Lattice

Semiconductor
Corporation

Simulating Designs for
Lattice FPGA Devices

Lattice Semiconductor Corporation
5555 NE Moore Court

Hillsboro, OR 97124

(503) 268-8000

May 2007

Copyright
Copyright © 2007 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior written consent from Lattice Semiconductor
Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation
(logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme
Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL,
GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock,
iISpDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXYV, ispGDX2,
iISpPGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSl, ispMACH,
iISpPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
iISpXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer,
PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST,
SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysl/O, sysMEM, The
Simple Machine for Complex Design, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of
Lattice Semiconductor Corporation or its subsidiaries in the United States
and/or other countries. ISP, Bringing the Best Together, and More of the Best
are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT
IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY
KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS,
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL
PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL LATTICE SEMICONDUCTOR CORPORATION (LSC) OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL,
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED
IN THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS
PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or
to the products described herein, at any time without notice. LSC makes no
commitment to update this documentation. LSC reserves the right to
discontinue any product or service without notice and assumes no obligation
to correct any errors contained herein or to advise any user of this document
of any correction if such be made. LSC recommends its customers obtain the

Simulating Designs for Lattice FPGA Devices ii

latest version of the relevant information to establish, before ordering, that the
information being relied upon is current.

Type Conventions Used in This Document

Convention

Meaning or Use

Bold

Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic>

Variables in commands, code syntax, and path names.

Ctrl+L

Press the two keys at the same time.

Courier

Code examples. Messages, reports, and prompts from the software.

Omitted material in a line of code.

Omitted lines in code and report examples.

L1

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

@

Grouped items in syntax descriptions.

{13}

Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

Simulating Designs for Lattice FPGA Devices

Simulating Designs for Lattice FPGA Devices

Lattice

Semiconductor
Corporation

Contents

Simulating Designs for Lattice FPGA Devices 1

Version Compatibility 1
Synopsys VCS 1
Cadence NC-Verilog 1
Cadence NC-VHDL 2
Aldec Riviera Pro 2
Aldec Active-HDL 2

Verilog Library Files 2
VHDL Library Files 3

Performing Simulation with Synopsys VCS 3
Functional RTL Simulation 3
Post-Map and Place-and-Route Gate-Level Simulation 3
Post-Map and Place-and-Route Gate-Level Simulation with Timing 4

Performing Simulation with Cadence NC-Verilog 4
Setting Lattice Semiconductor Libraries 4
Functional RTL Simulation 6
Post-Map and Place-and-Route Gate-Level Simulation 6
Post-Map and Place-and-Route Gate-Level Simulation with Timing 7

Performing Simulation with Cadence NC-VHDL 7
Setting Lattice Semiconductor Libraries 7
Functional RTL Simulation 10
Post-Map and Place-and-Route Gate-Level Simulation 10
Post-Map and Place-and-Route Gate-Level Simulation with Timing 10

Performing Simulation with Aldec Riviera Pro 11
Creating or Updating Lattice Semiconductor's FPGA Vendor
Libraries 11
Performing Verilog Simulation 14
Performing VHDL Simulation 15

Aldec Active-HDL 16

Simulating Designs for Lattice FPGA Devices

Contents

Simulating Designs for Lattice FPGA Devices

Vi

Lattice

Semiconductor
Corporation

Simulating Designs for
Lattice FPGA Devices

This document explains how to use Synopsys® VCS®, Cadence® NC-
Verilog®, Cadence NC-VHDL®, and Aldec Riviera Pro®, and Aldec Active-
HDL® software to simulate designs that target Lattice Semiconductor FPGAs.
It shows you how to use these simulators to perform functional register-
transfer-level (RTL) simulation, post-map simulation, and place-and-route
gate-level simulation with and without timing simulation.

Note

Lattice Semiconductor does not supply the Synopsys VCS, Cadence NC-Verilog,
Cadence NC-VHDL, Aldec Riviera Pro, or Aldec Active-HDL simulators. You must
obtain them independently.

Version Compatibility

Lattice Semiconductor iSspLEVER software is compatible with the following
versions of Synopsys VCS, Cadence NC-Verilog, Cadence NC-VHDL, and
Aldec.

Synopsys VCS
Lattice Semiconductor ispLEVER software version 7.0 is compatible with
Synopsys VCS version 2006.06 on the Solaris and Linux operating systems.

Cadence NC-Verilog

Lattice Semiconductor ispLEVER software version 7.0 is compatible with
Cadence NC-Verilog version 5.83 on the Solaris, Linux, and Windows
operating systems.

