

www.latticesemi.com

1

tn1094_01.8

November 2008 Technical Note TN1094

© 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction

This technical note discusses memory usage in the LatticeSC™ family of devices. It is intended for design engi-
neers as a guide to designing and integrating the EBR-based and PFU-based memories of the LatticeSC device
family using Lattice ispLEVER

®

 design software.

The LatticeSC architecture provides many resources for memory intensive applications. The sysMEM™ Embed-
ded Block RAM (EBR) complements its distributed PFU-based memory. Single-Port RAM, Dual-Port RAM, Pseudo
Dual-Port RAM, FIFO and ROM memories can be constructed using the EBR. LUTs and PFU can implement Dis-
tributed Single-Port RAM, Dual-Port RAM and ROM. The internal logic of the device can be used to configure the
memory elements as FIFO and other storage types.

The EBR Block RAM and PFU RAM are referred to as memory primitives and their capabilities are described later
in this document. The memory primitives can be used in two ways:

• Using

IPexpress

™ – The IPexpress GUI allows users to specify the memory type and size required. IPexpress
takes this specification and constructs a netlist to implement the desired memory by using one or more of the
memory primitives.

• Using the

PMI (Parameterizable Module Inferencing)

 – PMI allows experienced users to skip the graphical
interface and utilize the configurable memory modules on the fly from the ispLEVER Project Navigator. The
parameters and control signals can be set in either Verilog or VHDL. The top-level design includes the defined
parameters and signals so the interface can automatically generate the black box during synthesis.

The remainder of this document discusses these approaches as well as Memory Modules and Memory Primitives.

Memories in LatticeSC Devices

The LatticeSC architecture contains an array of logic blocks called PFUs surrounded by Programmable I/O Cells
(PICs). sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM, ROM or FIFO.
These blocks have dedicated logic to simplify the implementation of FIFOs.

The PFU, PIC and EBR blocks are arranged in a two-dimensional grid with rows and columns as shown in
Figure 1. These blocks are connected with many vertical and horizontal routing channel resources. The place and
route software tool automatically allocates these routing resources.

Refer to the LatticeSC Family Data Sheet for details on the hardware implementation of the EBR and Distributed
RAM.

On-Chip Memory Usage Guide
for LatticeSC Devices

2

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 1. Simplified Block Diagram (Top Level)

Utilizing IPexpress

Designers can use IPexpress to easily specify a variety of memories in their designs. These modules are con-
structed by using one or more memory primitives or the Programmable Functional Unit (PFU). The available primi-
tives are:

• Single Port RAM (RAM_DQ) – EBR based

• Dual PORT RAM (RAM_DP_TRUE) – EBR based

• Pseudo Dual Port RAM (RAM_DP) – EBR based

• Read Only Memory (ROM) – EBR Based

• First In First Out Memory (FIFO_DC) – EBR Based

• Distributed Single Port RAM (Distributed_SPRAM) – PFU based

• Distributed Dual Port RAM (Distributed_DPRAM) – PFU based

• Distributed ROM (Distributed_ROM) – PFU/PFF based

• Distributed Shift Register (RAM_Based_Shift_Register) - PFU based (see IPexpress Help for details)

Programmable
Function
Unit (PFU)

sysMEM Embedded
Block RAM (EBR)

Structured ASIC
Block (MACO)

Quad SERDES

Physical Coding
Sublayer (PCS)

Quad SERDES

Programmable
I/O Call (PIC)

includes sysIO
Interface

sysCLOCK
Analog PLLs

sysCLOCK DLLs

sysCLOCK
Analog PLLs

sysCLOCK DLLs

Each PIC
contains four

Programmable
I/Os (PIO)

Three PICs
per four PFUs

3

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

IPexpress Flow

For generating any of these memories, create (or open) a project with a LatticeSC device.

From the Project Navigator, select

Tools -> IPexpress.

 Alternatively, click on the

IPexpress

 button in the Project
Navigator toolbar when the LatticeSC devices are targeted in the project.

This opens the IPexpress window as shown in Figure 2.

Figure 2. IPexpress Main Window

The left pane of this window displays the Module Tree. The EBR-based Memory Modules can be found under the

EBR_Components

 folder and the PFU-based Distributed Memory Modules can be found under the

Distributed_RAM

 folder, as shown in Figure 2. After selecting a module, enter the information necessary to gener-
ate the module (project path, file name, etc.) in the right pane of this IPexpress window.

Example Module Generation

The following example describes the generation of an EBR-based Pseudo Dual Port RAM of size 512 x 16.

In the left pane of the IPexpress window, under

EBR Components

, select

RAM_DP

. The right pane changes as
shown in Figure 3.

