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Introduction

The embedded system bus on the LatticeSC™ ties all of the programmable elements together in a bus framework.
There are two types of interfaces on the system bus, master and slave. A master interface has the ability to perform
actions on the bus such as writes and reads to and from a specific address. A slave interface responds to the
actions of a master by accepting data and address on a write and providing data on a read. The system bus has a
memory map which describes each of the slave peripherals that is connected on the bus. Using the addresses
listed in the memory map, a master interface can access each of the slave peripherals on the system bus. Any and
all peripherals on the system bus can be used at the same time. Table 1 lists all of the available user peripherals on
the system bus after device power-up.

Table 1. System Bus User Peripherals

Peripheral Abbreviation Interface Type
Micro Processor Interface MPI Master
User Master Interface UMl Master
User Slave Interface usl Slave
Serial Management Interface (PLL, DLL, User Logic) SMI Slave
flexiPCS™ Interface PCS Slave
Direct FPGA Access DFA Slave

The peripherals listed in Table 1 can be added when the system bus module is created using IPexpress™ (isp-
LEVER® IPexpress).

Figure 1 illustrates the existing peripherals on the system bus. The gray boxes are available only during configura-
tion. The Status and Config box refers to internal system bus registers. Refer to TN1080, LatticeSC sysCONFIG™
Usage Guide for configuration options.

This document describes all the interfaces listed in Table 1 in detail to help the user utilize the desired functions of
the system bus.

Figure 1. LatticeSC System Bus Interfaces
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Figure 2 shows a complete system bus I/O diagram with all possible peripherals enabled in IPexpress. These inter-
faces and their corresponding I/Os are discussed in detail throughout the rest of this document.

Figure 2. System Bus I/O Diagram
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Definitions
PCS Physical Coding Sublayer
MACO Masked Array for Cost Optimization
MSB Most Significant Byte
MSb Most Significant Bit
LSB Least Significant Byte
LSb Least Significant Bit
MPI Microprocessor Interface
UMl User Master Interface
usl User Slave Interface
SMI Serial Management Interface
DFA Direct FPGA Access
EBR Embedded Block RAM
PLL Phase-Lock Loop
HDL Hardware Description Language
DLL Delay Lock Loop
ASB Application Specific Block
PPC PowerPC
System Bus

Multi Master Capability

The system bus is a multiple master bus. This means that there can be more than one bus master present on the
bus at the same time. A single bus arbiter controls the traffic on the bus by ensuring only one master has access to
the bus at any time. This bus arbiter monitors a number of different requests to use the bus and decides which
request is currently the highest priority. The configuration logic has the highest priority and overrides all normal
user interfaces. By default, all master interfaces have equal priority when requesting the embedded system bus,
and a fair round-robin scheme is used to rotate arbitration priority. Optionally, one can specify a priority of low=1,
medium=2, or high=3 for each master interface in IPexpress. As a result, if more than one master interface is wait-
ing for the system bus, an interface with higher priority will be granted the bus over one with a lower priority. If two
requesting interfaces share the same priority, the round-robin scheme will rotate arbitration priority.

System Bus Address Range

The system bus decodes 18 bits of byte addressable memory (256 Kbytes of addresses) in the device address
space.

Table 2 describes the address range for the entire device address space.
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Table 2. Entire System Bus Address Range

End Size
Begin Address Address | (B=Bytes) Description
0x00000 0x0003F 64 B System bus registers (see Table 20).
0x00040 0x003FF 960 B Reserved.
64 Serial Memory Interfaces. For access to PLL/DLL configuration memory
0x00400 0x007FF 1KB and user control/status registers in FPGA (64 SMis, 128 bits each).
User slave interface (USI) baseline. For pre-configuration usage of address
0x00800 Ox2FFFF 190 KB |range 0x10000-0x2FFFF, see TN1080, LatticeSC sysCONFIG Usage
Guide.
0x30000 Ox364FF 25 856 B Left PCS slave interface. See the LatticeSC/M Family flexiPCS Data Sheet

for more detail.
0x36500 Ox37FFF 6,912 B |Reserved.

Right PCS slave interface. See the LatticeSC/M Family flexiPCS Data
Sheet for more detail.

O0x3E500 Ox3EEFF 2,560 B |Reserved.

Inter-Quad PCS slave interface. See the LatticeSC/M Family flexiPCS Data
Sheet for more detail.

0x3F000 Ox3FFFF 4 KB Reserved.

0x38000 Ox3E4FF 25,856 B

O0x3EF00 Ox3EFFF 256 B

System Bus Clock (HCLK)

The system bus is a synchronous element that has an internal clock. This clock is sometimes referred to as the
HCLK. Each of the peripherals on the system is also synchronous and has an interface clock. This peripheral clock
is the clock that the FPGA designer sources to the peripheral to clock data in and out of the user interface and
eventually onto the system bus. The system bus itself needs to be sourced by a clock (HCLK). This main system
bus clock is the clock on which all of the traffic will run through the system bus. As traffic is passed to and from each
peripheral, a domain change will occur from the system bus clock domain to the peripheral domain. This domain
change is handled inside the system bus. The internal system bus HCLK maximum frequency specification can be
found in the LatticeSC/M Family Data Sheet.

Note that the system bus interface drives the SYNC_CLK output port, which is synchronous to HCLK.

The system bus clock can be driven from several sources: CCLK, MPI or USER. At power-up, before the bitstream
is loaded into the LatticeSC (pre-configuration) the system bus clock source is selected via the mode pins. After the
bitstream has been successfully loaded into the LatticeSC, the system bus clock source is selected based on an
IPexpress option.

CCLK

Before a bitstream is loaded and during device configuration and reconfiguration the system bus clock defaults to
the configuration clock (CCLK). The CCLK is either an input or output of the LatticeSC, depending on the configu-
ration mode pins state. The CCLK is driven internally on the system bus from the configuration logic block. There is
no input or output pin associated with the CCLK on the system bus module. Using the CCLK is for configuration
only and cannot be simulated.

MPI

If the user has selected to program the device via the MPI, then the microprocessor clock will drive the system bus
during configuration. In post configuration, the MPI option is set via the bitstream (IPexpress option) and will select
the clock on the MPI to drive the system bus. The MPI clock corresponds to the input MPI_CLK on the system bus
module.
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USER

The USER clock allows the FPGA design to source a clock to drive the system bus clock. This USER clock is pro-
vided on the USR_CLK input port of the system bus. Selecting the USR_CLK as the source of HCLK is an IPex-
press option.

The USER clock is driven from the FPGA design and thus can be driven by any signal in the user’s design. If the
USER clock is derived in any way from the output of a PLL, changing the PLL control register will not be allowed.
When changing the PLL control register, the output clock from the PLL will stop for a period of time. If this clock
stops, the USER clock will stop and thus the HCLK will stop. If the HCLK stops, the system bus will lock. The PLL
control register will not be able to be changed and the FPGA will lock. To prevent this condition, do not drive this
signal with a PLL output or do not change the PLL control register for this PLL.

Oscillator

The LatticeSC internal oscillator drives the CCLK during master mode bitstream configuration. To use the oscillator
after configuration, set the source of the system bus clock to USER in IPexpress. Also instantiate the OSCA oscil-
lator block in the design to drive the system bus USER clock pin. Various frequency rates can be selected for the
oscillator via sysCONFIG. More information on the internal oscillator frequency rate selection can be found in
TN1080, LatticeSC sysCONFIG Usage Guide. In simulation, however, the oscillator clock model driving the system
bus HCLK has a fixed 100MHz frequency.

System Bus Interrupts

The system bus has the ability to generate and accept interrupt signals from several peripherals. These interrupts
can then be used to alert either on-chip modules or external modules. An internal interrupt can be generated from
the FPGA design, the configuration block during device configuration or from the PCS block. The interrupt cause
register (0x00010) contains a bit for each source of an interrupt. When one of the peripherals sets an interrupt, the
particular bit in the cause register will bet set to a 1. To clear the interrupt cause bit, a master interface will need to
write a 1 to the particular bit to clear it. Note that clearing the interrupt cause bit does not remove the source of the
interrupt.

Some peripherals on the system bus can pass interrupts found in the interrupt cause register to an interrupt output
signal on their interface. For a peripheral to pass interrupts to its interrupt output signal, its corresponding interrupt
enable register must be properly provisioned. There is an interrupt enable register for user (0x00012), and MPI
(0x00013). When a bit is set to a 1 in the interrupt enable register, an interrupt will be passed to the corresponding
interrupt output signal (active low MPI_IRQ_N output for MPI and active high USR_IRQ_OUT for user). When the
interrupt output signal for the peripheral indicates an interrupt was created, a master should read the interrupt
cause register to determine the source of the interrupt. Table 3 summarizes the interrupt enable register and output
signal for both MPI and user.

Table 3. Interrupt Enable Registers and Outputs

Interrupt Enable | Interrupt Output
Interface Register Signal Notes
USER 0x00012 USR_IRQ_OUT |Only the UMI can write to 0x00012
MPI 0x00013 MPI_IRQ_N Only the MPI can write to 0x00013

The interrupt cause register (0x00010), user interrupt enable register (0x00012) and MPI interrupt enable register
(0x00013) are designed such that each bit corresponds to the same interrupt source across all three registers. Bit
1 of all three registers, for example, always corresponds to a PCS interrupt source. The correlation between bit
number and interrupt source is illustrated in Table 4.
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Table 4. Correlation Between Bit Number and Interrupt Source

's:‘i;e;::pt Source/ | ynused | PCs MPI | CFG_ERR | CGF_DATA | UMI_IRQ | USIIRQ |USR_IRQ_IN
Interrupt Cause . . . . . . .
Register (0x00010) Unused Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
USER Interrupt Unused | Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 Bit 7
Enable Register  |\When any of the bits in 0x00012 is set high, a rising edge on the interrupt source/signal (as reflected in
(0x00012) the corresponding interrupt cause bit in 0x00010) causes signal USR_IRQ_OUT to go high.

MPI Interrupt Unused | Bit1 Bit 2 Bit3 | Bit4 Bit 5 Bité | Bit 7
Enaple When any of the bits in 0x00013 is set high, a rising edge on the interrupt source/signal (as reflected in
Register (0x00013) |the corresponding interrupt cause bit in 0x00010) causes MPI_IRQ_N to go low.

For more information on the interrupt cause register and interrupt enable registers, refer to the system bus memory
map in Table 20.

For example (as illustrated in Figure 3), to pass interrupts created by the USI interface to MPI_IRQ_N, the MPI
must write a 1 to bit 6 of 0x00013. When the USI sends an interrupt via a USI_IRQ pulse (larger than one USI_CLK
period), bit 6 of the interrupt cause register (0x00010) will go to a 1. This, combined with the 1 on bit 6 of 0x00013,
will then drive MPI_IRQ_N pin low to indicate an interrupt to the microprocessor. The microprocessor should then
read the interrupt cause register to determine that the interrupt came from the USI. Assuming no more interrupts
are generated, the MPI can clear bit 6 of 0x00010 by writing a 1 to it. This also sets the MPI_IRQ_N signal back to
1.

Figure 3. USI_IRQ to MPI_IRQ_N Interrupt
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System Bus General Signals

Table 5 describes the general interface signals on the system bus. These signals are not part of any of the specific
peripherals mentioned in Table 1.
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Table 5. System Bus General Interface Signals

Signal Direction Description Notes
SYSBUS_RST_N Input Active low system bus reset Resets Internal system bus logic
USR_IRQ_IN Input Active high user interrupt

Signal responds to interrupt when interrupt enable
register 0x00012 is set by UMI.

This interface signal is generated only when the
USR_CLK Input USER clock USER clock is selected as the system bus clock
source (in ispLEVER IPexpress).

USR_IRQ_OUT Output Active high user output interrupt

Clock synchronous to HCLK
SYNC_CLK Output (system bus clock)

Address/Data Bus Ordering

The system bus handles bus transfers of address and data at all of its interfaces. The orientation of the address
bus and the data bus may be different, depending on which peripheral is accessed. Internally on the bus, the
address bus is always oriented the same way, whereas the data bus is dependent on the driving master/slave inter-
face.

Address Bus Ordering

There are 18 address bits on the system bus. These address lines can be driven by any of the master interfaces on
the system bus. Except for the DFA interface, the address bus on a slave interface will always be provided to the
slave with bit 0 as the LSb. For the master interfaces (MPI, UMI) the address bus is dependent on the master. The
UMI will use bit 17 as the MSb and bit 0 as the LSb. The MPI will match the PowerPC address bus orientation,
which is bit 0 as MSb and bit 31 as LSb, even though only bits 14 through 31 (18 bits) are available on the Lattic-
eSC MPI interface (see Table 21). More information on this address bus and its connections is found in the MPI
section of this document. Table 6 lists the address bus bit ordering of different interfaces.

Table 6. Address Bit Ordering for Different Master/Slave Interfaces

Address Bus Bit Ordering

ADDRESS[MSb:LSb]

Interface MSb LSb
MPI 14 31
uml 17 0
usI 17 0
DFA 14 31
SMI 9 0

Data Bus Bit Orientation

The data bus on the system bus is 36 bits wide: 32 bits for data and four bits for parity. On the system bus, the data
bits are passed unchanged through the peripherals. So the orientation of the data on the system bus is dependent
on the data driving master/slave interface. This means that bit 0 on the master interface will be bit 0 on the slave
interface, bit 1 will be bit 1, etc. So if bit 0 is the LSb on the master interface then bit 0 will be the LSb on the slave
interface as shown in Figure 4. Care must be taken when accessing an address location to make sure data bits are
used properly in terms of LSb and MSb.
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Figure 4. System Bus Data Bus Bit Mapping
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Different data interfaces on the system bus do not all follow the same rule in terms of bus bit orientation. The value
of the data bus can be interpreted with bit 0 being either the MSb or LSb. For example, for single byte accesses, the
MPI interface is always oriented with bit 0 being the MSb (DATA[0:7]), whereas the UMI interface is oriented with bit
0 being the LSb (DATA[7:0]). Table 7 shows the data bus bit orientation for all user accessible interfaces, in addition
to the MPI.

Table 7. Data Bus Bit Orientation for Different System Bus Interfaces

Data Bus Bit Ordering DATA[MSb:LSb]
8-Bit 16-Bit 32-Bit
Interface MSb LSb MSb LSb MSb LSb
MPI 0 7 0 15 0 31
uml 7 0 15 0 31 0
usl Follows Master
DFA 0 | 7 | 0 15 0 31

Internal Data Bus

The internal data bus is labeled D(35:0). Bits D(31:0) are used to carry the data between peripherals. Bits D(35:32)
are used to carry parity to the peripherals. Except for MPI, parity is not checked internally by any of the peripherals
on the system bus. Checking parity on the MPI is enabled via bit 5 of system bus address 0x0000A
(MPI_PAR_CHK), and only checks the MPI parity on a write operation. An MPI parity error on a write always results
in an MPI interrupt to the system bus interrupt cause register (0x00010, bit 2). Even or odd parity is set in isp-
LEVER IPexpress. Internal system bus registers will generate parity for read operations. UMI/USI parity is only
passed through the system bus and its interfaces. Parity is mapped to byte lanes as shown in Table 8. The orienta-
tion of the data bus D(31:0) depends on the master interface driving the data bus, but the parity bits are always
stored on D(35:32).
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Table 8. Internal Data Bus Bit Mapping

Internal Data User Master
Bus MPI Interface Description

D(35) MPI_PAR(3) UMI_W/R_DATA(35) Parity bit for D(31:24)

D(34) MPI_PAR(2) UMI_W/R_DATA(34) Parity bit for D(23:16)

D(33) MPI_PAR (1) UMI_W/R_DATA(33) Parity bit for D(15:8)

D(32) MPI_PAR(0) UMI_W/R_DATA(32) Parity bit for D(7:0)
MPI_DATA(31:24)

D(31:24) 32-bit LSB UMI_W/R_DATA(31:24) |Data byte 31:24 - LSB of the MPI in 32-bit mode.
bit 31 = LSb

. MPI_DATA(23:16) . .

