessor Bitstream

LatticeMico32 Tutorial 49

For this tutorial, you will import a preconfigured pin preference file into
Diamond.

To import the preconfigured pin preference file:

1. In Diamond, select the File List tab and double-click Strategy1.

2. In the Strategies dialog box, select Translate Design in the left pane.

3. In the right pane, double-click the cell in the Value column for “Consistent
Bus Name Conversion.”

4. Choose Lattice from the drop-down menu and click OK.

5. In Diamond, choose File > Add > Existing File.

6. In the Add Existing File dialog box, do the following:

a. Select Constraint Files (*.lpf) from the Files of type menu.

b. Select the option Copy file to Implementation’s Source directory.

c. Navigate to the following directory, select the PlatformE.lpf file for the
File Name box, and click Add.

<Diamond_install_path>\micosystem\platforms\PlatformE\
ECP2\HPE_MINI.lpf

Diamond adds the .lpf file to the project and displays file name and path in
the File List.

7. In the File List pane, right-click HPE_MINI.lpf and choose Set as Active
Preference File.

8. Diamond displays the HPE_MINI .lpf file and path in bold type, indicating
that the HPE_MINI will now be used instead of the platform1.lpf file.

Perform Functional Simulation
You can optionally simulate the functionality of the output top-level platform1.v
or platform1_vhd.vhd module by using a simulator such as Active-HDL in
Diamond. See the Active-HDL online Help in Diamond for more information
on this procedure.

 For Verilog simulation, you use platform1.v and all the Verilog files for
each attached component.

 For mixed Verilog/VHDL simulation, you use platform1_vhd.vhd,
platform1.v, and all the Verilog files for each attached component. You
must use a mixed-language simulator such as ModelSim® SE or Aldec
Active-HDL.

See Also “Performing HDL Functional Simulation of LatticeMico Platforms”
in the LatticeMico32 Software Developer User Guide.

LatticeMico32 Tutorial Task 6: Download the Hardware Bitstream to the FPGA

LatticeMico32 Tutorial 50

Perform Timing Simulation
You can optionally validate the timing of your design by performing timing
simulation. Because timing simulation is a complex topic, it is not addressed
in this tutorial. For information on timing simulation, see the Achieving Timing
Closure in FPGA Designs Tutorial, the “Design Verification” topic in the
Diamond online Help, or the “Strategies for Timing Closure” chapter of the
FPGA Design Guide.

The timing simulation process automatically builds a database and maps,
places, and routes the design.

Generate the Bitstream
Now you will generate a bitstream to download the microprocessor platform to
the FPGA. If you did not perform timing simulation, the bitstream generation
process will automatically synthesize, map, place, and route the design
before it generates the bitstream.

To generate a bitstream (.bit) file:

1. In Diamond, select the Process tab.

2. In the Export Files section, double-click Bitstream File.

Diamond now generates a bitstream data file, platform1.bit, that is ready to be
downloaded into the device. This process takes several minutes.

Task 6: Download the Hardware Bitstream to the FPGA
The bitstream file generated in the previous section contains all the
information required to program the LatticeECP2 FPGA. Lattice
Semiconductor provides the Diamond Programmer tool that sends the
programming bitstream to the FPGA over a parallel port or USB port
communications link. Now you will use Programmer to download the
hardware bitstream that you generated in the previous section to the FPGA
on the board. For instructions on connecting the USB cable to the board, refer
to the LatticeMico32 Development Kit User’ Guide for LatticeECP2.

To download the bitstream to the FPGA on the board:

1. Remove any Lattice USB Programming cables from your system.

2. Connect the power supply to the development board.

3. Connect a USB cable from your computer to the LatticeMico32/DSP for
ECP2 development board. The USB cable must be connected to the USB
target connector adjacent to the keypad. Give the computer a few
seconds to detect the USB device on the LatticeMico32/DSP for ECP2
development board before moving to step 3.

Note

A USB cable is included with the board.

LatticeMico32 Tutorial Task 6: Download the Hardware Bitstream to the FPGA

LatticeMico32 Tutorial 51

4. In Diamond, choose Tools > Programmer.

5. In the Getting Started dialog box, choose Create a new Blank Project.
and click OK. Leave the Import File to Current Implementation box
checked. Programmer scans the device database, and then the
Programmer view displays in Diamond.

6. In the Cable Settings dialog box on the right side of the Programmer
window, do the following:

a. In the Cable box, select USB.

b. In the Port box, choose the only setting available in the drop-down
menu, FTUSB-0.

7. Double-click the Operation column to display the Device Properties dialog
box, as shown in Figure 33, and choose the following settings:

 For Access Mode, choose JTAG 1532 Mode from the pull-down
menu.

 For Operation, choose Fast Program from the pull-down menu,

8. Double-click the File Name column. Click to display the Open File
dialog box, and browse to the platform1_platform1.bit file in the following
directory:

 For Windows,
<Diamond_install_path>\examples\lm32_tutor\platform1_platform
1.bit

 For Linux, ~/LatticeMico/lm32_tutor/platform1_platform1.bit

9. Click Open.

Figure 33: Device Properties Dialog Box.

10. Click OK.

Note

If the Programmer output window displays “Cannot identify detected device on row 1.
Please manually select correct device,” choose LFE2-50E from the Device column
drop down menu.

LatticeMico32 Tutorial Task 6: Download the Hardware Bitstream to the FPGA

LatticeMico32 Tutorial 52

11. The Programmer view should look as shown in Figure 34.

Figure 34: Diamond Programmer

12. Click the Program button on the Programmer toolbar to initiate the
download.

13. Check the Programmer output console to see if the download passed, as
shown in Figure 35. If the programming process succeeded, you will see a
green-shaded PASS in the Programmer Status column.