4

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 3. Example Generating Pseudo Dual Port RAM (RAM_DP) Using IPexpress

In the right pane of the IPexpress window, the Macro Type, Macro Version, and Module Name, Project Path, Design
Entry, Device Family, and Part Name are automatically populated when selecting a memory module (e.g.
RAM_DP). The Project Path, Device Entry, Device Family and Part Name are derived from the information speci-
fied when creating the project in Project Navigator. The Project Path, File Name, and Design Entry are the only
options that can be modified in this window.

Project Path

 – The location to place the files created by IPexpress. For this example, we used:

C:\myproject

.

File Name

 – The name for the module to be generated. This name is used as the root name for the files being cre-
ated in IPexpress. For this example, enter

ram_dp_512_16

.

Design Entry

 – The type or format of the design entry files. The choices are Schematic/VDHL, Schematic Verilog
HDL, VHDL, or Verilog VHDL. For this example, use the default of

Verilog HDL

.

After all information is entered into the fields, select

Customize

. A module configuration window appears and is
similar to Figure 4.

5

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 4. Generating Pseudo Dual Port RAM (RAM_DP) Module Customization – Configuration Tab

Read Port

and

 Write Port

 – The Read Port and Write Port for the module selected defaults to an Address Depth of
1028 and a Data Width of 18 for the RAM_DP module. Port Depths and Widths can also be changed for Pseudo
Dual Port and True Dual Port RAMs. The two ports can be of different widths. If different, the memory initialization
file corresponds to the Write Port. For example, for a RAM_DP with Write Port of 1024x36 and Read Port of
2048x18, the initialization file should be of size 1024x36. For this example, change the

Address Depth

 to

512

, and
the

Data Width

 to

16

 for the Read Port and for the Write Port.

Enable Output Register

 – When selected, it causes the output registers to be inserted in the Read Data Port.
(Output registers are optional for the EBR-based RAMs). The Input Data and Address Control are always regis-
tered since the hardware supports only the clocked write operation for the EBR-based RAMs. For this example,
select this

check box

.

Enable GSR

 – When selected, this enables Global Set-Reset (GSR). For this example, select this

check box

.

Reset Mode

 – Choices are Async for asynchronous reset or Sync for synchronous reset. For this example, use the
default value of

Sync

.

Memory File

 – Enter, or browse to select, the name of a Memory Initialization (.mem) File for the module. A MEM
file consists of lines of addresses with corresponding data. If a memory file is not used, all the RAM contents are
initialized to 0. This file is optional for the RAMs. However, it is required to provide the Memory file to the ROM. For
this example, leave this field

blank

.

Memory File Format

 – Indicates the format of the memory file. Types of formats are Binary, Hex, or Addressed
Hex. For this example, use the default value of

Addressed Hex

.

6

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Enable ECC

 – When selected, allows error correction of single errors and error detection on all errors. This option
is not supported for data widths greater than 64. For this example, this should be

un-checked

.

Bus Ordering Style

 – Specifies whether the numbers should begin at the high end (Big Endian) or the low end
(Little Endian). For this example, this should be

Big Endian

.

Import LPC to ispLEVER Project

 – When selected, imports the Lattice Parameter configuration (.lpc) file into the
project currently open in the ispLEVER Project Navigator. This option is available when IPexpress is invoked from
within ispLEVER Project Navigator. This option is not available when running IPexpress as a stand-alone tool.

After specifying the desired configurations, select the

Generate

 button to generate the customized module. A
netlist in the desired format is generated and placed in the specified directory location. The netlist can now be
incorporated in a design.

Once the module is generated, the *.lpc or the Verilog/VHDL file can be instantiated in the top-level module of a
design. Note that although the .lpc file can be instantiated in the top-level module, the port names for instantiation
can be obtained from the HDL files generated. The .lpc file instantiation allows users to double-click on the file in
the Project Navigator and open IPexpress loaded with the parameters. This way, it is easier to edit or make
changes.

The various memory modules, both EBR and Distributed, are discussed in detail later in this document.

Utilizing the PMI

Parameterizable Module Inferencing (PMI) allows experienced users to skip the graphical interface and utilize the
configurable memory modules on the fly from the ispLEVER Project Navigator.

Users can instantiate the component of the memory module directly in their design, instead of using the module
generated by IPexpress. The instantiated component allows users to change the parameters and attributes of the
module from within Verilog or VHDL code. The instantiated component can be simulated too. The top level of the
design includes the defined memory parameters and signals so the interface can automatically generate the black
box during synthesis and ispLEVER can generate the net-list on the fly.

To include the component in the source code:

1. Create a design and open the source code in the Lattice Text Editor. The PMI flow is supported only through the
Lattice Text Editor. If the users choose to use another text editor, they can include the component using the Lat-
tice Text Editor and then go back to the editor of their choice.