D(23:16) bit 23 = LSb UMI_W/R_DATA(23:16) |Data byte 23:16
MPI_DATA(15:8)

D(15:8) 16-bit LSB, UMI_W/R_DATA(15:8) Data byte 15:8 - LSB of the MPI in 16-bit mode
bit 15 = LSb
MPI_DATA(7:0)

. MSb=0 . Data byte 7:0 - MSB of the MPI in 16/32-bit mode. In

D(7:0) 8-bit LSb=7 UMIW/R_DATA(7:0) | \py g-bit mode bit 0 is MSb and bit 7 is the LSb

16-bit/32-bit 0:7=MSB

32-bit Data Bus

When a master interface is configured for 32-bit operation, all 32 bits (D(31:0)) are used to carry the data. If the
master interface is using parity, then the four parity bits will be carried on D(35:32) using the parity byte mapping
previously described. Again, the orientation (MSb,LSb) of the data bus depends on which master/slave interface
drives data onto the system bus. When using a 32-bit data bus the address resolution will be limited to 32-bit
boundaries. Data will be carried on the bus such that the lowest address maps to byte lane D(7:0) and the highest
address maps to byte D(31:24).

For example, a 32-bit read at address 0x00000 will read addresses 0x00000 - 0x00003. Address 0x00000 data will
be on D(7:0), address 0x00001 data will be on D(15:8), address 0x00002 data will be on D(23:16), and address
0x00003 data will be on D(31:24) as shown in Figure 5.

Figure 5. 32-bit Data Bus
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16-bit Data Bus

For 16-bit operation of a master interface, the data will be carried on D(15:0). The slave interface will only need to
read data from D(15:0). The MSB and LSB of the data will be determined by how the data was driven onto the bus
by the master/slave interface. When using a 16-bit data bus the address resolution will be limited to 16-bit boundar-
ies. Data will be carried on the bus such that the lowest address maps to byte lane D(7:0) and the highest address
maps to byte D(15:8). When using MPI, the same data will also be automatically replicated on D(31:16). When
using UMI/USI, the user needs to replicate the data to the system bus on D(31:16).

For example a 16-bit read at address 0x00000 will read addresses 0x00000 - 0x00001. Address 0x00000 data will
be on D(7:0) and address 0x00001 data will be on D(15:8) as shown in Figure 6.

Figure 6. 16-bit Data Bus
Parity 0x1 0x0 0x1 0x0

35 31 23 15 7




Lattice Semiconductor LatticeSC MPI/System Bus

Note that a 16-bit data access (from MPI or UMI) to the PCS slave registers is not supported. Please refer to the
PCS section of this document for more information.

8-bit Data Bus

For 8-bit operation of a master interface the data will be carried on D(7:0). The slave interface will only need to read
and write data on D(7:0). When using MPI, the same data will also be automatically replicated on D(15:8),
D(28:16), and D(31:24). When using UMI/USI, the user needs to replicate the data to the system bus on D(15:8),
D(283:16), and D(31:24), as shown in Figure 7. The MSb and LSb of the data will be determined by the master/slave
interface.

Figure 7. 8-Bit Data Bus
Parity 0x0 0x0 0x0 0x0

35 31 23 15 7

Synchronous/Asynchronous Mode

The MPI, UMI and USI interfaces on the system bus can be generated (in iSpLEVER IPexpress) either synchro-
nously or asynchronously to the system bus HCLK domain.

By default, all three interfaces are generated asynchronously to the system bus HCLK domain. Asynchronous
mode is required when the clock clocking the peripheral interface is assumed to run asynchronously (different fre-
quency/phase) to HCLK. In this case, all three peripherals (MPI, UMI, USI) include an asynchronous FIFO to de-
couple the peripheral clock domain from the internal HCLK domain. This FIFO introduces extra cycles of delay dur-
ing a read or a write access through the system bus.

In ispLEVER IPexpress, it is possible to independently bypass the MPI, UMI and USI asynchronous FIFOs. This
mode, referred to as synchronous mode, reduces the amount of access latency as a result of bypassing the FIFO.
For MPI, this mode only requires selecting the MPI clock as the source of the system bus clock. For UMI and USI,
a specific ispLEVER IPexpress option to make the peripheral synchronous to the system bus clock needs to be
selected. UMI and USI modes also require that the peripheral clock (UMI_CLK or USI_CLK) be driven by
SYNC_CLK in synchronous mode. Table 9 describes how to ensure that each of MPI, UMI or USI interface clocks
is made synchronous to HCLK.

Table 9. Setting Synchronous clocks to HCLK

Interface Interface Clock How to Make Synchronous to HCLK
MPI MPI_CLK  |Select MPI_CLK as source of system bus clock in ispLEVER IPexpress.
UMI UMI_CLK Make UMI synchronous to system bus in ispLEVER IPexpress. Connect SYNC_CLK to
UMI_CLK port.
uslI USI_CLK Connect SYNC_CLK to USI_CLK port.

System Bus Time Out

Time out is a programmable feature that allows the system bus to interrupt current operation on the bus. There are
two types of time out mechanisms that the system bus can exercise: Wait State time out, and Grant time out. In
each case, an index is used to specify the length of time in HCLK cycles after which the system bus times out.
Table 10 shows how an index relates to HCLK cycles. For example, if the index is at 5 and HCLK is running at 50
MHz, the system bus will timeout after 2'° * 20 ns ~= 20 microseconds. Note that a 0 index value means the system
bus never times out.

10
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Table 10. Time Out Index vs. HCLK Cycles Before Time Out

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Never
HCLK T|me 22 24 26 28 210 212 214 216 218 220 222 224 226 228 231
Cycles out

Wait State Time Out

This type of time out is designed to prevent the master on the bus from waiting indefinitely for the termination phase
of an access (MPI_TA or UMI_ACK). Without a time out mechanism, the system bus could hang indefinitely. The
Wait State time out index is independently set in both simulation and bitstream generation. Setting a value greater
than 0 is recommended to avoid unintentional hanging of the system bus.

In simulation, the index is defined as a programmable parameter (WS_TIME_INDEX). The default value for
WS_TIME_INDEX is 4 (256 cycles). The value of the parameter can be modified in the HDL code for simulation
purpose. In Verilog, for example, assuming the system bus instance is “systembus_i”, the index can be setto 5 as
follows:

defparam systembus_i.SYSBUSA_INST.SYSBUSA_sim_inst WS_TIME_INDEX = 4'd5;

During bitstream generation, the index is defined as a sysCONFIG switch (WaitStateTimeOut). The default value of
WaitStateTimeOut is 5 (2'° HCLK cycles). Please see TN1080, LatticeSC sysCONFIG Usage Guide for more infor-
mation.

When the system bus times out as a result of a Wait State condition, the system bus asserts a transfer error
(MPI_TEA or UMI_ERR) along with the termination of access signal (MPI_TA or UMI_ACK).

Grant Time Out

This type of time out is designed to prevent one master from indefinitely owning the system bus when another mas-
ter is also trying to access it. The Grant time out can only be used when the master currently accessing the system
bus has not locked it.

In simulation, the index is defined as a programmable parameter (GRANT_TIME_INDEX). The default value for
GRANT_TIME_INDEX is 0 (never time out). The value of the parameter can be modified in the HDL code for simu-
lation purpose. In Verilog, for example, assuming the system bus instance is “systembus_i”, the index can be set to
5 as follows:

defparam systembus_i.SYSBUSA_INST.SYSBUSA_sim_inst. GRANT_TIME_INDEX = 4’d5;

During bitstream generation, the index is defined as a sysCONFIG switch (GrantTimeOut). The default value of
GrantTimeOut is 0 (never time out). Please see TN1080, LatticeSC sysCONFIG Usage Guide for more informa-
tion.

When the system bus times out as a result of a Grant condition, the system bus first waits for the current transfer to
end, then grants ownership of the bus to the other master.

System Bus Peripherals

The following section discusses each of the peripherals on the system bus in detail. Some of the peripherals on the
system bus (e.g. Configuration) do not have FPGA design user ports and are fully contained inside the system bus.
These peripherals’ registers are described in the memory map and do not have any user inputs or outputs on the
system bus.

MPI

LatticeSC devices contain an embedded microprocessor interface (MPI) that can be used to interface any Lattic-
eSC device to any MPC860/MPC8260 PowerPC microprocessor or compatible interface through the PowerPC
peripheral bus. The MPI acts as a bridge between an external PowerPC processor and the embedded system bus.
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Externally, the MPI acts as a slave peripheral interface through which a PowerPC can access the embedded fea-
tures of the device. Internally the MPI acts as a master peripheral interface on the system bus to initiate data trans-
fers as directed by the external processor.

Note: The MPI interface is not available on all LatticeSC packages. Also, some LatticeSC die/package combina-
tions restrict the maximum allowable MPI DATA bus size. For full information on MPI restrictions for a die/package
combination, please refer to the Pinout Information section of the LatticeSC/M Family Data Sheet.

The MPI is one element on the embedded system bus illustrated in Figure 1. The system bus provides multi-mas-
ter/multi-slave communication between the MPI and the status and configuration interface, SMI, UMI, USI, and one
or more PCS interface blocks as needed in each specific LatticeSC device.

The MPI is available prior to and optionally after configuration of the programmable logic in the LatticeSC. The MPI
can be used prior to device configuration to identify, test, initialize, and download configuration data into the device.
After configuration of the programmable logic, the MPI can be used to read back the configuration and internal sta-
tus data, control parameters in the PLLs and the DLLs, access status and control registers for an embedded PCS
block (if present), and interact with the user’s design configured in programmable logic.

The MPI peripheral has two distinguishing characteristics from any other system bus interface:

* The MPI can be turned on at power-up, before device configuration, allowing the MPI to access the system bus
control, status and configuration registers. All other peripherals can be present only after device configuration.

* When the user instantiates an system bus with MPI in a design, a register bit setting can keep MPI enabled even
after the device is un-programmed.

MPI Interface

Table 11 shows the MPI signals used by the PowerPC to perform transactions with the LatticeSC device. The MPI
is a fixed block on the LatticeSC array and the interface signals are mapped to dedicated pins on the LatticeSC
device. PowerPC pins to LatticeSC pins mapping can be found in Appendix A.

Externally the MPI implements a 36-bit PowerPC bus slave, which internally drives the system bus as a master.
Data bus width is selectable among 8 bits, 16 bits, and 32 bits with parity of 1, 2 or 4 bits, respectively (one parity
bit for each active byte). Note that the MPI does not generate parity, but simply passes it from the PowerPC bus to
the system bus and vice versa. The MPI interface can check parity on write, however, by setting bit 5 of system bus
address 0x0000A (MPI_PAR_CHK), Any write parity error results in an MPI interrupt to the system bus interrupt
cause register (0x00010, bit 2).

Table 11. MPI Signals to PowerPC Bus

Name 1/0 Description
MPI_RST_N | Resets the MPI interface on the system bus
This is the clock from the PowerPC. This clock input will clock the MPI. This clock may
MPI_CLK | optionally clock the main system bus clock if selected. The MPI clock can be driven up to
66MHz operation.

Transfer size ([0:1]: 00-double word, 10-word, 01-byte) The MPI_TSIZ pins connect directly
up to the PowerPC TSIZ1 and TSIZ0. These pins select the size of the PowerPC data
transaction. This is the transfer size of the data transaction from the microprocessor’s per-
spective. This is different from the MODE pin selected size discussed later.

MPI_TSIZ[0:1] |

Transfer type (0-write, 1-read) This signal indicates to the MPI whether the transaction initi-
ated by the microprocessor is a read or a write. If the transaction is a read, data will be pro-
MPI_WR_N | vided to the microprocessor from the address specified. If the transaction is a write, data
will be written to the address specified by the microprocessor inside the LatticeSC device.
This signal connects to the PowerPC RD//WR signal.

Indicates that a burst transfer is in progress when low. This signal informs the MPI that the

MPI_BURST ! PowerPC is performing a burst transaction using the PowerPC burst pin.

Burst Data In Progress. This signal from the PowerPC will go low on the first clock of data

MPI_BDIP l during a burst and go high on the last clock of data of the burst transfer.
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Table 11. MPI Signals to PowerPC Bus

Name 1/0 Description

MPI STRB N | This active low signal indicates the start of a transactions or the strobe. This pin is con-
- - nected to the TS pin of the PowerPC.

Chip selects for active high (MPI_CS1) and active low (MPI_CSON). Both of these chip
selects must be active for the LatticeSC system bus logic to be selected. Typically CS1 is
MPI_CSON/ MPI_CS1 | connected to logic 1 and CSOn is connected to a PowerPC CS pin. When selecting the
DFA interface instead of the system bus, the values of these signals are inverted
(MPI_CS1=0, MPI_CSON=1).

The PowerPC address bus is 32 bits wide. The LatticeSC devices only support 18 bits of
MPI_ADDR[14:31] address space. The LatticeSC uses the least significant bits of the PowerPC address
space using address bits 14:31.

The PowerPC data bus can be up to 32 bits wide. Bit 0 is the MSb and bit 31 is the LSb.

For multi-byte transfers, the most significant byte ([0:7]) has the lowest address. The Pow-
erPC data pins D[0:31] connect directly to the LatticeSC pins MPI_DATA(0:31). Data pins
not used by virtue of selecting 8-bit or 16-bit data widths are available as general-purpose

MPI_DATA[0:31] /o |userl/O.

Note: The MPI interface is not available on all LatticeSC packages. Also, some LatticeSC
die/package combinations restrict the maximum allowable MPI DATA bus size. For full
information on MPI restrictions for a die/package combination, please refer to the Pinout
Information section of the LatticeSC/M Family Data Sheet.

Parity can be up to 4 bits wide (one bit per byte of data) depending on the data bus size.
MPI_PAR[0:3] I/O  |Parity connects directly to the PowerPC DP[0:3] pins. Parity pins not used by virtue of
selecting 8-bit or 16-bit data widths are available as general-purpose user I/O.

This active low signal indicates the transfer acknowledge from the LatticeSC device. This
pin is connected to the TA pin of the PowerPC. For a single MPI write transaction the
MPI_TA will come back on the next clock. See the Consecutive Writes with the MPI section
MPI_TA (0] of this document. For an MPI read transaction the MPI_TA will come back after the target
slave responds. The difference in time it takes to complete a transaction depends on the
slave that is accessed. Other dependencies are the clock rate of the system bus (HCLK),
clock rate of the slave interface, and slave acknowledge protocol.

This active low signal indicates a transfer error acknowledge during the current transaction.
MPI_TEA (0] More information on cause of this error can be found under the MPI Exceptions section of
this document.

MPI IRQ N o) Active-low interrupt request from the LatticeSC device. See the System Bus Interrupts sec-
- tion of this document.

Active-low request for processor to relinquish the bus and retry the cycle. Exception signal
MPI_RETRY 0] indicating the LatticeSC device is not ready to accept the requested transaction. More
information on the cause of this error can be found under MPI exceptions.

MPI data width ([3:0]: 1010, 1011, 1110 = 8, 16, 32 bits, respectively) The MODE pins are
used to select the type of bitstream configuration the LatticeSC device will utilize. More
MODE[3:0] | information on the MODE pins can be found in the Enabling the MPI section of this docu-
ment. These pins do not appear on the system bus HDL model out of ispLEVER |Pex-
press.