Simulating Designs for Lattice FPGA Devices

Simulating Designs for Lattice FPGA Devices Verilog Library Files

Cadence NC-VHDL

Lattice Semiconductor ispLEVER software version 7.0 is compatible with
Cadence NC-VHDL version 5.83 on the Solaris, Linux, and Windows
operating systems.

Aldec Riviera Pro

Lattice Semiconductor ispLEVER software version 7.0 is compatible with
Aldec Riviera (Pro) version 2007.06 on the Solaris, Linux, and Windows
operating systems.

Aldec Active-HDL

Lattice Semiconductor ispLEVER software version 7.0 is compatible with
Aldec Active-HDL version 7.2 SP2 on Windows only.

Verilog Library Files

The Verilog functional and behavioral simulation library files are installed with
the ispLEVER software in the locations shown in Table 1.

Table 1: Verilog Functional and Behavioral Simulation Library File

Locations

FPGA Family Library Location

LatticeEC <path_to_ispLEVER_installation>/cae_library/
simulation/verilog/ec

LatticeECP-DSP <path_to_ispLEVER_installation>/cae_library/
simulation/verilog/ecp

LatticeECP2-DSP <path_to_ispLEVER installation>/cae_library/
simulation/verilog/ecp2

LatticeXP <path_to_ispLEVER installation>/cae_library/
simulation/verilog/xp

LatticexP2 <path_to_ispLEVER installation>/cae_library/
simulation/verilog/xp2

LatticeSC <path_to_ispLEVER installation>/cae_library/
simulation/verilog/sc

MachXO <path_to_ispLEVER _installation>/cae_library/

simulation/verilog/machxo

Simulating Designs for Lattice FPGA Devices 2

Simulating Designs for Lattice FPGA Devices VHDL Library Files

VHDL Library Files

The VHDL functional and behavioral simulation library files are installed with
the ispLEVER software in the locations shown in Table 2.

Table 2: VHDL Functional and Behavioral Simulation Library File

Locations

FPGA Family Library Location

LatticeEC <path_to_ispLEVER _installation>/cae_library/
simulation/vhdl/ec/src

LatticeECP-DSP <path_to_ispLEVER installation>/cae_library/
simulation/vhdl/ecp/src

LatticeECP2-DSP <path_to_ispLEVER _installation>/cae_library/
simulation/vhdl/ecp2/src

LatticeXP <path_to_ispLEVER_installation>/cae_library/
simulation/vhdl/xp/src

LatticexP2 <path_to_ispLEVER _installation>/cae_library/
simulation/vhdl/xp2/src

LatticeSC <path_to_ispLEVER _installation>/cae_library/
simulation/vhdl/sc/src

MachXO <path_to_ispLEVER _installation>/cae_library/

simulation/vhdl/machxo/src

Performing Simulation with Synopsys VCS

This section explains how to perform simulation with Synopsys VCS.

Functional RTL Simulation

Use the following vcs command to perform a functional RTL simulation with
one of the libraries shown in Table 1:

vcs -RI <design_name>.v <test_bench>.v
-y <Lattice_verilog_library flocation> +libext+.v +v2k

Post-Map and Place-and-Route Gate-Level

Simulation
Use the following vcs command to perform post-map and place-and-route
gate-level simulation:

vcs -RI <design_name>.v <test_bench>.vo
-y <Lattice_verilog_library_ location> +libext+.v +v2k

Simulating Designs for Lattice FPGA Devices 3

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-Verilog

Post-Map and Place-and-Route Gate-Level

Simulation with Timing

Use the following procedure to perform post-map and place-and-route gate-
level simulation with timing:

1. Addthe sdf_annotate line at the top-level test bench:

$sdf_annotate (‘'<design_name>.sdf", <instance_name>,
,<sdf_log>, "MAXIMUM™);

2. Use the following vcs command to perform the simulation:

vcs -RI <design_name>.v <test_bench>.vo
-y <Lattice_verilog_library_location> +libext+.v +v2k

Performing Simulation with Cadence NC-Verilog

This section explains how to perform simulation with Cadence NC-Verilog.

Setting Lattice Semiconductor Libraries

Before simulating Lattice Semiconductor FPGA designs in the Cadence NC-
Verilog simulator, you must perform the following steps to specify the Lattice
Semiconductor simulation libraries.