Figure 35: Programmer Output Console

14. At the end of this process, the FPGA is loaded with the microcontroller
hardware configuration.

15. In Diamond, choose File > Save platform1.xcf.

16. Exit Diamond by choosing File > Exit.

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 53

Task 7: Debug and Execute the Software Application
Code on the Development Board

In this task, you will use the debugger to download the executable file
containing the software application code to the LatticeMico32/DSP
development board. This enables the LatticeMico32 microprocessor, which is
part of the FPGA bitstream you downloaded in Task 5, to execute the
application code.

This task assumes that you have successfully downloaded the platform FPGA
bitstream to the development board in “Task 6: Download the Hardware
Bitstream to the FPGA” on page 50.

If you encounter any problems with the debug session, refer to "Debug
Session Troubleshooting" in the Lattice Software Project Environment online
Help. This troubleshooting topic describes the most common problems
encountered in launching a debug session and the reasons the debugger
sometimes fails to operate.

Software Application Code Execution Flow
The FPGA is now configured with the LatticeMico32 Development
microprocessor platform. The order in which the LatticeMico32
microprocessor executes the software application code images is as follows:

1. The LatticeMico32 microprocessor starts execution at the address
contained in its exceptions base address (EBA).

This is the address you specified when you added the LatticeMico32
microprocessor core in Task 2.

2. When you start the LatticeMico System debugger, it communicates with
the microprocessor over the microprocessor's debug module.

The debug module is a collection of files inside the lm32_top\rtl\verilog
directory, as shown in Figure 25 on page 36. The debug module, in turn,
generates a debug exception that causes the microprocessor to execute
the debug monitor code. The LatticeMico32 microprocessor, in order to
respond to the debug exception, must be running valid opcodes and must
not be stuck waiting for a bus cycle to complete. Upon successful
execution of the debug exception, the debug monitor code then
communicates with the LatticeMico System debugger running on the host
computer.

3. At this point, the debugger has control over the microprocessor and can
access the platform's memory through the debug module or
microprocessor to download the application to the selected memories.

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 54

4. After it has downloaded the application to be debugged to the target
memory or memories, the debugger sets the microprocessor's program
counter to start executing the downloaded code.

Debug the Software Application Code on the
Board
Now that you have a LatticeMico32 platform loaded into the LatticeMico32/
DSP for ECP2 development board and a compiled and linked C program, you
can begin working with the LatticeMico source code debugger.

The source code debugger allows you to download the fully resolved ELF file
created by the linker into the memories specified by the auto-generated linker
script. The debugger enables you to set breakpoints, control the program flow,
and inspect variables, registers, and memory. It enables you to validate that
your program is functioning correctly, and it enables you to find any problems
that exist in the applications source code.

To debug the software application code on the board:

1. In the C/C++ SPE perspective, click LEDTest in the C/C++ Projects view
(left-hand pane).

Figure 36: Software Application Code Execution Flow

Parallel flash

EBR

LEDTest (software
application code)
with breakpoint at
main()

Debug
monitor
code

JTAG UART

SRAM

Executing

FPGA

LED
(GPIO)

LEDs

PC

LM32

LatticeMico System
Debugger

LEDTest
.elf

Debug module

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 55

2. Choose Run > Debug...

The Debug dialog box opens, as shown in Figure 37.

3. Select mico32hardware, and then click the New launch configuration
button on the toolbar.

If you are connecting to the evaluation board for the first time, the
Progress Information message box appears.

Figure 37: Debug Dialog Box

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 56

The appearance of the Debug dialog box changes again, as shown in
Figure 38.

In this dialog box, you specify the project or executable to debug. Since
you selected the project before selecting Run > Debug, the boxes are
filled in by Eclipse. If these boxes are not populated, follow these
instructions to configure the items in this dialog box:

a. Use the Browse button to select the Eclipse project.

Clicking Browse activates a dialog box that lists the available projects
created or imported in Eclipse.

b. Select LEDTest.

c. Click the Search Project button to select the executable (.elf) file that
you want to debug.

A project may have multiple executables. Clicking the Search Project
button activates a dialog box that lists the executables built for the project.
If you want to use an executable not built within C/C++ SPE, click the
Browse button to activate a file selection dialog box in which to select the
appropriate .elf-format executable file.

Figure 38: Debug Dialog Box with Tabs

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 57

4. Click the Debugger tab of the Debug dialog box, as shown in Figure 39.

The Debugger tab features the following Debugger settings:

 The Start Up Option section enables you to choose where you want
your initial breakpoint. For a debug launch, the Debugger downloads
the code and sets an initial breakpoint to enable debugging. You can
place your breakpoint either at the start of your main program or at the
start of the Device Driver initialization routine generated by the C/C++
SPE managed build process. The default behavior is to set the initial
breakpoint at the first executable source line inside the main()
function.

 Remote target option, which provides the address for the LatticeMico
debug proxy program that will be launched on your computer. This
proxy program allows C/C++ SPE to debug the program by using the
GNU GDB program and provides a communication channel to the
microprocessor over a JTAG connection. Refer to the LatticeMico32
Software Developer User Guide for more details on the debugging
setup.

 Debugger Options, which lists the debugger application that C/C++
SPE will use as the debugger. This setting must not be changed.

If you attempt to change settings, the Apply button might become
available. In this case, click the Apply button to save your settings.

Figure 39: Debugger Tab of the Debug Dialog Box

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 58

5. Click the Debug button located on the lower right side of the dialog box.

When you click the Debug button, the dialog box closes, and C/C++ SPE
attempts to interface to the debug monitor in the LatticeMico32 platform.
Once it has established a connection to the debug monitor it downloads
the LatticeMico executable code to the memories specified by the linker
script. After it has successfully done this, the Confirm Perspective Switch
prompt box containing the following message appears:

This kind of launch is configured to open the Debug
perspective when it suspends. Do you want to open this
perspective now?