MPI Single Beat Data Transfers

Any data transfer on the PowerPC bus has four phases: arbitration, address, data and termination. During the arbi-
tration phase the processor initiates the transaction with a MPI_STRB_N pulse. The MPI samples the address and
control inputs during the address phase, receives or provides data and asserts transfer acknowledge during the
data phase, and de-assert signals during the termination phase. Figure 8 shows the PowerPC bus timing for a 32-
bit wide data single beat MPI write transfer. Figure 9 shows the PowerPC bus timing for a 32-bit wide data single
beat MPI read transfer. MPI_DATA [0:31]=0x11223344 is written/read to/from address 0x00004 in each case.
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Figure 8. MPI Single Write Data Transfer Timing
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Figure 9. MPI Single Read Data Transfer Timing
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MPI Burst Transfers

The MPI will support burst transfers of exactly 4 beats (32-bit width), 8 beats (16-bit width) or 16 beats (8-bit width),
depending upon the selected data bus width. Burst transfers can be of any size that is compatible with the selected
data bus width given the limitation that the MPI will handle 4, 8, or 16 beats as indicated.

The burst mechanism uses MPI_BURST to indicate that the transfer is a burst transfer and MPI_BDIP to indicate
the duration of the burst.

Along with the address and transfer control signals, the PowerPC asserts MPI_BURST during the address phase
of the transfer. In the data phase, the microprocessor asserts MPI_BDIP until the next to the last word is
sent/received. The MPI continues to send/receive data until it detects MPI_BDIP de-asserted at the rising edge of
MPI_CLK while MPI_TA is asserted.

Figure 10 shows the signal timing for a 32-bit wide data 4-beat burst write:
* The first write access is to 0x08000-0x08003 (MPI_DATA [0:31]=0x11111111).
* The second write access is to 0x08004-0x08007 (MPI_DATA [0:31]=0x22222222).

* The third write access is to 0x08008-0x0800B (MPI_DATA [0:31]=0x33333333).
e The fourth write access is to 0x0800C-0x0800F (MPI_DATA [0:31]=0x44444444).
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Figure 10. MPI Burst Write Transfer Timing
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Figure 11 shows the signal timing for a 32-bit wide data 4-beat burst read:

e The first read access is to 0x00030-0x00033 (MPI_DATA [0:31]=0x0C8C4CCC).

e The second read access is to 0x00034-0x00037 (MPI_DATA [0:31]=0x2CAC6CEC).
e The third read access is to 0x00038-0x0003B (MPI_DATA [0:31]=0x1C9C5CDC).

e The fourth read access is to 0x0003C-0x0003F (MPI_DATA [0:31]=0x3CBC7CFC).
Figure 11. MPI Burst Read Transfer Timing
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Consecutive Writes with the MPI

The MPI uses a single write post buffer implementation. This means that on each MPI write, the MPI_TA comes
back on the next clock cycle to terminate the PowerPC transaction. Internally on the MPI and system bus, the data
is not yet transmitted to the target. It will take several HCLK clock cycles before the target receives the data and ter-
minates the transaction. Until this termination takes place any additional writes from the MPI will issue a retry
(MPI_RETRY).

During consecutive write cycles, the number of PowerPC clock cycles (MPI_CLK) it takes until the next write can
take place without a retry is variable. The variables include the source of the HCLK, whether the MPI interface is in
synchronous or asynchronous mode, the target being accessed, and the target’s termination protocol and clock.
The user should add appropriate delay based on their board and system behavior.

MPI Exceptions

Three signals, MPI_TEA, MPI_RETRY and MPI_TA are monitored during the termination phase of a transfer. A
normal termination is indicated when MPI_TA is asserted and both MPI_TEA and MPI_RETRY are de-asserted. If
either MPI_TEA or MPI_RETRY are asserted, an MPI bus exception is indicated.

MPI_TEA is asserted for one MPI_CLK cycle to indicate either an internal system bus error, or a transfer with
MPI_TSIZ larger than the data bus size, or physical data size selected by the MODE[3:0] inputs.
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MPI_RETRY is asserted for one MPI_CLK cycle when the MPI is busy to request that the PowerPC relinquish the
bus and reissue the current transfer. A retry is issued when the following occurs:

* The MPI gets a read transaction while its write FIFOs are not empty.
* The MPI gets a write transfer while its write FIFOs are full.
* The MPI receives a retry indication from the embedded system bus during a read transfer.

For burst transfers, the MPI should issue retry before acknowledging the first data phase; if MPI_RETRY is
asserted after the first data phase of a burst transfer, it should be treated as a transfer error (MPI_TEA).

MPI Interrupts

The MPI logic on the system bus can generate an MPI interrupt to the system bus as a response to certain MPI
write accesses. When an MPI interrupt occurs, it sets the MPI_IRQ bit of the Interrupt Cause Register (bit 2 of
0x00010). The interrupt can then be passed to either the MPI or USER output interrupt (as discussed in the system
bus Interrupts section of this document).

There are three possible causes for an MPI interrupt during an MPI write access:

e The MPI logic on the system bus times out as a result of too many system bus slave RETRY responses.
* The system bus slave generates an internal error response to the access.
e The MPI logic on the system bus detects a parity check error (when MPI write parity checking is enabled).

MPI Synchronous vs. Asynchronous MPI Mode Latency
Table 12 shows the best case MPI to system bus access latency for both synchronous and asynchronous modes.
The latency is defined as the number of cycles the MPI_TA signal stays high after MPI_STRBN goes low.

Table 12. MPI Sync/Asynchronous Best Case Latency’

Synchronous Mode Asynchronous Mode
Single Burst Single Read Single Write 16-Beat Burst | 8-Beat Burst 4-Beat Burst
2 3 7 6 7 7 7

1. Note that the first access in a series of MPI write cycles has zero latency. Subsequent write cycles may cause retries. When retries are
present, the write latency is then the earliest cycle without a retry from the original MPI_STRB_N low.

Enabling the MPI

There are three conditions under which the MPI interface can be enabled: at power-up, via a register bit setting,
and via user instantiation. If the MPI is not utilized at all in the LatticeSC design, the dedicated MPI pins can be
used as general I/O pins for the user’s design.

MPI at Power-up: To enable the MPI at power-up, prior to device configuration, the external MODE pins (see
Table 13) must be set to specify one of the three MPI configuration modes, as specified in TN1080, LatticeSC sys-
CONFIG Usage Guide. If the MPI is not used, all of the MPI pins (MPI_TA, MPI_DATA, etc.) are tri-stated to a pull-
up resistance during configuration. In any of the three MPI configuration modes, the MPI can access the registers
in the system bus, PCS left, PCS right, and PCS inter-quad address ranges shown in Table 2.

Table 13. LatticeSC MPI Device Configuration Modes

M3 M2 M1 Mo Description
1 0 1 0 MPC860 8-bit
1 0 1 1 MPC860 16-bit
1 1 1 0 MPC860 32-bit

Data bus width is determined at power-up by the value presented on the MODE pins during the low-to-high transi-
tion of the INIT signal. The MODE pins select the data size of the transaction including the parity bits. MPC860 8-
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bit mode will also use MPI_PAR(0) along with the data. MPC860 16-bit will use MPI_PAR(0:1) and MPC860 32-bit
will use MPI_PAR(0:4). Unused MPI_PAR bits will be 3-stated to a pull-up resistance during configuration. All of the
other MPI signals connect directly to the PowerPC bus. Pad locations vary depending upon device type, size, and
package.

The data bus width selected by the MODE[3:0] pins is not related to the transfer size specified by MPI_TSIZ[0:1].
The bus width selected by the MODE[3:0] pins determines how many data pins are used by the MPI, while the
transfer size is determined by the master interface on the PowerPC bus. The transfer size used by an external mas-
ter must not exceed the selected data bus width; otherwise, the higher-order data bits will be lost and a bus excep-
tion is issued by the MPI.

In order to configure the LatticeSC device at power-up via MPI, the MPI PowerPC interface requires two different
file types:

* The first file is a PowerPC PROM image for device configuration. ispVM® converts a sysCONFIG-generated bit-
stream to a PROM image.

* The second file is a configuration-time initialization file generated by sysCONFIG. This file contains initialization
values for EBRs, PCS auto-configuration, and SMI memories. This initialization file is not needed for device con-
figuration modes other than MPI.

More information on MPI configuration of the LatticeSC devices can be found in TN1080, LatticeSC sysCONFIG
Usage Guide.

MPI via User Instantiation: To enable the MPI for use after device configuration and during normal operation, the
user must instantiate the system bus with an MPI peripheral in the LatticeSC design. The system bus element
along with the MPI and other peripherals is created using ispLEVER IPexpress.

MPI via a Register Bit Setting: When the user enables the MPI, as described in the MPI via User Instantiation
section of this document, setting the MPI_USR_ENABLE bit (control register 0x00008, bit 2) will keep the MPI
mode enabled even after the device is un-programmed. Un-programming the device still sets the programming
mode to MPI (as defined by the user), independently of what the MODE pins are set to.

User Master Interface (UMI)

The User Master Interface (UMI) allows the FPGA design to perform transactions on the system bus. Through the
UMI, the FPGA design has access to any and all of the slave peripherals on the system bus. Signals for the UMI
are listed in Table 14.

Table 14. UMI Interface Signals

Signal Type Description

The main clock for the user master interface. This clock only clocks the interface regis-
ters. A domain change is made from the UMI_CLK domain to the system bus clock
UMI_CLK | domain in asynchronous mode. The user master interface and the system bus can be
made synchronous through an ispLEVER IPexpress option (synchronous mode). A fre-
quency preference on this signal will constrain all of the inputs and outputs of the UMI.

This active-low reset resets all of the controls in the user master interface. This should be
UMI_RST_N | pulsed once before any transactions can occur on the UMI. This is typically connected to
the same reset as the GSR and pulsed at power up.

36-bit write data bus to system bus. This data bus is oriented with bits 35:32 used for
parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals
on the system bus, it is only carried. For less than 32-bit writes, the data must be repli-
cated on the UMI_WDATA bus to fill the entire 32 bits. For a 16-bit transaction, bits 15:0
must be replicated on 31:16. For an 8-bit transaction, bits 7:0 must be replicated on
31:24, 23:16 and 15:8.

36-bit read data bus from system bus. This data bus is oriented with bits 35:32 used for
UMI_RDATA[35:0] 0] parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals
on the system bus, it is only carried.

UMI_WDATA[35:0]

17


www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
www.latticesemi.com/dynamic/view_document.cfm?document_id=19022

Lattice Semiconductor LatticeSC MPI/System Bus

Table 14. UMI Interface Signals (Continued)

Signal Type Description
UMI_ADDR[17:0] | This 18-bit address bus is used to select the address that a user master transaction will
- ’ target. Bit 17 of the UMI_ADDR bus is the MSb while bit 0 is the LSb.
This bit indicates whether the current transaction is a read or a write cycle. A low value
UMI WR N indicates the current transaction is a read. Data is expected on the UMI_RDATA bus. A
- - high value indicates the current transaction is a write. Data is driven onto UMI_WDATA
bus.
UMI_LOCK I This active-high signal will be used to request ownership of the system bus.
UMI_BURST I Indicates this operation is a burst transfer.
Data width for transfer ([1:0]: 10-double word, 01-word, 00-byte, 11-invalid). Selects the
UMI_SIZE[1:0] | size of the data transfer being done on the UMI. For 32-bit transactions all bits 31:0 will

carry valid data. For 16-bit transactions only bits 15:0 will carry valid data. For 8-bit trans-
actions only bits 7:0 will carry valid data.

Data strobe indicates address and data ready. Should be driven high when valid address
UMI_RDY I h . : . .
is provided for read and valid address and data is present for write.

UMI_ACK 0] Acknowledge from master interface to indicate that it is ready for another operation.

Asserted for one UMI_CLK cycle when the UMI is busy to request that the master relin-

quish the bus and reissue the current transfer. A retry is issued when the following
occurs:

UMI_RETRY 0 * The UMI gets a read transaction while its write FIFOs are not empty.

* The UMI gets a write transfer while its write FIFOs are full.

* The UMI receives a retry indication from the embedded system bus.

Bus error response is asserted for one clock cycle when UMI_RDY is asserted. Indicates
UMI_ERR 0] X
an internal system bus error.

UMI IRQ | User logic master interface interrupt request. Active-high signal to indicate an interrupt to
- the system bus. This signal will map to the interrupt cause register UMI bit.

Locking the UMI

The system bus is a multi master bus and the UMI_LOCK signal will request ownership of the bus. In a multi mas-
ter system bus application the UMI must be locked to guarantee uninterrupted multiple transactions through the
UMI. Ownership of the bus is granted based on the priority of the master interface. If two masters request the bus
at the same time, the interface with higher priority will obtain the bus. Once the UMI has locked the bus, the
UMI_ACK will stay high indicating the interface is ready for a transaction.

To release the lock on the system bus, a UMI_RDY pulse must be given after UMI_LOCK is driven low. The
UMI_RDY pulse will allow the system bus to sample UMI_LOCK and release the bus lock.

For a single UMI transaction, or non-continuous transactions where ownership of the bus is not required,
UMI_LOCK is not necessary.

UMI Single Access
A typical 8-bit wide data, single access write transaction is shown in Figure 12. UMI_WDATA [7:0]=0x11 is written
to 0x00004. For this description the UMI_LOCK signal is not used to lock the system bus.
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Figure 12. Single Access Write from User Master Interface
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A single write access is initiated with the assertion UMI_RDY with valid data and address on UMI_ADDR and
UMI_WDATA. UMI_RDY is the gating signal for valid data and address and is to be asserted for every single
access write transaction. On the next cycle, UMI_ACK is de-asserted. When the write transaction is complete,
UMI_ACK is asserted by the UMI. UMI_ACK will go low during the transfer for two cycles in synchronous mode and
6-7 cycles in asynchronous mode at best conditions.

UMI_ACK is a synchronous signal and stays asserted after the single write is completed. One cycle before
UMI_ACK goes high again, the UMI_ERR or UMI_RETRY will go high if the current transfer gets ERROR or
RETRY response from the system bus. The master interface itself may or may not do any retry by itself depending
on configuration. UMI_ACK, UMI_ERR and UMI_RETRY will remain high until UMI_RDY is asserted again to begin
the next transfer.

Consecutive single writes may be performed with the assertion of UMI_RDY along with new data and address.
UMI_WR_N is to be asserted for the entire period of the transaction. UMI_ACK gets de-asserted on the clock cycle
after UMI_RDY and gets asserted when the transaction is complete and ready for the next transaction.

A typical 8-bit wide data, single access read transaction is show in Figure 13. UMI_RDATA [7:0]=0x11 is read from
0x00004. Again, the UMI_LOCK signal is not used to lock the system bus.

Figure 13. Single Access Read from User Master Interface
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A single access read is initiated with the assertion of UMI_RDY with a valid read address on UMI_ADDR.
UMI_RDY is the gating signal for valid address and is to be asserted for only one UMI_CLK cycle for every single
read transaction. On the next cycle, UMI_ACK is de-asserted. When the read data is ready at the UMI_RDATA
ports, UMI_ACK is asserted by the UMI. UMI_ACK is a synchronous signal and stays asserted after the single read
is completed. UMI_ACK will go low during the transfer for two cycles in synchronous mode and 6-7 cycles in asyn-
chronous mode at best conditions.

In case of an ERROR or RETRY response from the system bus, UMI_ERR or UMI_RETRY will be asserted one
cycle before UMI_ACK goes high. UMI_ERR and UMI_RETRY will be de-asserted once UMI_ACK goes low again
at the onset of the next transaction.
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Consecutive signal reads may be performed with the assertion of UMI_RDY along with the new address.
UMI_WR_N is to be de-asserted for the entire period of the transaction. On the next UMI_CLK with UMI_RDY high,
UMI_ACK is de-asserted. UMI_ACK is re-asserted when the transaction is complete and ready for the next trans-
action. Signal UMI_RDY should only be high for one UMI_CLK cycle.