Creating Library Definition Files

Before using the NC-Verilog simulator to simulate your design project, you
must first create two library definition files named hdl.var and cds.lib in your
project folder. The hdl.var and cds.lib files define which libraries are
accessible and where they are located. The hdl.var file contains statements
that map logical library names to design library names, and the cds.lib file
contains statements that map design library names to their physical directory
paths.

For example, your local hdl.var file can include the following:

DEFINE EC ec_vlog

DEFINE ECP ecp_vlog
DEFINE XP xp_vlog

DEFINE MachXO machxo_vlog
DEFINE SC sc_vlog

DEFINE ECP2 ecp2_vlog
DEFINE XP2 xp2_vlog

Your local cds.lib file can include the following:

DEFINE ec_vlog <compile_dir>/ec_vlog

DEFINE ecp_vlog <compile_dir>/ecp_vlog
DEFINE xp_vlog <compile_dir>/xp_vlog

DEFINE machxo_vlog <compile_dir>/machxo_vlog
DEFINE sc_vlog <compile_dir>/sc_vlog

DEFINE ecp2_vlog <compile_dir>/ecp2_vlog
DEFINE xp2_vlog <compile_dir>/xp2_vlog

Simulating Designs for Lattice FPGA Devices 4

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-Verilog

Note

The <compile_dir> variable specifies the location of the compiled files.

Cadence provides a utility called NCLaunch to set up the necessary
initialization files and to compile the Verilog source libraries. NCLaunch is
available as part of the 2.1 and later releases. Otherwise, setting up the
initialization files and compiling the Verilog source libraries is a manual
process.

You can create the hdl.var and cds.lib files with any text editor. You must map
the physical locations to the logical names before proceeding to the next step.
On the UNIX and Linux platforms, you can create these names by using the
mkdir command as follows:

mkdir -p <compile_dir>/ec_vlog
mkdir -p <compile_dir>/ecp_vlog
mkdir -p <compile_dir>/xp_vlog
mkdir -p <compile_dir>/machxo_vlog
mkdir -p <compile_dir>/sc_vlog
mkdir -p <compile_dir>/ecp2_vlog
mkdir -p <compile_dir>/xp2_vlog

If you want the logical library names to be available for all designs, use
INCLUDE or SOFTINCLUDE in the location of your master hdl.var and cds.lib
files.

For example, you can add the following line to your master cds.lib file:
INCLUDE $path/cds.lib

Note

The path variable specifies the location of your own cds.lib file.

Or, you can directly include the library definition in the master hdl.var and
cds.lib files.

Now the master hdl.var and cds.lib files include the Lattice Semiconductor
library definitions. The next time that you want to simulate Lattice
Semiconductor designs in the NC-Verilog simulator, you do not need to create
you own hdl.var and cds.lib files again.

Parsing and Analyzing Lattice Semiconductor Simulation
Libraries

After creating your own hdl.var and cds.lib files, you must parse and analyze
the Lattice Semiconductor simulation libraries by using the NC-Verilog
simulator. These libraries must be parsed and analyzed only once.

To parse and analyze Lattice Semiconductor Verilog simulation libraries, run
the following commands in the NC-Verilog simulator:

Simulating Designs for Lattice FPGA Devices 5

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-Verilog

¢ LatticeEC Verilog:

ncvlog -messages -work ec_vlog
$isplever_install_path/cae_library/simulation/verilog/ec/*.v

¢ LatticeECP Verilog:

ncvlog -messages -work ecp_vlog
$isplever_install_path/cae_library/simulation/verilog/ecp/
*_v

¢ LatticeECP2 Verilog:

ncvlog -messages -work ecp2_vlog
$isplever_install_path/cae_library/simulation/verilog/ecp2/
*

-V

¢ LatticeXP Verilog:

ncvlog -messages -work xp_vlog
$isplever_install_path/cae_library/simulation/verilog/xp/*.v

¢ LatticeXP2 Verilog:

ncvlog -messages -work xp2_vlog
$isplever_install_path/cae_library/simulation/verilog/xp2/
*

RV

¢ MachXO Verilog:

ncvlog -messages -work machxo_vlog
$isplever_install_path/cae_library/simulation/verilog/
machxo/* .v

¢ LatticeSC Verilog:

ncvlog -messages -work sc_vlog
$isplever_install_path/cae_library/simulation/verilog/sc/*.v

Functional RTL Simulation

Use the following commands to perform a functional RTL simulation with one
of the libraries shown in Table 1:

rm —rf work

mkdir work

ncvlog -work work <design_name>.v <test bench>.v
ncelab -lib_binding —access +rwc work.<test_bench>
ncsim -GUI work.<test_bench>

Note

If you are using NC-Sim version 5.4 or older, remove the -lib_binding option from
the ncelab command.