6. Select the Remember my decision box, and click the Yes button. Click
Yes in the prompt box.

Note

If you encounter any problems with the debug session, refer to "Debug Session
Troubleshooting" in the Lattice Software Project Environment online Help. This
troubleshooting topic describes the most common problems encountered in
launching a debug session and the reasons the debugger sometimes fails to
operate.

Note

If you did not previously download the bitstream, a message box with the following
error message may appear:

Check that the target FPGA contains an LM32 CPU with
DEBUG_ENABLED equal to TRUE and that the FPGA has configured
successfully.

Return to “Task 6: Download the Hardware Bitstream to the FPGA” on page 50,
and download the bitstream before proceeding.

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 59

C/C++ SPE now switches to the Debug perspective, shown in Figure 41.

Note

Selecting Run > Debug on a computer running the Windows operating system
might activate the Windows firewall. The Windows Security Alert dialog box shown
in Figure 40 might appear.

Figure 40: Windows Security Alert Dialog Box

Click unblock to continue debugging.

TCP2JTAGVC is the application that provides the communication channel
between the LatticeMico32 microprocessor debug module and lm32-elf-gdb (GDB
modified for the LatticeMico32 microprocessor).

Figure 41: Debug Perspective

Debug
view

Variables view,
Breakpoints
view, Modules
view,
Registers
view, Signals
view, or
Expressions
view

Outline view or
Disassembly
view

Editor
view or
Source
view

Console view, Tasks view, or Memory view

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 60

The Debug perspective consists of many views, some of which may not
be visible:

 Debug view, which displays the function calls made so far. It also
contains application and process information.

 Variables view, which displays the variables that are used in the
source code functions

 Breakpoints view, which appears when you insert a breakpoint

 Source view, which displays the source code when you click on a
thread in the Debug view

 Outline view, which displays the functions in the source code

 Console view, which displays the output of the debugging session

 Tasks view, which is not used

 Modules view, which displays the modules of the executable loaded. If
you click on a module, C/C++ SPE displays all the functions that
compose that module.

 Registers view, which displays the registers in the CPU. It also shows
the values on the registers at the breakpoints. Values that have
changed are highlighted in the Registers view when your program
stops.

 Signals view, which enables you to view the signals defined on the
selected debug target and how the Debugger handled each one

 Memory view, which enables you to inspect and change multiple
sections of your process memory

 Expressions view, which is activated if you right-click in the Source
view, choose Add Watch Expression, and enter a variable in the Add
Expression dialog box

 Disassembly, which shows the source code in assembly language
with offsets. It shows the instructions that reside at each address.

To select views that are not visible for this perspective, click Window >
Show View and choose the appropriate view.

7. If it is not already displayed, expand the LEDTest in the top left of Debug
view. It should resemble the illustration in Figure 42.

This shows the processes that are running on the host PC.

Figure 42: Expanded Debug View

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 61

Insert Breakpoints
The information in the expanded Debug view under
com.lattice.mdk.debug.mico32debugger contains information about the
executable downloaded to the FPGA and executed by LatticeMico. It shows
that the execution is suspended because of a breakpoint at a line within the
LEDTest.c source file.

1. In the Debug view, click on the statement containing the line main().

This step activates the file in the Source view, located below the Debug
view. A line with green highlighting shows the line at which the
LatticeMico32 microprocessor has been suspended because of a
breakpoint. The breakpoint is at the beginning of your main program, as
configured for this debug launch.

You will now insert a breakpoint to check the software and platform
functionality.

2. In the LEDTest.c file displayed in the Source view, click on the line
beginning with “MicoGPIOCtx_t,” as indicated in Figure 43.

3. Insert a breakpoint by double-clicking in the left margin, aligned to the line
shown in Figure 43. Alternatively, you can select Run > Toggle Line
Breakpoint.

As shown in Figure 44, LEDTest.c should now appear in the Source view
with a blue bubble and a check mark in the margin aligned to the line of
interest. If the Breakpoint view is open, it be should updated to show this
breakpoint.

Figure 43: Breakpoint Line

Figure 44: Inserted Breakpoint

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 62

Execute the Software Application Code
Now you can resume executing the software application code on the board.

1. In the Debug view, click the green arrow to the right of the “Debug” tab
title. Alternatively, you can choose Run > Resume.

The Debugger now issues a “continue” command to the LatticeMico32
microprocessor, which executes the code until it reaches the breakpoint
that you inserted previously.

2. Step over the C source line by clicking the icon in the same line as the
Debug tab title. Alternatively, you can choose Run > Step Over or press
the F6 key.

The Debugger causes the microprocessor to execute the source line at
which the breakpoint was inserted.

At this point, the Variables view is updated, as shown in Figure 45.

The value of the “leds” variable might be different from that shown in
Figure 45. However, if the value of the “leds” variable shown in Figure 45
is 0x00000000 (or 0) for your view, the platform most likely does not have
a GPIO named LED in the platform. Repeat the tutorial, following the
procedures exactly.

3. In the Debug view, click the green arrow next to the tab title, or choose
Run > Resume.

The Debugger issues a “continue” command to the LatticeMico32
microprocessor, which causes the microprocessor to continue execution
of the downloaded code.

The Console view in the bottom of the C/C++ SPE window should display
the text line shown in Figure 46 on page 63. This text is output by the
LEDTest application running on LatticeMico, which uses the JTAG

Note

If the Variables view is not visible, choose Window > Show View > Variables to
make it visible. If the Variables view is inactive—that is, the tab is shown in gray
tones—click on the Variables tab to make it active.