UMI Burst Access

Burst access is initiated by asserting the UMI_BURST signal along with UMI_WR_N. The UMI handles bursts that
are exactly four beats deep. It employs a 4-beat deep FIFO that is 36 bits wide. It handles and generates burst
writes and reads that are four deep regardless of the size of the bus chosen by UMI_SIZE. All address and data
mapping is retained across the master interface.

For a write burst, when UMI_ACK is high, a high on UMI_WR_N, UMI_RDY and UMI_BURST for one cycle will
result in an exact 4-beat burst write transfer. UMI_ACK will go low after this cycle until the transfer is finished. The
UMI_ADDR and the first of the 4-burst data on UMI_WDATA have to be valid for this cycle. The UMI_WR_N and
UMI_ADDR/UMI_SIZE may be valid for only this one cycle. However, UMI_RDY has to be high for three more
cycles. Note that it is not necessary for UMI_RDY to be high for four continuous cycles and there could be lows in
between, but UMI_BURST must be high during this period. If UMI_BURST is de-asserted before the fourth high on
UMI_RDY, UMI_ERR will be asserted one or more cycles before UMI_ACK is asserted and the burst transfer is
aborted. One cycle before UMI_ACK goes high again, the UMI_ERR or UMI_RETRY may also go high if the trans-
fer gets ERROR or RETRY response from the slave or the master interface loses mastership during the 4-beat
transfer. UMI_ACK will go low before going high again for six cycles in synchronous mode and 10-11 cycles in
asynchronous mode at best conditions. Figure 14 illustrates an 8-bit wide data 4-beat UMI burst write cycle.

Figure 14. UMI BURST WRITE
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A read burst access is initiated with the assertion of input high on UMI_RDY and UMI_BURST and input low on
UMI_WR_N for one cycle. This results in a 4-beat (4-byte, 4-halfword or 4-word) burst read transfer. UMI_ACK will
go low after this cycle. The UMI_ADDR/UMI_SIZE must be valid for this cycle, too, and the UMI_ADDR is the
beginning address for four data reads. There may be a wrap operation on burst address calculation. The transfer
finishes after UMI_ACK goes high again for four more active cycles, which may not be continuous four cycles. One
of the four read data on UMI_RDATA is valid for each active cycle of UMI_ACK. Each of the four active cycles termi-
nates after a cycle of high on UMI_RDY. Note that it is possible for UMI_ACK to be low between active cycles due
to burst FIFO operation. It is necessary for UMI_RDY to be high for three cycles during UMI_ACK high, but
UMI_BURST has to be always high until the third active cycle. If UMI_BURST is de-asserted before the third active
cycle, UMI_ERR will be asserted one or more cycles before UMI_ACK is asserted and the burst transfer is aborted.
UMI_ACK will go low before going high again for three cycles in synchronous mode and eight to nine cycles in
asynchronous mode at best conditions. Figure 15 illustrates an 8-bit wide data 4-beat UMI burst read cycle.
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Figure 15. UMI Burst Read
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Note that in both Figure 14 and Figure 15:

e The first write/read access is to 0x00004 (UMI_W/RDATA [7:0]= 0x11).

e The second write/read access is to 0x00005 (UMI_W/RDATA [7:0]= 0x22).
¢ The third write/read access is to 0x00006 (UMI_W/RDATA [7:0]= 0x33).

¢ The fourth write/read access is to 0x00007 (UMI_W/RDATA [7:0]= 0x44).

User Slave Interface (USI)

The USI allows the implementation of a slave peripheral in FPGA design. Through the USI, the FPGA design
responds to any master peripherals on the system bus, as long as the transaction address falls within the USI
address range (see Table 2). The system bus USI includes the signals listed in Table 15.

Table 15. USI Interface Signals

Signal

Type

Description

USI_CLK

User slave interface clock. This clock will only clock the USI. A domain transfer will occur
from the USI to the system bus (HCLK) in asynchronous mode. The user slave interface
and the system bus can be made synchronous through an ispLEVER IPexpress option

(synchronous mode). A frequency preference on this signal will constrain all of the inputs
and outputs of the USI.

USI_RST_N

This active-low reset resets all of the controls in the user slave interface. This should be
pulsed once before any transactions can occur to the USI. This is typically connected to
the same reset as the GSR and pulsed at power-up.

USI_WDATA[35:0]

36-bit write data from the system bus. This data bus is oriented with bits 35:32 used for
parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals on
the system bus; it is only carried. The MSb and LSb will be based on the driving master.
For 32-bit access, bits 31:0 are used. For 16-bit access, bits 15:0 are used. The same
data on 15:0 will be present on 31:16 as well. For 8-bit access bits 7:0 are used and the
same data will be present on D(31:24), D(23:16), and D(15:8) as well.

USI_RDATA[35:0]

36-bit read data bus to system bus. This data bus is oriented with bits 35:32 used for parity
while bits 31:0 are used for data. Parity is not calculated or checked by any of the periph-
erals on the system bus; it is only carried. The MSb and LSb must be selected based on
the accepting master and application. For 32-bit access, bits 31:0 are used. For smaller
than 32-bit transfers the data must be replicated on all byte lanes. For 16-bit access, bits
15:0 and 31:16 are used. For 8-bit access, bits 7:0, 15:8, 23:16, and 31:24 are used with
the same read data on all bytes.

USI_ADDR[17:0]

This 18-bit address bus provides the address where a slave transaction will operate. Bit 17
of the USI_ADDR bus is the MSb while bit 0 is the LSb.

USI_WR_N

Indicates whether the current transaction is a read or a write. 1 indicates a write transac-
tion and the USI_WDATA should be captured. 0 indicates a read transaction and data
should be placed on USI_RDATA.
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Table 15. US| Interface Signals (Continued)

Signal Type Description
Transfer size ([1:0]: 10-double word, 10-word, 00-byte, 11-invalid). Indicates the size of the
USI_SIZE[1:0] (0] current transaction. For a 32-bit transaction all of the data bits 31:0 will be valid. For 16-bit
transaction only bits 15:0 will be valid. For 8-bit data only bits 7:0 will be valid.
USsl ERR Active-high error response from the user to the US| when data size is not consistent with
- USI_SIZE, or the address on the USI_ADDR is out of range for the application.
Active-high acknowledge for read operations. User drives USI_ACK high to terminate the
USI_ACK transaction. Signal USI_ACK is passed through the system bus to eventually terminate the
transaction from the driving master.
US| RDY 0 Active-high ready response from the USI, for either read or write transactions. Signal
- USI_RDY goes high when an address is ready on USI_ADDR.
Signal available for the user to drive when a transaction is not ready to be processed. This
USI_RETRY I . : S :
retry signal is then sent to the originating master interface.
usl IRQ | Active-high interrupt pin to indicate an interrupt to the system bus. This signal will map to
- the interrupt cause register USER_SLAVE bit (0x00010 bit 6).

User Slave Transfer Errors
The user logic slave interface responds with a transfer error to the system bus under the following circumstances
(this is an internally generated error from the US| and is separate from the USI_ERR signal. The resulting error to
the master interface will be either a MPI_RETRY or UMI_RETRY for the MPI and UMLI.):

* USI_ERR is high during the transaction.

* USI_RST_N is low during the transaction.

* The device is in bitstream configuration.

* The address does not conform to the USI_SIZE specified. The setting for USI_SIZE will dictate the granularity of
the address available from the USI. If USI_SIZE is selected for 8-bit mode, then all addresses can be selected. If
USI_SIZE is selected for 16-bit (word) mode, then only addresses on word boundaries can be selected. For
example addresses 0x00000, 0x00002, 0x00004, etc. are valid addresses. 0x00001, 0x00003, 0x00005, etc. are
not valid addresses for word accesses. The same holds true for 32-bit (double word) mode: 0x00000, 0x00004,
0x00008, etc. are valid while 0x00001, 0x00002, 0x00003, 0x00005, 0x00006, 0x00007, 0x00009, etc. are not

valid.

USI Single Access

A typical operation of a 32-bit data single access write transaction is illustrated in Figure 16. The USI_WR_N signal
goes high to indicate that a write is taking place. The synchronous signal USI_RDY signal indicates the availability
of valid address and data on the USI_ADDR and USI_WDATA ports, respectively. The USI inserts additional wait
states until the user asserts the USI_ACK signal. For write operations, if the data received by the slave interface
can be accepted by the user slave in one cycle, it is acceptable to leave USI_ACK asserted continuously during
USI_WR_N high (write operation). If the USI takes more than one USI_CLK cycle to terminate the transaction, then
USI_ACK should be driven high when the transaction is complete.

Figure 16. Single Access Write at USI
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A typical operation of a 32-bit data single access read transaction is illustrated in Figure 17 The USI_WR_N signal
is low to indicate that a read is taking place. The synchronous USI_RDY signal indicates the availability of valid
address on the USI_ADDR. The user must then respond with read data on the USI_RDATA bus and assert
USI_ACK. The USI inserts additional wait states until the user asserts the USI_ACK signal.

Figure 17. Single Access Read at US|
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In both Figure 16 and Figure 17, address 0x08000 is accessed, and USI_W/R_DATA[31:0] =0x88888888.

USI Burst Access

Burst accesses from MPI or UMI are treated similar to single accesses. There is no burst FIFO in the USI and thus
all burst accesses are handled as back-to-back signal accesses with wait states. It is possible for the slave to han-
dle bursts of user design defined lengths. During a burst access the USI_ADDR bus will increment with each
USI_RDY high following a USI_ACK high cycle during the burst transfer. Figure 18 shows a 32-bit data USI 4-beat
burst write access, whereas Figure 19 illustrates a 32-bit data USI 4-beat burst read access.

Figure 18. 4-beat USI Burst Write
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Figure 19. 4-beat USI Burst Read
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Note that in both Figure 18 and Figure 19:

* The first write/read access is to 0x08000 (USI_W/RDATA [31:0]= 0x88888888).

* The second write/read access is to 0x08004 (USI_W/RDATA [31:0]= 0x44444444).
¢ The third write/read access is to 0x08008 (USI_W/RDATA [31:0]= OxCCCCCCCC).
* The fourth write/read access is to 0x0800C (USI_W/RDATA [31:0]= 0x22222222).

23



Lattice Semiconductor LatticeSC MPI/System Bus

PCS Interface

The system bus PCS interface is a slave interface. The details and protocol of the PCS interface are specific to the
LatticeSC device. The PCS interface supports 8-bit and 32-bit system bus master (MPI, UMI) data accesses.

PCS Interface Signals

Up to eight possible PCS interfaces can be generated on a system bus in ispLEVER IPexpress. This corresponds
to the eight possible different PCS quad locations on the largest LatticeSC device. Each system bus PCS interface
connects to a unique PCS quad in the LatticeSC device. The base address of each PCS is used in defining the
PCS interface port names, as illustrated in Table 16. On smaller LatticeSC devices, not all PCS interfaces are avail-
able. Please refer to the LatticeSC/M Family flexiPCS Data Sheet for information on the number of PCS quads
available for a given die size and package combination. The PCS address range is defined in Table 2.

Table 16. PCS Interfaces on the System Bus

PCS Quad PCS Base System Bus Interface Ports
Location Address in HEX| Device Side |PCS -> System Bus | System Bus -> PCS
360 36000 Left pcs360_in[16:0] pcs360_out[44:0]
361 36100 Left pcs361_in[16:0] pcs361_out[44:0]
362 36200 Left pcs362_in[16:0] pcs362_out[44:0]
363 36300 Left pcs363_in[16:0] pcs363_out[44:0]
3EO0 3E000 Right pcs3E0_in[16:0] pcs3E0_out[44:0]
3E1 3E100 Right pcs3E1_in[16:0] pcs3E1_out[44:0]
3E2 3E200 Right pcs3E2_in[16:0] pcs3E2_out[44:0]
3E3 3E300 Right pcs3E3_in[16:0] pcs3E3_out[44:0]

Enabling multi-device alignment under the system bus PCS section of ispLEVER IPexpress also creates the multi-
chip alignment (MCA) inputs (mca_clk_p[12]_in, and mca_done_in) and outputs (mca_clk_p[12]_out and
mca_done_out). The MCA inputs are driven by another LatticeSC chip. The MCA outputs drive another LatticeSC
chip. These 1/0O have no system bus function and are used when PCS multi-device alignment is desired. Please
refer to the LatticeSC/M Family flexiPCS Data Sheet for more information on multi-device alignment.

PCS Interrupts

Both left and right PCS quads can generate interrupts to the system bus. Since a PCS interrupt can be generated
from any of the eight possible PCS quads, inter-quad interface register OX3EFOB (see Table 17) contains one inter-
rupt bit for every PCS quad location. When any of the bits in Ox3EFOB is set as a result of a PCS interrupt, the
interrupt is passed to the system bus via bit 1 of 0x00010 (PCS interrupt bit in interrupt cause register). The inter-
rupt can then be sent to an output interrupt (MPI or USER as discussed in the System Bus Interrupts section of this
document). In the reverse direction, when an output interrupt is detected, a read access of 0x00010 showing a 1 on
bit 1 indicates a PCS interrupt, and a read access of 0xX3EFOB indicates which PCS quad (could be more than one)
initiated the interrupt. Furthermore, PCS quad interface register 0x80 can be read to determine if any channel inter-
face register(s) on a given quad channel initiated the interrupt. More information on quad interface register 0x80, as
well as quad and channel interface interrupt registers can be found in the Register Map section of the LatticeSC/M
Family flexiPCS Data Sheet.

Table 17. PCS Interrupt Source Register 0Ox3EFOB

Bit Position Bit 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT7
PCS Quad Source 360 361 362 363 3EO0 3E1 3E2 3E3
of Interrupt Left Right

24


www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029

Lattice Semiconductor LatticeSC MPI/System Bus

SMI Interface

The SMI (Serial Management Interface) peripheral on the LatticeSC system bus allows any master on the bus to
access any element associated with an SMI slave. SMI slaves include LatticeSC PLLs, DLLs (with built-in SMI
interfaces), in addition to user-defined control/status registers in the FPGA.

The SMI address range is defined in Table 2. There are a total of 64 possible SMI peripherals. Each peripheral cor-
responds to one of 64 base addresses in the range (0x00400-0x007F0). Each interface targets 16 bytes (128 bits)
of memory. For example, the interface associated with base address 0x00410 targets addresses 0x00410 to
0x0041F. Note that 0x00400 is the default base address for all PLLs and DLLs in the LatticeSC device. This base
address can be modified by changing the SMI_OFFSET attribute. For simulation, SMI_OFFSET is assigned via a
parameter line. For Map, Place and Route, SMI_OFFSET is assigned via a preference line.

For example, a PLL of type EHXPLLA and module name MYPLL is generated in IPexpress. The top level of a Ver-
ilog design has an instance name PLL1 for MYPLL.

To assign an SMI_OFFSET of 0x420 (base address=0x00420) to PLL1 for simulation, the following line is added in
the Verilog design:

defparam PLL1.MYPLL 0 0.SMI_ OFFSET= 12'h420;

To assign an SMI_OFFSET of 0x420 to PLL1 for Map, Place and Route, the following line is added in the Map,
Place and Route preference file:

ASIC “PLL1/MYPLL 0 0” TYPE “EHXPLLA” SMI_ OFFSET="0x420";

SMI Interface Signals
Table 18 shows the SMI signals generated as part of the system bus 1/Os. Note that, because base address
0x00400 is the default base address for PLLs and DLLs, there is no read data port for that interface.

