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Introduction
The embedded system bus on the LatticeSC™ ties all of the programmable elements together in a bus framework. 
There are two types of interfaces on the system bus, master and slave. A master interface has the ability to perform 
actions on the bus such as writes and reads to and from a specific address. A slave interface responds to the 
actions of a master by accepting data and address on a write and providing data on a read. The system bus has a 
memory map which describes each of the slave peripherals that is connected on the bus. Using the addresses 
listed in the memory map, a master interface can access each of the slave peripherals on the system bus. Any and 
all peripherals on the system bus can be used at the same time. Table 1 lists all of the available user peripherals on 
the system bus after device power-up. 

Table 1. System Bus User Peripherals

The peripherals listed in Table 1 can be added when the system bus module is created using IPexpress™ (isp-
LEVER® IPexpress).

Figure 1 illustrates the existing peripherals on the system bus. The gray boxes are available only during configura-
tion. The Status and Config box refers to internal system bus registers. Refer to TN1080, LatticeSC sysCONFIG™ 
Usage Guide for configuration options. 

This document describes all the interfaces listed in Table 1 in detail to help the user utilize the desired functions of 
the system bus.

Figure 1. LatticeSC System Bus Interfaces

Peripheral Abbreviation Interface Type

Micro Processor Interface MPI Master

User Master Interface UMI Master

User Slave Interface USI Slave

Serial Management Interface (PLL, DLL, User Logic) SMI Slave

flexiPCS™ Interface PCS Slave

Direct FPGA Access DFA Slave
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Figure 2 shows a complete system bus I/O diagram with all possible peripherals enabled in IPexpress. These inter-
faces and their corresponding I/Os are discussed in detail throughout the rest of this document.

Figure 2. System Bus I/O Diagram
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Definitions
PCS Physical Coding Sublayer

MACO Masked Array for Cost Optimization

MSB Most Significant Byte

MSb Most Significant Bit

LSB Least Significant Byte

LSb Least Significant Bit

MPI Microprocessor Interface

UMI User Master Interface

USI User Slave Interface

SMI Serial Management Interface

DFA Direct FPGA Access

EBR Embedded Block RAM

PLL Phase-Lock Loop

HDL Hardware Description Language

DLL Delay Lock Loop

ASB Application Specific Block

PPC PowerPC

System Bus
Multi Master Capability
The system bus is a multiple master bus. This means that there can be more than one bus master present on the 
bus at the same time. A single bus arbiter controls the traffic on the bus by ensuring only one master has access to 
the bus at any time. This bus arbiter monitors a number of different requests to use the bus and decides which 
request is currently the highest priority. The configuration logic has the highest priority and overrides all normal 
user interfaces. By default, all master interfaces have equal priority when requesting the embedded system bus, 
and a fair round-robin scheme is used to rotate arbitration priority. Optionally, one can specify a priority of low=1, 
medium=2, or high=3 for each master interface in IPexpress. As a result, if more than one master interface is wait-
ing for the system bus, an interface with higher priority will be granted the bus over one with a lower priority. If two 
requesting interfaces share the same priority, the round-robin scheme will rotate arbitration priority.

System Bus Address Range
The system bus decodes 18 bits of byte addressable memory (256 Kbytes of addresses) in the device address 
space. 

Table 2 describes the address range for the entire device address space.
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Table 2. Entire System Bus Address Range

System Bus Clock (HCLK)
The system bus is a synchronous element that has an internal clock. This clock is sometimes referred to as the 
HCLK. Each of the peripherals on the system is also synchronous and has an interface clock. This peripheral clock 
is the clock that the FPGA designer sources to the peripheral to clock data in and out of the user interface and 
eventually onto the system bus. The system bus itself needs to be sourced by a clock (HCLK). This main system 
bus clock is the clock on which all of the traffic will run through the system bus. As traffic is passed to and from each 
peripheral, a domain change will occur from the system bus clock domain to the peripheral domain. This domain 
change is handled inside the system bus. The internal system bus HCLK maximum frequency specification can be 
found in the LatticeSC/M Family Data Sheet.

Note that the system bus interface drives the SYNC_CLK output port, which is synchronous to HCLK.

The system bus clock can be driven from several sources: CCLK, MPI or USER. At power-up, before the bitstream 
is loaded into the LatticeSC (pre-configuration) the system bus clock source is selected via the mode pins. After the 
bitstream has been successfully loaded into the LatticeSC, the system bus clock source is selected based on an 
IPexpress option.

CCLK
Before a bitstream is loaded and during device configuration and reconfiguration the system bus clock defaults to 
the configuration clock (CCLK). The CCLK is either an input or output of the LatticeSC, depending on the configu-
ration mode pins state. The CCLK is driven internally on the system bus from the configuration logic block. There is 
no input or output pin associated with the CCLK on the system bus module. Using the CCLK is for configuration 
only and cannot be simulated.

MPI
If the user has selected to program the device via the MPI, then the microprocessor clock will drive the system bus 
during configuration. In post configuration, the MPI option is set via the bitstream (IPexpress option) and will select 
the clock on the MPI to drive the system bus. The MPI clock corresponds to the input MPI_CLK on the system bus 
module. 

Begin Address
End 

Address
Size 

(B=Bytes) Description

0x00000 0x0003F 64 B System bus registers (see Table 20).

0x00040 0x003FF 960 B Reserved. 

0x00400 0x007FF 1 KB 64 Serial Memory Interfaces. For access to PLL/DLL configuration memory 
and user control/status registers in FPGA (64 SMIs, 128 bits each).

0x00800 0x2FFFF 190 KB 
User slave interface (USI) baseline. For pre-configuration usage of address 
range 0x10000-0x2FFFF, see TN1080, LatticeSC sysCONFIG Usage 
Guide. 

0x30000 0x364FF 25,856 B Left PCS slave interface. See the LatticeSC/M Family flexiPCS Data Sheet 
for more detail. 

0x36500 0x37FFF 6,912 B Reserved. 

0x38000 0x3E4FF 25,856 B Right PCS slave interface. See the LatticeSC/M Family flexiPCS Data 
Sheet for more detail.

0x3E500 0x3EEFF 2,560 B Reserved. 

0x3EF00 0x3EFFF 256 B Inter-Quad PCS slave interface. See the LatticeSC/M Family flexiPCS Data 
Sheet for more detail.

0x3F000 0x3FFFF 4 KB Reserved.

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
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USER
The USER clock allows the FPGA design to source a clock to drive the system bus clock. This USER clock is pro-
vided on the USR_CLK input port of the system bus. Selecting the USR_CLK as the source of HCLK is an IPex-
press option. 

The USER clock is driven from the FPGA design and thus can be driven by any signal in the user’s design. If the 
USER clock is derived in any way from the output of a PLL, changing the PLL control register will not be allowed. 
When changing the PLL control register, the output clock from the PLL will stop for a period of time. If this clock 
stops, the USER clock will stop and thus the HCLK will stop. If the HCLK stops, the system bus will lock. The PLL 
control register will not be able to be changed and the FPGA will lock. To prevent this condition, do not drive this 
signal with a PLL output or do not change the PLL control register for this PLL.

Oscillator
The LatticeSC internal oscillator drives the CCLK during master mode bitstream configuration. To use the oscillator 
after configuration, set the source of the system bus clock to USER in IPexpress. Also instantiate the OSCA oscil-
lator block in the design to drive the system bus USER clock pin. Various frequency rates can be selected for the 
oscillator via sysCONFIG. More information on the internal oscillator frequency rate selection can be found in 
TN1080, LatticeSC sysCONFIG Usage Guide. In simulation, however, the oscillator clock model driving the system 
bus HCLK has a fixed 100MHz frequency. 

System Bus Interrupts
The system bus has the ability to generate and accept interrupt signals from several peripherals. These interrupts 
can then be used to alert either on-chip modules or external modules. An internal interrupt can be generated from 
the FPGA design, the configuration block during device configuration or from the PCS block. The interrupt cause 
register (0x00010) contains a bit for each source of an interrupt. When one of the peripherals sets an interrupt, the 
particular bit in the cause register will bet set to a 1. To clear the interrupt cause bit, a master interface will need to 
write a 1 to the particular bit to clear it. Note that clearing the interrupt cause bit does not remove the source of the 
interrupt. 

Some peripherals on the system bus can pass interrupts found in the interrupt cause register to an interrupt output 
signal on their interface. For a peripheral to pass interrupts to its interrupt output signal, its corresponding interrupt 
enable register must be properly provisioned. There is an interrupt enable register for user (0x00012), and MPI 
(0x00013). When a bit is set to a 1 in the interrupt enable register, an interrupt will be passed to the corresponding 
interrupt output signal (active low MPI_IRQ_N output for MPI and active high USR_IRQ_OUT for user). When the 
interrupt output signal for the peripheral indicates an interrupt was created, a master should read the interrupt 
cause register to determine the source of the interrupt. Table 3 summarizes the interrupt enable register and output 
signal for both MPI and user.

Table 3. Interrupt Enable Registers and Outputs

The interrupt cause register (0x00010), user interrupt enable register (0x00012) and MPI interrupt enable register 
(0x00013) are designed such that each bit corresponds to the same interrupt source across all three registers. Bit 
1 of all three registers, for example, always corresponds to a PCS interrupt source. The correlation between bit 
number and interrupt source is illustrated in Table 4.

Interface
Interrupt Enable

Register
Interrupt Output

Signal Notes

USER 0x00012 USR_IRQ_OUT Only the UMI can write to 0x00012

MPI 0x00013 MPI_IRQ_N Only the MPI can write to 0x00013

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
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Table 4. Correlation Between Bit Number and Interrupt Source

For more information on the interrupt cause register and interrupt enable registers, refer to the system bus memory 
map in Table 20.

For example (as illustrated in Figure 3), to pass interrupts created by the USI interface to MPI_IRQ_N, the MPI 
must write a 1 to bit 6 of 0x00013. When the USI sends an interrupt via a USI_IRQ pulse (larger than one USI_CLK 
period), bit 6 of the interrupt cause register (0x00010) will go to a 1. This, combined with the 1 on bit 6 of 0x00013, 
will then drive MPI_IRQ_N pin low to indicate an interrupt to the microprocessor. The microprocessor should then 
read the interrupt cause register to determine that the interrupt came from the USI. Assuming no more interrupts 
are generated, the MPI can clear bit 6 of 0x00010 by writing a 1 to it. This also sets the MPI_IRQ_N signal back to 
1. 

Figure 3. USI_IRQ to MPI_IRQ_N Interrupt

System Bus General Signals
Table 5 describes the general interface signals on the system bus. These signals are not part of any of the specific 
peripherals mentioned in Table 1. 

Interrupt Source/ 
Signal Unused PCS MPI CFG_ERR CGF_DATA UMI_IRQ USI_IRQ USR_IRQ_IN

Interrupt Cause 
Register (0x00010) Unused Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

USER Interrupt 
Enable Register 
(0x00012)

Unused Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

When any of the bits in 0x00012 is set high, a rising edge on the interrupt source/signal (as reflected in 
the corresponding interrupt cause bit in 0x00010) causes signal USR_IRQ_OUT to go high.

MPI Interrupt 
Enable 
Register (0x00013)

Unused Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

When any of the bits in 0x00013 is set high, a rising edge on the interrupt source/signal (as reflected in 
the corresponding interrupt cause bit in 0x00010) causes MPI_IRQ_N to go low. 

Interrupt Cause Register
0x00010

MPI Interrupt Enable Reg.: 0x00013
Unused

MPI_IRQ_N

USI_IRQ

0

1

2

3
4

5

6
7

1 

76543210

1 

1

7

6
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Table 5. System Bus General Interface Signals

Address/Data Bus Ordering
The system bus handles bus transfers of address and data at all of its interfaces. The orientation of the address 
bus and the data bus may be different, depending on which peripheral is accessed. Internally on the bus, the 
address bus is always oriented the same way, whereas the data bus is dependent on the driving master/slave inter-
face. 

Address Bus Ordering
There are 18 address bits on the system bus. These address lines can be driven by any of the master interfaces on 
the system bus. Except for the DFA interface, the address bus on a slave interface will always be provided to the 
slave with bit 0 as the LSb. For the master interfaces (MPI, UMI) the address bus is dependent on the master. The 
UMI will use bit 17 as the MSb and bit 0 as the LSb. The MPI will match the PowerPC address bus orientation, 
which is bit 0 as MSb and bit 31 as LSb, even though only bits 14 through 31 (18 bits) are available on the Lattic-
eSC MPI interface (see Table 21). More information on this address bus and its connections is found in the MPI 
section of this document. Table 6 lists the address bus bit ordering of different interfaces.

Table 6. Address Bit Ordering for Different Master/Slave Interfaces

Data Bus Bit Orientation 
The data bus on the system bus is 36 bits wide: 32 bits for data and four bits for parity. On the system bus, the data 
bits are passed unchanged through the peripherals. So the orientation of the data on the system bus is dependent 
on the data driving master/slave interface. This means that bit 0 on the master interface will be bit 0 on the slave 
interface, bit 1 will be bit 1, etc. So if bit 0 is the LSb on the master interface then bit 0 will be the LSb on the slave 
interface as shown in Figure 4. Care must be taken when accessing an address location to make sure data bits are 
used properly in terms of LSb and MSb.

Signal Direction Description Notes

SYSBUS_RST_N Input Active low system bus reset Resets Internal system bus logic

USR_IRQ_IN Input Active high user interrupt

USR_IRQ_OUT Output Active high user output interrupt Signal responds to interrupt when interrupt enable 
register 0x00012 is set by UMI. 

USR_CLK Input USER clock 
This interface signal is generated only when the 
USER clock is selected as the system bus clock 
source (in ispLEVER IPexpress). 

SYNC_CLK Output Clock synchronous to HCLK 
(system bus clock)

Interface

Address Bus Bit Ordering
ADDRESS[MSb:LSb]

MSb LSb

MPI 14 31

UMI 17 0

USI 17 0

DFA 14 31

SMI 9 0
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Figure 4. System Bus Data Bus Bit Mapping

Different data interfaces on the system bus do not all follow the same rule in terms of bus bit orientation. The value 
of the data bus can be interpreted with bit 0 being either the MSb or LSb. For example, for single byte accesses, the 
MPI interface is always oriented with bit 0 being the MSb (DATA[0:7]), whereas the UMI interface is oriented with bit 
0 being the LSb (DATA[7:0]). Table 7 shows the data bus bit orientation for all user accessible interfaces, in addition 
to the MPI.

Table 7. Data Bus Bit Orientation for Different System Bus Interfaces

Internal Data Bus
The internal data bus is labeled D(35:0). Bits D(31:0) are used to carry the data between peripherals. Bits D(35:32) 
are used to carry parity to the peripherals. Except for MPI, parity is not checked internally by any of the peripherals 
on the system bus. Checking parity on the MPI is enabled via bit 5 of system bus address 0x0000A 
(MPI_PAR_CHK), and only checks the MPI parity on a write operation. An MPI parity error on a write always results 
in an MPI interrupt to the system bus interrupt cause register (0x00010, bit 2). Even or odd parity is set in isp-
LEVER IPexpress. Internal system bus registers will generate parity for read operations. UMI/USI parity is only 
passed through the system bus and its interfaces. Parity is mapped to byte lanes as shown in Table 8. The orienta-
tion of the data bus D(31:0) depends on the master interface driving the data bus, but the parity bits are always 
stored on D(35:32).

Interface

Data Bus Bit Ordering DATA[MSb:LSb]

8-Bit 16-Bit 32-Bit

MSb LSb MSb LSb MSb LSb

MPI 0 7 0 15 0 31

UMI 7 0 15 0 31 0

USI Follows Master

DFA 0 7 0 15 0 31

Master Interface

Slave Interface

Bit 0 

Bit 0 
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Table 8. Internal Data Bus Bit Mapping

32-bit Data Bus
When a master interface is configured for 32-bit operation, all 32 bits (D(31:0)) are used to carry the data. If the 
master interface is using parity, then the four parity bits will be carried on D(35:32) using the parity byte mapping 
previously described. Again, the orientation (MSb,LSb) of the data bus depends on which master/slave interface 
drives data onto the system bus. When using a 32-bit data bus the address resolution will be limited to 32-bit 
boundaries. Data will be carried on the bus such that the lowest address maps to byte lane D(7:0) and the highest 
address maps to byte D(31:24). 