Figure 45: Updated Variables View

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 63

connection to the Debugger for standard input/output communication to
the C/C++ SPE console.

4. Observe the LEDs on the LatticeMico32 development board to confirm a
back-and-forth scrolling LED pattern, which is controlled by the code
executed by LatticeMico.

5. Expand the Debug view to show the active processes, shown in
Figure 47.

6. Click the line containing the text Thread[0] (Running) to activate the
following two buttons:

 A button with two orange bars, , located towards the center of the
debug view title bar, which pauses execution. It inserts an
asynchronous breakpoint similar to a pre-set line breakpoint.

 A button with a red square, , which terminates the running
application on LatticeMico. The Debugger no longer provides access
to the code being debugged. Use Run > Debug... to restart the
debugging session.

7. Click the red-square button to terminate execution of the LEDTest
application on LatticeMico.

8. Click the button on the top left of the Debug perspective
window to return to the C/C++ perspective. Alternatively, you can select
Windows > Open Perspective > C/C++ to return to the C/C++
perspective.

Figure 46: Console Output

Figure 47: Running Processes

LatticeMico32 Tutorial Task 7: Debug and Execute the Software Application Code

LatticeMico32 Tutorial 64

Modify and Re-execute the Software Application
Code
The LEDTest.c application contained some printf statements for test
purposes. The platform is configured so that these printf statements
communicate through the microprocessor’s debug module to the debugger
running on the host machine for outputting information to the
C/C++ SPE console. If the debugger is absent, the printf statements cause
the debug module to wait indefinitely for a client to communicate with.
Therefore, now that the code is validated and needs to be deployed, it must
be devoid of printf statements.

1. Delete the two printf statements from the code to make it similar to the
example shown in Figure 48.

2. Choose File > Save to save the modified file.

Before you rebuild the project, it is important that you terminate any prior
debug session. If the Debugger is still paused or running, the Build Project
command will fail when the linker tries to overwrite the platform1.elf file.

Figure 48: Modified LEDTest Code

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 65

3. To rebuild the modified code, select LEDTest and choose Project > Build
Project.

4. Return to the Debug perspective.

5. To download, debug, and execute the modified code, do the following:

a. Click Run > Debug..., and then click Debug in the Debug window.

b. Click the green arrow next to the tab title.

c. Step over the C source line by clicking the icon in the Debug view
or choose Run > Step Over or press the F6 key.

d. Click the green arrow again.

This code is now ready for stand-alone deployment in the parallel flash
memory.

You have now completed the task of downloading and executing the
software application code on the LatticeMico32/DSP development board.

6. Verify that the LEDTest program is functioning by noting the sweeping
LED pattern on the board.

7. Click the Terminate () button to stop the demonstration program and
unload the debug session. Failing to unload the debug session interferes
with programming the parallel flash memory, a process that is described in
the next session.

Task 8: Deploy the Software Code to Parallel Flash
Memory

As part of Task 7, you debugged and executed the LEDTest software
application code from Lattice Software Project Environment. That is, you used
the Lattice Software Project Environment to load the LEDTest software code
onto volatile memory on the development board and then debug/execute it.

In this task, you will prepare the LEDTest software for deployment to parallel
flash memory and then load the executable linked format file (.elf) into the
parallel flash memory, which is non-volatile memory.

Refer to the LatticeMico32 Software Developer User Guide for details on
deployment strategies and user flow.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 66

The LatticeMico System software provides example code for programming
Common Flash Interface (CFI) parallel flash PROMs. You will use this flash
programming application to program the LEDTest executable code into the
parallel flash PROMs on the LatticeMico32/DSP for ECP2 development
board.

Parallel Flash Memory Deployment Flow
The steps involved in deploying the software application code to the parallel
flash memory are as follows:

1. The CFIFlashProgrammer flash programming application is compiled and
linked to run from the SRAM location.

2. The C/C++ Perspective Software Deployment UI is configured, and the
CFIFlashProgrammer application is downloaded to the SRAM memory.

Figure 49: Parallel Flash Memory Deployment Flow

Parallel flash

EBR

Debug
monitor
code

Debug Module
JTAG UART

Executing

FPGA

LED
(GPIO)

LEDs

PC

SRAM

Flash
Programmer
.elf

LM32

LatticeMico System Debugger

Flash
Programmer
.elf

LEDTest
.elf

Flash Programmer

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 67

3. The flash programming application is now executing on the LatticeMico32
microprocessor. It reads the LEDTest software application code from the
PC. The code has been converted on the PC to a simple binary image.
The flash programming application then writes the application code to the
parallel (CFI) flash memory. Figure 50 illustrates these steps.

The CFIFlashProgrammer application terminates and exits the debug
session. The CFIFlashProgrammer presents the results of the
programming sequence in the debug Console Tab.

Figure 50: Parallel Flash Memory Deployment Flow, continued

Parallel flash

EBR

Executing

FPGA

LED
(GPIO)

LEDs

PC

SRAM

Flash
Programmer
.elf

LM32

LatticeMico System Debugger

LEDTest
.elf

LEDTest

Flash
Programmer
.elf

Debug
monitor
code

Debug Module
JTAG UART

Flash Programmer

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 68

Create a CFI Flash Programmer Application
In order for a LatticeMico32 based SOC system to operate correctly when
power is applied to the system, it is necessary for the microprocessor to fetch
opcodes from a non-volatile memory. A Common Flash Interface
programming application is provided in the C/C++ SPE perspective to enable
non-volatile parallel flash PROMs to be loaded with the initial microprocessor
opcodes. In order for the CFIFlashProgrammer application to work correctly,
the LatticeMico32 platform must include a CFI-compliant parallel flash
memory.

C/C++ SPE provides a CFI flash programmer template, which can program
binary data stored in a file on the host computer to any valid flash component.