Table 18. SMI Interface Signals

Name /10 Description
SMI_CLK o SMI Clock. This clock runs at 1/4 the frequency of HCLK.
SMI_WR (0] Active-high dedicated SMI write signal
SMI_RD (0] Active-high dedicated SMI read signal
SMI_RST_N o (SSAQ(ISaISc’;ltJiVSe_-::C{)gTrjflt)a.t. This reset signal is derived from the system bus reset
SMI_WDATA 0] SMI Data Write signal. This signal is broadcast to all SMI peripherals.

This is the SMI read data signal corresponding to interface 0OXOONNO. NN can

have any value from 41 to 7F, corresponding to one of 63 possible SMI read
SMI_RDATA_OXNNO interfaces (there is no read port for interface 0x00400). Therefore, there could
be up to 63 possible SMI read data ports on the SMI interface.

SMI address. Since the SMI address range is from 0x00400 to 0x007FF, this
corresponds 1024 different byte addresses. Hence, the SMI_ADDR only needs
to be 10 bits wide.

SMI_ADDR= 0x00X corresponds to base 0x0040X in system bus address
range.

SMI_ADDR [9:0] o il\rl]lglg_eADDR= 0x01X corresponds to base 0x0041X in system bus address

éMI_ADDR: 0x3FX corresponds to base 0x007FX in system bus address
range.

Where X= is in the range (0-F)
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SMI Single Beat Data Transfers

Figure 20 illustrates an SMI write transfer, whereas Figure 21 shows an SMI read transfer. The SMI_CLK is
sourced from the system bus at a fourth of the frequency rate of HCLK. Each assertion on read/write strobes
SMI_RD and SMI_WR will initiate a byte of data transfer (one bit per SMI_CLK cycle). SMI_ADDR[3:0] determines
which of the 16 bytes of the targeted MSI interface is being accessed.

To ensure zero hold time, SMI_RD, SMI_WR, and SMI_WDATA are synchronized to the falling edge of SMI_CLK.

As shown in Figure 20, a byte write cycle starts with the assertion of a single cycle SMI_WR pulse on the falling
edge of SMI_CLK along with the first SMI_WDATA bit (D00) to be written. The remaining data bits (D01 to D07) will
then be written on each subsequent falling edge of SMI_CLK.

As shown in Figure 21, a byte read cycle starts with the assertion of a single cycle SMI_RD pulse on the falling
edge of SMI_CLK. The first bit of SMI_RDATA_0XNNO (D00) is expected at the following rising edge. The remain-
ing data bits (D01 to D07) will then be received on each subsequent rising edge of SMI_CLK.

Note that, because SMI_CLK is four times slower than HCLK, and the SMI interface only transfers one bit of data
per SMI_CLK cycle, MPI and UMI accesses to SMI through the system bus will have a considerably longer latency
than accesses to other slave interfaces. For example, one system bus simulation shows that with MPI in synchro-
nous mode, the system bus takes 46 MPI clock cycles to complete an SMI read access. Therefore, the timeout
parameter of the PowerPC bus needs to be programmed with the large SMI latency in perspective.

Figure 20. SMI Write Timing Diagram

SMI_CLK _| M u M u M \—

SMI_ADDR —— ! ! ! Y i i ST ar | |

e e e S S m e aaf R —

i ' ' i i i i i i ' ' i

SMILWR — | | i | i i i i | | :

i i i i i i i i i i i i

SMI_WDATA —— D CHOCHCH CH D CHCH CO:
PRGN €D €D CD €5 €D €2 €D €D &

i i i i i i i i i i i

Figure 21. SMI Read Timing Diagram
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SMI Burst Access
Burst accesses from a master are treated similar to single accesses. All burst accesses are handled as back-to-
back signal accesses.

Direct FPGA Access (DFA) Interface

The LatticeSC device allows for the MPI interface to directly access a DFA controller that the user can implement in
FPGA logic. Most of the latency through the system bus is eliminated in this mode, as most of the system bus logic
is bypassed to provide direct access from the MPI to the DFA interface. The DFA controller acts as a slave to the
MPI. An ispLEVER IPexpress option creates the DFA interface as the system bus model is being configured. Cre-
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ating the DFA interface also results in the creation of the DFA ports as part of the system bus model. Creating a
DFA interface is only possible once an MPI interface has already been enabled (also in ispLEVER IPexpress). The
DFA data bus size reflects that of the MPI.

DFA Interface Signals
Table 19 shows the DFA signals generated as part of the system bus 1/Os.

Externally the MPI implements a 36-bit PowerPC bus slave, which internally drives the DFA as a master. Data bus
width is automatically generated as 8 bits, 16 bits or 32 bits with parity of 1, 2 or 4 bits, respectively depending on
how the MPI was configured.

Table 19. DFA Interface Signals

Name

/0

Description

DFA_TSIZ[0:1]

0]

Transfer size ([0:1]: 00-double word, 10-word, 01-byte). These ports select the size of
the DFA data transaction. These ports reflect the condition of MPI_TSIZ[0:1].

DFA_WR_N

Transfer type (0-write, 1-read). This signal indicates to the DFA controller whether the
transaction initiated by the MPI is a read or a write. If the transaction is a read, data will
be provided to the MPI from the address specified. If the transaction is a write, data will
be written to the DFA address specified by the MPI. This port reflects the condition of
MPI_WR_N.

DFA_BURST

Indicates that a burst transfer is in progress when low. This signal informs the DFA that
the MPI is performing a burst transaction using the MPI burst pin. This port reflects the
condition of MPI_BURST.

DFA_BDIP

Burst Data In Progress. This signal from the MPI will go low on the first clock of data
during a burst and go high on the last clock of data of the burst transfer. This port
reflects the condition of MPI_BDIP.

DFA_STRB_N

This active low signal indicates the start of a transactions or the strobe. This port
reflects the value of MPI_STRB_N.

DFA_CSON/ DFA_CS1

DFA selects for active low (DFA_CS1) and active high (DFA_CSON). Both of these chip
selects must be active for the DFA controller logic to be selected (DFA_CS1=0,
DFA_CSON=1). These ports reflect the condition of MPI_CSON/MPI_CS1.

DFA_ADDR[14:31]

The PowerPC address bus is 32 bits wide. The LatticeSC devices only support 18 bits
of address space. The LatticeSC uses the least significant bits of the PowerPC address
space using address bits 14:31. These ports reflect the condition of MPI_ADDR[14:31].

DFA_WR_DATA[0:31]

The DFA WR data bus can be up to 32 bits wide (depending on MPI configuration). Bit O
is the MSb and bit 31 is the LSb. For multi-byte transfers, the most significant byte has
the lowest address. These ports reflect the condition of MPI_DATA[0:31] during a write
cycle.

DFA_RD_DATA[0:31]

The DFA RD data bus can be up to 32 bits wide (depending on MPI configuration). Bit O
is the MSb and bit 31 is the LSb. For multi-byte transfers, the most significant byte has
the lowest address. During a read data cycle, this bus is passed to MPI_DATA[0:31] as
long as DFA_TRI_DATA=0.

DFA_RD_PARITYI0:3]

Read Parity. Can be up to four bits wide (one bit per byte of data) depending on the MPI
data bus size. Parity is passed to MPI_PAR[0:3] on a read access when
DFA_TRI_DATA=0.

DFA_TRI_CTL

This DFA signal controls the state of MPI_TA, MPI_TEA and MPI_RETRY on the MPI
interface. When DFA_TRI_CTL is 1, these MPI outputs are tri-stated. When
DFA_TRI_CTL is 0, DFA_TA, DFA_TEA, and DFA_RETRY are passed on to MPI_TA,
MPI_TEA, and MPI_RETRY respectively. The FPGA DFA controller logic should always
drive this signal to O during the data phase of a DFA access (DFA_TA=0).

DFA_TRI_DATA

This DFA signal controls the state of MPI_DATA/MPI_PAR during a read access. When
DFA_TRI_DATA is 1, MPI_DATA/MPI_PAR are always tri-stated during a read cycle.
When DFA_TRI_DATA is 0, DFA_RD_DATA/DFA_RD_PARITY are passed on to
MPI_DATA/MPI_PAR on a read cycle. DFA_TRI_DATA=0 should coincide with
DFA_TA=0

DFA_TA

This active low signal indicates the transfer acknowledge from the DFA. This port is
translated to the MPI_TA pin of the MPI as long as DFA_TRI_CTL=0.
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Table 19. DFA Interface Signals (Continued)

Name 1/0 Description

DFA TEA | This active low signal indicates a transfer error acknowledge during the current transac-
- tion. This port is translated to the MPI_TEA pin of the MPI as long as DFA_TRI_CTL=0.

Active-low request for processor to relinquish the bus and retry the cycle. Exception sig-
DFA_RETRY | nal indicating the LatticeSC device is not ready to accept the requested transaction This
port is translated to the MPI_RETRY pin of the MPI as long as DFA_TRI_CTL=0.

Enabling the DFA Interface
In addition to enabling the creation of the DFA interface signals in ispLEVER IPexpress, the DFA interface needs to
be enabled for both writing and reading accesses. This requires setting two parameters:

* MPI_DFA_EN bit (reg. 0x0000A, bit 7): Setting this bit to 1 allows the MPI interface logic to interpret
MPI_CS1=0/MPI_CSON=1 as a valid MPI interface selection (DFA access) in addition to
MPI_CS1=1/MPI_CSON=0 (system bus access).

e MPI_CSON/MPI_CS1N: Setting these MPI signals to 1 and 0 respectively serves two purposes.
— Through the DFA_CSON/DFA_CSH1 interface outputs, this combination of values informs the FPGA DFA con-
troller that it is being accessed.
— This combination of values enables the MPI logic to select data from the DFA interface during a read cycle
(as opposed to selecting read data from the system bus logic when MPI_CSON=0 and MPI_CS1=1).

Figure 22 illustrates from a logical standpoint (not actual hardware depiction) how the MPI, DFA and system bus
data busses are affected by MPI_CSON/MPI_CS1 and MPI_DFA_EN. Control signals are not shown in this figure
for simplicity.

Figure 22. DFA/System Bus Data Selection
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DFA Single Beat Data Transfers
Any data transfer on the DFA bus has four phases: arbitration, address, data, and termination. During the arbitra-
tion phase the MPI initiates the transaction with a DFA_STRB_N pulse. The DFA controller in the FPGA samples
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the address and control inputs during the address phase, receives or provides data and asserts transfer acknowl-
edge during the data phase, and de-assert signals during the termination phase. Figure 23 shows the bus timing
for an 8-bit wide data, single beat write transfer. Figure 24 shows the DFA bus timing for an 8-bit wide data, single
beat read transfer. Both figures access address 0x00000 (DATA [0:7]=0x11).

Figure 23. DFA Single Beat Write Data Transfer Timing
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Figure 24. DFA Single Beat Read Data Transfer Timing
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DFA Burst Access

DFA burst accesses are similar to MPI burst accesses, except that DFA_BURST and DFA_BDIP are now outputs of
the DFA interface (they reflect the state of MPI_BURST and MPI_BDIP respectively). DFA_TRI_CTL and
DFA_TRI_DATA are also driven by the FPGA DFA logic as in the case of DFA single accesses.

System Bus Memory Map

Table 20 describes the internal register map within the system bus. Memory maps for a specific block, such as
PCS, are found in the block-specific data sheet. The system bus memory map is structured with bit 0 as the MSb to
match the PowerPC/MPI bus orientation shown in Table 7. All power-up default values are 0x0 unless otherwise
specified.

29



Lattice Semiconductor

LatticeSC MPI/System Bus

Table 20. System Bus Register Map

Absolute
Address

Type R=Read
W=Write

Bits

Name

Description

0x00000 -
0x00003

0:31

DEVICE_ID

32-Bit Manufacturer and Device ID Code: The manufacturer
identification code register contains a unique code for each
LatticeSC device in the family. The code is comprised of:

*|D[0:11]: This is company identification provided by JEDEC.
The value for this field is always OXEAS.

¢ ID[12:19]: Size Identification. The value is the binary num-
ber of columns of CIB/PLC in the device. As an example, the
5525 device has 72 columns of CIB/PLC so its size identifi-
cation is 0x48. Refer to the LatticeSC/M Family Data Sheet
for the full list of size identification values for different Lattice-
SC devices.

¢ ID[20:23]:Reserved.
* ID[24:27]: Series Identification. LatticeSC is 0x5ID
* [28:31]: Reserved to 0x0.

For example, the 5525 part ID CODE is (ID[0:31]): 5S25 (72
columns): 0XEA848X50 (X=don’t Care).

The system bus simulation model will always show a 5525
device ID. Manufactured devices will have the proper device
ID as part of the silicon.

0x00004 -
0x00007

R/W

0:31

SCRATCH_PAD

32-bit scratchpad register. Free register used for debugging
purposes.

0x00008-
0x0000A

R/W

Control Registers

0x00008

R/W

0:1

RDBK_SIZE

These two bits specify the number of valid bytes in the read
back data register (0x00018) during a readback operation.
[0:1]:

* 00 - 1 byte

* 10 - 2 bytes
* 01 - 4 bytes

R/W

MPI_USR_ENABLE

Active high. Enables the MPI interface to the user. Used to
keep the MPI available during a reconfiguration process. Dur-
ing reconfiguration, the mode pins are not sampled to check
for MPC mode. Set this bit before reconfiguration to keep MPI
available.

R/W

REPEAT_RDBK

Active high. Inhibits auto-increment of the readback address
(0x00014) when the readback data register (0x00018) is
read.

R/W

SYS_RD_CFG

Active-high. Initializes the readback logic.

Unused

R/W

UMI_RST

Active high. Asserts system bus reset. Can only be set by
user master. Writing to this register bit is only active if “Sys-
tembus Reset by User Master” is set in the IPexpress GUI
for system bus.

R/W

MPI_RST

Active high. Asserts system bus reset. Can only be set by
MPI. Writing to this register bit is only active if “Systembus
Reset by MPI” is set in the IPexpress GUI for system bus.
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Table 20. System Bus Register Map

Absolute
Address

Type R=Read
W=Write

Bits

Name

Description

0x00009

R/W

0

Reserved

R/W

UMI_LOCK

Active high, locks the internal system bus for use by the UMII.
Used for multi-cycle operations that must retain bus owner-
ship. Only the UMI can write this bit.

R/W

MPI_LOCK

Active high, locks the internal system bus for use by the MPI.
Used for multi-cycle operations that must retain bus owner-
ship. Only the MPI can write this bit.

Unused

R/W

PRGM_UMI

UMI configuration request. Active high, forces reconfiguration
of the FPGA logic using the mode specified on the MODE
pins during initial power up. Has to be released before send-
ing the bitstream.

R/W

PRGM_MPI

MPI configuration request. Active high, forces reconfiguration
of the FPGA logic using the mode specified on the MODE
pins during initial power up. Has to be released before send-
ing the bitstream.

R/W

SYS_DAISY

Enables bitstream daisy chaining when configuring more
than one device via MPI.

R/W

SYS_GSR

Active high, asserts the global set/reset.

0x0000A

R/W

0:3

EBR_EXP

For pre-configuration usage of these bits, see TN1080, Lattic-
eSC sysCONFIG Usage Guide.

Unused

MPI_PAR_CHK

Enables MPI to check parity errors for write transfers if MPI
parity bus is enabled

R/W

Reserved. Must be written to ‘0’.

R/W

N | o o | b

MPI_DFA_EN

When set to 1, this bit enables any fabric DFA controller to
use the MPI outputs pads.