For example, a 32-bit read at address 0x00000 will read addresses 0x00000 - 0x00003. Address 0x00000 data will 
be on D(7:0), address 0x00001 data will be on D(15:8), address 0x00002 data will be on D(23:16), and address 
0x00003 data will be on D(31:24) as shown in Figure 5.

Figure 5. 32-bit Data Bus

16-bit Data Bus
For 16-bit operation of a master interface, the data will be carried on D(15:0). The slave interface will only need to 
read data from D(15:0). The MSB and LSB of the data will be determined by how the data was driven onto the bus 
by the master/slave interface. When using a 16-bit data bus the address resolution will be limited to 16-bit boundar-
ies. Data will be carried on the bus such that the lowest address maps to byte lane D(7:0) and the highest address 
maps to byte D(15:8). When using MPI, the same data will also be automatically replicated on D(31:16). When 
using UMI/USI, the user needs to replicate the data to the system bus on D(31:16).

For example a 16-bit read at address 0x00000 will read addresses 0x00000 - 0x00001. Address 0x00000 data will 
be on D(7:0) and address 0x00001 data will be on D(15:8) as shown in Figure 6.

Figure 6. 16-bit Data Bus

Internal Data 
Bus MPI

User Master 
Interface Description

D(35) MPI_PAR(3) UMI_W/R_DATA(35) Parity bit for D(31:24)

D(34) MPI_PAR(2) UMI_W/R_DATA(34) Parity bit for D(23:16)

D(33) MPI_PAR (1) UMI_W/R_DATA(33) Parity bit for D(15:8)

D(32) MPI_PAR(0) UMI_W/R_DATA(32) Parity bit for D(7:0)

D(31:24)
MPI_DATA(31:24)
32-bit LSB
bit 31 = LSb

UMI_W/R_DATA(31:24) Data byte 31:24 - LSB of the MPI in 32-bit mode.

D(23:16) MPI_DATA(23:16)
bit 23 = LSb UMI_W/R_DATA(23:16) Data byte 23:16 

D(15:8)
MPI_DATA(15:8)
16-bit LSB,
bit 15 = LSb

UMI_W/R_DATA(15:8) Data byte 15:8 - LSB of the MPI in 16-bit mode

D(7:0)

MPI_DATA(7:0)
MSb=0
8-bit LSb=7
16-bit/32-bit 0:7=MSB

 UMI_W/R_DATA(7:0) Data byte 7:0 - MSB of the MPI in 16/32-bit mode. In 
MPI 8-bit mode bit 0 is MSb and bit 7 is the LSb

31 7

0x00x10x20x3

23 15

Parity

35

Parity

31 7

0x00x10x00x1

23 1535
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Note that a 16-bit data access (from MPI or UMI) to the PCS slave registers is not supported. Please refer to the 
PCS section of this document for more information. 

8-bit Data Bus
For 8-bit operation of a master interface the data will be carried on D(7:0). The slave interface will only need to read 
and write data on D(7:0). When using MPI, the same data will also be automatically replicated on D(15:8), 
D(23:16), and D(31:24). When using UMI/USI, the user needs to replicate the data to the system bus on D(15:8), 
D(23:16), and D(31:24), as shown in Figure 7. The MSb and LSb of the data will be determined by the master/slave 
interface.

Figure 7. 8-Bit Data Bus

Synchronous/Asynchronous Mode
The MPI, UMI and USI interfaces on the system bus can be generated (in ispLEVER IPexpress) either synchro-
nously or asynchronously to the system bus HCLK domain. 

By default, all three interfaces are generated asynchronously to the system bus HCLK domain. Asynchronous 
mode is required when the clock clocking the peripheral interface is assumed to run asynchronously (different fre-
quency/phase) to HCLK. In this case, all three peripherals (MPI, UMI, USI) include an asynchronous FIFO to de-
couple the peripheral clock domain from the internal HCLK domain. This FIFO introduces extra cycles of delay dur-
ing a read or a write access through the system bus. 

In ispLEVER IPexpress, it is possible to independently bypass the MPI, UMI and USI asynchronous FIFOs. This 
mode, referred to as synchronous mode, reduces the amount of access latency as a result of bypassing the FIFO. 
For MPI, this mode only requires selecting the MPI clock as the source of the system bus clock. For UMI and USI, 
a specific ispLEVER IPexpress option to make the peripheral synchronous to the system bus clock needs to be 
selected. UMI and USI modes also require that the peripheral clock (UMI_CLK or USI_CLK) be driven by 
SYNC_CLK in synchronous mode. Table 9 describes how to ensure that each of MPI, UMI or USI interface clocks 
is made synchronous to HCLK.

Table 9. Setting Synchronous clocks to HCLK

System Bus Time Out
Time out is a programmable feature that allows the system bus to interrupt current operation on the bus. There are 
two types of time out mechanisms that the system bus can exercise: Wait State time out, and Grant time out. In 
each case, an index is used to specify the length of time in HCLK cycles after which the system bus times out. 
Table 10 shows how an index relates to HCLK cycles. For example, if the index is at 5 and HCLK is running at 50 
MHz, the system bus will timeout after 210 * 20 ns ~= 20 microseconds. Note that a 0 index value means the system 
bus never times out.

Interface Interface Clock How to Make Synchronous to HCLK

MPI MPI_CLK Select MPI_CLK as source of system bus clock in ispLEVER IPexpress. 

UMI UMI_CLK Make UMI synchronous to system bus in ispLEVER IPexpress. Connect SYNC_CLK to 
UMI_CLK port.

USI USI_CLK Connect SYNC_CLK to USI_CLK port.

Parity

31 7

0x00x00x00x0

23 1535



11

Lattice Semiconductor LatticeSC MPI/System Bus

Table 10. Time Out Index vs. HCLK Cycles Before Time Out

Wait State Time Out
This type of time out is designed to prevent the master on the bus from waiting indefinitely for the termination phase 
of an access (MPI_TA or UMI_ACK). Without a time out mechanism, the system bus could hang indefinitely. The 
Wait State time out index is independently set in both simulation and bitstream generation. Setting a value greater 
than 0 is recommended to avoid unintentional hanging of the system bus. 

In simulation, the index is defined as a programmable parameter (WS_TIME_INDEX). The default value for 
WS_TIME_INDEX is 4 (256 cycles). The value of the parameter can be modified in the HDL code for simulation 
purpose. In Verilog, for example, assuming the system bus instance is “systembus_i”, the index can be set to 5 as 
follows:

defparam systembus_i.SYSBUSA_INST.SYSBUSA_sim_inst.WS_TIME_INDEX = 4’d5;

During bitstream generation, the index is defined as a sysCONFIG switch (WaitStateTimeOut). The default value of 
WaitStateTimeOut is 5 (210 HCLK cycles). Please see TN1080, LatticeSC sysCONFIG Usage Guide for more infor-
mation.

When the system bus times out as a result of a Wait State condition, the system bus asserts a transfer error 
(MPI_TEA or UMI_ERR) along with the termination of access signal (MPI_TA or UMI_ACK).

Grant Time Out
This type of time out is designed to prevent one master from indefinitely owning the system bus when another mas-
ter is also trying to access it. The Grant time out can only be used when the master currently accessing the system 
bus has not locked it.

In simulation, the index is defined as a programmable parameter (GRANT_TIME_INDEX). The default value for 
GRANT_TIME_INDEX is 0 (never time out). The value of the parameter can be modified in the HDL code for simu-
lation purpose. In Verilog, for example, assuming the system bus instance is “systembus_i”, the index can be set to 
5 as follows:

defparam systembus_i.SYSBUSA_INST.SYSBUSA_sim_inst.GRANT_TIME_INDEX = 4’d5;

During bitstream generation, the index is defined as a sysCONFIG switch (GrantTimeOut). The default value of 
GrantTimeOut is 0 (never time out). Please see TN1080, LatticeSC sysCONFIG Usage Guide for more informa-
tion.

When the system bus times out as a result of a Grant condition, the system bus first waits for the current transfer to 
end, then grants ownership of the bus to the other master.

System Bus Peripherals
The following section discusses each of the peripherals on the system bus in detail. Some of the peripherals on the 
system bus (e.g. Configuration) do not have FPGA design user ports and are fully contained inside the system bus. 
These peripherals’ registers are described in the memory map and do not have any user inputs or outputs on the 
system bus. 

MPI
LatticeSC devices contain an embedded microprocessor interface (MPI) that can be used to interface any Lattic-
eSC device to any MPC860/MPC8260 PowerPC microprocessor or compatible interface through the PowerPC 
peripheral bus. The MPI acts as a bridge between an external PowerPC processor and the embedded system bus. 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HCLK 
Cycles

Never 
Time 
Out

22 24 26 28 210 212 214 216 218 220 222 224 226 228 231

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
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Externally, the MPI acts as a slave peripheral interface through which a PowerPC can access the embedded fea-
tures of the device. Internally the MPI acts as a master peripheral interface on the system bus to initiate data trans-
fers as directed by the external processor.

Note: The MPI interface is not available on all LatticeSC packages. Also, some LatticeSC die/package combina-
tions restrict the maximum allowable MPI DATA bus size. For full information on MPI restrictions for a die/package 
combination, please refer to the Pinout Information section of the LatticeSC/M Family Data Sheet.

The MPI is one element on the embedded system bus illustrated in Figure 1. The system bus provides multi-mas-
ter/multi-slave communication between the MPI and the status and configuration interface, SMI, UMI, USI, and one 
or more PCS interface blocks as needed in each specific LatticeSC device.

The MPI is available prior to and optionally after configuration of the programmable logic in the LatticeSC. The MPI 
can be used prior to device configuration to identify, test, initialize, and download configuration data into the device. 
After configuration of the programmable logic, the MPI can be used to read back the configuration and internal sta-
tus data, control parameters in the PLLs and the DLLs, access status and control registers for an embedded PCS 
block (if present), and interact with the user’s design configured in programmable logic.

The MPI peripheral has two distinguishing characteristics from any other system bus interface:

• The MPI can be turned on at power-up, before device configuration, allowing the MPI to access the system bus 
control, status and configuration registers. All other peripherals can be present only after device configuration.

• When the user instantiates an system bus with MPI in a design, a register bit setting can keep MPI enabled even 
after the device is un-programmed.

MPI Interface
Table 11 shows the MPI signals used by the PowerPC to perform transactions with the LatticeSC device. The MPI 
is a fixed block on the LatticeSC array and the interface signals are mapped to dedicated pins on the LatticeSC 
device. PowerPC pins to LatticeSC pins mapping can be found in Appendix A. 

Externally the MPI implements a 36-bit PowerPC bus slave, which internally drives the system bus as a master. 
Data bus width is selectable among 8 bits, 16 bits, and 32 bits with parity of 1, 2 or 4 bits, respectively (one parity 
bit for each active byte). Note that the MPI does not generate parity, but simply passes it from the PowerPC bus to 
the system bus and vice versa. The MPI interface can check parity on write, however, by setting bit 5 of system bus 
address 0x0000A (MPI_PAR_CHK), Any write parity error results in an MPI interrupt to the system bus interrupt 
cause register (0x00010, bit 2).

Table 11. MPI Signals to PowerPC Bus

Name I/O Description

MPI_RST_N I Resets the MPI interface on the system bus

MPI_CLK I
This is the clock from the PowerPC. This clock input will clock the MPI. This clock may 
optionally clock the main system bus clock if selected. The MPI clock can be driven up to 
66MHz operation.

MPI_TSIZ[0:1] I

Transfer size ([0:1]: 00-double word, 10-word, 01-byte) The MPI_TSIZ pins connect directly 
up to the PowerPC TSIZ1 and TSIZ0. These pins select the size of the PowerPC data 
transaction. This is the transfer size of the data transaction from the microprocessor’s per-
spective. This is different from the MODE pin selected size discussed later.

MPI_WR_N I

Transfer type (0-write, 1-read) This signal indicates to the MPI whether the transaction initi-
ated by the microprocessor is a read or a write. If the transaction is a read, data will be pro-
vided to the microprocessor from the address specified. If the transaction is a write, data 
will be written to the address specified by the microprocessor inside the LatticeSC device. 
This signal connects to the PowerPC RD//WR signal.

MPI_BURST I Indicates that a burst transfer is in progress when low. This signal informs the MPI that the 
PowerPC is performing a burst transaction using the PowerPC burst pin.

MPI_BDIP I Burst Data In Progress. This signal from the PowerPC will go low on the first clock of data 
during a burst and go high on the last clock of data of the burst transfer.

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
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MPI Single Beat Data Transfers
Any data transfer on the PowerPC bus has four phases: arbitration, address, data and termination. During the arbi-
tration phase the processor initiates the transaction with a MPI_STRB_N pulse. The MPI samples the address and 
control inputs during the address phase, receives or provides data and asserts transfer acknowledge during the 
data phase, and de-assert signals during the termination phase. Figure 8 shows the PowerPC bus timing for a 32-
bit wide data single beat MPI write transfer. Figure 9 shows the PowerPC bus timing for a 32-bit wide data single 
beat MPI read transfer. MPI_DATA [0:31]=0x11223344 is written/read to/from address 0x00004 in each case.

MPI_STRB_N I This active low signal indicates the start of a transactions or the strobe. This pin is con-
nected to the TS pin of the PowerPC.

MPI_CS0N/ MPI_CS1 I

Chip selects for active high (MPI_CS1) and active low (MPI_CS0N). Both of these chip 
selects must be active for the LatticeSC system bus logic to be selected. Typically CS1 is 
connected to logic 1 and CS0n is connected to a PowerPC CS pin. When selecting the 
DFA interface instead of the system bus, the values of these signals are inverted 
(MPI_CS1=0, MPI_CS0N=1).

MPI_ADDR[14:31] I
The PowerPC address bus is 32 bits wide. The LatticeSC devices only support 18 bits of 
address space. The LatticeSC uses the least significant bits of the PowerPC address 
space using address bits 14:31.

MPI_DATA[0:31] I/O

The PowerPC data bus can be up to 32 bits wide. Bit 0 is the MSb and bit 31 is the LSb. 
For multi-byte transfers, the most significant byte ([0:7]) has the lowest address. The Pow-
erPC data pins D[0:31] connect directly to the LatticeSC pins MPI_DATA(0:31). Data pins 
not used by virtue of selecting 8-bit or 16-bit data widths are available as general-purpose 
user I/O. 

Note: The MPI interface is not available on all LatticeSC packages. Also, some LatticeSC 
die/package combinations restrict the maximum allowable MPI DATA bus size. For full 
information on MPI restrictions for a die/package combination, please refer to the Pinout 
Information section of the LatticeSC/M Family Data Sheet.

MPI_PAR[0:3] I/O
Parity can be up to 4 bits wide (one bit per byte of data) depending on the data bus size. 
Parity connects directly to the PowerPC DP[0:3] pins. Parity pins not used by virtue of 
selecting 8-bit or 16-bit data widths are available as general-purpose user I/O.

MPI_TA O

This active low signal indicates the transfer acknowledge from the LatticeSC device. This 
pin is connected to the TA pin of the PowerPC. For a single MPI write transaction the 
MPI_TA will come back on the next clock. See the Consecutive Writes with the MPI section 
of this document. For an MPI read transaction the MPI_TA will come back after the target 
slave responds. The difference in time it takes to complete a transaction depends on the 
slave that is accessed. Other dependencies are the clock rate of the system bus (HCLK), 
clock rate of the slave interface, and slave acknowledge protocol. 