The CFI flash programmer application relies on the device drivers for
performing flash operations. They can be enhanced to support CFI flash
configurations and command sets that are not currently supported. Refer to
the LatticeMico32 Software Developer User Guide for an overview of the
supported CFI flash configurations and command sets.

To create the flash programmer application:

1. Return to the MSB Perspective.

2. Modify the LatticeMico32 Exception Vector base address to point to the
parallel flash memories base address (0x02000000).

3. Generate the platform.

The next steps assume that the LatticeMico32 Development
microprocessor bitstream is loaded on the board, as explained in “Task 6:
Download the Hardware Bitstream to the FPGA” on page 50.

4. In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

5. In the New Project dialog box, do the following:

a. In the Location box, browse to the following location and click OK:

 For Windows, <Diamond_install_path>\examples\lm32_tutor\

 For Linux, ~/LatticeMico32/lm32_tutor/

b. In the Project Name box, type FlashProgrammer.

c. In the MSB System box, browse to the following location, select the
platform1.msb file, and click Open:

 For Windows,
<Diamond_install_path>\examples\lm32_tutor\platform1\
soc\platform1.msb

 For Linux, ~/LatticeMico32/lm32_tutor/platform1/soc/
platform1.msb

d. In the Select Project Templates box, select CFIFlashProgrammer as
the template for the application code.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 69

The New Project dialog box should look like the example shown in
Figure 51.

e. Click Finish.

6. In the left-hand pane of the C/C++ perspective, right-click
FlashProgrammer and choose Properties from the pop-up menu.

7. Select Platform.

8. In the Linker Script section, select sram for Program memory, Read-only
data memory, and Read/write data memory.

9. In the Stdio Redirection section, select JTAG-UART (LM32) for stdin,
stdout, and stderr.

10. Click OK to close the dialog box.

11. In the C/C++ perspective, select FlashProgrammer and choose
Project > Build Project.

Figure 51: New Project Dialog Box

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 70

Prepare LEDTest for Flash Deployment
The flash programmer application is a generic binary data programmer that
reads data from a file on the host computer and programs it to a valid flash
memory. The LEDTest application is in an executable linked format (ELF) and
must be converted to binary data so that the flash programmer application
can use it.

The first step is to compile the LEDTest ELF. You cannot use the LEDTest ELF
created in Task 3, since it was built for both deployment and execution from
SRAM and data inline memory. What you need is an LEDTest ELF that is built
for deployment into parallel flash memory and is built for execution from
SRAM and data inline memory. Therefore, before deploying LEDTest
application to parallel flash memory, you must recompile LEDTest ELF to
change the deployment location to parallel flash memory.

As part of this recompilation, the Lattice Software Project Environment (C/C++
SPE) will instruct GCC to build a code relocator into the LEDTest ELF. This
code relocator is essential, because it will be responsible for copying the
LEDTest program and read/write data memory sections to SRAM and copying
the read-only sections to data inline memory from parallel flash memory for
execution of the LEDTest software upon board reset.

For deployment, the RS-232 UART will be used for standard I/O operations
instead of JTAG UART. You will set these stdio properties, in addition to the
linker script properties, and rebuild the project.

To change the properties and rebuild the LEDTest project:

1. In the C/C++ perspective, select LEDTest and choose Project >
Properties.

2. In the Properties dialog box, select Platform.

3. In the Linker Script section, do the following:

a. Select Enable Deployment.

b. For Program memory, choose sram.

c. For Read-only data memory, choose Data_IM.

d. For Read/write data memory, choose sram.

e. In the Stdio Redirection section, choose RS-232(uart) for stdin, stdout,
and stderr.

Note

You can no longer use the new LEDTest ELF for debugging and execution
purposes from Lattice C/C++ SPE, since it has been prepared for parallel
flash deployment. The LEDTest ELF must be recreated, as shown in Task 3,
for this purpose.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 71

The Platform Properties dialog box should look like the example shown in
Figure 52.

4. Click OK.

5. In the MSB perspective, verify that the LatticeMico32 Exception Handler
address is set to 0x02000000. If it is not, update the Exception Handler
address and regenerate the platform. You will also need to rebuild the
CFIFlashProgrammer application if the Exception Handler has address
changed.

6. In the C/C++ perspective, select LEDTest and choose Project > Build
Project.

C/C++ SPE provides an easy-to-use interface for preparing LEDTest for flash
deployment. Consult the LatticeMico32 Software Developer User Guide for
functional details on the flash programming utility.

To prepare LEDTest for flash deployment:

1. In the C/C++ perspective, select FlashProgrammer and choose
Tools > Software Deployment.

The Software Deployment Tools dialog box appears with the Software
Deployment Tools screen selected, as shown in Figure 53 on page 72.

Three programming configurations are available:

 Mico32 Flash Deployment configuration, which provides a graphical
user interface for preparing and programming an application to parallel

Figure 52: Platform Properties with RS-232 (UART) Stdio Redirection

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 72

flash memory. Refer to the LatticeMico32 Software Developer User
Guide for this deployment strategy.

 Mico32 Multi On-Chip Memory configuration, which provides a
graphical user interface for preparing multiple applications for
deployment into on-chip memory.

 Mico32 On-Chip Memory configuration, which provides a graphical
user interface for preparing a single application for deployment into
on-chip memory.

2. Select Flash Deployment, and click the New launch configuration
button on the toolbar.

Figure 53: Software Deployment Tools Dialog Box Showing

Programming Configurations

Note

Mico8 Memory Deployment is for LatticeMico8 microcontroller.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 73

The Software Deployment Tools dialog box displays a flash programming
configuration settings pane similar to that shown in Figure 54.