Post-Map and Place-and-Route Gate-Level
Simulation

Use the following commands to perform post-map and place-and-route gate-
level simulation:

rm —rf work
mkdir work

Simulating Designs for Lattice FPGA Devices 6

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-VHDL

ncvlog -work work <design_name>.v <test_bench>.v
ncelab -lib_binding —access +rwc work.<test_bench>
ncsim -GUI work.<test_bench>

Post-Map and Place-and-Route Gate-Level

Simulation with Timing

Use the following procedure to perform post-map and place-and-route gate-
level simulation with timing:

1. Addthe sdf_annotate line at the top-level test bench:

$sdf_annotate (‘'<design_name>.sdf", <design_name>,
,<sdf_log>, "MAXIMUM™);

2. Use the following commands to perform the simulation:

rm —rf work

mkdir work

ncvlog -work work <design_name>.v <test bench>.v
ncelab -lib_binding —access +rwc work.<test_bench>
ncsim -GUI work.<test_bench>

Performing Simulation with Cadence NC-VHDL

This section explains how to perform simulation with Cadence NC-VHDL.

Setting Lattice Semiconductor Libraries

Before simulating Lattice Semiconductor FPGA designs in the Cadence NC-
VHDL simulator, you must perform the following steps to set the Lattice
Semiconductor simulation libraries.

Creating Library Definition Files

Before using the Cadence NC-VHDL simulator to simulate your design
project, you must first create two library definition files named hdl.var and
cds.lib in your project folder. The hdl.var and cds.lib files define which libraries
are accessible and where they are located. The hdl.var file contains
statements that map logical library names to design library names, and the
cds.lib file contains statements that map design library names to their physical
directory paths.

Simulating Designs for Lattice FPGA Devices 7

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-VHDL

For example, your local hdl.var file can include the following:

DEFINE EC ec_vhdl

DEFINE ECP ecp_vhdl
DEFINE XP xp_vhdl

DEFINE MachXO machxo_vhdl
DEFINE SC sc_vhdl

DEFINE ECP2 ecp2_vhdl
DEFINE XP2 xp2_vhdl

Your local cds.lib file can include the following:

DEFINE ec_vhdl <compile_dir>/ec_vhdl

DEFINE ecp_vhdl <compile_dir>/ecp_vhdl
DEFINE xp_vhdl <compile_dir>/xp_vhdl

DEFINE machxo_vhdl <compile_dir>/machxo_vhdl
DEFINE sc_vhdl <compile_dir>/sc_vhdl

DEFINE ecp2_vhdl <compile_dir>/ecp2_vhdl
DEFINE xp2_vhdl <compile_dir>/xp2_vhdl

Note

The <compile_dir> variable specifies the location of the compiled files.

Cadence provides a utility called NCLaunch to set up the necessary
initialization files and to compile the VHDL source libraries. NCLaunch is
available as part of the 2.1 and later releases. Otherwise, setting up the
initialization files and compiling the VHDL source libraries is a manual
process.

You can create the hdl.var and cds.lib files with any text editor. You must map
the physical locations to the logical names before you proceed to the next
step. On the UNIX and Linux platforms, you can create these names by using
the mkdir command as follows:

mkdir -p <compile_dir>/ec_vhdl
mkdir -p <compile_dir>/ecp_vhdl
mkdir -p <compile_dir>/xp_vhdl
mkdir -p <compile_dir>/machxo_vhdl
mkdir -p <compile_dir>/sc_vhdl
mkdir -p <compile_dir>/ecp2_vhdl
mkdir -p <compile_dir>/xp2_vhdl

If you want the logical library names to be available for all designs, use
INCLUDE or SOFTINCLUDE in the location of your master hdl.var and cds.lib
files.

For example, you can add the following line to your master cds.lib file:
INCLUDE $path/cds.lib

Note

The path variable specifies the location of your own cds.lib file.

Simulating Designs for Lattice FPGA Devices 8

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-VHDL

Or, you can directly include the library definition in the master hdl.var and
cds.lib files.

Now the master hdl.var and cds.lib files include the Lattice Semiconductor
library definitions. The next time that you want to simulate Lattice
Semiconductor designs in the NC-VHDL simulator, you do not need to create
you own hdl.var and cds.lib files again.