MPI_TEA O
This active low signal indicates a transfer error acknowledge during the current transaction. 
More information on cause of this error can be found under the MPI Exceptions section of 
this document.

MPI_IRQ_N O Active-low interrupt request from the LatticeSC device. See the System Bus Interrupts sec-
tion of this document.

MPI_RETRY O
Active-low request for processor to relinquish the bus and retry the cycle. Exception signal 
indicating the LatticeSC device is not ready to accept the requested transaction. More 
information on the cause of this error can be found under MPI exceptions.

MODE[3:0] I

MPI data width ([3:0]: 1010, 1011, 1110 = 8, 16, 32 bits, respectively) The MODE pins are 
used to select the type of bitstream configuration the LatticeSC device will utilize. More 
information on the MODE pins can be found in the Enabling the MPI section of this docu-
ment. These pins do not appear on the system bus HDL model out of ispLEVER IPex-
press.

Table 11. MPI Signals to PowerPC Bus

Name I/O Description

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
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Figure 8. MPI Single Write Data Transfer Timing

Figure 9. MPI Single Read Data Transfer Timing

MPI Burst Transfers
The MPI will support burst transfers of exactly 4 beats (32-bit width), 8 beats (16-bit width) or 16 beats (8-bit width), 
depending upon the selected data bus width. Burst transfers can be of any size that is compatible with the selected 
data bus width given the limitation that the MPI will handle 4, 8, or 16 beats as indicated. 

The burst mechanism uses MPI_BURST to indicate that the transfer is a burst transfer and MPI_BDIP to indicate 
the duration of the burst. 

Along with the address and transfer control signals, the PowerPC asserts MPI_BURST during the address phase 
of the transfer. In the data phase, the microprocessor asserts MPI_BDIP until the next to the last word is 
sent/received. The MPI continues to send/receive data until it detects MPI_BDIP de-asserted at the rising edge of 
MPI_CLK while MPI_TA is asserted.

Figure 10 shows the signal timing for a 32-bit wide data 4-beat burst write:

• The first write access is to 0x08000-0x08003 (MPI_DATA [0:31]=0x11111111). 

• The second write access is to 0x08004-0x08007 (MPI_DATA [0:31]=0x22222222).

• The third write access is to 0x08008-0x0800B (MPI_DATA [0:31]=0x33333333).

• The fourth write access is to 0x0800C-0x0800F (MPI_DATA [0:31]=0x44444444). 
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Figure 10. MPI Burst Write Transfer Timing

Figure 11 shows the signal timing for a 32-bit wide data 4-beat burst read:

• The first read access is to 0x00030-0x00033 (MPI_DATA [0:31]=0x0C8C4CCC). 

• The second read access is to 0x00034-0x00037 (MPI_DATA [0:31]=0x2CAC6CEC).

• The third read access is to 0x00038-0x0003B (MPI_DATA [0:31]=0x1C9C5CDC).

• The fourth read access is to 0x0003C-0x0003F (MPI_DATA [0:31]=0x3CBC7CFC). 

Figure 11. MPI Burst Read Transfer Timing

Consecutive Writes with the MPI
The MPI uses a single write post buffer implementation. This means that on each MPI write, the MPI_TA comes 
back on the next clock cycle to terminate the PowerPC transaction. Internally on the MPI and system bus, the data 
is not yet transmitted to the target. It will take several HCLK clock cycles before the target receives the data and ter-
minates the transaction. Until this termination takes place any additional writes from the MPI will issue a retry 
(MPI_RETRY). 

During consecutive write cycles, the number of PowerPC clock cycles (MPI_CLK) it takes until the next write can 
take place without a retry is variable. The variables include the source of the HCLK, whether the MPI interface is in 
synchronous or asynchronous mode, the target being accessed, and the target’s termination protocol and clock. 
The user should add appropriate delay based on their board and system behavior. 

MPI Exceptions
Three signals, MPI_TEA, MPI_RETRY and MPI_TA are monitored during the termination phase of a transfer. A 
normal termination is indicated when MPI_TA is asserted and both MPI_TEA and MPI_RETRY are de-asserted. If 
either MPI_TEA or MPI_RETRY are asserted, an MPI bus exception is indicated. 

MPI_TEA is asserted for one MPI_CLK cycle to indicate either an internal system bus error, or a transfer with 
MPI_TSIZ larger than the data bus size, or physical data size selected by the MODE[3:0] inputs. 
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MPI_RETRY is asserted for one MPI_CLK cycle when the MPI is busy to request that the PowerPC relinquish the 
bus and reissue the current transfer. A retry is issued when the following occurs: 

• The MPI gets a read transaction while its write FIFOs are not empty.

• The MPI gets a write transfer while its write FIFOs are full.

• The MPI receives a retry indication from the embedded system bus during a read transfer.

For burst transfers, the MPI should issue retry before acknowledging the first data phase; if MPI_RETRY is 
asserted after the first data phase of a burst transfer, it should be treated as a transfer error (MPI_TEA).

MPI Interrupts
The MPI logic on the system bus can generate an MPI interrupt to the system bus as a response to certain MPI 
write accesses. When an MPI interrupt occurs, it sets the MPI_IRQ bit of the Interrupt Cause Register (bit 2 of 
0x00010). The interrupt can then be passed to either the MPI or USER output interrupt (as discussed in the system 
bus Interrupts section of this document).

There are three possible causes for an MPI interrupt during an MPI write access:

• The MPI logic on the system bus times out as a result of too many system bus slave RETRY responses.

• The system bus slave generates an internal error response to the access.

• The MPI logic on the system bus detects a parity check error (when MPI write parity checking is enabled).

MPI Synchronous vs. Asynchronous MPI Mode Latency
Table 12 shows the best case MPI to system bus access latency for both synchronous and asynchronous modes. 
The latency is defined as the number of cycles the MPI_TA signal stays high after MPI_STRBN goes low.

Table 12. MPI Sync/Asynchronous Best Case Latency1

Enabling the MPI
There are three conditions under which the MPI interface can be enabled: at power-up, via a register bit setting, 
and via user instantiation. If the MPI is not utilized at all in the LatticeSC design, the dedicated MPI pins can be 
used as general I/O pins for the user’s design.

MPI at Power-up: To enable the MPI at power-up, prior to device configuration, the external MODE pins (see 
Table 13) must be set to specify one of the three MPI configuration modes, as specified in TN1080, LatticeSC sys-
CONFIG Usage Guide. If the MPI is not used, all of the MPI pins (MPI_TA, MPI_DATA, etc.) are tri-stated to a pull-
up resistance during configuration. In any of the three MPI configuration modes, the MPI can access the registers 
in the system bus, PCS left, PCS right, and PCS inter-quad address ranges shown in Table 2.

Table 13. LatticeSC MPI Device Configuration Modes

Data bus width is determined at power-up by the value presented on the MODE pins during the low-to-high transi-
tion of the INIT signal. The MODE pins select the data size of the transaction including the parity bits. MPC860 8-

Synchronous Mode Asynchronous Mode

Single Burst Single Read Single Write 16-Beat Burst 8-Beat Burst 4-Beat Burst

2 3 7 6 7 7 7

1. Note that the first access in a series of MPI write cycles has zero latency. Subsequent write cycles may cause retries. When retries are 
present, the write latency is then the earliest cycle without a retry from the original MPI_STRB_N low.

M3 M2 M1 M0 Description

1 0 1 0 MPC860 8-bit

1 0 1 1 MPC860 16-bit

1 1 1 0 MPC860 32-bit

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
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bit mode will also use MPI_PAR(0) along with the data. MPC860 16-bit will use MPI_PAR(0:1) and MPC860 32-bit 
will use MPI_PAR(0:4). Unused MPI_PAR bits will be 3-stated to a pull-up resistance during configuration. All of the 
other MPI signals connect directly to the PowerPC bus. Pad locations vary depending upon device type, size, and 
package.

The data bus width selected by the MODE[3:0] pins is not related to the transfer size specified by MPI_TSIZ[0:1]. 
The bus width selected by the MODE[3:0] pins determines how many data pins are used by the MPI, while the 
transfer size is determined by the master interface on the PowerPC bus. The transfer size used by an external mas-
ter must not exceed the selected data bus width; otherwise, the higher-order data bits will be lost and a bus excep-
tion is issued by the MPI. 

In order to configure the LatticeSC device at power-up via MPI, the MPI PowerPC interface requires two different 
file types:

• The first file is a PowerPC PROM image for device configuration. ispVM® converts a sysCONFIG-generated bit-
stream to a PROM image.

• The second file is a configuration-time initialization file generated by sysCONFIG. This file contains initialization 
values for EBRs, PCS auto-configuration, and SMI memories. This initialization file is not needed for device con-
figuration modes other than MPI. 

More information on MPI configuration of the LatticeSC devices can be found in TN1080, LatticeSC sysCONFIG 
Usage Guide.

MPI via User Instantiation: To enable the MPI for use after device configuration and during normal operation, the 
user must instantiate the system bus with an MPI peripheral in the LatticeSC design. The system bus element 
along with the MPI and other peripherals is created using ispLEVER IPexpress.

MPI via a Register Bit Setting: When the user enables the MPI, as described in the MPI via User Instantiation 
section of this document, setting the MPI_USR_ENABLE bit (control register 0x00008, bit 2) will keep the MPI 
mode enabled even after the device is un-programmed. Un-programming the device still sets the programming 
mode to MPI (as defined by the user), independently of what the MODE pins are set to.

User Master Interface (UMI)
The User Master Interface (UMI) allows the FPGA design to perform transactions on the system bus. Through the 
UMI, the FPGA design has access to any and all of the slave peripherals on the system bus. Signals for the UMI 
are listed in Table 14. 

Table 14. UMI Interface Signals 

Signal Type Description

UMI_CLK I

The main clock for the user master interface. This clock only clocks the interface regis-
ters. A domain change is made from the UMI_CLK domain to the system bus clock 
domain in asynchronous mode. The user master interface and the system bus can be 
made synchronous through an ispLEVER IPexpress option (synchronous mode). A fre-
quency preference on this signal will constrain all of the inputs and outputs of the UMI.

UMI_RST_N I
This active-low reset resets all of the controls in the user master interface. This should be 
pulsed once before any transactions can occur on the UMI. This is typically connected to 
the same reset as the GSR and pulsed at power up.

UMI_WDATA[35:0] I

36-bit write data bus to system bus. This data bus is oriented with bits 35:32 used for 
parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals 
on the system bus, it is only carried. For less than 32-bit writes, the data must be repli-
cated on the UMI_WDATA bus to fill the entire 32 bits. For a 16-bit transaction, bits 15:0 
must be replicated on 31:16. For an 8-bit transaction, bits 7:0 must be replicated on 
31:24, 23:16 and 15:8.

UMI_RDATA[35:0] O
36-bit read data bus from system bus. This data bus is oriented with bits 35:32 used for 
parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals 
on the system bus, it is only carried. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
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Locking the UMI
The system bus is a multi master bus and the UMI_LOCK signal will request ownership of the bus. In a multi mas-
ter system bus application the UMI must be locked to guarantee uninterrupted multiple transactions through the 
UMI. Ownership of the bus is granted based on the priority of the master interface. If two masters request the bus 
at the same time, the interface with higher priority will obtain the bus. Once the UMI has locked the bus, the 
UMI_ACK will stay high indicating the interface is ready for a transaction. 

To release the lock on the system bus, a UMI_RDY pulse must be given after UMI_LOCK is driven low. The 
UMI_RDY pulse will allow the system bus to sample UMI_LOCK and release the bus lock. 

For a single UMI transaction, or non-continuous transactions where ownership of the bus is not required, 
UMI_LOCK is not necessary.

UMI Single Access
A typical 8-bit wide data, single access write transaction is shown in Figure 12. UMI_WDATA [7:0]=0x11 is written 
to 0x00004. For this description the UMI_LOCK signal is not used to lock the system bus.

UMI_ADDR[17:0] I This 18-bit address bus is used to select the address that a user master transaction will 
target. Bit 17 of the UMI_ADDR bus is the MSb while bit 0 is the LSb. 

UMI_WR_N I

This bit indicates whether the current transaction is a read or a write cycle. A low value 
indicates the current transaction is a read. Data is expected on the UMI_RDATA bus. A 
high value indicates the current transaction is a write. Data is driven onto UMI_WDATA 
bus.

UMI_LOCK I This active-high signal will be used to request ownership of the system bus. 

UMI_BURST I Indicates this operation is a burst transfer.

UMI_SIZE[1:0] I

Data width for transfer ([1:0]: 10-double word, 01-word, 00-byte, 11-invalid). Selects the 
size of the data transfer being done on the UMI. For 32-bit transactions all bits 31:0 will 
carry valid data. For 16-bit transactions only bits 15:0 will carry valid data. For 8-bit trans-
actions only bits 7:0 will carry valid data. 

UMI_RDY I Data strobe indicates address and data ready. Should be driven high when valid address 
is provided for read and valid address and data is present for write.

UMI_ACK O Acknowledge from master interface to indicate that it is ready for another operation. 

UMI_RETRY O

Asserted for one UMI_CLK cycle when the UMI is busy to request that the master relin-
quish the bus and reissue the current transfer. A retry is issued when the following 
occurs: 
• The UMI gets a read transaction while its write FIFOs are not empty.
• The UMI gets a write transfer while its write FIFOs are full.
• The UMI receives a retry indication from the embedded system bus.

UMI_ERR O Bus error response is asserted for one clock cycle when UMI_RDY is asserted. Indicates 
an internal system bus error.

UMI_IRQ I User logic master interface interrupt request. Active-high signal to indicate an interrupt to 
the system bus. This signal will map to the interrupt cause register UMI bit.

Table 14. UMI Interface Signals (Continued)

Signal Type Description
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Figure 12. Single Access Write from User Master Interface

A single write access is initiated with the assertion UMI_RDY with valid data and address on UMI_ADDR and 
UMI_WDATA. UMI_RDY is the gating signal for valid data and address and is to be asserted for every single 
access write transaction. On the next cycle, UMI_ACK is de-asserted. When the write transaction is complete, 
UMI_ACK is asserted by the UMI. UMI_ACK will go low during the transfer for two cycles in synchronous mode and 
6-7 cycles in asynchronous mode at best conditions.

UMI_ACK is a synchronous signal and stays asserted after the single write is completed. One cycle before 
UMI_ACK goes high again, the UMI_ERR or UMI_RETRY will go high if the current transfer gets ERROR or 
RETRY response from the system bus. The master interface itself may or may not do any retry by itself depending 
on configuration. UMI_ACK, UMI_ERR and UMI_RETRY will remain high until UMI_RDY is asserted again to begin 
the next transfer.

Consecutive single writes may be performed with the assertion of UMI_RDY along with new data and address. 
UMI_WR_N is to be asserted for the entire period of the transaction. UMI_ACK gets de-asserted on the clock cycle 
after UMI_RDY and gets asserted when the transaction is complete and ready for the next transaction. 

A typical 8-bit wide data, single access read transaction is show in Figure 13. UMI_RDATA [7:0]=0x11 is read from 
0x00004. Again, the UMI_LOCK signal is not used to lock the system bus.

Figure 13. Single Access Read from User Master Interface

A single access read is initiated with the assertion of UMI_RDY with a valid read address on UMI_ADDR. 
UMI_RDY is the gating signal for valid address and is to be asserted for only one UMI_CLK cycle for every single 
read transaction. On the next cycle, UMI_ACK is de-asserted. When the read data is ready at the UMI_RDATA 
ports, UMI_ACK is asserted by the UMI. UMI_ACK is a synchronous signal and stays asserted after the single read 
is completed. UMI_ACK will go low during the transfer for two cycles in synchronous mode and 6-7 cycles in asyn-
chronous mode at best conditions. 