3. In the Name box, change the name to LEDTestDeploy.

4. Click the Browse button next to the Project box.

Figure 54: Software Deployment Dialog Box Showing Flash

Programming Settings

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 74

The Project Selection dialog box comes up, as shown in Figure 55.

5. Select LEDTest and click OK to select the project containing the
executable that needs to be programmed to flash.

6. Click Search Project next to the C/C++ Application text box.

Figure 55: Project Selection Dialog Box

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 75

The Program Selection dialog box appears, as shown in Figure 56. It
contains the list of executables for the selected project, LEDTest.

7. From the Binaries list, select LEDTest.elf and click OK.

8. In the Reset Vector Address box, under Deployment Options, enter
0x02000000, which is the base address for the flash component, as well
as being LatticeMico’s reset exception address.

The flash programmer uses this address to verify the presence of a flash
device containing this absolute address. It uses device information
contained as part of the device driver framework in this verification. It also
uses this address to determine the offset within the flash device where it
needs to program binary data

9. Click the Browse button next to the Flash Programmer Application box.

A file selection dialog box appears.

10. Select the FlashProgrammer.elf file, located in the following directory,
and click Open:

Figure 56: Program Selection Dialog Box

Note

In the Deployment Options section, do not select the Prepend Code Relocator.
This option should not be enabled unless the LEDTest application was compiled
with a version of LatticeMico System Builder prior to 8.0. In these earlier versions,
the code relocator was not built into the application; therefore, it was necessary to
prepend a separate relocator code to the actual application.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 76

 For Windows, <Diamond_install_path>\examples\lm32_tutor\
FlashProgrammer\Debug\FlashProgrammer.elf

 For Linux, ~/LatticeMico32/lm32_tutor/
FlashProgrammer\Debug\FlashProgrammer.elf

The Software Deployment dialog box should resemble the illustration
shown in Figure 57.

11. Click Analyze to confirm that the selected LEDTest sections are being
deployed to parallel flash memory.

Figure 57: Software Deployment Dialog Box Showing Completed Flash Programming Settings

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 77

In this tutorial, you deploy all LEDTest sections to parallel flash memory.
Clicking on Analyze should show that the following sections are deployed:
.boot, .text, .rodata, .data, .bss.

12. Click Apply to save the configuration if you want to reprogram the
application with these settings.

13. Click Start.

The Software Deployment tool runs scripts that convert the LEDTest.elf
into a raw binary format. After the conversion of the LEDTest.elf file, the
CFIFlashProgrammer application erases the parallel flash memory and
programs the raw binary into the flash memory.

The console in the C/C++ perspective displays messages from the flash
programmer as it progresses through flash programming. If the
programmer encounters any errors, it displays the text in this console.

Consult the LattticeMico32 Software Developer User Guide for
information on the implementation and functional details of the flash
programming elements mentioned in this section.

As the programmer application executes successfully, you see a console
display similar to the one shown in Figure 58. Depending on the size of

Note

If this list of sections deployed to flash memory comes up empty, it is most likely a
symptom of the following errors:

 The Reset Vector Address (Step 8 on Page 79) does not match the
"Location of Exception Handlers" of LM32 (Step 3 on Page 18).

 The Reset Vector Address is not an address within the parallel flash
address range (0x02000000 to 0x03FFFFFF).

 LEDTest ELF has not been prepared for parallel flash deployment
(see Figure 52 on page 71).

Note

Loading the parallel flash memory takes several minutes.

LatticeMico32 Tutorial Task 8: Deploy the Software Code to Parallel Flash Memory

LatticeMico32 Tutorial 78

LEDTest, the programming time may vary from a few seconds to a few
minutes.

These messages might disappear from the screen. If they disappear and
you want to view them again, return to the Debug perspective and click on
the highlighted terminated message in the Debug view, as shown in
Figure 59. The messages will be displayed in the Console view of the
Debug perspective.

When you have completed Task 8, the LatticeMico32 platform will be in the
following state:

 The FPGA is programmed with the LatticeMico32 Development
Microprocessor (EBA = Debug Port Base Address).

 Parallel flash memory contains the LEDTest application with a code
relocator appended.

Figure 58: Successful Flash Programming Console

Figure 59: Highlighted Terminate Message

LatticeMico32 Tutorial Task 9: Deploy the Production Microprocessor Bitstream to

LatticeMico32 Tutorial 79

Task 9: Deploy the Production Microprocessor
Bitstream to SPI Flash Memory

As part of Task 8, you deployed the LEDTest application to non-volatile
memory. To attain stand-alone operation for an actual product deployment,
you will now program a LatticeMico32 Production microprocessor to SPI flash
memory, which is a non-volatile memory.

The platform described at the end of Task 8 is not capable of operating after
power is applied to the system. The reason for this is two-fold:

 The FPGA image has not been placed in a non-volatile memory.

 The LatticeMico32 microprocessor is in a development mode. The
Exception Base Address is not assigned to an address that contains
opcodes stored in a non-volatile memory.

The first step in Task 9 is to build the Production LatticeMico32
microprocessor. The Production LatticeMico has the Exception Handler
address set to 0x02000000 (i.e. the base address of the parallel flash
memory).

You might have observed in Task 8 that the Exception Handler address was
changed to 0x02000000 and the Generate function was performed, but the
Diamond Bitstream Generation process was never run. Now you will build a
new FPGA bitstream following these steps:

1. Save the bitstream containing the Development LatticeMico32
microprocessor. Go to the lm32_tutorial directory and rename
“platform1.bit” to “platform1_development.bit.” This bitstream is your fail-
safe recovery point to allow debugging to continue in the event that the
Production LatticeMico32 microprocessor fails to operate.

2. Return to Diamond and run the Bitstream File process. When Diamond
finishes running this process, you have a new platform1.bit file. This file
contains the Production LatticeMico32 microprocessor.