0x0000B

Unused
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Table 20. System Bus Register Map

Absolute Type R=Read
Address W=Write Bits Name Description
0x0000C- .
0x0000D R Status Registers
In the event of an error during device configuration these bits
will indicate the nature of the error.
[0:1]:
* 00 - no error
R 0:1 ERR_FLAG * 01 - checksum error indicates one or more corrupt bits in
bitstream
* 10 - device ID error indicates bitstream does not match tar-
get
* 11 - framing/alignment error. Data bits may be reversed.
R 2 INIT_N Reflects the state of the INIT 1/O pad.
R 3 DONE Reflects the state of the DONE I/O pad.
0x0000C Indicates that some initialization data was lost because con-
R 4 CFG_DATA_LOST |figuration encountered long wait states or too many retries
when initializing EBRs/ASB
If an internal system bus error occurs during configuration the
error is captured in these two bits. The address of the first
error in captured in the bus error address register (0x00024).
. [bit5 bit6]:
R 5:6 CFG_BUSI_ERR 00 - N errors
01 - invalid response code
10 - one error occurred
11 - multiple errors occurred
R 7 RDBK_AOR_ERR |Active-high readback address out of range error alarm.
. Reflects the HSIZE [0:1] size during write transfers to the
R 0-1 WDATA_SIZE configuration data register
A 1 indicates the bitstream of system bus configuration con-
R 2 EBR_BIT_ERR tains errors in the initialization data for EBRs.
A 1 indicates the bitstream of system bus configuration con-
R s ASB_BIT_ERR tains errors in the initialization data for ASB.
0x0000D
4:5 Unused
Active-high indicates that data is pending in the readback
R 6 RDATA_RDY data register (0x00018).
Active-high indicates that the configuration logic is ready for
R 7 WDATA_ACK data to be written into the configuration data register
(0x0001C).
0x0000E -
0X0000F Unused
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Table 20. System Bus Register Map

Absolute Type R=Read
Address W=Write Bits Name Description
Interrupt Cause Register
0 Unused.
Active-high, interrupt request from the PCS interface. Write 1
R 1 PCS_IRQ to clear this bit.
R 5 MPI_IRQ Agtivg-high, interrupt request from the MPI. Write 1 to clear
this bit.
Active-high, indicates that the ERR_FLAG bits in the status
0x00010 R s CFG_ERR_IRQ register were changed during device configuration.
Active-high, interrupt request from the configuration logic
R 4 CFG_DATA_IRQ requesting another word/byte of data. Write 1 to clear this bit.
Active-high, interrupt request from the User Master interface
R 5 UMLIRQ | ymMI_IRQ). Write 1 to clear this bit.
Active-high, interrupt request from the User Slave interface
R 6 USIIRQ (USI_IRQ). Write 1 to clear this bit.
Active-high, interrupt request from the USR_IRQ_IN signal.
R 7 USER_IRQ Write 1 to clear this bit.
0x00011 Unused
USER Interrupt Enable Register
(Only UMI can write to this register)
0 Unused
RW 1 Logic 1 enables the PCS interrupt bit from address 0x00010
to generate an interrupt to the USR_IRQ_OUT port.
RIW 5 Logic 1 enables the MPI interrupt bit from address 0x00010
to generate an interrupt to the USR_IRQ_OUT port.
RIW 3 Logic 1 enables the CFG_ERR interrupt bit from address
0X00012 0x00010 to generate an interrupt to the USR_IRQ_OUT port.
EN IRQ USER |Logic 1 enables the CFG_DATA master interrupt bit from
R/W 4 - address 0x00010 to generate an interrupt to the
USR_IRQ_OUT port.
RIW 5 Logic 1 enables the USER_MSTR interrupt bit from address
0x00010 to generate an interrupt to the USR_IRQ_OUT port.
RIW 6 Logic 1 enables the USER_SLAVE interrupt bit from address
0x00010 to generate an interrupt to the USR_IRQ_OUT port.
RIW 7 Logic 1 enables the USER_IRQ interrupt bit from address

0x00010 to generate an interrupt to the USR_IRQ_OUT port.

33




Lattice Semiconductor

LatticeSC MPI/System Bus

Table 20. System Bus Register Map

Absolute Type R=Read
Address W=Write Bits Name Description
MPI Interrupt Enable Register
(Only MPI can write to this register)
R/W 0 Unused.
RIW 1 Logic 1 enables the PCS interrupt bit from address 0x00010
to generate an interrupt to the MPI_IRQ_N pin.
RIW > Logic 1 enables the MPI interrupt bit from address 0x00010
to generate an interrupt to the MPI_IRQ_N pin.
RIW 3 Logic 1 enables the CFG_ERR interrupt bit from address
0x00013 0x00010 to generate an interrupt to the MPI_IRQ_N pin.
EN IRQ MPI |Logic 1 enables the CFG_DATA master interrupt bit from
R/W 4 -7 address 0x00010 to generate an interrupt to the MPI_IRQ_N
pin.
RW 5 Logic 1 enables the USER_MSTR interrupt bit from address
0x00010 to generate an interrupt to the MPI_IRQ_N pin.
RW 6 Logic 1 enables the USER_SLAVE interrupt bit from address
0x00010 to generate an interrupt to the MPI_IRQ_N pin.
RW 7 Logic 1 enables the USER_IRQ interrupt bit from address
0x00010 to generate an interrupt to the MPI_IRQ_N pin.
0x00014 - . Configuration memory readback address register (14 bits).
0x00017 RIW 0:13 | CFG_RDBK_ADDR Bits [14:31] are reserved.
8§8881% R/W 0:31 | CFG_RDBK_DATA |Configuration memory readback data register
0x0001C - . ) . .
OX0001F R/W 0:31 CGG_DATA Configuration data register
0x00020 - 24-bit trap address register. Configuration trapped in the
0x00023 R 0:31 TRAP_ADDR address bus is stored here when bitstream initialization for
EBR/ASB is lost
0x00024 - Bus error address register contains the address of the first
0x00027 R 0:31 | BUSI_ERR_ADDR |configuration error. Indicated by the CFG_ERR bits of regis-
ter 0x0000C.
0x00028 - . Read Only Word #1. Read Only Register with content defined
0x0002B R 0:31 READ_WORD1 via IPexpress
0x0002C - . Read Only Word #2. Read Only Register with content defined
0x0002F R 0:31 READ_WORD2 via IPexpress
0x00030 - . Read Only Word #3. Read Only Register with content defined
0x00033 R 0:31 READ_WORD3 via IPexpress
0x00034 - . Read Only Word #4. Read Only Register with content defined
0x00037 R 0:31 | READ _WORD4 | ;- |pexpress
0x00038 - . Read Only Word #5. Read Only Register with content defined
0x0003B R 0:31 READ_WORD5 via IPexpress
0x0003C - . Read Only Word #6. Read Only Register with content defined
0x0003F R 0:31 READ_WORD6 via IPexpress
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Creating the System Bus in HDL

IPexpress Flow

After creating a LatticeSC project in ispLEVER Project Navigator, one can start an IPexpress (ispLEVER IPex-
press) session by either selecting Tools-> IPexpress or by clicking on the ispLEVER IPexpress icon from the Tools
Toolbar section. The ispLEVER IPexpress session can then be used to configure the system bus and generate an
HDL description for synthesis and simulation purpose. This includes but is not limited to:

¢ Selecting a name for the system bus and a Project Path where the HDL output will be generated.
» Selecting the HDL output format (Verilog/VHDL).

» Customizing the desired master and slave interfaces (example: MPI, UMI, USI).

e Setting general options.

e Enabling flexiPCS ports on the system bus and defining flexiPCS multi-quad and multi-chip alignment. Please
refer to TN1145, LatticeSC flexiPCS/SERDES Design Guide for more information.

* Generating the output files.

Help on using ispLEVER IPexpress to configure a system bus module is available from within the ispLEVER Proj-
ect Navigator.

System Bus Simulation Model

The HDL description for the System Bus that IPexpress generates includes a black box of a simulation model
(SYSBUSA). A precompiled simulation model for SYSBUSA exists for every simulator supported by Lattice. The
simulator should point to this model during simulation (either explicitly in a user script, or implicitly when the user
creates and simulates a Verilog/VHDL design within Project Navigator). It will take about 15 microseconds for the
the SYSBUSA simulation model to power-up in a simulation.

Autoconfig Files

Both the system bus and the flexiPCS use autoconfig files to initialize memory maps. IPexpress automatically gen-
erates the system bus autoconfig file based on flexiPCS multi-quad and multi-chip alignment selection. Please
refer to TN1145, LatticeSC flexiPCS/SERDES Design Guide for more information on using the system bus auto-
config file.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail:  techsupport@Iatticesemi.com

Internet: www.latticesemi.com
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Revision History

Date Version Change Summary
February 2006 01.0 Initial release.
August 2006 01.1 Translated all VHDL code to Verilog.
Incorporated actual “orcastra” JTAG model + driver.
January 2007 01.2 Added section about SYSBUSA simulation model.
February 2007 01.3 Clarified MPI availability/size restrictions on certain die/package combi-
nations.
Added information on flexiPCS options in IPexpress.
Added information on autoconfig file.
April 2008 01.4 Removed information about internal oscillator option for System Bus
clock source.
Corrected UMI_PCS_ASYNC example. Source of System Bus clock is
USER from OSCA block in sc_orcastra module, not internal oscillator.
April 2010 01.5 Apﬁendix B, added link to LatticeSC design files page on the Lattice
web site.
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Appendix A. PowerPC and LatticeSC MPI Pins Connections

The MPI interface on the system bus implements a synchronous slave interface to Motorola PowerPC860 bus with
up to 32-bit data/4-bit parity. Figure 25 shows how the MPI interface is connected to the PowerPC bus to act as a
bus slave. Table 21 shows the MPI data and address busses’ pin-to-pin connection to the PowerPC address and
data busses.

Figure 25. MPI Connection to PowerPC
PowerPC Bus
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Table 21. PowerPC and MPI DATA/ADDRESS Pin Connections
LatticeSC MPI LatticeSC
PPC Address Address Pin PPC Data Pin MPI Data Pin
31 31 0 0
30 30 1 1
29 29 2 2
28 28 3 3
27 27 4 4
26 26 5 5
25 25 6 6
24 24 7 7
23 23 8 8
22 22 9 9
21 21 10 10
20 20 11 11
19 19 12 12
18 18 13 13
17 17 14 14
16 16 15 15
15 15 16 16
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Table 21. PowerPC and MPI DATA/ADDRESS Pin Connections (Continued)

LatticeSC MPI LatticeSC
PPC Address Address Pin PPC Data Pin MPI Data Pin
14 14 17 17
13 NC 18 18
12 NC 19 19
11 NC 20 20
10 NC 21 21
9 NC 22 22
8 NC 23 23
7 NC 24 24
6 NC 25 25
5 NC 26 26
4 NC 27 27
3 NC 28 28
2 NC 29 29
1 NC 30 30
0 NC 31 31
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Appendix B. Generation and Simulation Examples

This section covers several examples of generating and simulating the system bus module. Each example involves
one master and one slave interface. Note that all the examples below use 8-bit wide data read and write accesses.
Table 22 lists each example covered, as well as a brief description for each. A compressed file containing all these
examples is available on the Lattice web site by navigating to the LatticeSC product page and clicking on the
Design Files link.

Table 22. List of System Bus Examples

Example Name Master Slave Description
MPI_USI_SYNC MPI usl System bus is clocked by the MPI clock. USI synchronous to system bus.
MPI_USI_ASYNC MPI uslI System is bus clocked by the MPI clock. USI asynchronous to system bus.
System bus is clocked by the MPI clock. PCS in Gigabit Ethernet Mode. Demon-
MPIPCS MPI PCS strates interrupt from PCS to MPI.
System bus is clocked by the MPI clock. Demonstrates interrupts from
MPI_DFA MPI DFA " 1USR_IRQ_IN to MPI.
MPL_SMI MPI SMI System bus is clocked by the MPI clock. Also accesses the system bus read-

only registers.

System bus is clocked by the USER clock. UMI synchronous to system bus.
UMI_SMI_SYNC UMI SMI Demonstrates interrupt from UMI_IRQ and USI_IRQ_IN to USR_IRQ_OUT.

System bus is clocked by the USER clock. The oscillator drives both the USER
UMI_PCS_ASYNC UMI PCS clock and the UMI clock. PCS runs auto-configuration file. PCS in Gigabit Ether-
net Mode. Demonstrates interrupt from PCS to UMI.

Note that for each example above, the ModelSim® script files vcom_SC_top_SE.do and vcom_SC_top_OEM.do
are used to compile and simulate the example with the SE and Lattice versions of ModelSim respectively, as later
described in each example's simulation section. The scripts must be modified to point to the current ispLEVER
installation directory. Find the line shown below in the ModelSim scripts and modify the path to the proper location
based on your system.

set isplever dir <isplever root dirs>
Where <isplever root dirs is the path to the root directory of your ispLEVER software installation.
Example:

set isplever dir C:/ispTools

MPI_USI_SYNC
The MPI_USI_SYNC example consists of a design with the following blocks:

* A system bus (systembus) with MPI and USI interfaces. The system bus is generated such that the USI is syn-
chronous to the system bus clock.

* A sw_ctristat block to interface to the system bus USI interface. This block contains 4 R/W 8-bit wide user slave
interface (USI) registers at addresses 0x00800, 0x08000, 0x10000 and Ox2FFFF respectively.

* A top-level design (SC_top) to stitch all the lower blocks together.
For simulation purposes, a test bench is developed around SC_top with the following elements:

* A PowerPC model (MPU) to connect to the MPI 1/O of SC_top for MPI R/W accesses.
* Drivers for all clocks and resets.

* Aninstance of SC_top with appropriate connections to top-level signals.
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* A top-level test bench (SC_top_tb) to stitch all the lower blocks together.
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The features of the example are:

» System bus clocked by MPI clock.

* USI synchronous to system bus.
Figure 26 shows the design structure including both SC_top and SC_top_tb.
Figure 26. MPI_USI_SYNC Design Structure
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MPI_USI_SYNC Directory Structure
Figure 27 shows the directory structure of the MPI_USI_SYNC project.

Figure 27. MPI_USI_SYNC Directory Structure
B MPI_USL_S¥NC
EH:I simulation
: =1 Functional
B wark

The “src” sub-directory contains the following design files:

» systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.
* sw_ctristat.v: Verilog description of sw_ctrlstat
* registers.v: Verilog description of USI registers under sw_ctrlstat.

e SC_top.v: Verilog description of SC_top.
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The test bench directory contains the following test bench files:

e mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

e SC_top_tb.v: Verilog model of top-level test bench.
The “simulation/functional” directory contains the following MTI ModelSim files:

e vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim
e vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
» wave.do: Waveform file called by compile/simulation do file

e mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file
Generating System Bus for MPI_USI_SYNC

To generate the system bus model, follow these steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.

¢ Launch IPexpress.

* Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL". The “Project Path” should point to “MPI_USI_SYNC/src”.

Click on “Customize”

* In the new window:
— Enable the MPI Interface
Set the MPI Bus Width to 8.
Enable Parity on the MPI interface
Set the system bus clock source to MPI.
Enable the User_Slave Interface.
Make the User Slave Synchronous to Systembus Clock

Click on the “Generate” button (this will re-create systembus.v in “MPI_USI_SYNC /src”).

Running the MPI_USI_SYNC Simulation
To run the MPI_USI_SYNC simulation:

e Start an MTI ModelSim session.
* In ModelSim, change to the “MPI_USI_SYNC /simulation/functional” directory.
* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

* After running the compile/simulation do file, a waveform similar to Figure 28 will appear and the simulation will
run for about 45ps.
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Figure 28. ModelSim Waveform for MPI_USI_SYNC
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Description of MPI_USI_SYNC Signals in the ModelSim Waveform
The ModelSim waveform is divided into two sections:

* MPI signals, covering all the MPI signals at the SC_top interface
* USI signals

Description of the MPI_USI_SYNC Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A
read or write command is reflected on the MPI Interface.