In case of an ERROR or RETRY response from the system bus, UMI_ERR or UMI_RETRY will be asserted one 
cycle before UMI_ACK goes high. UMI_ERR and UMI_RETRY will be de-asserted once UMI_ACK goes low again 
at the onset of the next transaction. 
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Consecutive signal reads may be performed with the assertion of UMI_RDY along with the new address. 
UMI_WR_N is to be de-asserted for the entire period of the transaction. On the next UMI_CLK with UMI_RDY high, 
UMI_ACK is de-asserted. UMI_ACK is re-asserted when the transaction is complete and ready for the next trans-
action. Signal UMI_RDY should only be high for one UMI_CLK cycle.

UMI Burst Access
Burst access is initiated by asserting the UMI_BURST signal along with UMI_WR_N. The UMI handles bursts that 
are exactly four beats deep. It employs a 4-beat deep FIFO that is 36 bits wide. It handles and generates burst 
writes and reads that are four deep regardless of the size of the bus chosen by UMI_SIZE. All address and data 
mapping is retained across the master interface.

For a write burst, when UMI_ACK is high, a high on UMI_WR_N, UMI_RDY and UMI_BURST for one cycle will 
result in an exact 4-beat burst write transfer. UMI_ACK will go low after this cycle until the transfer is finished. The 
UMI_ADDR and the first of the 4-burst data on UMI_WDATA have to be valid for this cycle. The UMI_WR_N and 
UMI_ADDR/UMI_SIZE may be valid for only this one cycle. However, UMI_RDY has to be high for three more 
cycles. Note that it is not necessary for UMI_RDY to be high for four continuous cycles and there could be lows in 
between, but UMI_BURST must be high during this period. If UMI_BURST is de-asserted before the fourth high on 
UMI_RDY, UMI_ERR will be asserted one or more cycles before UMI_ACK is asserted and the burst transfer is 
aborted. One cycle before UMI_ACK goes high again, the UMI_ERR or UMI_RETRY may also go high if the trans-
fer gets ERROR or RETRY response from the slave or the master interface loses mastership during the 4-beat 
transfer. UMI_ACK will go low before going high again for six cycles in synchronous mode and 10-11 cycles in 
asynchronous mode at best conditions. Figure 14 illustrates an 8-bit wide data 4-beat UMI burst write cycle.

Figure 14. UMI BURST WRITE

A read burst access is initiated with the assertion of input high on UMI_RDY and UMI_BURST and input low on 
UMI_WR_N for one cycle. This results in a 4-beat (4-byte, 4-halfword or 4-word) burst read transfer. UMI_ACK will 
go low after this cycle. The UMI_ADDR/UMI_SIZE must be valid for this cycle, too, and the UMI_ADDR is the 
beginning address for four data reads. There may be a wrap operation on burst address calculation. The transfer 
finishes after UMI_ACK goes high again for four more active cycles, which may not be continuous four cycles. One 
of the four read data on UMI_RDATA is valid for each active cycle of UMI_ACK. Each of the four active cycles termi-
nates after a cycle of high on UMI_RDY. Note that it is possible for UMI_ACK to be low between active cycles due 
to burst FIFO operation. It is necessary for UMI_RDY to be high for three cycles during UMI_ACK high, but 
UMI_BURST has to be always high until the third active cycle. If UMI_BURST is de-asserted before the third active 
cycle, UMI_ERR will be asserted one or more cycles before UMI_ACK is asserted and the burst transfer is aborted. 
UMI_ACK will go low before going high again for three cycles in synchronous mode and eight to nine cycles in 
asynchronous mode at best conditions. Figure 15 illustrates an 8-bit wide data 4-beat UMI burst read cycle.
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Figure 15. UMI Burst Read

Note that in both Figure 14 and Figure 15:

• The first write/read access is to 0x00004 (UMI_W/RDATA [7:0]= 0x11). 

• The second write/read access is to 0x00005 (UMI_W/RDATA [7:0]= 0x22).

• The third write/read access is to 0x00006 (UMI_W/RDATA [7:0]= 0x33).

• The fourth write/read access is to 0x00007 (UMI_W/RDATA [7:0]= 0x44). 

User Slave Interface (USI)
The USI allows the implementation of a slave peripheral in FPGA design. Through the USI, the FPGA design 
responds to any master peripherals on the system bus, as long as the transaction address falls within the USI 
address range (see Table 2). The system bus USI includes the signals listed in Table 15. 

Table 15. USI Interface Signals 

Signal Type Description

USI_CLK I

User slave interface clock. This clock will only clock the USI. A domain transfer will occur 
from the USI to the system bus (HCLK) in asynchronous mode. The user slave interface 
and the system bus can be made synchronous through an ispLEVER IPexpress option 
(synchronous mode). A frequency preference on this signal will constrain all of the inputs 
and outputs of the USI.

USI_RST_N I
This active-low reset resets all of the controls in the user slave interface. This should be 
pulsed once before any transactions can occur to the USI. This is typically connected to 
the same reset as the GSR and pulsed at power-up.

USI_WDATA[35:0] O

36-bit write data from the system bus. This data bus is oriented with bits 35:32 used for 
parity while bits 31:0 are used for data. Parity is not calculated by any of the peripherals on 
the system bus; it is only carried. The MSb and LSb will be based on the driving master. 
For 32-bit access, bits 31:0 are used. For 16-bit access, bits 15:0 are used. The same 
data on 15:0 will be present on 31:16 as well. For 8-bit access bits 7:0 are used and the 
same data will be present on D(31:24), D(23:16), and D(15:8) as well.

USI_RDATA[35:0] I

36-bit read data bus to system bus. This data bus is oriented with bits 35:32 used for parity 
while bits 31:0 are used for data. Parity is not calculated or checked by any of the periph-
erals on the system bus; it is only carried. The MSb and LSb must be selected based on 
the accepting master and application. For 32-bit access, bits 31:0 are used. For smaller 
than 32-bit transfers the data must be replicated on all byte lanes. For 16-bit access, bits 
15:0 and 31:16 are used. For 8-bit access, bits 7:0, 15:8, 23:16, and 31:24 are used with 
the same read data on all bytes.

USI_ADDR[17:0] O This 18-bit address bus provides the address where a slave transaction will operate. Bit 17 
of the USI_ADDR bus is the MSb while bit 0 is the LSb. 

USI_WR_N O
Indicates whether the current transaction is a read or a write. 1 indicates a write transac-
tion and the USI_WDATA should be captured. 0 indicates a read transaction and data 
should be placed on USI_RDATA.
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User Slave Transfer Errors
The user logic slave interface responds with a transfer error to the system bus under the following circumstances 
(this is an internally generated error from the USI and is separate from the USI_ERR signal. The resulting error to 
the master interface will be either a MPI_RETRY or UMI_RETRY for the MPI and UMI.):

• USI_ERR is high during the transaction.

• USI_RST_N is low during the transaction.

• The device is in bitstream configuration.

• The address does not conform to the USI_SIZE specified. The setting for USI_SIZE will dictate the granularity of 
the address available from the USI. If USI_SIZE is selected for 8-bit mode, then all addresses can be selected. If 
USI_SIZE is selected for 16-bit (word) mode, then only addresses on word boundaries can be selected. For 
example addresses 0x00000, 0x00002, 0x00004, etc. are valid addresses. 0x00001, 0x00003, 0x00005, etc. are 
not valid addresses for word accesses. The same holds true for 32-bit (double word) mode: 0x00000, 0x00004, 
0x00008, etc. are valid while 0x00001, 0x00002, 0x00003, 0x00005, 0x00006, 0x00007, 0x00009, etc. are not 
valid.

USI Single Access
A typical operation of a 32-bit data single access write transaction is illustrated in Figure 16. The USI_WR_N signal 
goes high to indicate that a write is taking place. The synchronous signal USI_RDY signal indicates the availability 
of valid address and data on the USI_ADDR and USI_WDATA ports, respectively. The USI inserts additional wait 
states until the user asserts the USI_ACK signal. For write operations, if the data received by the slave interface 
can be accepted by the user slave in one cycle, it is acceptable to leave USI_ACK asserted continuously during 
USI_WR_N high (write operation). If the USI takes more than one USI_CLK cycle to terminate the transaction, then 
USI_ACK should be driven high when the transaction is complete.

Figure 16. Single Access Write at USI

USI_SIZE[1:0] O
Transfer size ([1:0]: 10-double word, 10-word, 00-byte, 11-invalid). Indicates the size of the 
current transaction. For a 32-bit transaction all of the data bits 31:0 will be valid. For 16-bit 
transaction only bits 15:0 will be valid. For 8-bit data only bits 7:0 will be valid. 

USI_ERR I Active-high error response from the user to the USI when data size is not consistent with 
USI_SIZE, or the address on the USI_ADDR is out of range for the application.

USI_ACK I
Active-high acknowledge for read operations. User drives USI_ACK high to terminate the 
transaction. Signal USI_ACK is passed through the system bus to eventually terminate the 
transaction from the driving master.

USI_RDY O Active-high ready response from the USI, for either read or write transactions. Signal 
USI_RDY goes high when an address is ready on USI_ADDR. 

USI_RETRY I Signal available for the user to drive when a transaction is not ready to be processed. This 
retry signal is then sent to the originating master interface.

USI_IRQ I Active-high interrupt pin to indicate an interrupt to the system bus. This signal will map to 
the interrupt cause register USER_SLAVE bit (0x00010 bit 6).

Table 15. USI Interface Signals (Continued)

Signal Type Description
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A typical operation of a 32-bit data single access read transaction is illustrated in Figure 17 The USI_WR_N signal 
is low to indicate that a read is taking place. The synchronous USI_RDY signal indicates the availability of valid 
address on the USI_ADDR. The user must then respond with read data on the USI_RDATA bus and assert 
USI_ACK. The USI inserts additional wait states until the user asserts the USI_ACK signal.

Figure 17. Single Access Read at USI

In both Figure 16 and Figure 17, address 0x08000 is accessed, and USI_W/R_DATA[31:0] =0x88888888.

USI Burst Access
Burst accesses from MPI or UMI are treated similar to single accesses. There is no burst FIFO in the USI and thus 
all burst accesses are handled as back-to-back signal accesses with wait states. It is possible for the slave to han-
dle bursts of user design defined lengths. During a burst access the USI_ADDR bus will increment with each 
USI_RDY high following a USI_ACK high cycle during the burst transfer. Figure 18 shows a 32-bit data USI 4-beat 
burst write access, whereas Figure 19 illustrates a 32-bit data USI 4-beat burst read access.

Figure 18. 4-beat USI Burst Write

Figure 19. 4-beat USI Burst Read

Note that in both Figure 18 and Figure 19:

• The first write/read access is to 0x08000 (USI_W/RDATA [31:0]= 0x88888888). 

• The second write/read access is to 0x08004 (USI_W/RDATA [31:0]= 0x44444444).

• The third write/read access is to 0x08008 (USI_W/RDATA [31:0]= 0xCCCCCCCC).

• The fourth write/read access is to 0x0800C (USI_W/RDATA [31:0]= 0x22222222). 
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PCS Interface
The system bus PCS interface is a slave interface. The details and protocol of the PCS interface are specific to the 
LatticeSC device. The PCS interface supports 8-bit and 32-bit system bus master (MPI, UMI) data accesses.

PCS Interface Signals
Up to eight possible PCS interfaces can be generated on a system bus in ispLEVER IPexpress. This corresponds 
to the eight possible different PCS quad locations on the largest LatticeSC device. Each system bus PCS interface 
connects to a unique PCS quad in the LatticeSC device. The base address of each PCS is used in defining the 
PCS interface port names, as illustrated in Table 16. On smaller LatticeSC devices, not all PCS interfaces are avail-
able. Please refer to the LatticeSC/M Family flexiPCS Data Sheet for information on the number of PCS quads 
available for a given die size and package combination. The PCS address range is defined in Table 2.

Table 16. PCS Interfaces on the System Bus

Enabling multi-device alignment under the system bus PCS section of ispLEVER IPexpress also creates the multi-
chip alignment (MCA) inputs (mca_clk_p[12]_in, and mca_done_in) and outputs (mca_clk_p[12]_out and 
mca_done_out). The MCA inputs are driven by another LatticeSC chip. The MCA outputs drive another LatticeSC 
chip. These I/O have no system bus function and are used when PCS multi-device alignment is desired. Please 
refer to the LatticeSC/M Family flexiPCS Data Sheet for more information on multi-device alignment.

PCS Interrupts
Both left and right PCS quads can generate interrupts to the system bus. Since a PCS interrupt can be generated 
from any of the eight possible PCS quads, inter-quad interface register 0x3EF0B (see Table 17) contains one inter-
rupt bit for every PCS quad location. When any of the bits in 0x3EF0B is set as a result of a PCS interrupt, the 
interrupt is passed to the system bus via bit 1 of 0x00010 (PCS interrupt bit in interrupt cause register). The inter-
rupt can then be sent to an output interrupt (MPI or USER as discussed in the System Bus Interrupts section of this 
document). In the reverse direction, when an output interrupt is detected, a read access of 0x00010 showing a 1 on 
bit 1 indicates a PCS interrupt, and a read access of 0x3EF0B indicates which PCS quad (could be more than one) 
initiated the interrupt. Furthermore, PCS quad interface register 0x80 can be read to determine if any channel inter-
face register(s) on a given quad channel initiated the interrupt. More information on quad interface register 0x80, as 
well as quad and channel interface interrupt registers can be found in the Register Map section of the LatticeSC/M 
Family flexiPCS Data Sheet. 

Table 17. PCS Interrupt Source Register 0x3EF0B

PCS Quad
Location

PCS Base 
Address in HEX Device Side

System Bus Interface Ports

PCS -> System Bus System Bus -> PCS

360 36000 Left pcs360_in[16:0] pcs360_out[44:0]

361 36100 Left pcs361_in[16:0] pcs361_out[44:0]

362 36200 Left pcs362_in[16:0] pcs362_out[44:0]

363 36300 Left pcs363_in[16:0] pcs363_out[44:0]

3E0 3E000 Right pcs3E0_in[16:0] pcs3E0_out[44:0]

3E1 3E100 Right pcs3E1_in[16:0] pcs3E1_out[44:0]

3E2 3E200 Right pcs3E2_in[16:0] pcs3E2_out[44:0]

3E3 3E300 Right pcs3E3_in[16:0] pcs3E3_out[44:0]

Bit Position Bit 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7

PCS Quad Source 
of Interrupt

360 361 362 363 3E0 3E1 3E2 3E3

Left Right

www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029


25

Lattice Semiconductor LatticeSC MPI/System Bus

SMI Interface
The SMI (Serial Management Interface) peripheral on the LatticeSC system bus allows any master on the bus to 
access any element associated with an SMI slave. SMI slaves include LatticeSC PLLs, DLLs (with built-in SMI 
interfaces), in addition to user-defined control/status registers in the FPGA. 

The SMI address range is defined in Table 2. There are a total of 64 possible SMI peripherals. Each peripheral cor-
responds to one of 64 base addresses in the range (0x00400-0x007F0). Each interface targets 16 bytes (128 bits) 
of memory. For example, the interface associated with base address 0x00410 targets addresses 0x00410 to 
0x0041F. Note that 0x00400 is the default base address for all PLLs and DLLs in the LatticeSC device. This base 
address can be modified by changing the SMI_OFFSET attribute. For simulation, SMI_OFFSET is assigned via a 
parameter line. For Map, Place and Route, SMI_OFFSET is assigned via a preference line. 

For example, a PLL of type EHXPLLA and module name MYPLL is generated in IPexpress. The top level of a Ver-
ilog design has an instance name PLL1 for MYPLL. 

To assign an SMI_OFFSET of 0x420 (base address=0x00420) to PLL1 for simulation, the following line is added in 
the Verilog design:

defparam PLL1.MYPLL_0_0.SMI_OFFSET= 12’h420;

To assign an SMI_OFFSET of 0x420 to PLL1 for Map, Place and Route, the following line is added in the Map, 
Place and Route preference file:

ASIC “PLL1/MYPLL_0_0” TYPE “EHXPLLA” SMI_OFFSET=”0x420”;

SMI Interface Signals
Table 18 shows the SMI signals generated as part of the system bus I/Os. Note that, because base address 
0x00400 is the default base address for PLLs and DLLs, there is no read data port for that interface.