3. Write the Production LatticeMico32 microprocessor bitstream into a non-
volatile memory. Writing the FPGA bitstream into a non-volatile memory
means that the FPGA configuration will be recovered when power is
applied to the system

The LatticeMico32/DSP for ECP2 development board has a SPI flash that is
used to store the FPGA configuration bitstream.

To deploy the microprocessor bitstream:

1. In Diamond, choose Tools > Programmer.

In the Programmer window, the LFE2-50E device and platform1.bit should
still be displayed. If they are not displayed, follow the instructions in “Task
6: Download the Hardware Bitstream to the FPGA” on page 50.

2. Highlight the row, and then click the Device Properties button on the
Programmer toolbar to display the Device Properties dialog box.

LatticeMico32 Tutorial Task 9: Deploy the Production Microprocessor Bitstream to

LatticeMico32 Tutorial 80

3. Under Access Mode, select SPI Flash Programming.

4. Under Operation, select SPI Flash Erase, Program, Verify.

5. In the SPI Flash Options box:

a. Under Family, select SPI Serial Flash.

b. For Vendor, select Numonyx.

c. For Device, select SPI-M25P16

d. For Package, select 8-pin SOIC.

6. Click Load Size from Programming File to load the data file size.

The Device Information dialog box should resemble the illustration shown
in Figure 60.

7. Click OK in the Device Information dialog box.

8. Click the Program button on the Programmer toolbar to initiate the
deployment.

Figure 60: Device Properties Dialog Box

LatticeMico32 Tutorial Task 9: Deploy the Production Microprocessor Bitstream to

LatticeMico32 Tutorial 81

Programmer deploys the SPI flash by means of the FPGA. The results are
shown in the Programmer output console in Figure 61.

9. Disconnect and then reconnect the power supply.

The FPGA takes about three seconds to be programmed by the SPI flash.

After the FPGA is programmed, the LatticeMico32 microprocessor starts
executing from the parallel flash memory. Built into the LEDTest
application by GCC (as part of crt0ram.S), the code locator performs the
following tasks:

 Copies the LEDTest instructions and read/write data from the parallel
flash memory and writes them into the SRAM.

 Copies the LEDTest read-only data from the parallel flash memory and
writes them into the data inline memory.

After the software application is copied into the SRAM and data inline
memory, the code locator performs a control transfer (unconditional
branch) and begins running the LEDTest program.

Figure 62 illustrates these steps.

Figure 61: Programmer Output Console

LatticeMico32 Tutorial Summary

LatticeMico32 Tutorial 82

You now see the red LED lights blinking.

Summary
You have finished the LatticeMico32 Tutorial. In this tutorial, you have learned
how to do the following:

 Set up a Lattice Diamond FPGA project.

 Create microprocessor platform for the LatticeMico32 embedded
microprocessor in MSB.

Figure 62: Parallel Flash Memory Deployment Flow, continued

Parallel flash

EBR

Debug
monitor
code

Debug Module
JTAG UART
Flash Programmer

Executing FPGA

LED
(GPIO)

LEDs

PC

SRAM

Flash
Programmer
.elf

LM32
Code Locator

LEDTest Application

LatticeMico System Debugger

LEDTest
.elf

Flash
Programmer
.elf

LEDTest

Data
Inline
Memory

Note

If you accidentally press the Reset button on your keypad, you will lose USB
communication with the board, and the debugging will fail in both Programmer and
MSB. To restore this communication, remove the power source from the board, re-
connect the power source to the board, and make sure that the FPGA bitstream is
reloaded.

LatticeMico32 Tutorial Summary

LatticeMico32 Tutorial 83

 Create the software application code for the microprocessor platform with
C/C++ SPE.

 Generate a bitstream of the microprocessor platform in Diamond and
download it to the board with Programmer.

 Download the hardware bitstream to the FPGA on the board.

 Debug and execute the software application code on the board.

 Download the .elf file containing the software application code to the
parallel flash memory.

 Deploy the microprocessor bitstream to the SPI flash memory.

LatticeMico32 Tutorial Glossary

LatticeMico32 Tutorial 84

Glossary
Following are the terms and concepts that you should understand to use this
tutorial effectively.

breakpoints. Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE. C/C++ SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The
C/C++ SPE tool chain uses a GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) optimized for the
LatticeMico process. It uses the same graphical user interface as MSB.

CDT. CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

CFI. CFI is an abbreviation for Common Flash Interface (CFI) parallel flash
memory, which is an open standard jointly developed by a number of chip
vendors for a type of EEPROM that stores information without requiring a
power source.

code-relocator code. Code-relocator code is code that copies the software
application code to a destination memory and jumps to the application start
address to run the application.

CSR. CSR is an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

debugging. Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse. Eclipse is an open-source platform that provides application
frameworks for software application development. The LatticeMico System
interface is based on the Eclipse environment.

.elf file. An .elf file is a file in executable linked format that contains the
software application code written in C/C++ SPE.

LatticeMico32 Tutorial Glossary

LatticeMico32 Tutorial 85

GDB. GDB is an abbreviation for GNU Debugger, which is a source-level
debugger based on the GNU compiler. It is part of the C/C++ SPE Debugger.
It is connected to the various launch configurations connected to ISS or
Programmer.

GNU Compiler Collection (GCC). The GNU Compiler Collection (GCC) is a
set of programming language compilers. It is free software produced by the
GNU Project.

HAL. HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module. The hardware debugger module is a
component of C/C++ SPE that is used to find problems in the software
application.

hardware platform. A hardware platform is the embedded microprocessor in
an SoC (system on a chip) design and the attached components, buses,
component properties, and their connectivity.