The simulation can be divided into the following phases:

¢ 0-20ps: the test bench waits for the LatticeSC chip and system bus to power-up.
* 20-25ps: the test bench reads the system bus ID register (0x00000-0x00003).

* 28-41ps: the test bench reads the initial value for each of the USI registers defined (0x00800, 0x08000, 0x10000
and Ox2FFFF). The test bench then writes a data value to each USI address, and reads it back. The initial value,
and data written for each register is as follows:

— 0x00800: initial data[7:0]=0x50, written data[7:0]=0x88

0x08000: initial data[7:0]=0x22, written data[7:0]=0xAA

0x10000: initial data[7:0]=0x33, written data[7:0]=0xEE

Ox2FFFF: initial data[7:0]=0xFF, written data[7:0]=0x99

Because the USI interface is synchronous to the system bus clock, the delay time from an active MPI_STRB_N to
an active MPI_TA when reading USI 0x00800 register from the MPI is only about 89ns (on a 20ns MPI_CLK
period). This is shown in Figure 29.
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Figure 29. MPI to USI read access for MPI_USI_SYNC
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MPI_USI_ASYNC
The MPI_USI_ASYNC example consists of a design with the following blocks:

* A system bus (systembus) with MPI and USI interfaces. The system bus is generated such that the USI is not
synchronous to the system bus clock.

* A “sw_ctristat” block to interface to the system bus USI interface. This block contains 4 R/W 8-bit wide user slave
interface (USI) registers at addresses 0x00800, 0x08000, 0x10000 and Ox2FFFF respectively.

* A top-level design (SC_top) to stitch all the lower blocks together.
For simulation purpose, a test bench is developed around SC_top with the following elements:

* A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.
* Drivers for all clocks and resets.
* An instance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together.
The features of the example are:

» System bus clocked by MPI clock.

» USI asynchronous to system bus. Clocked from test bench.

Figure 30 shows the design structure including both SC_top and SC_top_tb.
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Figure 30. MPI_USI_ASYNC Design Structure
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MPI_USI_ASYNC Directory Structure
Figure 31 shows the directory structure of the MPI_USI_ASYNC project.

Figure 31. MPI_USI_ASYNC Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.

» sw_ctristat.v: Verilog description of sw_ctrlstat

* registers.v: Verilog description of USI registers under sw_ctristat.

e SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

* mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.
e SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

* vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of Modelsim

e vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
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e wave.do: Waveform file called by compile/simulation do file

* mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_USI_ASYNC
To generate the system bus model, follow the following steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.
e Launch IPexpress.

e Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL'. The “Project Path” should point to
“MPI_USI_ASYNC/src”.

¢ Click on “Customize”

¢ |n the new window:
— Enable the MPI Interface
Set the MPI Bus Width to 8.
Enable Parity on the MPI interface
Set the system bus clock source to MPI.
Enable the User Slave Interface.

¢ Click on the “Generate” button (this will re-create systembus.v in “MPI_USI_ASYNC /src”).

Running the MPI_USI_ASYNC Simulation
To run the MPI_USI_ASYNC simulation

e Start an MTI ModelSim session.
* In ModelSim, change to the “MPI_USI_ASYNC /simulation/functional” directory.
* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

e After running the compile/simulation do file, a waveform similar to Figure 32 should appear and the simulation
should run for about 45us.
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Figure 32. ModelSim Waveform for MPI_USI_ASYNC
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Description of MPI_USI_ASYNC Signals in the ModelSim Waveform
The ModelSim waveform is divided into two sections:

* MPI Interface signals, covering all the MPI signals at the SC_top interface

* USI signals

Description of the MPI_USI_ASYNC Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.ixt” file. A
read or write command is reflected on the MPI Interface.

The simulation can be divided into the following phases:

* 0-20us: the test bench waits for the LatticeSC chip and system bus to power-up.
e 20-25ps: the test bench reads the system bus ID register (0x00000-0x00003).

e 28-41pus: the test bench reads the initial value for each of the USI registers defined (0x00800, 0x08000, 0x10000
and Ox2FFFF). The test bench then writes a data value to each USI address, and reads it back. The initial value,
and data written for each register is as follows:

— 0x00800: initial data[7:0]=0x50, written data[7:0]=0x88

0x08000: initial data[7:0]=0x22, written data[7:0]=0xAA

0x10000: initial data[7:0]=0x33, written data[7:0]=0xEE

Ox2FFFF: initial data[7:0]=0xFF, written data[7:0]=0x99

Because the USI interface is asynchronous to the system bus clock, the delay time from an active MPI_IRQ to an
active MPI_TA when reading USI 0x00800 register from the MPI is about 169ns (with a 20ns MPI_CLK and
USI_CLK period). This is shown in Figure 33. This delay is about twice that of the MPI_USI_SYNC one shown in
Figure 29.
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Figure 33. MPI to USI Read Access for MPI_USI_ASYNC
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MPI_PCS

The MPI_PCS example consists of a design with the following blocks:

* A system bus (systembus) with MPI and PCS interfaces.
A PCS block (PCSO0) with channel 0 configured in Gigabit Ethernet mode.

* A pattern generator (cjpat_gen), which reads data content from a distributed ROM (MYROM) and sends it to the
TX FPGA data interface of PCSO.

A PLL block (PLLDIV2) used by the cjpat_gen block.
A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purpose, a test bench is developed around SC_top with the following elements:
* A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

* Drivers for all clocks and resets.

* An instance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together. The test bench connects the PCS0
hdout* pins back to the hdin* pins to form an external loop-back connection (TX back to RX)

The features of the example are:

» System bus clocked by MPI clock.
* PCS channel 0 generated in Gigabit Ethernet Mode.
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e Demonstrates Interrupt from PCS to MPI. The interrupt is enabled when the link state machine of channel 0
reaches a synchronized state.

Figure 34 shows the design structure including both SC_top and SC_top_tb.
Figure 34. MPI_PCS Design Structure
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MPI_PCS Directory Structure
Figure 35 shows the directory structure of the MPI_PCS project.
Figure 35. MPI_PCS Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.
e PCSO0.v: Verilog description of PCSO.

* cjpat_gen.v: Verilog description of cjpat_gen.

PLLDIV2.v: Verilog description of PLLDIV2.

MYROM.v: Verilog description of MYROM.

e SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:
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* mpu.v: Verilog model of PowerPC interface block to connect to the MP1 I/O of SC_top for MPI R/W accesses.

e SC_top_tb.v: Verilog model of top-level test bench.
The “simulation/functional” directory contains the following MTI ModelSim files:

e vceom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim
e vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
» wave.do: Waveform file called by compile/simulation do file

* mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_PCS

To generate the system bus model, follow the following steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.
e Launch IPexpress.

e Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL'. The “Project Path” should point to “MPI_PCS/src”.

Click on “Customize”

¢ |n the new window:
— Enable the MPI Interface
Set the MPI Bus Width to 8.
Enable Parity on the MPI interface
Set the system bus clock source to MPI.
Enable the PCS 360 Interface.

¢ Click on the “Generate” button (this will re-create systembus.v in “MPI_PCS /src”).

Running the MPI_PCS Simulation
To run the MPI_PCS simulation

» Start an MTI ModelSim session.
* In ModelSim, change to the “MPI_PCS /simulation/functional” directory.
* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

e After running the compile/simulation do file, a waveform similar to Figure 36 should appear and the simulation
should run for about 120ps.
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Figure 36. ModelSim Waveform for MPI_PCS
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Description of MPI_PCS Signals in the ModelSim Waveform
The ModelSim waveform is divided into four sections:

* Interrupt signals

* MPI signals

* PCS signals, including TX and RX

e System bus PCS interface

Description of the MPI_PCS Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:

e 0-20us: the test bench waits for the LatticeSC chip and system bus to power-up.
e 20-24ps: the test bench reads the system bus ID register (0x00000-0x00003).
* 24-26ps: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.
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e 26-37ps: the test bench configures the PCSO0 block registers such that:
— Channel 0 is in Gigabit Ethernet Mode.
— CRC insertion is enabled for both TX and RX.
— As a result, the PCSO interface clocks start toggling around 36us. This enables the TX data generation from
cjpat_gen to PCSO0. Also, around 70us, the PCSO0 recovered data starts toggling properly. This data should
be the receive equivalent of the TX data since the PCSO0 block is in external loop-back.

* 90-91 ps: as part of the data flow into the TX direction, an error is inserted through the tx_er_0 signal. As a
result, the error propagates to the rx_er_0 signal in the receive direction.

* 96-107 ps: this period of time shows how an interrupt from the PCS can be propagated to the MPI_IRQ_N out-
put. During this phase:

Interrupts from the PCS to the MPI_IRQ_N output are enabled by writing data[0:7]=0x40 to 0x00013

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no
interrupts were received by the system bus.

— The PCSO0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x8, indicating that the link
state machine for channel 0 is synchronized.

— The PCSO0 quad interface register Ox1C (0x3601C) is read. The value is data[0:7]=0x00, indicating that the
interrupt enable bit corresponding to a synchronized link state machine for channel 0 is off.

— The PCSO0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x00, indicating that the
interrupt bit corresponding to a synchronized link state machine for channel 0 is off.

— The PCSO0 quad interface register Ox1C (0x3601C) is written to data[0:7]=0x08. to turn on the interrupt
enable bit corresponding to a synchronized link state machine for channel 0. This enables the interrupt from
0x36085, bit 4, which asserts MPI_IRQ_N to a ‘0’ value.

— The PCSO0 quad interface register 0x85(0x36085) is read. The value is data[0:7]=0x08, indicating that the
interrupt bit corresponding to a synchronized link state machine for channel 0 is ON.

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x40, indicating that an
interrupt was received by the system bus from the PCS.

— Interrupts from the PCS to the MPI_IRQ_N output are disabled by writing data[0:7]=0x00 to 0x00013. This
de-asserts MPI_IRQ_N to a ‘1’ value.

MPI_DFA
The MPI_DFA example consists of a design with the following blocks:

e System bus (systembus) with MPI and DFA interfaces.

* DFA interface block (dfa_8bit). It allows DFA accesses to write to and read from a 256X8-distributed RAM
(ram_dfa0_8bit). Note that the dfa_8bit is designed such that, when selected, it will:
— Respond normally to write and read accesses to ram_dfa0_8bit in the address range: 0x00000-0x000fd
— Respond with data[0:7]=0xfe, and an active low TEA (DFA_TEA/MPI_TEA) when address=0x000fe is read
— Respond with data[0:7]=0xff, and an active low RETRY (DFA_RETRY/MPI_RETRY) when address=0x000ff
is read

* Top-level design (SC_top) to stitch all the lower blocks together.
For simulation purposes, a test bench is developed around SC_top with the following elements:

¢ PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.
* Drivers for all clocks and resets.

* Aninstance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together.

The features of the example are:

e System bus clocked by MPI clock.
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e Demonstrates Interrupts from USR_IRQ_IN to MPI.
Figure 37 shows the design structure including both SC_top and SC_top_tb.
Figure 37. MPI_DFA Design Structure
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MPI_DFA Directory Structure
Figure 38 shows the directory structure of the MPI_DFA project.

Figure 38. MPI_DFA Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.
* dfa_8bit.v: Verilog description of dfa_8bit.

e ram_dfa0_8bit.v: Verilog description of ram_dfa0_8bit.

e SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

* mpu.v: Verilog model of PowerPC interface block to connect to the MP1 I/O of SC_top for MPI R/W accesses.

e SC_top_tb.v: Verilog model of top-level test bench.
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The “simulation/functional” directory contains the following MTI ModelSim files:

* vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim
* vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
» wave.do: Waveform file called by compile/simulation do file

e mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_DFA
To generate the system bus model, follow the following steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.

¢ Launch IPexpress.

Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL". The “Project Path” should point to “MPI_DFA/src”.

¢ Click on “Customize”

* In the new window:
— Enable the MPI Interface
Set the MPI Bus Width to 8.
Enable Parity on the MPI interface
Set the system bus clock source to MPI.
Enable the DFA Interface.

Click on the “Generate” button (this will re-create systembus.v in “MPI_DFA /src”).

Running the MPI_DFA Simulation

To run the MPI_DFA simulation

» Start an MTI ModelSim session.

* In ModelSim, change to the “MPI_DFA /simulation/functional” directory.

* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

 After running the compile/simulation do file, a waveform similar to Figure 39 should appear and the simulation
should run for about 60us.
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Figure 39. ModelSim Waveform for MPI_DFA
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Description of MPI_DFA Signals in the ModelSim Waveform
The ModelSim waveform is divided into 4 sections

* Interrupt signals

The MPI signals

The DFA signals

* The Single Port RAM signals

Description of the MPI_DFA Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:
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e [nitial values: MPI_CSON=0,MPI_CS1=1, and system bus register 0xO000A contains 0x00. This will enable the
MPI interface to select the system bus for both write and read accesses.

e 0-20ps: the test bench waits for the LatticeSC chip and system bus to power-up.
e 20-24ps: the test bench reads the system bus ID register (0x00000-0x00003).
e 24-26ps: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.

e 26-34ps: this period of time shows how an interrupt from the USR_IRQ_IN can be propagated to the
MPI_IRQ_N output. During this phase:

— Interrupts from USR_IRQ_IN to the MPI_IRQ_N output are enabled by writing data[0:7]=0x01 to 0x00013.

— A USR_IRQ_IN pulse is generated. This creates an interrupt to the system bus and asserts MPI_IRQ_Nto a
‘0’ value.

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x01, indicating that an
interrupts was received by the system bus from USR_IRQ_IN.

— The system bus interrupt cause register (0x00010) written to data[0:7]=0x01, to clear the interrupt bit from
USR_IRQ_IN. This de-asserts MPI_IRQ_N to a ‘1’ value.

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no
more interrupts are received by the system bus.

e 37-40ps: the test bench reads the content of system bus register 0x0000A, writes data[0:7]=0x01 to it and reads
back the value. The 0x01 value enables the DFA interface.

* 42us: MPI_CSON=1,MPI_CS1=0. At this point, MPI interface is selecting the DFA interface for both write and
read accesses.

e 46-48ps: the test bench writes data[0:7]=0x11 DFA address 0x00000 and reads it back successfully
e 48-50ps: the test bench writes data[0:7]=0xfd DFA address 0x000fd and reads it back successfully

e 50-52ps: the test bench writes data[0:7]=0x00 DFA address 0x000fe and reads the address back. At that point,
the DFA interface responds with MPI_TEA (active low) and data[0:7]=0xfe. This behavior reflects the proper
operation of dfa_8bit.

e 52-54ps: the test bench writes data[0:7]=0x00 DFA address 0x000ff and reads the address back. At that point,
the DFA interface responds with MPI_RETRY (active low) and data[0:7]=0xff. This behavior reflects the proper
operation of dfa_8bit.

MPI_SMI
The MPI_SMI example consists of a design with the following blocks:
* A system bus (systembus) with MPIl and SMI interfaces.

e Two identical PLL (PLL1 with SMI offset 0x410, and PLL2 with SMI offset 0x420) to interface to the system bus
SMI.

* A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purpose, a test bench is developed around SC_top with the following elements:
* A PowerPC model (MPU) to connect to the MPI 1/O of SC_top for MPI R/W accesses.

* Drivers for all clocks and resets.

* Aninstance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together.
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The features of the example are:

* system bus clocked by MPI clock.

» system bus Read Only Registers are configured and read-back in test bench.
Figure 40 shows the design structure including both SC_top and SC_top_tb.
Figure 40. MPI_SMI Design Structure
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MPI_SMI Directory Structure
Figure 41 shows the directory structure of the MPI_SMI project.