Table 18. SMI Interface Signals

Name I/O Description

SMI_CLK O SMI Clock. This clock runs at 1/4 the frequency of HCLK.

SMI_WR O Active-high dedicated SMI write signal

SMI_RD O Active-high dedicated SMI read signal

SMI_RST_N O SMI active-low reset. This reset signal is derived from the system bus reset 
(SYSBUS_RST_N).

SMI_WDATA O SMI Data Write signal. This signal is broadcast to all SMI peripherals.

SMI_RDATA_0XNN0 I

This is the SMI read data signal corresponding to interface 0x00NN0. NN can 
have any value from 41 to 7F, corresponding to one of 63 possible SMI read 
interfaces (there is no read port for interface 0x00400). Therefore, there could 
be up to 63 possible SMI read data ports on the SMI interface.

SMI_ADDR [9:0] O

SMI address. Since the SMI address range is from 0x00400 to 0x007FF, this 
corresponds 1024 different byte addresses. Hence, the SMI_ADDR only needs 
to be 10 bits wide. 

SMI_ADDR= 0x00X corresponds to base 0x0040X in system bus address 
range.

SMI_ADDR= 0x01X corresponds to base 0x0041X in system bus address 
range.
.
.
.
SMI_ADDR= 0x3FX corresponds to base 0x007FX in system bus address 
range.

Where X= is in the range (0-F)
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SMI Single Beat Data Transfers
Figure 20 illustrates an SMI write transfer, whereas Figure 21 shows an SMI read transfer. The SMI_CLK is 
sourced from the system bus at a fourth of the frequency rate of HCLK. Each assertion on read/write strobes 
SMI_RD and SMI_WR will initiate a byte of data transfer (one bit per SMI_CLK cycle). SMI_ADDR[3:0] determines 
which of the 16 bytes of the targeted MSI interface is being accessed. 

To ensure zero hold time, SMI_RD, SMI_WR, and SMI_WDATA are synchronized to the falling edge of SMI_CLK. 

As shown in Figure 20, a byte write cycle starts with the assertion of a single cycle SMI_WR pulse on the falling 
edge of SMI_CLK along with the first SMI_WDATA bit (D00) to be written. The remaining data bits (D01 to D07) will 
then be written on each subsequent falling edge of SMI_CLK.

As shown in Figure 21, a byte read cycle starts with the assertion of a single cycle SMI_RD pulse on the falling 
edge of SMI_CLK. The first bit of SMI_RDATA_0XNN0 (D00) is expected at the following rising edge. The remain-
ing data bits (D01 to D07) will then be received on each subsequent rising edge of SMI_CLK.

Note that, because SMI_CLK is four times slower than HCLK, and the SMI interface only transfers one bit of data 
per SMI_CLK cycle, MPI and UMI accesses to SMI through the system bus will have a considerably longer latency 
than accesses to other slave interfaces. For example, one system bus simulation shows that with MPI in synchro-
nous mode, the system bus takes 46 MPI clock cycles to complete an SMI read access. Therefore, the timeout 
parameter of the PowerPC bus needs to be programmed with the large SMI latency in perspective. 

Figure 20. SMI Write Timing Diagram

Figure 21. SMI Read Timing Diagram

SMI Burst Access
Burst accesses from a master are treated similar to single accesses. All burst accesses are handled as back-to-
back signal accesses. 

Direct FPGA Access (DFA) Interface
The LatticeSC device allows for the MPI interface to directly access a DFA controller that the user can implement in 
FPGA logic. Most of the latency through the system bus is eliminated in this mode, as most of the system bus logic 
is bypassed to provide direct access from the MPI to the DFA interface. The DFA controller acts as a slave to the 
MPI. An ispLEVER IPexpress option creates the DFA interface as the system bus model is being configured. Cre-
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ating the DFA interface also results in the creation of the DFA ports as part of the system bus model. Creating a 
DFA interface is only possible once an MPI interface has already been enabled (also in ispLEVER IPexpress). The 
DFA data bus size reflects that of the MPI. 

DFA Interface Signals
Table 19 shows the DFA signals generated as part of the system bus I/Os. 

Externally the MPI implements a 36-bit PowerPC bus slave, which internally drives the DFA as a master. Data bus 
width is automatically generated as 8 bits, 16 bits or 32 bits with parity of 1, 2 or 4 bits, respectively depending on 
how the MPI was configured. 

Table 19. DFA Interface Signals 

Name I/O Description

DFA_TSIZ[0:1] O Transfer size ([0:1]: 00-double word, 10-word, 01-byte). These ports select the size of 
the DFA data transaction. These ports reflect the condition of MPI_TSIZ[0:1].

DFA_WR_N O

Transfer type (0-write, 1-read). This signal indicates to the DFA controller whether the 
transaction initiated by the MPI is a read or a write. If the transaction is a read, data will 
be provided to the MPI from the address specified. If the transaction is a write, data will 
be written to the DFA address specified by the MPI. This port reflects the condition of 
MPI_WR_N.

DFA_BURST O
Indicates that a burst transfer is in progress when low. This signal informs the DFA that 
the MPI is performing a burst transaction using the MPI burst pin. This port reflects the 
condition of MPI_BURST.

DFA_BDIP O
Burst Data In Progress. This signal from the MPI will go low on the first clock of data 
during a burst and go high on the last clock of data of the burst transfer. This port 
reflects the condition of MPI_BDIP.

DFA_STRB_N O This active low signal indicates the start of a transactions or the strobe. This port 
reflects the value of MPI_STRB_N.

DFA_CS0N/ DFA_CS1 O
DFA selects for active low (DFA_CS1) and active high (DFA_CS0N). Both of these chip 
selects must be active for the DFA controller logic to be selected (DFA_CS1=0, 
DFA_CS0N=1). These ports reflect the condition of MPI_CS0N/MPI_CS1.

DFA_ADDR[14:31] O
The PowerPC address bus is 32 bits wide. The LatticeSC devices only support 18 bits 
of address space. The LatticeSC uses the least significant bits of the PowerPC address 
space using address bits 14:31. These ports reflect the condition of MPI_ADDR[14:31].

DFA_WR_DATA[0:31] O

The DFA WR data bus can be up to 32 bits wide (depending on MPI configuration). Bit 0 
is the MSb and bit 31 is the LSb. For multi-byte transfers, the most significant byte has 
the lowest address. These ports reflect the condition of MPI_DATA[0:31] during a write 
cycle. 

DFA_RD_DATA[0:31] I

The DFA RD data bus can be up to 32 bits wide (depending on MPI configuration). Bit 0 
is the MSb and bit 31 is the LSb. For multi-byte transfers, the most significant byte has 
the lowest address. During a read data cycle, this bus is passed to MPI_DATA[0:31] as 
long as DFA_TRI_DATA=0.

DFA_RD_PARITY[0:3] I
Read Parity. Can be up to four bits wide (one bit per byte of data) depending on the MPI 
data bus size. Parity is passed to MPI_PAR[0:3] on a read access when 
DFA_TRI_DATA=0.

DFA_TRI_CTL I

This DFA signal controls the state of MPI_TA, MPI_TEA and MPI_RETRY on the MPI 
interface. When DFA_TRI_CTL is 1, these MPI outputs are tri-stated. When 
DFA_TRI_CTL is 0, DFA_TA, DFA_TEA, and DFA_RETRY are passed on to MPI_TA, 
MPI_TEA, and MPI_RETRY respectively. The FPGA DFA controller logic should always 
drive this signal to 0 during the data phase of a DFA access (DFA_TA=0).

DFA_TRI_DATA I

This DFA signal controls the state of MPI_DATA/MPI_PAR during a read access. When 
DFA_TRI_DATA is 1, MPI_DATA/MPI_PAR are always tri-stated during a read cycle. 
When DFA_TRI_DATA is 0, DFA_RD_DATA/DFA_RD_PARITY are passed on to 
MPI_DATA/MPI_PAR on a read cycle. DFA_TRI_DATA=0 should coincide with 
DFA_TA=0

DFA_TA I This active low signal indicates the transfer acknowledge from the DFA. This port is 
translated to the MPI_TA pin of the MPI as long as DFA_TRI_CTL=0. 
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Enabling the DFA Interface
In addition to enabling the creation of the DFA interface signals in ispLEVER IPexpress, the DFA interface needs to 
be enabled for both writing and reading accesses. This requires setting two parameters:

• MPI_DFA_EN bit (reg. 0x0000A, bit 7): Setting this bit to 1 allows the MPI interface logic to interpret 
MPI_CS1=0/MPI_CS0N=1 as a valid MPI interface selection (DFA access) in addition to 
MPI_CS1=1/MPI_CS0N=0 (system bus access). 

• MPI_CS0N/MPI_CS1N: Setting these MPI signals to 1 and 0 respectively serves two purposes. 
– Through the DFA_CS0N/DFA_CS1 interface outputs, this combination of values informs the FPGA DFA con-

troller that it is being accessed. 
– This combination of values enables the MPI logic to select data from the DFA interface during a read cycle 

(as opposed to selecting read data from the system bus logic when MPI_CS0N=0 and MPI_CS1=1).

Figure 22 illustrates from a logical standpoint (not actual hardware depiction) how the MPI, DFA and system bus 
data busses are affected by MPI_CS0N/MPI_CS1 and MPI_DFA_EN. Control signals are not shown in this figure 
for simplicity.

Figure 22. DFA/System Bus Data Selection

DFA Single Beat Data Transfers
Any data transfer on the DFA bus has four phases: arbitration, address, data, and termination. During the arbitra-
tion phase the MPI initiates the transaction with a DFA_STRB_N pulse. The DFA controller in the FPGA samples 

DFA_TEA I This active low signal indicates a transfer error acknowledge during the current transac-
tion. This port is translated to the MPI_TEA pin of the MPI as long as DFA_TRI_CTL=0.

DFA_RETRY I
Active-low request for processor to relinquish the bus and retry the cycle. Exception sig-
nal indicating the LatticeSC device is not ready to accept the requested transaction This 
port is translated to the MPI_RETRY pin of the MPI as long as DFA_TRI_CTL=0.

Table 19. DFA Interface Signals (Continued)

Name I/O Description

01234567

LatticeSC

PowerPC

MPI

System Bus

FPGA

MPI_CS1

MPI_CS0N

MPI_DATA

SB_SEL

SB_SEL

DFA_SEL

DFA_SEL

z

z

DFA_RD_DATA

DFA_WR_DATA

SB_WR_DATA

SB_RD_DATA

MPI_DFA_EN

SB reg: 0x0000A
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the address and control inputs during the address phase, receives or provides data and asserts transfer acknowl-
edge during the data phase, and de-assert signals during the termination phase. Figure 23 shows the bus timing 
for an 8-bit wide data, single beat write transfer. Figure 24 shows the DFA bus timing for an 8-bit wide data, single 
beat read transfer. Both figures access address 0x00000 (DATA [0:7]=0x11).

Figure 23. DFA Single Beat Write Data Transfer Timing

Figure 24. DFA Single Beat Read Data Transfer Timing

DFA Burst Access
DFA burst accesses are similar to MPI burst accesses, except that DFA_BURST and DFA_BDIP are now outputs of 
the DFA interface (they reflect the state of MPI_BURST and MPI_BDIP respectively). DFA_TRI_CTL and 
DFA_TRI_DATA are also driven by the FPGA DFA logic as in the case of DFA single accesses.

System Bus Memory Map
Table 20 describes the internal register map within the system bus. Memory maps for a specific block, such as 
PCS, are found in the block-specific data sheet. The system bus memory map is structured with bit 0 as the MSb to 
match the PowerPC/MPI bus orientation shown in Table 7. All power-up default values are 0x0 unless otherwise 
specified.

10

ffff3 00000 ffff3

11

00

KLC_IPM

N0SC_AFD

1SC_AFD

ZIST_AFD 10

TSRUB_AFD

PISB_AFD

N_BRTS_AFD

RDDA_AFD ffff3 00000 ffff3

N_RW_AFD

ATAD_WR_AFD 11

ATAD_IRT_AFD

ATAD_DR_AFD 00

YTIRAP_DR_AFD

LTC_IRT_AFD

AT_AFD

AET_AFD

YRTER_AFD

10

ffff3 00000 ffff3

11

00 11 00

KLC_IPM

N0SC_AFD

1SC_AFD

ZIST_AFD 10

TSRUB_AFD

PISB_AFD

N_BRTS_AFD

RDDA_AFD ffff3 00000 ffff3

N_RW_AFD

ATAD_WR_AFD 11

ATAD_IRT_AFD

ATAD_DR_AFD 00 11 00

YTIRAP_DR_AFD

LTC_IRT_AFD

AT_AFD

AET_AFD

YRTER_AFD
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Table 20. System Bus Register Map

Absolute 
Address

Type R=Read 
W=Write Bits Name Description

0x00000 - 
0x00003 R 0:31 DEVICE_ID

32-Bit Manufacturer and Device ID Code: The manufacturer 
identification code register contains a unique code for each 
LatticeSC device in the family. The code is comprised of: 

• ID[0:11]: This is company identification provided by JEDEC. 
The value for this field is always 0xEA8. 

• ID[12:19]: Size Identification. The value is the binary num-
ber of columns of CIB/PLC in the device. As an example, the 
5S25 device has 72 columns of CIB/PLC so its size identifi-
cation is 0x48. Refer to the LatticeSC/M Family Data Sheet 
for the full list of size identification values for different Lattice-
SC devices. 

• ID[20:23]:Reserved. 

• ID[24:27]: Series Identification. LatticeSC is 0x5ID

• [28:31]: Reserved to 0x0. 

For example, the 5S25 part ID CODE is (ID[0:31]): 5S25 (72 
columns): 0xEA848X50 (X=don’t Care).

The system bus simulation model will always show a 5S25 
device ID. Manufactured devices will have the proper device 
ID as part of the silicon. 

0x00004 - 
0x00007 R/W 0:31 SCRATCH_PAD 32-bit scratchpad register. Free register used for debugging 

purposes.

0x00008-
0x0000A R/W Control Registers

0x00008

R/W 0:1 RDBK_SIZE

These two bits specify the number of valid bytes in the read 
back data register (0x00018) during a readback operation. 
[0:1]:

• 00 - 1 byte 
• 10 - 2 bytes 
• 01 - 4 bytes

R/W 2 MPI_USR_ENABLE

Active high. Enables the MPI interface to the user. Used to 
keep the MPI available during a reconfiguration process. Dur-
ing reconfiguration, the mode pins are not sampled to check 
for MPC mode. Set this bit before reconfiguration to keep MPI 
available.

R/W 3 REPEAT_RDBK
Active high. Inhibits auto-increment of the readback address 
(0x00014) when the readback data register (0x00018) is 
read.

R/W 4 SYS_RD_CFG Active-high. Initializes the readback logic.

5 Unused

R/W 6 UMI_RST

Active high. Asserts system bus reset. Can only be set by 
user master. Writing to this register bit is only active if “Sys-
tembus Reset by User Master” is set in the IPexpress GUI 
for system bus.

R/W 7 MPI_RST
Active high. Asserts system bus reset. Can only be set by 
MPI. Writing to this register bit is only active if “Systembus 
Reset by MPI” is set in the IPexpress GUI for system bus.

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
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0x00009

R/W 0 Reserved

R/W 1 UMI_LOCK
Active high, locks the internal system bus for use by the UMII. 
Used for multi-cycle operations that must retain bus owner-
ship. Only the UMI can write this bit.

R/W 2 MPI_LOCK
Active high, locks the internal system bus for use by the MPI. 
Used for multi-cycle operations that must retain bus owner-
ship. Only the MPI can write this bit.