IRQ. IRQ is an abbreviation for interrupt request, which is the means by which
a hardware component requests computing time from the CPU. There are 16
IRQ assignments (0-15), each representing a different physical (or virtual)
piece of hardware. For example, IRQ0 is reserved for the system timer, while
IRQ1 is reserved for the keyboard. The lower the number, the more critical the
function.

ISS. ISS is an abbreviation for instruction set simulator, which is a simulation
model that imitates the behavior of a microprocessor. Often included in a
debugger such as GDB, an ISS enables you to develop and debug a software
program while the target hardware is still under development.

JTAG ports. JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

.lpf file. The logical preference file (.lpf) is a post-synthesis FPGA constraint
file that stores logical preferences that have been defined in the pre-map
stage and post-map stage. This file is automatically generated when you
create a new project in Lattice Diamond, and it stores logical preferences only.

master port. A master port is a port that can initiate read and write
transactions.

MSB. MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing components, such
as a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the microprocessor and the chosen
components. It uses the same graphical user interface as C/C++ SPE.

.msb file. An .msb file is an XML-format file output by MSB.

LatticeMico32 Tutorial Recommended References

LatticeMico32 Tutorial 86

perspective. A perspective is a combination of windows, menus, and
toolbars in the LatticeMico System graphical user interface that enables you
to perform a particular task. For example, the Debug perspective has views
that enable you to debug the programs that you created in C++ SPE.

project. A project is the software application code written in C/C++ SPE.

PROM. Programmable read-only memory (PROM) is a permanent memory
device that is programmed by the customer rather than by the device
manufacturer. It differs from a ROM, which is programmed at the time of
manufacture. PROMs have been mostly superseded by EEPROMs, which
can be reprogrammed.

running. Running is the process of executing a software program.

slave port. A slave port is a port that cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

software application. The software application is the code that runs on the
LatticeMico32 microprocessor to control the components, the bus, and the
memories. The application is written in a high-level language such as C++.

SPI. SPI is an acronym for serial peripheral interface, a core that allows high-
speed synchronous serial data transfers between microprocessors,
microcontrollers, and peripheral devices. It can operate either as a master or
as a slave.

watchpoint. A watchpoint is a type of breakpoint that stops the execution of a
software program whenever the value of a specific expression changes,
without indicating where this may occur. A watchpoint halts program
execution, even if the new value being written is the same as the old value of
the field.

XML. XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

Recommended References
The following reference materials are recommended to supplement this
tutorial:

 LatticeMico System online Help. From the LatticeMico Help menu, choose
Help > Help Contents.

 LatticeMico32 Hardware Developer User Guide, which explains how to
use the Lattice Mico System Builder to create and configure a hardware
platform for the LatticeMico32 embedded microprocessor

 LatticeMico32 Software Developer User Guide, which explains how to use
C/C++ SPE to program the microprocessor, gives examples of the code

LatticeMico32 Tutorial Recommended References

LatticeMico32 Tutorial 87

used for different parts of the architecture, and describes the processes
occurring in the background

 LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including
configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

 LatticeMico32/DSP Development Board User’s Guide, which describes
the features and functionality of the LatticeMico32/DSP development
board. This board is designed as a hardware platform for design and
development with the LatticeMico32 microprocessor, as well as for the
LatticeMico8 microcontroller, and for various DSP functions.

 Lattice Diamond Installation Guide, which explains how to install
LatticeMico System on the Linux Red Hat operating system.

 Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench

 LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

 LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

 LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

 LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

 LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

 LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

 LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico SPI flash component

 LatticeMico Timer, which describes the features and functionality of the
LatticeMico timer

 LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

 Lattice Diamond Installation Notice for the current release, which explains
how to install the LatticeMico System software

 LatticeECP2 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP2 devices

 LatticeECP2 Family Data Sheet

 LatticeECP2M Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP2M devices

 LatticeECP2M Family Data Sheet

LatticeMico32 Tutorial Recommended References

LatticeMico32 Tutorial 88

	LatticeMico32 Tutorial
	Introduction
	Learning Objectives
	Time to Complete This Tutorial
	System Requirements
	Accessing Online Help
	About the Tutorial Design
	Tutorial Data Flow

	LatticeMico32/DSP Development Board
	Task 1: Create a New Lattice Diamond Project
	Task 2: Create the Development Microprocessor Platform
	Create a New MSB Platform
	Add the Microprocessor Core
	Add the Off-Chip Memory
	Add the Peripheral Components
	Specify the Connections Between Master and Slave Ports
	Assign Component Addresses
	Assign Interrupt Request Priorities
	Perform a Design Rule Check
	Generate the Microprocessor Platform

	Task 3: Create the Software Application Code
	Create a New C/C++ SPE Project
	Linker Configuration
	Build the Project

	Task 4: Synthesize the Platform to Create an EDIF File (Linux Only)
	Using Synopsys Synplify Pro
	Using Mentor Graphics Precision RTL Synthesis
	Create the EDIF File

	Task 5: Generate the Microprocessor Bitstream
	Import the MSB Output File
	Connect the Microprocessor to the FPGA Pins
	Perform Functional Simulation
	Perform Timing Simulation
	Generate the Bitstream

	Task 6: Download the Hardware Bitstream to the FPGA
	Task 7: Debug and Execute the Software Application Code on the Development Board
	Software Application Code Execution Flow
	Debug the Software Application Code on the Board
	Insert Breakpoints
	Execute the Software Application Code
	Modify and Re-execute the Software Application Code

	Task 8: Deploy the Software Code to Parallel Flash Memory
	Parallel Flash Memory Deployment Flow
	Create a CFI Flash Programmer Application
	Prepare LEDTest for Flash Deployment

	Task 9: Deploy the Production Microprocessor Bitstream to SPI Flash Memory
	Summary
	Glossary
	Recommended References