In addition to defining Lattice Semiconductor VHDL libraries, you must map
the vital2000 logical library to the IEEE library location by adding the following
line to your cds.lib file:

DEFINE vital2000 <NC_VHDL_Libraries_Folder>/I1EEE

Note

The <NC_VHDL_libraries_folder> variable specifies the folder containing the NC-
VHDL libraries.

Parsing and Analyzing Lattice Semiconductor Simulation
Libraries

After creating your own hdl.var and cds.lib files, you must parse and analyze
the Lattice Semiconductor simulation libraries by using the NC-VHDL
simulator. These libraries must be parsed and analyzed only once.

To parse and analyze Lattice Semiconductor VHDL simulation libraries, run
the following commands in NC-VHDL simulator.

¢ LatticeEC VHDL:

ncvhdl -messages -work ec_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/ec/src/
*.vhd

¢ LatticeECP VHDL:

ncvhdl -messages -work ecp_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/ecp/src/
*_vhd

¢ LatticeECP2 VHDL:

ncvhdl -messages -work ecp2_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/ecp2/src/
*.vhd

¢ LatticeXP VHDL:

ncvhdl -messages -work xp_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/xp/src/
*_vhd

¢ LatticeXP2 VHDL:

ncvhdl -messages -work xp2_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/xp2/src/
*.vhd

¢ MachXO VHDL:

ncvhdl -messages -work machxo_vhdl -smartorder

Simulating Designs for Lattice FPGA Devices 9

Simulating Designs for Lattice FPGA Devices Performing Simulation with Cadence NC-VHDL

$isplever_install_path/cae_library/simulation/vhdl/machxo/
src/*.vhd

¢ LatticeSC VHDL:

ncvhdl -messages -work sc_vhdl -smartorder
$isplever_install_path/cae_library/simulation/vhdl/sc/src/
*_vhd

Functional RTL Simulation

Use the following commands to perform a functional RTL simulation with one
of the libraries shown in Table 2:

rm —rf work

mkdir work

ncvhdl -work work <design_name>.vhd <test_bench>.vhd
ncelab -lib_binding —access +rwc work.<test_bench>
ncsim —GUI work.<test_bench>

Note

If you are using NC-Sim version 5.4 or older, remove the -1ib_binding option from
the ncelab command.

Post-Map and Place-and-Route Gate-Level

Simulation

Use the following commands to perform post-map and place-and-route gate-
level simulation:

rm —rf work

mkdir work

ncvhdl -work work <design_name>.vho <test_bench>.vhd
ncelab -lib_binding —access +rwc work.<test_bench>
ncsim —GUI work.<test_bench>

Post-Map and Place-and-Route Gate-Level

Simulation with Timing

Use the following procedure to perform post-map and place-and-route gate-
level simulation with timing:

1. Compile the SDF file:

ncsdfc <design_name>._sdf

This command generates the compiled SDF file, <design_name>.sdf.X.
2. Create an <sdf_cmd> file with the following contents:

COMPILED_SDF_FILE = “<design_name>.sdf.X”, SCOPE =
:<instance_name>,
LOG_FILE = *“<sdf_log>", MTM_CONTROL = *"MAXIMUM™;

3. Use the following commands to perform the simulation:

rm —rf work
mkdir work
ncvhdl -work work <design_name>.vho <test_bench>.vhd

Simulating Designs for Lattice FPGA Devices 10

Simulating Designs for Lattice FPGA Devices Performing Simulation with Aldec Riviera Pro

ncelab -lib_binding —access +rwc —sdf_cmd_file <sdf_cmd>
work.<test_bench>
ncsim —GUI work.<test_bench>

Performing Simulation with Aldec Riviera Pro

This section explains how to perform simulation with the Aldec Riviera Pro
simulator.

Creating or Updating Lattice Semiconductor's
FPGA Vendor Libraries

Create VHDL or Verilog libraries by following the procedures in this section.

Creating VHDL Libraries

If you do not have Lattice Semiconductor's FPGA VHDL libraries as pre-
compiled vendor libraries, the following steps are required to create them:

1.

Create Lattice Semiconductor's VPGA VHDL libraries:

create new VHDL libraries
alib sc

alib ec

alib xp

alib ecp

alib machxo

alib ecp2

alib xp2

Note

The VHDL library names are strict.

For each of the six VHDL libraries, compile the source files by using the
acom command:

acom -02 -work <library_name> -f
<vhdl_lib_compile_order_file>

where:

¢ <vhdl_lib_compile_order_fFile> is the file containing the
proper compilation order for the <library_name> VHDL library. You
must create this file.