3 Unused

R/W 4 PRGM_UMI

UMI configuration request. Active high, forces reconfiguration 
of the FPGA logic using the mode specified on the MODE 
pins during initial power up. Has to be released before send-
ing the bitstream.

R/W 5 PRGM_MPI

MPI configuration request. Active high, forces reconfiguration 
of the FPGA logic using the mode specified on the MODE 
pins during initial power up. Has to be released before send-
ing the bitstream.

R/W 6 SYS_DAISY Enables bitstream daisy chaining when configuring more 
than one device via MPI.

R/W 7 SYS_GSR Active high, asserts the global set/reset.

0x0000A

R/W 0:3 EBR_EXP For pre-configuration usage of these bits, see TN1080, Lattic-
eSC sysCONFIG Usage Guide.

4 Unused

5 MPI_PAR_CHK Enables MPI to check parity errors for write transfers if MPI 
parity bus is enabled

R/W 6 Reserved. Must be written to ‘0’.

R/W 7 MPI_DFA_EN When set to 1, this bit enables any fabric DFA controller to 
use the MPI outputs pads. 

0x0000B Unused

Table 20. System Bus Register Map

Absolute 
Address

Type R=Read 
W=Write Bits Name Description

www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
www.latticesemi.com/dynamic/view_document.cfm?document_id=19022
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0x0000C-
0x0000D R Status Registers

0x0000C

R 0:1 ERR_FLAG

In the event of an error during device configuration these bits 
will indicate the nature of the error. 
[0:1]: 
• 00 - no error 
• 01 - checksum error indicates one or more corrupt bits in 
bitstream
• 10 - device ID error indicates bitstream does not match tar-
get 
• 11 - framing/alignment error. Data bits may be reversed.

R 2 INIT_N Reflects the state of the INIT I/O pad.

R 3 DONE Reflects the state of the DONE I/O pad.

R 4 CFG_DATA_LOST
Indicates that some initialization data was lost because con-
figuration encountered long wait states or too many retries 
when initializing EBRs/ASB

R 5:6 CFG_BUSI_ERR

If an internal system bus error occurs during configuration the 
error is captured in these two bits. The address of the first 
error in captured in the bus error address register (0x00024). 
[bit5 bit6]: 
00 - no errors
01 - invalid response code
10 - one error occurred
11 - multiple errors occurred

R 7 RDBK_AOR_ERR Active-high readback address out of range error alarm.

0x0000D

R 0:1 WDATA_SIZE Reflects the HSIZE [0:1] size during write transfers to the 
configuration data register

R 2 EBR_BIT_ERR A 1 indicates the bitstream of system bus configuration con-
tains errors in the initialization data for EBRs.

R 3 ASB_BIT_ERR A 1 indicates the bitstream of system bus configuration con-
tains errors in the initialization data for ASB.

4:5 Unused

R 6 RDATA_RDY Active-high indicates that data is pending in the readback 
data register (0x00018).

R 7 WDATA_ACK
Active-high indicates that the configuration logic is ready for 
data to be written into the configuration data register 
(0x0001C).

0x0000E - 
0x0000F Unused

Table 20. System Bus Register Map

Absolute 
Address

Type R=Read 
W=Write Bits Name Description
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0x00010

Interrupt Cause Register

0 Unused.

R 1 PCS_IRQ Active-high, interrupt request from the PCS interface. Write 1 
to clear this bit.

R 2 MPI_IRQ Active-high, interrupt request from the MPI. Write 1 to clear 
this bit.

R 3 CFG_ERR_IRQ Active-high, indicates that the ERR_FLAG bits in the status 
register were changed during device configuration.

R 4 CFG_DATA_IRQ Active-high, interrupt request from the configuration logic 
requesting another word/byte of data. Write 1 to clear this bit.

R 5 UMI_IRQ Active-high, interrupt request from the User Master interface 
(UMI_IRQ). Write 1 to clear this bit.

R 6 USI_IRQ Active-high, interrupt request from the User Slave interface 
(USI_IRQ). Write 1 to clear this bit.

R 7 USER_IRQ Active-high, interrupt request from the USR_IRQ_IN signal. 
Write 1 to clear this bit.

0x00011 Unused

0x00012

USER Interrupt Enable Register
(Only UMI can write to this register)

0

EN_IRQ_USER

Unused

R/W 1 Logic 1 enables the PCS interrupt bit from address 0x00010 
to generate an interrupt to the USR_IRQ_OUT port.

R/W 2 Logic 1 enables the MPI interrupt bit from address 0x00010 
to generate an interrupt to the USR_IRQ_OUT port.

R/W 3 Logic 1 enables the CFG_ERR interrupt bit from address 
0x00010 to generate an interrupt to the USR_IRQ_OUT port.

R/W 4
Logic 1 enables the CFG_DATA master interrupt bit from 
address 0x00010 to generate an interrupt to the 
USR_IRQ_OUT port.

R/W 5 Logic 1 enables the USER_MSTR interrupt bit from address 
0x00010 to generate an interrupt to the USR_IRQ_OUT port.

R/W 6 Logic 1 enables the USER_SLAVE interrupt bit from address 
0x00010 to generate an interrupt to the USR_IRQ_OUT port.

R/W 7 Logic 1 enables the USER_IRQ interrupt bit from address 
0x00010 to generate an interrupt to the USR_IRQ_OUT port.

Table 20. System Bus Register Map

Absolute 
Address

Type R=Read 
W=Write Bits Name Description
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0x00013

MPI Interrupt Enable Register
(Only MPI can write to this register)

R/W 0

EN_IRQ_MPI

Unused.

R/W 1 Logic 1 enables the PCS interrupt bit from address 0x00010 
to generate an interrupt to the MPI_IRQ_N pin.

R/W 2 Logic 1 enables the MPI interrupt bit from address 0x00010 
to generate an interrupt to the MPI_IRQ_N pin.

R/W 3 Logic 1 enables the CFG_ERR interrupt bit from address 
0x00010 to generate an interrupt to the MPI_IRQ_N pin.

R/W 4
Logic 1 enables the CFG_DATA master interrupt bit from 
address 0x00010 to generate an interrupt to the MPI_IRQ_N 
pin.

R/W 5 Logic 1 enables the USER_MSTR interrupt bit from address 
0x00010 to generate an interrupt to the MPI_IRQ_N pin.

R/W 6 Logic 1 enables the USER_SLAVE interrupt bit from address 
0x00010 to generate an interrupt to the MPI_IRQ_N pin.

R/W 7 Logic 1 enables the USER_IRQ interrupt bit from address 
0x00010 to generate an interrupt to the MPI_IRQ_N pin.

0x00014 - 
0x00017 R/W 0:13 CFG_RDBK_ADDR Configuration memory readback address register (14 bits). 

Bits [14:31] are reserved.

0x00018 - 
0x0001B R/W 0:31 CFG_RDBK_DATA Configuration memory readback data register

0x0001C - 
0x0001F R/W 0:31 CGG_DATA Configuration data register

0x00020 - 
0x00023 R 0:31 TRAP_ADDR

24-bit trap address register. Configuration trapped in the 
address bus is stored here when bitstream initialization for 
EBR/ASB is lost

0x00024 - 
0x00027 R 0:31 BUSI_ERR_ADDR

Bus error address register contains the address of the first 
configuration error. Indicated by the CFG_ERR bits of regis-
ter 0x0000C.

0x00028 - 
0x0002B R 0:31 READ_WORD1 Read Only Word #1. Read Only Register with content defined 

via IPexpress 

0x0002C - 
0x0002F R 0:31 READ_WORD2 Read Only Word #2. Read Only Register with content defined 

via IPexpress 

0x00030 - 
0x00033 R 0:31 READ_WORD3 Read Only Word #3. Read Only Register with content defined 

via IPexpress 

0x00034 - 
0x00037 R 0:31 READ_WORD4 Read Only Word #4. Read Only Register with content defined 

via IPexpress 

0x00038 - 
0x0003B R 0:31 READ_WORD5 Read Only Word #5. Read Only Register with content defined 

via IPexpress 

0x0003C - 
0x0003F R 0:31 READ_WORD6 Read Only Word #6. Read Only Register with content defined 

via IPexpress 

Table 20. System Bus Register Map

Absolute 
Address

Type R=Read 
W=Write Bits Name Description
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Creating the System Bus in HDL
IPexpress Flow
After creating a LatticeSC project in ispLEVER Project Navigator, one can start an IPexpress (ispLEVER IPex-
press) session by either selecting Tools-> IPexpress or by clicking on the ispLEVER IPexpress icon from the Tools 
Toolbar section. The ispLEVER IPexpress session can then be used to configure the system bus and generate an 
HDL description for synthesis and simulation purpose. This includes but is not limited to:

• Selecting a name for the system bus and a Project Path where the HDL output will be generated.

• Selecting the HDL output format (Verilog/VHDL).

• Customizing the desired master and slave interfaces (example: MPI, UMI, USI). 

• Setting general options.

• Enabling flexiPCS ports on the system bus and defining flexiPCS multi-quad and multi-chip alignment. Please 
refer to TN1145, LatticeSC flexiPCS/SERDES Design Guide for more information.

• Generating the output files.

Help on using ispLEVER IPexpress to configure a system bus module is available from within the ispLEVER Proj-
ect Navigator. 

System Bus Simulation Model
The HDL description for the System Bus that IPexpress generates includes a black box of a simulation model 
(SYSBUSA). A precompiled simulation model for SYSBUSA exists for every simulator supported by Lattice. The 
simulator should point to this model during simulation (either explicitly in a user script, or implicitly when the user 
creates and simulates a Verilog/VHDL design within Project Navigator). It will take about 15 microseconds for the 
the SYSBUSA simulation model to power-up in a simulation.

Autoconfig Files
Both the system bus and the flexiPCS use autoconfig files to initialize memory maps. IPexpress automatically gen-
erates the system bus autoconfig file based on flexiPCS multi-quad and multi-chip alignment selection. Please 
refer to TN1145, LatticeSC flexiPCS/SERDES Design Guide for more information on using the system bus auto-
config file.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

www.latticesemi.com/dynamic/view_document.cfm?document_id=23060
http://www.latticesemi.com/
www.latticesemi.com/dynamic/view_document.cfm?document_id=23060
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Revision History

February 2006

January 2007

Date Version Change Summary

01.0 Initial release.

August 2006 01.1 Translated all VHDL code to Verilog.

Incorporated actual “orcastra” JTAG model + driver.

01.2 Added section about SYSBUSA simulation model.

February 2007 01.3 Clarified MPI availability/size restrictions on certain die/package combi-
nations.

Added information on flexiPCS options in IPexpress.

Added information on autoconfig file.

April 2008 01.4 Removed information about internal oscillator option for System Bus 
clock source. 

Corrected UMI_PCS_ASYNC example. Source of System Bus clock is 
USER from OSCA block in sc_orcastra module, not internal oscillator.

April 2010 01.5 Appendix B, added link to LatticeSC design files page on the Lattice 
web site.
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Appendix A. PowerPC and LatticeSC MPI Pins Connections
The MPI interface on the system bus implements a synchronous slave interface to Motorola PowerPC860 bus with 
up to 32-bit data/4-bit parity. Figure 25 shows how the MPI interface is connected to the PowerPC bus to act as a 
bus slave. Table 21 shows the MPI data and address busses’ pin-to-pin connection to the PowerPC address and 
data busses. 

Figure 25. MPI Connection to PowerPC

Table 21. PowerPC and MPI DATA/ADDRESS Pin Connections 

PPC Address
LatticeSC MPI 
Address Pin PPC Data Pin

LatticeSC 
MPI Data Pin

31 31 0 0

30 30 1 1

29 29 2 2

28 28 3 3

27 27 4 4

26 26 5 5

25 25 6 6

24 24 7 7

23 23 8 8

22 22 9 9

21 21 10 10

20 20 11 11

19 19 12 12

18 18 13 13

17 17 14 14

16 16 15 15

15 15 16 16

PowerPC
Bus Controller MPI

PowerPC Bus

DP[0:m] D[0:n]

M[3:0]
MODE[3:0]

MPI_IRQ_N

MPI_RETRY

MPI_TEA

MPI_TA

IRQX

RETRY

MPI_CS0N/MPI_CS1

MPI_CLK

MPI_WR_N

MPI_ADDR[14:31]

TSIZ[0:1]

A[14:31]

System clock

RD/WR

BURST

TS

BDIP

MPI_TSIZ[0:1]

MPI_PAR[0:m] MPI_DATA[0:n]

MPI_STRB_N

MPI_BDIP

MPI_BURST

TEA

TA

MPC860
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14 14 17 17

13 NC 18 18

12 NC 19 19

11 NC 20 20

10 NC 21 21

9 NC 22 22

8 NC 23 23

7 NC 24 24

6 NC 25 25

5 NC 26 26

4 NC 27 27

3 NC 28 28

2 NC 29 29

1 NC 30 30

0 NC 31 31

Table 21. PowerPC and MPI DATA/ADDRESS Pin Connections (Continued)

PPC Address
LatticeSC MPI 
Address Pin PPC Data Pin

LatticeSC 
MPI Data Pin
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Appendix B. Generation and Simulation Examples
This section covers several examples of generating and simulating the system bus module. Each example involves 
one master and one slave interface. Note that all the examples below use 8-bit wide data read and write accesses. 
Table 22 lists each example covered, as well as a brief description for each. A compressed file containing all these 
examples is available on the Lattice web site by navigating to the LatticeSC product page and clicking on the 
Design Files link.

Table 22. List of System Bus Examples

Note that for each example above, the ModelSim® script files vcom_SC_top_SE.do and vcom_SC_top_OEM.do 
are used to compile and simulate the example with the SE and Lattice versions of ModelSim respectively, as later 
described in each example's simulation section. The scripts must be modified to point to the current ispLEVER 
installation directory. Find the line shown below in the ModelSim scripts and modify the path to the proper location 
based on your system.

set isplever_dir <isplever_root_dir>

Where <isplever_root_dir> is the path to the root directory of your ispLEVER software installation. 

Example: 

set isplever_dir C:/ispTools

MPI_USI_SYNC
The MPI_USI_SYNC example consists of a design with the following blocks:

• A system bus (systembus) with MPI and USI interfaces. The system bus is generated such that the USI is syn-
chronous to the system bus clock. 

• A sw_ctrlstat block to interface to the system bus USI interface. This block contains 4 R/W 8-bit wide user slave 
interface (USI) registers at addresses 0x00800, 0x08000, 0x10000 and 0x2FFFF respectively. 

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:

• A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

Example Name Master Slave Description

MPI_USI_SYNC MPI USI System bus is clocked by the MPI clock. USI synchronous to system bus.

MPI_USI_ASYNC MPI USI System is bus clocked by the MPI clock. USI asynchronous to system bus.

MPI_PCS MPI PCS System bus is clocked by the MPI clock. PCS in Gigabit Ethernet Mode. Demon-
strates interrupt from PCS to MPI.

MPI_DFA MPI DFA System bus is clocked by the MPI clock. Demonstrates interrupts from 
USR_IRQ_IN to MPI.

MPI_SMI MPI SMI System bus is clocked by the MPI clock. Also accesses the system bus read-
only registers.

UMI_SMI_SYNC UMI SMI System bus is clocked by the USER clock. UMI synchronous to system bus. 
Demonstrates interrupt from UMI_IRQ and USI_IRQ_IN to USR_IRQ_OUT.

UMI_PCS_ASYNC UMI PCS
System bus is clocked by the USER clock. The oscillator drives both the USER 
clock and the UMI clock. PCS runs auto-configuration file. PCS in Gigabit Ether-
net Mode. Demonstrates interrupt from PCS to UMI.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=175&sloc=01-01-00-40&source=sidebar
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• A top-level test bench (SC_top_tb) to stitch all the lower blocks together. 
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The features of the example are: 

• System bus clocked by MPI clock. 

• USI synchronous to system bus.