Figure 41. MPI_SMI Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.
* pll.v: Verilog PLL model for PLL1 and PLL2.
» SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

* mpu.v: Verilog model of PowerPC interface block to connect to the MP1 I/O of SC_top for MPI R/W accesses.

e SC_top_tb.v: Verilog model of top-level test bench.
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The “simulation/functional” directory contains the following MTI ModelSim files:

* vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim
* vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
» wave.do: Waveform file called by compile/simulation do file

e mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_SMI
To generate the system bus model, follow the following steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.

¢ Launch IPexpress.

Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL’. The “Project Path” should point to “MPI_SMI/src”.

¢ Click on “Customize”

* In the new window:
— Enable the MPI Interface

Set the MPI Bus Width to 8.

Enable Parity on the MPI interface

Set the system bus clock source to MPI.

Enable the SMI Interface, and turn on both 0x410 and 0x420 read interfaces.

Set the system bus Read Only Words values to:
- Read Only Word 1: 00101011001010100010100100101000
- Read Only Word 2: 00101111001011100010110100101100
- Read Only Word 3: 00110011001100100011000100110000
- Read Only Word 4: 00110111001101100011010100110100
- Read Only Word 5: 00111011001110100011100100111000
- Read Only Word 6: 00111111001111100011110100111100

This will set register addresses 0x00028-0x0003F to data values equal to the address values (e.g., content of
address 0x00028 is data[7:0]=0x28, content of 0x0003F is data[7:0]=0x3F).

* Click on the “Generate” button (this will re-create systembus.v in “MPI_SMI /src”).

Running the MPI_SMI Simulation

To run the MPI_SMI simulation:

» Start an MTI ModelSim session.

* In ModelSim, change to the “MPI_SMI /simulation/functional” directory.

* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

 After running the compile/simulation do file, a waveform similar to Figure 42 should appear and the simulation
should run for about 70us.
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Figure 42. ModelSim Waveform for MPI_SMI
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Description of MPI_SMI Signals in the ModelSim Waveform
The ModelSim waveform is divided into two sections:

* The MPI signals

e SMI, PLL1 and PLL2 section, covering the SMI signals and the PLL outputs

Description of the MPI_SMI Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:

* 0 to 20us: the test bench waits for the LatticeSC chip and system bus to power-up.
20 to 24ps: the test bench reads the system bus ID register (0x00000-0x00003).

24 to 26ps: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.

26 to 52ps: the test bench reads the six Read Only Words (0x00028-0x0003F). The values read on
MPI_DATA[7:0] should be identical to MPI_ADDR for each of these read transactions

* 54 to 59us: PLL1 is accessed via SMI by:
— Writing address 0x00410 to data[7:0] 0x04 (divide output by 2)
— Reading address 0x00410
— Writing address 0x00410 to data[7:0] 0x1C (divide output by 8)
— Reading address 0x00410
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* 59 to 65us: PLL2 is accessed via SMI by:
— Writing address 0x00420 to data[7:0] 0x04 (divide output by 2)
— Reading address 0x00420
— Writing address 0x00420 to data[7:0] 0x1C (divide output by 8)
— Reading address 0x00420

UMI_SMI_SYNC
The UMI_SMI_SYNC example consists of a design with the following blocks:
* A system bus (systembus) with UMI and SMI interfaces.

e Two identical PLL (PLL1 with SMI offset 0x410, and PLL2 with SMI offset 0x420) to interface to the system bus
SMI.

e An sc_orcastra block to interface between the UMI on the system bus and an external PC JTAG interface. The
sc_orcastra block translates PC JTAG instructions to UMI format.

* A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:
¢ A JTAG_PC interface model to connect to the JTAG I/O of SC_top for PC JTAG accesses

* Drivers for all clocks and resets.

* Aninstance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together.
The features of the example are:

e System bus clocked by USR_CLK.

* UMI synchronous to system bus.

¢ Demonstrates Interrupt from UMI_IRQ and USI_IRQ_IN to USR_IRQ_OUT.
Figure 43 shows the design structure including both SC_top and SC_top_tb.

Note that the USR_CLK signal is used to clock the system bus HCLK. Also, the UMI_CLK is sourced from
SYNC_CLK (HCLK). The UMI_IRQ, USI_IRQ_IN, and USR_IRQ_OUT are also brought to primary 1/Os.
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Figure 43. UMI_SMI_SYNC Design Structure
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UMI_SMI_SYNC Directory Structure
Figure 44 shows the directory structure of the UMI_SMI_SYNC project.

Figure 44. UMI_SMI_SYNC Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.
* sc_orcastra.v: Verilog description of sc_orcastra.

e pll.v: Verilog PLL model for PLL1 and PLL2.

e SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

* JTAG_PC.v: Verilog model of JTAG_PC interface block to connect to the JTAG I/O of SC_top for JTAG accesses.
» SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:
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vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim
vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim
wave.do: Waveform file called by vsim_SC_top.do

jtag_in.txt: stimulus file for R/W transactions for the test bench JTAG_PC.v file

Generating System Bus for UMI_SMI_SYNC
To generate the system bus model, follow the following steps:

Start a new ispLEVER Project Navigator session with a LatticeSC device.
Launch IPexpress.

Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL'. The “Project Path” should point to
“UMI_SMI_SYNC/src”.

Click on “Customize”

In the new window:
— Enable the UMI Interface
— Set the UMI to synchronous mode (UMI Sync. To Systembus).
— Enable the SMI Interface, and turn on both 0x410 and 0x420 read interfaces.
— Set the system bus clock source to USER.

Click on the “Generate” button (this will re-create systembus.v in “UMI_SMI_SYNC /src”).

Running the UMI_SMI_SYNC Simulation
To run the UMI_SMI_SYNC simulation

Start an MTI ModelSim session.
In ModelSim, change to the “UMI_SMI_SYNC /simulation/functional” directory.
Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

After running the compile/simulation do file, a waveform similar to Figure 45 should appear and the simulation
should run for about 85us.
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Figure 45. ModelSim Waveform for UMI_SMI_SYNC
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Description of UMI_SMI_SYNC Signals in the ModelSim Waveform
The ModelSim waveform is divided into four major sections:

» JTAG signals

* Interrupt signals

* UMI signals

The SMI, PLL1 and PLL2 section, covering the SMI signals and the PLL outputs

Description of the UMI_SMI_SYNC Simulation Scenario

The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A
read or write command is reflected on the PC (and UMI) Interface. The simulation can be divided into the following
phases:

* 0 to 20us: the test bench waits for the LatticeSC chip and system bus to power-up.
* 20 to 36ps: the test bench reads the system bus ID register (0x00000-0x00003).

* 36 to 48us: PLL1 is accessed via SMI by:
— Writing address 0x00410 to data[7:0] 0x04 (divide output by 2)
— Reading address 0x00410
— Writing address 0x00410 to data[7:0] 0x1C (divide output by 8)
— Reading address 0x00410

* 48 to 60us: PLL2 is accessed via SMI by:
— Writing address 0x00420 to data[7:0] 0x04 (divide output by 2)
— Reading address 0x00420
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— Writing address 0x00420 to data[7:0] 0x1C (divide output by 8)
— Reading address 0x00420

¢ 60 to 68us: The EN_IRQ_USER register (0x00012) is written with data[7:0]=0xA0, such that interrupts from both
USR_IRQ_IN and UMI_IRQ are enabled to USR_IRQ_OUT.

* 68 to 75us: this period of time shows how an interrupt from the USR_IRQ_IN can be propagated to the
USR_IRQ_OUT output. During this phase:

— A USR_IRQ_IN pulse is generated. This creates an interrupt to the system bus and asserts USR_IRQ_OUT
to a ‘1’ value.

— The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x80, indicating that an
interrupts was received by the system bus from USR_IRQ_IN.

— The system bus interrupt cause register (0x00010) is written with data[0:7]=0x80, to clear the interrupt bit
from USR_IRQ_IN. This de-asserts USR_IRQ_OUT to a ‘0’ value.

e 75 to 85us: this period of time shows how an interrupt from the UMI_IRQ can be propagated to the
USR_IRQ_OUT output. During this phase:

— A UMI_IRQ pulse is generated. This creates an interrupt to the system bus and asserts USR_IRQ_OUT to a
‘1’ value.

— The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x20, indicating that an
interrupts was received by the system bus from UMI_IRQ.

— The system bus interrupt cause register (0x00010) is written with data[0:7]=0x20, to clear the interrupt bit
from UMI_IRQ. This de-asserts USR_IRQ_OUT to a ‘0’ value.

— The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x00, indicating that no
more interrupts are received by the system bus.

UMI_PCS_ASYNC
The UMI_PCS_ASYNC example consists of a design with the following blocks:

¢ A system bus (systembus) with UMI and PCS interfaces.

* A sc_orcastra block to interface between the UMI on the system bus and an external PC JTAG interface. The
sc_orcastra block translates PC instructions to UMI format.

A PCS block (PCSO0) configured in Gigabit Ethernet mode.

¢ A pattern generator (cjpat_gen), which reads data content from a distributed ROM (MYROM) and sends it to the
TX FPGA data interface of the PCS block.

A PLL block (PLLDIV2) used by the cjpat_gen block.
* A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:

e A JTAG_PC interface model to connect to the JTAG I/O of SC_top for JTAG accesses
 Drivers for all clocks and resets.
* Aninstance of SC_top with appropriate connections to top-level signals.

* A top-level test bench (SC_top_tb) to stitch all the lower blocks together. The test bench connects the PCS0
hdout* pins back to the hdin* pins to form an external loop-back connection (TX back to RX)

The features of the example are:

» System bus clocked by the USER clock input pin.
e OSCA oscillator in sc_orcastra module drives both UMI clock and USER clock.

e PCS is configured using an auto-configuration file (PCSO0.txt). MTI ModelSim automatically loads this file during
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simulation.
e PCS channel 0 generated in Gigabit Ethernet Mode.

e Demonstrates Interrupt from PCS to UMI. The interrupt is enabled when the link state machine of channel 0
reaches a synchronized state.

Figure 46 shows the design structure including both SC_top and SC_top_tb.
Figure 46. UMI_PCS_ASYNC Design Structure
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UMI_PCS_ASYNC Directory Structure
Figure 47 shows the directory structure of the UMI_PCS_ASYNC project.

Figure 47. UMI_PCS_ASYNC Directory Structure
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The “src” sub-directory contains the following design files:

» systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.
* sc_orcastra.v: Verilog description of sc_orcastra.

e PCSO0.v: Verilog description of PCSO.

* cjpat_gen.v: Verilog description of cjpat_gen.
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* PLLDIV2.v: Verilog description of PLLDIV2.

* MYROM.v: Verilog description of MYROM.

* SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

e JTAG_PC.v: Verilog model of JTAG_PC interface block to connect to the JTAG 1/0 of SC_top for JTAG accesses.
e SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

e vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

e vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

* wave.do: Waveform file called by compile/simulation do file

e jtag_in.txt: stimulus file for R/W transactions for the test bench JTAG_PC.v file.

PCSO0.txt: Auto-configuration file. MTI ModelSim automatically loads this file during simulation.

Generating System Bus for UMI_PCS_ASYNC
To generate the system bus model, follow the following steps:

e Start a new ispLEVER Project Navigator session with a LatticeSC device.
e Launch IPexpress.

e Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure
that the Design Entry is set to “Schematic/Verilog HDL'. The “Project Path” should point to
“UMI_PCS_ASYNC/src”.

¢ Click on “Customize”

* In the new window:

— Enable the UMI Interface

— Set the system bus clock source to OSC.

— Enable the PCS 360 Interface.

— Click on the “Generate” button (this will re-create systembus.v in “UMI_PCS_ASYNC /src”).
Running the UMI_PCS_ASYNC Simulation

To run the UMI_PCS_ASYNC simulation:

» Start an MTI ModelSim session.

* In ModelSim, change to the “UMI_PCS_ASYNC /simulation/functional” directory.

* Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.
e veom_SC_top_SE.do or vcom_SE_top_OEM.do.
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* Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would
require refreshing these libraries.

e After running the compile/simulation do file, a waveform similar to Figure 48 should appear and the simulation
should run for about 140ps.
Figure 48. ModelSim Waveform for UMI_PCS_ASYNC
T]wave - default 0 ] 4|
Eile Edit ‘“iew Insert Format Tools  Window
(SH& B0 AL S| SHEA| 4 B wd S FIEEEE
[ m 5

=

++¢+g¢+¢ PR

LR B

[ ] B 3 =] |~
‘DpsmM’! us |N0w 140 us Delta: 4

St /
14UUUUUUUDS ||||||||||||||||||||||||||||||||||||||||||| [ [ |

Curgor 1 Ops I
P

Description of UMI_PCS_ASYNC Signals in the ModelSim Waveform
The ModelSim waveform is divided into 5 sections

* JTAG signals

¢ UMI signals

USR_IRQ_OUT signal

* The PCS signals, including TX and RX

e The system bus PCS interface

Description of the UMI_PCS_ASYNC Simulation Scenario

At the onset of the simulation, the simulator will automatically load the PCSO0.txt (containing the memory initializa-
tion sequence of PCS0). Then, system bus read and write accesses to the different interfaces on the system bus
are initiated by the “pc_in.txt” file. A read or write command is first reflected on the PC (and UMI) Interface. The
simulation can be divided into the following phases:

¢ 0: PCSO0.txt configures the PCSO0 block registers such that:
— Channel 0 is in Gigabit Ethernet Mode.
— CRC insertion is enabled for both TX and RX.
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* When reset_n is removed, this enables the TX data generation from cjpat_gen to PCSO0. Also, around 71ps, the
PCSO0 recovered data starts toggling properly. This data should be the receive equivalent of the TX data since the
PCSO0 block is in external loop-back. As part of the data flow into the TX direction, an error is inserted through the
tx_er_0 signal (around 100us). As a result, the error propagates to the rx_er_0 signal in the receive direction.

e 26 to 38 ps: the test bench reads the system bus ID register (0x00000-0x00003).
e 38 to 44 ps: the test bench writes data[7:0]1=0x11 to system bus scratch pad register 0x00004 and reads it back.

e 45 us: The PCSO0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x0, indicating that the
link state machine for channel 0 is not yet synchronized.

e 106 to 140 ps: this period of time shows how an interrupt from the PCS can be propagated to the
USR_IRQ_OUT output. During this phase:

— Interrupts from the PCS to the USR_IRQ_OUT output are enabled by writing data[0:7]=0x40
(data[7:0]=0x02) to address 0x00012.

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no
interrupts were received by the system bus.

— The PCSO0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x8 (data[7:4]=0x1), indi-
cating that the link state machine for channel 0 is now synchronized.

— The PCSO0 quad interface register Ox1C (0x3601C) is read. The value is data[0:7]=0x00, indicating that the
interrupt enable bit corresponding to a synchronized link state machine for channel 0 is off.

— The PCSO0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x00, indicating that the
interrupt bit corresponding to a synchronized link state machine for channel 0 is off.

— The PCSO0 quad interface register Ox1C (0x3601C) is written to data[0:7]=0x08 (data[7:0]=0x10). to turn on
the interrupt enable bit corresponding to a synchronized link state machine for channel 0. This enables the
interrupt from 0x36085, bit 4, which asserts signal USR_IRQ_OUT to a ‘1’ value.

— The PCSO0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x08 (data[7:0]=0x10),
indicating that the interrupt bit corresponding to a synchronized link state machine for channel 0 is ON.

— The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x40 (data[7:0]=0x02),
indicating that an interrupt was received by the system bus from the PCS.

— Interrupts from the PCS to the USR_IRQ_OUT output are disabled by writing data[0:7]=0x00 to 0x00012.
This de-asserts USR_IRQ_OUT to a ‘0’ value.
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