¢ The -02 optimization switch eliminates unnecessary warnings.

If you want to place the debugging information in the library, use the -dbg
switch. Debugging may slow down simulation.

The compilation order for the SC library is as follows:

<sc_vhdl_src_folder>/0RCACOMP.vhd
<sc_vhdl_src_folder>/0RCA_SEQ.vhd
<sc_vhdl_src_folder>/0RCA_10.vhd

<sc_vhdl_src_folder>/0RCA_MEM.vhd
<sc_vhdl_src_folder>/0RCA_CMB.vhd

Simulating Designs for Lattice FPGA Devices 11

Simulating Designs for Lattice FPGA Devices

Performing Simulation with Aldec Riviera Pro

<sc_vhdl_src_folder>/0RCA_CNT.vhd
<sc_vhdl_src_folder>/0ORCA MIS.vhd

The compilation order for the EC library is as follows:

<ec_vhdl_src_folder>/0RCACOMP.vhd
<ec_vhdl_src_folder>/0RCA_SEQ.vhd
<ec_vhdl_src_folder>/0RCA_10.vhd
<ec_vhdl_src_folder>/0RCA_CMB.vhd
<ec_vhdl_src_folder>/0RCA_CNT.vhd
<ec_vhdl_src_folder>/0RCA_MEM.vhd
<ec_vhdl_src_folder>/0RCA_MISC.vhd
<ec_vhdl_src_folder>/0RCA_LUT.vhd

The compilation order for the XP library is as follows:

<xp_vhdl_src_folder>/0RCACOMP.vhd
<xp_vhdl_src_folder>/0RCA_SEQ.vhd
<xp_vhdl_src_folder>/0RCA_10.vhd
<xp_vhdl_src_folder>/0RCA_CMB.vhd
<xp_vhdl_src_folder>/0RCA_CNT.vhd
<xp_vhdl_src_folder>/0RCA_MEM.vhd
<xp_vhdl_src_folder>/0RCA_MISC.vhd
<xp_vhdl_src_folder>/0RCA_LUT.vhd

The compilation order for the ECP library is as follows:

<ecp_vhdl_src_folder>/0RCACOMP .vhd
<ecp_vhdl_src_folder>/0RCA_SEQ.vhd
<ecp_vhdl_src_folder>/0RCA_10.vhd

<ecp_vhdl_src_folder>/0RCA_CMB.vhd
<ecp_vhdl_src_folder>/0RCA_CNT.vhd
<ecp_vhdl_src_folder>/0RCA_MEM.vhd
<ecp_vhdl_src_folder>/0RCA_MISC.vhd
<ecp_vhdl_src_folder>/0RCA_LUT.vhd
<ecp_vhdl_src_folder>/0RCA_MULT.vhd

The compilation order for the MachXO library is as follows:

<machxo_vhdl_src_folder>/MACHXOCOMP .vhd
<machxo_vhdl_src_folder>/MACHXO_SEQ.vhd
<machxo_vhdl_src_folder>/MACHXO_10.vhd

<machxo_vhdl_src_folder>/MACHXO_CMB.vhd
<machxo_vhdl_src_folder>/MACHXO_ CNT.vhd
<machxo_vhdl_src_folder>/MACHXO LUT.vhd
<machxo_vhdl_src_folder>/MACHX0O_MEM.vhd
<machxo_vhdl_src_folder>/MACHX0O_MISC.vhd

The compilation order for the ECP2 library is as follows:

<ecp2_vhdl_src_folder>/ECP2COMP.vhd
<ecp2_vhdl_src_folder>/ECP2_SEQ.vhd
<ecp2_vhdl_src_folder>/ECP2_10.vhd
<ecp2_vhdl_src_folder>/ECP2_CMB.vhd
<ecp2_vhdl_src_folder>/ECP2_CNT.vhd
<ecp2_vhdl_src_folder>/ECP2_MEM.vhd
<ecp2_vhdl_src_folder>/ECP2_MISC.vhd
<ecp2_vhdl_src_folder>/ECP2_LUT.vhd
<ecp2_vhdl_src_folder>/ECP2_MULT.vhd

The compilation order for the XP2 library is as follows:

<xp2_vhdl_src_folder>/XP2COMP.vhd
<xp2_vhdl_src_folder>/XP2_SEQ.vhd

Simulating Designs for Lattice FPGA Devices

12

Simulating Designs for Lattice FPGA Devices Performing Simulation with Aldec Riviera Pro