Figure 26 shows the design structure including both SC_top and SC_top_tb.

Figure 26. MPI_USI_SYNC Design Structure

MPI_USI_SYNC Directory Structure
Figure 27 shows the directory structure of the MPI_USI_SYNC project.

Figure 27. MPI_USI_SYNC Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.

• sw_ctrlstat.v: Verilog description of sw_ctrlstat

• registers.v: Verilog description of USI registers under sw_ctrlstat.

• SC_top.v: Verilog description of SC_top.

SC_top_tb

MPU
MPI

USI

sync_clk

usi_clk

0x00800

0x08000

Stimulus File:
MPU_IN.TXT

0x10000

0x2FFFF

SC_top

systembus

sw_ctrlstat
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The test bench directory contains the following test bench files:

• mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by compile/simulation do file

• mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_USI_SYNC 
To generate the system bus model, follow these steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to “MPI_USI_SYNC/src”.

• Click on “Customize” 

• In the new window:
– Enable the MPI Interface
– Set the MPI Bus Width to 8.
– Enable Parity on the MPI interface
– Set the system bus clock source to MPI.
– Enable the User_Slave Interface.
– Make the User Slave Synchronous to Systembus Clock

• Click on the “Generate” button (this will re-create systembus.v in “MPI_USI_SYNC /src”).

Running the MPI_USI_SYNC Simulation
To run the MPI_USI_SYNC simulation:

• Start an MTI ModelSim session.

• In ModelSim, change to the “MPI_USI_SYNC /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 28 will appear and the simulation will 
run for about 45µs. 
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Figure 28. ModelSim Waveform for MPI_USI_SYNC

Description of MPI_USI_SYNC Signals in the ModelSim Waveform 
The ModelSim waveform is divided into two sections:

• MPI signals, covering all the MPI signals at the SC_top interface

• USI signals

Description of the MPI_USI_SYNC Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the MPI Interface.

The simulation can be divided into the following phases:

• 0-20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20-25µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 28-41µs: the test bench reads the initial value for each of the USI registers defined (0x00800, 0x08000, 0x10000 
and 0x2FFFF). The test bench then writes a data value to each USI address, and reads it back. The initial value, 
and data written for each register is as follows:

– 0x00800: initial data[7:0]=0x50, written data[7:0]=0x88
– 0x08000: initial data[7:0]=0x22, written data[7:0]=0xAA
– 0x10000: initial data[7:0]=0x33, written data[7:0]=0xEE
– 0x2FFFF: initial data[7:0]=0xFF, written data[7:0]=0x99

Because the USI interface is synchronous to the system bus clock, the delay time from an active MPI_STRB_N to 
an active MPI_TA when reading USI 0x00800 register from the MPI is only about 89ns (on a 20ns MPI_CLK 
period). This is shown in Figure 29.
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Figure 29. MPI to USI read access for MPI_USI_SYNC

MPI_USI_ASYNC
The MPI_USI_ASYNC example consists of a design with the following blocks:

• A system bus (systembus) with MPI and USI interfaces. The system bus is generated such that the USI is not 
synchronous to the system bus clock. 

• A “sw_ctrlstat” block to interface to the system bus USI interface. This block contains 4 R/W 8-bit wide user slave 
interface (USI) registers at addresses 0x00800, 0x08000, 0x10000 and 0x2FFFF respectively. 

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purpose, a test bench is developed around SC_top with the following elements:

• A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together. 

The features of the example are: 

• System bus clocked by MPI clock.

• USI asynchronous to system bus. Clocked from test bench.

Figure 30 shows the design structure including both SC_top and SC_top_tb.
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Figure 30. MPI_USI_ASYNC Design Structure

MPI_USI_ASYNC Directory Structure
Figure 31 shows the directory structure of the MPI_USI_ASYNC project.

Figure 31. MPI_USI_ASYNC Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.

• sw_ctrlstat.v: Verilog description of sw_ctrlstat

• registers.v: Verilog description of USI registers under sw_ctrlstat.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

• mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of Modelsim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

SC_top_tb

MPU
MPI

USI

usi_clk

0x00800

0x08000

Stimulus File:
MPU_IN.TXT

0x10000

0x2FFFF

SC_top

systembus

sw_ctrlstat
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• wave.do: Waveform file called by compile/simulation do file

• mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_USI_ASYNC 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to 
“MPI_USI_ASYNC/src”.

• Click on “Customize” 

• In the new window:
– Enable the MPI Interface
– Set the MPI Bus Width to 8.
– Enable Parity on the MPI interface
– Set the system bus clock source to MPI.
– Enable the User Slave Interface.

• Click on the “Generate” button (this will re-create systembus.v in “MPI_USI_ASYNC /src”).

Running the MPI_USI_ASYNC Simulation
To run the MPI_USI_ASYNC simulation

• Start an MTI ModelSim session.

• In ModelSim, change to the “MPI_USI_ASYNC /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 32 should appear and the simulation 
should run for about 45µs. 
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Figure 32. ModelSim Waveform for MPI_USI_ASYNC

Description of MPI_USI_ASYNC Signals in the ModelSim Waveform 
The ModelSim waveform is divided into two sections:

• MPI Interface signals, covering all the MPI signals at the SC_top interface

• USI signals

Description of the MPI_USI_ASYNC Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the MPI Interface.

The simulation can be divided into the following phases:

• 0-20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20-25µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 28-41µs: the test bench reads the initial value for each of the USI registers defined (0x00800, 0x08000, 0x10000 
and 0x2FFFF). The test bench then writes a data value to each USI address, and reads it back. The initial value, 
and data written for each register is as follows:

– 0x00800: initial data[7:0]=0x50, written data[7:0]=0x88
– 0x08000: initial data[7:0]=0x22, written data[7:0]=0xAA
– 0x10000: initial data[7:0]=0x33, written data[7:0]=0xEE
– 0x2FFFF: initial data[7:0]=0xFF, written data[7:0]=0x99

Because the USI interface is asynchronous to the system bus clock, the delay time from an active MPI_IRQ to an 
active MPI_TA when reading USI 0x00800 register from the MPI is about 169ns (with a 20ns MPI_CLK and 
USI_CLK period). This is shown in Figure 33. This delay is about twice that of the MPI_USI_SYNC one shown in 
Figure 29. 
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Figure 33. MPI to USI Read Access for MPI_USI_ASYNC

MPI_PCS
The MPI_PCS example consists of a design with the following blocks:

• A system bus (systembus) with MPI and PCS interfaces. 

• A PCS block (PCS0) with channel 0 configured in Gigabit Ethernet mode. 

• A pattern generator (cjpat_gen), which reads data content from a distributed ROM (MYROM) and sends it to the 
TX FPGA data interface of PCS0. 

• A PLL block (PLLDIV2) used by the cjpat_gen block.

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purpose, a test bench is developed around SC_top with the following elements:

• A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together. The test bench connects the PCS0 
hdout* pins back to the hdin* pins to form an external loop-back connection (TX back to RX)

The features of the example are: 

• System bus clocked by MPI clock.

• PCS channel 0 generated in Gigabit Ethernet Mode. 
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• Demonstrates Interrupt from PCS to MPI. The interrupt is enabled when the link state machine of channel 0 
reaches a synchronized state.

Figure 34 shows the design structure including both SC_top and SC_top_tb.

Figure 34. MPI_PCS Design Structure

MPI_PCS Directory Structure
Figure 35 shows the directory structure of the MPI_PCS project.

Figure 35. MPI_PCS Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.

• PCS0.v: Verilog description of PCS0.

• cjpat_gen.v: Verilog description of cjpat_gen.

• PLLDIV2.v: Verilog description of PLLDIV2.

• MYROM.v: Verilog description of MYROM.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

SC_top_tb
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• mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by compile/simulation do file

• mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_PCS 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to “MPI_PCS/src”.

• Click on “Customize” 

• In the new window:
– Enable the MPI Interface
– Set the MPI Bus Width to 8.
– Enable Parity on the MPI interface
– Set the system bus clock source to MPI.
– Enable the PCS 360 Interface.

• Click on the “Generate” button (this will re-create systembus.v in “MPI_PCS /src”).

Running the MPI_PCS Simulation
To run the MPI_PCS simulation

• Start an MTI ModelSim session.

• In ModelSim, change to the “MPI_PCS /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 36 should appear and the simulation 
should run for about 120µs. 
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Figure 36. ModelSim Waveform for MPI_PCS

Description of MPI_PCS Signals in the ModelSim Waveform 
The ModelSim waveform is divided into four sections:

• Interrupt signals

• MPI signals

• PCS signals, including TX and RX

• System bus PCS interface

Description of the MPI_PCS Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:

• 0-20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20-24µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 24-26µs: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.



52

Lattice Semiconductor LatticeSC MPI/System Bus

• 26-37µs: the test bench configures the PCS0 block registers such that:
– Channel 0 is in Gigabit Ethernet Mode.
– CRC insertion is enabled for both TX and RX.
– As a result, the PCS0 interface clocks start toggling around 36µs. This enables the TX data generation from 

cjpat_gen to PCS0. Also, around 70µs, the PCS0 recovered data starts toggling properly. This data should 
be the receive equivalent of the TX data since the PCS0 block is in external loop-back.

• 90-91 µs: as part of the data flow into the TX direction, an error is inserted through the tx_er_0 signal. As a 
result, the error propagates to the rx_er_0 signal in the receive direction.

• 96-107 µs: this period of time shows how an interrupt from the PCS can be propagated to the MPI_IRQ_N out-
put. During this phase:

– Interrupts from the PCS to the MPI_IRQ_N output are enabled by writing data[0:7]=0x40 to 0x00013
– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no 

interrupts were received by the system bus.
– The PCS0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x8, indicating that the link 

state machine for channel 0 is synchronized.
– The PCS0 quad interface register 0x1C (0x3601C) is read. The value is data[0:7]=0x00, indicating that the 

interrupt enable bit corresponding to a synchronized link state machine for channel 0 is off.
– The PCS0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x00, indicating that the 

interrupt bit corresponding to a synchronized link state machine for channel 0 is off.
– The PCS0 quad interface register 0x1C (0x3601C) is written to data[0:7]=0x08. to turn on the interrupt 

enable bit corresponding to a synchronized link state machine for channel 0. This enables the interrupt from 
0x36085, bit 4, which asserts MPI_IRQ_N to a ‘0’ value.

– The PCS0 quad interface register 0x85(0x36085) is read. The value is data[0:7]=0x08, indicating that the 
interrupt bit corresponding to a synchronized link state machine for channel 0 is ON.

– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x40, indicating that an 
interrupt was received by the system bus from the PCS.

– Interrupts from the PCS to the MPI_IRQ_N output are disabled by writing data[0:7]=0x00 to 0x00013. This 
de-asserts MPI_IRQ_N to a ‘1’ value.

MPI_DFA
The MPI_DFA example consists of a design with the following blocks:

• System bus (systembus) with MPI and DFA interfaces. 

• DFA interface block (dfa_8bit). It allows DFA accesses to write to and read from a 256X8-distributed RAM 
(ram_dfa0_8bit). Note that the dfa_8bit is designed such that, when selected, it will:

– Respond normally to write and read accesses to ram_dfa0_8bit in the address range: 0x00000-0x000fd
– Respond with data[0:7]=0xfe, and an active low TEA (DFA_TEA/MPI_TEA) when address=0x000fe is read
– Respond with data[0:7]=0xff, and an active low RETRY (DFA_RETRY/MPI_RETRY) when address=0x000ff 

is read

• Top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:

• PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together.

The features of the example are: 

• System bus clocked by MPI clock. 
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• Demonstrates Interrupts from USR_IRQ_IN to MPI.

Figure 37 shows the design structure including both SC_top and SC_top_tb.

Figure 37. MPI_DFA Design Structure

MPI_DFA Directory Structure
Figure 38 shows the directory structure of the MPI_DFA project.

Figure 38. MPI_DFA Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.

• dfa_8bit.v: Verilog description of dfa_8bit.

• ram_dfa0_8bit.v: Verilog description of ram_dfa0_8bit.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

• mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

SC_top_tb
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The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by compile/simulation do file

• mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_DFA 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to “MPI_DFA/src”.

• Click on “Customize” 

• In the new window:
– Enable the MPI Interface
– Set the MPI Bus Width to 8.
– Enable Parity on the MPI interface
– Set the system bus clock source to MPI.
– Enable the DFA Interface.

• Click on the “Generate” button (this will re-create systembus.v in “MPI_DFA /src”).

Running the MPI_DFA Simulation
To run the MPI_DFA simulation

• Start an MTI ModelSim session.

• In ModelSim, change to the “MPI_DFA /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 39 should appear and the simulation 
should run for about 60µs. 
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Figure 39. ModelSim Waveform for MPI_DFA

Description of MPI_DFA Signals in the ModelSim Waveform 
The ModelSim waveform is divided into 4 sections

• Interrupt signals

• The MPI signals

• The DFA signals

• The Single Port RAM signals

Description of the MPI_DFA Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:
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• Initial values: MPI_CS0N=0,MPI_CS1=1, and system bus register 0x0000A contains 0x00. This will enable the 
MPI interface to select the system bus for both write and read accesses.

• 0-20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20-24µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 24-26µs: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.

• 26-34µs: this period of time shows how an interrupt from the USR_IRQ_IN can be propagated to the 
MPI_IRQ_N output. During this phase:

– Interrupts from USR_IRQ_IN to the MPI_IRQ_N output are enabled by writing data[0:7]=0x01 to 0x00013.
– A USR_IRQ_IN pulse is generated. This creates an interrupt to the system bus and asserts MPI_IRQ_N to a 

‘0’ value.
– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x01, indicating that an 

interrupts was received by the system bus from USR_IRQ_IN.
– The system bus interrupt cause register (0x00010) written to data[0:7]=0x01, to clear the interrupt bit from 

USR_IRQ_IN. This de-asserts MPI_IRQ_N to a ‘1’ value.
– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no 

more interrupts are received by the system bus.

• 37-40µs: the test bench reads the content of system bus register 0x0000A, writes data[0:7]=0x01 to it and reads 
back the value. The 0x01 value enables the DFA interface.

• 42µs: MPI_CS0N=1,MPI_CS1=0. At this point, MPI interface is selecting the DFA interface for both write and 
read accesses.

• 46-48µs: the test bench writes data[0:7]=0x11 DFA address 0x00000 and reads it back successfully

• 48-50µs: the test bench writes data[0:7]=0xfd DFA address 0x000fd and reads it back successfully

• 50-52µs: the test bench writes data[0:7]=0x00 DFA address 0x000fe and reads the address back. At that point, 
the DFA interface responds with MPI_TEA (active low) and data[0:7]=0xfe. This behavior reflects the proper 
operation of dfa_8bit.

• 52-54µs: the test bench writes data[0:7]=0x00 DFA address 0x000ff and reads the address back. At that point, 
the DFA interface responds with MPI_RETRY (active low) and data[0:7]=0xff. This behavior reflects the proper 
operation of dfa_8bit.

MPI_SMI
The MPI_SMI example consists of a design with the following blocks:

• A system bus (systembus) with MPI and SMI interfaces. 

• Two identical PLL (PLL1 with SMI offset 0x410, and PLL2 with SMI offset 0x420) to interface to the system bus 
SMI. 

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purpose, a test bench is developed around SC_top with the following elements:

• A PowerPC model (MPU) to connect to the MPI I/O of SC_top for MPI R/W accesses.

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together.
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The features of the example are: 

• system bus clocked by MPI clock. 

• system bus Read Only Registers are configured and read-back in test bench.

Figure 40 shows the design structure including both SC_top and SC_top_tb.

Figure 40. MPI_SMI Design Structure

MPI_SMI Directory Structure
Figure 41 shows the directory structure of the MPI_SMI project.

Figure 41. MPI_SMI Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v”: Verilog description of systembus. This file will be regenerated again using IPexpress.