<xp2_vhdl_src_folder>/XP2_10.vhd
<xp2_vhdl_src_folder>/XP2_CMB.vhd
<xp2_vhdl_src_folder>/XP2_CNT.vhd
<xp2_vhdl_src_folder>/XP2_MEM.vhd
<xp2_vhdl_src_folder>/XP2_MISC.vhd
<xp2_vhdl_src_folder>/XP2_LUT.vhd
<xp2_vhdl_src_folder>/XP2_MULT.vhd

where each of the folders called <lib_name_vhdl_src_folder>isa
folder containing VHDL source files for the appropriate Lattice
Semiconductor library.

Set the status of the newly created library as read-only to prevent
accidental overwriting:

setlibrarymode -ro <library_name>

Creating Verilog Libraries

If you do not have Lattice Semiconductor's FPGA Verilog libraries as pre-
compiled vendor libraries, the following steps are required to create them:

1.

Create Lattice Semiconductor's VPGA Verilog libraries:

create new Verilog libraries
alib ovi_sc

alib ovi_ec

alib ovi_xp

alib ovi_ecp

alib ovi_machxo

alib ovi_ecp2

alib ovi_xp2

Note

The Verilog library names are not strict, but they conform to Aldec's naming
convention for Verilog vendor libraries.

For each of the six Verilog libraries, compile the source files by using the
alog command:

alog -quiet -work <library_name> <verilog_lib_src_folder>/
*
-V

where <verilog_lib_src_folder> is the folder containing the Verilog
source files for the <library_name> library.

If you want to place the debugging information in the library, use the -dbg
switch. Debugging may slow down simulation.

Note

Ignore the warning messages.

Set the status of the newly created library as read-only to prevent
accidental overwriting:

setlibrarymode -ro <library_name>

Simulating Designs for Lattice FPGA Devices 13

Simulating Designs for Lattice FPGA Devices Performing Simulation with Aldec Riviera Pro

Updating Lattice Semiconductor's Vendor Libraries

If you obtained the updated source code of Lattice Semiconductor's FPGA
libraries, you can update the VHDL libraries, Verilog libraries, or both by using
the following procedure (for each one of the VHDL or Verilog libraries):

1. Using the cd command, navigate to the directory where your vendor
library resides. The vendor libraries are usually located in the
<install_dir>/Nlib folder when pre-compiled by Aldec.

2. Set the library mode to read-write by using the setlibrarymode
command:

setlibrarymode -rw <library_name>

3. Compile the source code into the library. Use the acom command for
VHDL source files and the alog command for Verilog source files.

acom -02 -work <library_name> -f
<vhdl_lib_compile_order_file>

or

alog -quiet -work <library_name> <verilog_lib_src_folder>/
*
-V

4. Set the library to the read-only mode to prevent accidental overwriting:

setlibrarymode -ro <library_name>

Note

You can enter the commands either in command-line mode or in the graphical
console. Alternatively, you can write a macro that will prepare and compile the
libraries, as follows:

1. Include in the macro the appropriate commands for the libraries that you want
to create or update.

2. Run the runvsimsa script (UNIX, Linux) or the runvsimsa.bat batch file
(Windows) command with the macro as a command-line argument.

Performing Verilog Simulation
Use the procedures described in this section to perform a Verilog simulation.

Functional RTL Simulation

Use the following commands to perform a functional RTL simulation with one
of the libraries shown in Table 1:

alib work
alog -v2k -work work <design_name>.v <test_bench>.v
asim work.<test_bench>

Note

If you have a pre-existing work library, you can clear its contents by using the following
command:

adel -lib work -all

Simulating Designs for Lattice FPGA Devices 14

Simulating Designs for Lattice FPGA Devices Performing Simulation with Aldec Riviera Pro

Post-Map and Place-and-Route Gate-Level Simulation
Use the following commands to perform post-map and place-and-route gate-
level simulation:

alib work

alog -quiet -v2k -work work -1 <library_name> <design_name>_vo
<test_bench>.v

asim -05 +access +rw work.<test_bench>

where <library_name> is the FPGA Verilog library to be searched for the
low-level units.

Post-Map and Place-and-Route Gate-Level Simulation with
Timing

Use the following procedure to perform post-map and place-and-route gate-
level simulation with timing:

1. Addthe sdf_annotate line at the top-level test bench:

$sdf_annotate (‘'<design_name>.sdf", <instance_name>,
,<sdf_log>, "MAXIMUM™);

2. Use the following commands to perform the simulation:

alib work

alog -quiet -v2k -work work -1 <library_name>
<design_name>_vo <test_bench>.v

asim -05 +access +rw work.<test_bench>

Performing VHDL Simulation

Use the procedures described in this section to perform a VHDL simulation.

Functional RTL Simulation
Use the following commands to perform a functional RTL simulation with one
of the libraries shown in Table 2:

alib work
acom -work work <design_name>.vhd <test_bench>._vhd
asim -t ps work.<test_bench>

Note

If you have a pre-existing work library, you can clear its contents by using the following
command:

adel -lib work -all

Note

Before you do any VHDL post-map simulation (with or without timing), you must first
map the vital2000 logical library to the IEEE library location by using the following:

amap vital2000 <install_dir>/vlib/ieee/ieee.lib

where <install_dir> is the Aldec’s Riviera installation folder.

Simulating Designs for Lattice FPGA Devices 15

Simulating Designs for Lattice FPGA Devices Aldec Active-HDL

Post-Map and Place-and-Route Gate-Level Simulation
Use the following commands to perform post-map and place-and-route gate-
level simulation:

alib work
acom -02 -work work <design_name>.vho <test_bench>.vhd
asim -t ps -noglitchmsg work.<test_bench>

Post-Map and Place-and-Route Gate-Level Simulation with
Timing

Use the following commands to perform post-map and place-and-route gate-
level simulation with timing:

alib work

acom -02 -work work <design_name>.vho <test_bench>.vhd
asim -t ps -noglitchmsg -sdfmax
/<instance_name>="<design_name>.sdf" work.<test_bench>

Note

The “/” character is Aldec’s default hierarchy separator.

Aldec Active-HDL

You can use the same procedure as in “Performing Simulation with Aldec
Riviera Pro” on page 11 for creating or updating Lattice Semiconductor’s
FPGA (vendor) libraries and simulating Verilog or VHDL designs in Active-
HDL with a few modifications. Refer to the Active-HDL On-line Documentation
for more details.

An alternative and easy way recommended for updating the Lattice
Semiconductor FPGA libraries with Active-HDL is to obtain the pre-compiled
Lattice Semiconductor FPGA libraries directly from the following directory:

<ispLEVER_installation_folder>/active-hdl/lattice/Vlib

You can either copy these libraries, along with the Library.cfg file, to your
Active-HDL Vlib folder, overwriting any old libraries, or you can modify the
Active-HDL Vlib/Library.cfg file to map to the Lattice Semiconductor FPGA
libraries installed with ispLEVER (you can instead do the mapping with the
amap command).

Note

Before you do any VHDL post-map simulation (with or without timing), first verify that
the vital2000 logical library is mapped to the vital2000 library location (use alist to
view the list of available libraries). This is the default mapping when you install
Active-HDL, but if it is missing, for whatever reason, you can map the vital2000
library by using the following command:

amap vital2000 <install_dir>/vlib/vital2000/vital2000.1ib

where <instal l_dir> is the Aldec’s Active-HDL installation folder.

Simulating Designs for Lattice FPGA Devices 16

	Simulating Designs for Lattice FPGA Devices
	Version Compatibility
	Synopsys VCS
	Cadence NC-Verilog
	Cadence NC-VHDL
	Aldec Riviera Pro
	Aldec Active-HDL

	Verilog Library Files
	VHDL Library Files
	Performing Simulation with Synopsys VCS
	Functional RTL Simulation
	Post-Map and Place-and-Route Gate-Level Simulation
	Post-Map and Place-and-Route Gate-Level Simulation with Timing

	Performing Simulation with Cadence NC-Verilog
	Setting Lattice Semiconductor Libraries
	Functional RTL Simulation
	Post-Map and Place-and-Route Gate-Level Simulation
	Post-Map and Place-and-Route Gate-Level Simulation with Timing

	Performing Simulation with Cadence NC-VHDL
	Setting Lattice Semiconductor Libraries
	Functional RTL Simulation
	Post-Map and Place-and-Route Gate-Level Simulation
	Post-Map and Place-and-Route Gate-Level Simulation with Timing

	Performing Simulation with Aldec Riviera Pro
	Creating or Updating Lattice Semiconductor's FPGA Vendor Libraries
	Performing Verilog Simulation
	Performing VHDL Simulation

	Aldec Active-HDL