• pll.v: Verilog PLL model for PLL1 and PLL2.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

• mpu.v: Verilog model of PowerPC interface block to connect to the MPI I/O of SC_top for MPI R/W accesses.

• SC_top_tb.v: Verilog model of top-level test bench.
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The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by compile/simulation do file

• mpu_in.txt: stimulus file for R/W transactions for the test bench mpu.v file

Generating System Bus for MPI_SMI 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to “MPI_SMI/src”.

• Click on “Customize” 

• In the new window:
– Enable the MPI Interface
– Set the MPI Bus Width to 8.
– Enable Parity on the MPI interface
– Set the system bus clock source to MPI.
– Enable the SMI Interface, and turn on both 0x410 and 0x420 read interfaces.
– Set the system bus Read Only Words values to:

- Read Only Word 1: 00101011001010100010100100101000
- Read Only Word 2: 00101111001011100010110100101100
- Read Only Word 3: 00110011001100100011000100110000
- Read Only Word 4: 00110111001101100011010100110100
- Read Only Word 5: 00111011001110100011100100111000
- Read Only Word 6: 00111111001111100011110100111100

This will set register addresses 0x00028-0x0003F to data values equal to the address values (e.g., content of 
address 0x00028 is data[7:0]=0x28, content of 0x0003F is data[7:0]=0x3F).

• Click on the “Generate” button (this will re-create systembus.v in “MPI_SMI /src”).

Running the MPI_SMI Simulation
To run the MPI_SMI simulation:

• Start an MTI ModelSim session.

• In ModelSim, change to the “MPI_SMI /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 42 should appear and the simulation 
should run for about 70µs. 
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Figure 42. ModelSim Waveform for MPI_SMI

Description of MPI_SMI Signals in the ModelSim Waveform 
The ModelSim waveform is divided into two sections:

• The MPI signals

• SMI, PLL1 and PLL2 section, covering the SMI signals and the PLL outputs

Description of the MPI_SMI Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the MPI Interface. The simulation can be divided into the following phases:

• 0 to 20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20 to 24µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 24 to 26µs: the test bench writes data[0:7]=0x11 to system bus scratch pad register 0x00004 and reads it back.

• 26 to 52µs: the test bench reads the six Read Only Words (0x00028-0x0003F). The values read on 
MPI_DATA[7:0] should be identical to MPI_ADDR for each of these read transactions

• 54 to 59µs: PLL1 is accessed via SMI by:
– Writing address 0x00410 to data[7:0] 0x04 (divide output by 2)
– Reading address 0x00410 
– Writing address 0x00410 to data[7:0] 0x1C (divide output by 8)
– Reading address 0x00410 
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• 59 to 65µs: PLL2 is accessed via SMI by:
– Writing address 0x00420 to data[7:0] 0x04 (divide output by 2)
– Reading address 0x00420 
– Writing address 0x00420 to data[7:0] 0x1C (divide output by 8)
– Reading address 0x00420 

UMI_SMI_SYNC
The UMI_SMI_SYNC example consists of a design with the following blocks:

• A system bus (systembus) with UMI and SMI interfaces. 

• Two identical PLL (PLL1 with SMI offset 0x410, and PLL2 with SMI offset 0x420) to interface to the system bus 
SMI. 

• An sc_orcastra block to interface between the UMI on the system bus and an external PC JTAG interface. The 
sc_orcastra block translates PC JTAG instructions to UMI format.

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:

• A JTAG_PC interface model to connect to the JTAG I/O of SC_top for PC JTAG accesses

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together.

The features of the example are: 

• System bus clocked by USR_CLK. 

• UMI synchronous to system bus. 

• Demonstrates Interrupt from UMI_IRQ and USI_IRQ_IN to USR_IRQ_OUT.

Figure 43 shows the design structure including both SC_top and SC_top_tb.

Note that the USR_CLK signal is used to clock the system bus HCLK. Also, the UMI_CLK is sourced from 
SYNC_CLK (HCLK). The UMI_IRQ, USI_IRQ_IN, and USR_IRQ_OUT are also brought to primary I/Os.
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Figure 43. UMI_SMI_SYNC Design Structure

UMI_SMI_SYNC Directory Structure
Figure 44 shows the directory structure of the UMI_SMI_SYNC project.

Figure 44. UMI_SMI_SYNC Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.

• sc_orcastra.v: Verilog description of sc_orcastra.

• pll.v: Verilog PLL model for PLL1 and PLL2.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

• JTAG_PC.v: Verilog model of JTAG_PC interface block to connect to the JTAG I/O of SC_top for JTAG accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:
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• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by vsim_SC_top.do

• jtag_in.txt: stimulus file for R/W transactions for the test bench JTAG_PC.v file

Generating System Bus for UMI_SMI_SYNC 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to 
“UMI_SMI_SYNC/src”.

• Click on “Customize” 

• In the new window:
– Enable the UMI Interface
– Set the UMI to synchronous mode (UMI Sync. To Systembus).
– Enable the SMI Interface, and turn on both 0x410 and 0x420 read interfaces.
– Set the system bus clock source to USER.

• Click on the “Generate” button (this will re-create systembus.v in “UMI_SMI_SYNC /src”).

Running the UMI_SMI_SYNC Simulation
To run the UMI_SMI_SYNC simulation

• Start an MTI ModelSim session.

• In ModelSim, change to the “UMI_SMI_SYNC /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 45 should appear and the simulation 
should run for about 85µs. 
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Figure 45. ModelSim Waveform for UMI_SMI_SYNC

Description of UMI_SMI_SYNC Signals in the ModelSim Waveform 
The ModelSim waveform is divided into four major sections:

• JTAG signals

• Interrupt signals

• UMI signals

• The SMI, PLL1 and PLL2 section, covering the SMI signals and the PLL outputs

Description of the UMI_SMI_SYNC Simulation Scenario
The read and write accesses to the different interfaces on the system bus are initiated by the “mpu_in.txt” file. A 
read or write command is reflected on the PC (and UMI) Interface. The simulation can be divided into the following 
phases:

• 0 to 20µs: the test bench waits for the LatticeSC chip and system bus to power-up. 

• 20 to 36µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 36 to 48µs: PLL1 is accessed via SMI by:
– Writing address 0x00410 to data[7:0] 0x04 (divide output by 2)
– Reading address 0x00410 
– Writing address 0x00410 to data[7:0] 0x1C (divide output by 8)
– Reading address 0x00410 

• 48 to 60µs: PLL2 is accessed via SMI by:
– Writing address 0x00420 to data[7:0] 0x04 (divide output by 2)
– Reading address 0x00420 
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– Writing address 0x00420 to data[7:0] 0x1C (divide output by 8)
– Reading address 0x00420 

• 60 to 68µs: The EN_IRQ_USER register (0x00012) is written with data[7:0]=0xA0, such that interrupts from both 
USR_IRQ_IN and UMI_IRQ are enabled to USR_IRQ_OUT.

• 68 to 75µs: this period of time shows how an interrupt from the USR_IRQ_IN can be propagated to the 
USR_IRQ_OUT output. During this phase:

– A USR_IRQ_IN pulse is generated. This creates an interrupt to the system bus and asserts USR_IRQ_OUT 
to a ‘1’ value.

– The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x80, indicating that an 
interrupts was received by the system bus from USR_IRQ_IN.

– The system bus interrupt cause register (0x00010) is written with data[0:7]=0x80, to clear the interrupt bit 
from USR_IRQ_IN. This de-asserts USR_IRQ_OUT to a ‘0’ value.

• 75 to 85µs: this period of time shows how an interrupt from the UMI_IRQ can be propagated to the 
USR_IRQ_OUT output. During this phase:

– A UMI_IRQ pulse is generated. This creates an interrupt to the system bus and asserts USR_IRQ_OUT to a 
‘1’ value.

– The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x20, indicating that an 
interrupts was received by the system bus from UMI_IRQ.

– The system bus interrupt cause register (0x00010) is written with data[0:7]=0x20, to clear the interrupt bit 
from UMI_IRQ. This de-asserts USR_IRQ_OUT to a ‘0’ value.

– The system bus interrupt cause register (0x00010) is read. The value is data[7:0]=0x00, indicating that no 
more interrupts are received by the system bus.

UMI_PCS_ASYNC
The UMI_PCS_ASYNC example consists of a design with the following blocks:

• A system bus (systembus) with UMI and PCS interfaces. 

• A sc_orcastra block to interface between the UMI on the system bus and an external PC JTAG interface. The 
sc_orcastra block translates PC instructions to UMI format.

• A PCS block (PCS0) configured in Gigabit Ethernet mode. 

• A pattern generator (cjpat_gen), which reads data content from a distributed ROM (MYROM) and sends it to the 
TX FPGA data interface of the PCS block. 

• A PLL block (PLLDIV2) used by the cjpat_gen block.

• A top-level design (SC_top) to stitch all the lower blocks together.

For simulation purposes, a test bench is developed around SC_top with the following elements:

• A JTAG_PC interface model to connect to the JTAG I/O of SC_top for JTAG accesses

• Drivers for all clocks and resets.

• An instance of SC_top with appropriate connections to top-level signals.

• A top-level test bench (SC_top_tb) to stitch all the lower blocks together. The test bench connects the PCS0 
hdout* pins back to the hdin* pins to form an external loop-back connection (TX back to RX)

The features of the example are: 

• System bus clocked by the USER clock input pin.

• OSCA oscillator in sc_orcastra module drives both UMI clock and USER clock. 

• PCS is configured using an auto-configuration file (PCS0.txt). MTI ModelSim automatically loads this file during 
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simulation.

• PCS channel 0 generated in Gigabit Ethernet Mode. 

• Demonstrates Interrupt from PCS to UMI. The interrupt is enabled when the link state machine of channel 0 
reaches a synchronized state.

Figure 46 shows the design structure including both SC_top and SC_top_tb.

Figure 46. UMI_PCS_ASYNC Design Structure

UMI_PCS_ASYNC Directory Structure
Figure 47 shows the directory structure of the UMI_PCS_ASYNC project.

Figure 47. UMI_PCS_ASYNC Directory Structure

The “src” sub-directory contains the following design files:

• systembus.v: Verilog description of systembus. This file will be regenerated again using IPexpress.

• sc_orcastra.v: Verilog description of sc_orcastra.

• PCS0.v: Verilog description of PCS0.

• cjpat_gen.v: Verilog description of cjpat_gen.
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• PLLDIV2.v: Verilog description of PLLDIV2.

• MYROM.v: Verilog description of MYROM.

• SC_top.v: Verilog description of SC_top.

The test bench directory contains the following test bench files:

• JTAG_PC.v: Verilog model of JTAG_PC interface block to connect to the JTAG I/O of SC_top for JTAG accesses.

• SC_top_tb.v: Verilog model of top-level test bench.

The “simulation/functional” directory contains the following MTI ModelSim files:

• vcom_SC_top_SE.do: do file to compile/simulate design and test bench files in SE version of ModelSim

• vcom_SC_top_OEM.do: do file to compile/simulate design and test bench files in Lattice version of ModelSim

• wave.do: Waveform file called by compile/simulation do file

• jtag_in.txt: stimulus file for R/W transactions for the test bench JTAG_PC.v file.

• PCS0.txt: Auto-configuration file. MTI ModelSim automatically loads this file during simulation.

Generating System Bus for UMI_PCS_ASYNC 
To generate the system bus model, follow the following steps:

• Start a new ispLEVER Project Navigator session with a LatticeSC device.

• Launch IPexpress.

• Select Module -> Architecture_Modules -> System_Bus and set the File Name to “systembus”. Also make sure 
that the Design Entry is set to “Schematic/Verilog HDL”. The “Project Path” should point to 
“UMI_PCS_ASYNC/src”.

• Click on “Customize” 

• In the new window:
– Enable the UMI Interface
– Set the system bus clock source to OSC.
– Enable the PCS 360 Interface.
– Click on the “Generate” button (this will re-create systembus.v in “UMI_PCS_ASYNC /src”).

Running the UMI_PCS_ASYNC Simulation
To run the UMI_PCS_ASYNC simulation:

• Start an MTI ModelSim session.

• In ModelSim, change to the “UMI_PCS_ASYNC /simulation/functional” directory.

• Run the vcom_SC_top_SE.do or vcom_SE_top_OEM.do file using the Execute Macro menu option.

• vcom_SC_top_SE.do or vcom_SE_top_OEM.do.
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• Note that after running this step, you might encounter errors related to obsolete compiled libraries, which would 
require refreshing these libraries.

• After running the compile/simulation do file, a waveform similar to Figure 48 should appear and the simulation 
should run for about 140µs. 

Figure 48. ModelSim Waveform for UMI_PCS_ASYNC

Description of UMI_PCS_ASYNC Signals in the ModelSim Waveform 
The ModelSim waveform is divided into 5 sections

• JTAG signals

• UMI signals

• USR_IRQ_OUT signal

• The PCS signals, including TX and RX

• The system bus PCS interface

Description of the UMI_PCS_ASYNC Simulation Scenario
At the onset of the simulation, the simulator will automatically load the PCS0.txt (containing the memory initializa-
tion sequence of PCS0). Then, system bus read and write accesses to the different interfaces on the system bus 
are initiated by the “pc_in.txt” file. A read or write command is first reflected on the PC (and UMI) Interface. The 
simulation can be divided into the following phases:

• 0: PCS0.txt configures the PCS0 block registers such that:
– Channel 0 is in Gigabit Ethernet Mode.
– CRC insertion is enabled for both TX and RX.
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• When reset_n is removed, this enables the TX data generation from cjpat_gen to PCS0. Also, around 71µs, the 
PCS0 recovered data starts toggling properly. This data should be the receive equivalent of the TX data since the 
PCS0 block is in external loop-back. As part of the data flow into the TX direction, an error is inserted through the 
tx_er_0 signal (around 100µs). As a result, the error propagates to the rx_er_0 signal in the receive direction.

• 26 to 38 µs: the test bench reads the system bus ID register (0x00000-0x00003).

• 38 to 44 µs: the test bench writes data[7:0]=0x11 to system bus scratch pad register 0x00004 and reads it back.

• 45 µs: The PCS0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x0, indicating that the 
link state machine for channel 0 is not yet synchronized.

• 106 to 140 µs: this period of time shows how an interrupt from the PCS can be propagated to the 
USR_IRQ_OUT output. During this phase:

– Interrupts from the PCS to the USR_IRQ_OUT output are enabled by writing data[0:7]=0x40 
(data[7:0]=0x02) to address 0x00012.

– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x00, indicating that no 
interrupts were received by the system bus.

– The PCS0 quad interface register 0x84 (0x36084) is read. The value is data[4:7]=0x8 (data[7:4]=0x1), indi-
cating that the link state machine for channel 0 is now synchronized.

– The PCS0 quad interface register 0x1C (0x3601C) is read. The value is data[0:7]=0x00, indicating that the 
interrupt enable bit corresponding to a synchronized link state machine for channel 0 is off.

– The PCS0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x00, indicating that the 
interrupt bit corresponding to a synchronized link state machine for channel 0 is off.

– The PCS0 quad interface register 0x1C (0x3601C) is written to data[0:7]=0x08 (data[7:0]=0x10). to turn on 
the interrupt enable bit corresponding to a synchronized link state machine for channel 0. This enables the 
interrupt from 0x36085, bit 4, which asserts signal USR_IRQ_OUT to a ‘1’ value.

– The PCS0 quad interface register 0x85 (0x36085) is read. The value is data[0:7]=0x08 (data[7:0]=0x10), 
indicating that the interrupt bit corresponding to a synchronized link state machine for channel 0 is ON.

– The system bus interrupt cause register (0x00010) is read. The value is data[0:7]=0x40 (data[7:0]=0x02), 
indicating that an interrupt was received by the system bus from the PCS.

– Interrupts from the PCS to the USR_IRQ_OUT output are disabled by writing data[0:7]=0x00 to 0x00012. 
This de-asserts USR_IRQ_OUT to a ‘0’ value.
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