2. Click the cursor at the place where the PMI component should be inserted.

3. Click on the

Templates

 Menu, and select

Insert

. (Alternatively, press F9 as a shortcut to this command).

4. This opens the

Insert Template

 window. The left pane of this window includes the

Template Files

, where users
choose the appropriate template for their device. Also, Verilog or VHDL can be selected. The right-hand pane of
the window, which shows the different Template Names, allows users to select the module component to be
used.

5. Select the appropriate template in the Template Name pane and click

Insert

.

6. Click

Close

 to close the Insert Template window.

7. The ports of the inserted template then need to be mapped in the design. Once this is complete, users can syn-
thesize, map and place and route the design.

Memory Modules

Single Port RAM (RAM_DQ) - EBR Based

The EBR blocks in LatticeSC devices can be configured as Single Port RAM or RAM_DQ. IPexpress allows users
to generate a Verilog or VHDL netlist along with an EDIF netlist for the memory type selected.

7

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

IPexpress generates the memory module as shown in Figure 5.

Figure 5. Single Port Memory Module Generated by IPexpress

The generated module makes use of the LatticeSC EBR blocks or primitives and cascades them to create the
memory sizes specified by the user in the IPexpress GUI. For memory sizes smaller than one EBR block, the mod-
ule will be created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks
can be cascaded, in depth or width (as required to create these sizes).

The memory primitive for RAM_DQ in LatticeSC devices is shown in Figure 6.

Figure 6. Single Port RAM primitive or RAM_DQ for LatticeSC

In Single Port RAM mode, the input data and address for the ports are registered at the input of the memory array.
The output data of the memory is optionally registered at the output.

The various ports and their definitions in Single Port Memory are listed in Table 1. The table lists the corresponding
ports for the module generated by IPexpress and for the EBR RAM_DQ primitive.

RAM_DQ

EBR based Single Port
Memory

Clock

ClockEn

Reset

WE

Address

Data

Q

AD[x:0]

DI[y:0]

CLK

CE

RST

WE

DO[y:0]

CS[2:0]

EBR

8

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 1. EBR-based Single Port Memory Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

The Chip Select (CS) port in the EBR primitive is useful when memory requires multiple EBR blocks to be cas-
caded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus
and can easily cascade eight memories. If the memory size specified requires more than eight EBR blocks, the
software automatically generates the additional address decoding logic, which is implemented in the PFU (external
to the EBR blocks).

Each EBR block consists of 18,432 bits of RAM. The values for x (for Address) and y (Data) for each EBR block of
Lattice LatticeSC device are listed in Table 2.

Table 2. Single Port Memory Sizes for 18K Memories for LatticeSC

Table 3 shows the various attributes available for the Single Port Memory (RAM_DQ). Some of these attributes are
user selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Port Name in
Generated Module

Port Name in the
EBR Block Primitive Description Active State

Clock CLK Clock Rising Clock Edge

ClockEn CE Clock Enable Active High

Address AD[x:0] Address Bus —

Data DI[y:0] Data In —

Q DO[y:0] Data Out —

WE WE Write Enable Active High

Reset RST Reset Active High

— CS[2:0] Chip Select —

Single Port
Memory Size Input Data Output Data Address [MSB:LSB]

16K x 1 DI DO AD[13:0]

8K x 2 DI[1:0] DO[1:0] AD[12:0]

4K x 4 DI[3:0] DO[3:0] AD[11:0]

2K x 9 DI[8:0] DO[8:0] AD[10:0]

1K x 18 DI[17:0] DO[17:0] AD[9:0]

512 x 36 DI[35:0] DO[35:0] AD[8:0]

9

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 3. Single Port RAM Attributes for LatticeSC

The Single Port RAM (RAM_DQ) can be configured as NORMAL or WRITE THROUGH modes. Each of these
modes affects what data comes out of the port Q of the memory during the write operation followed by the read
operation at the same memory location.

Additionally users can select to enable the output registers for RAM_DQ. Figures 7 through 11 show the internal
timing waveforms for the Single Port RAM (RAM_DQ) with these options.

Figure 7. Single Port RAM Timing Waveform – NORMAL Mode, without Output Registers

Attribute Description Values Default Value

User Selectable
Through

IPexpress

DATA_WIDTH Data Word Width 1, 2, 4, 9, 18, 36 18 YES

REGMODE Register Mode (Pipelining) NOREG, OUTREG NOREG YES

RESETMODE Selects the Reset Type ASYNC, SYNC ASYNC YES

CSDECODE Chip Select Decode 000, 001, 010, 011, 100, 101, 110, 111 000 NO

WRITEMODE Read/Write Mode NORMAL, WRITETHROUGH,
READBEFOREWRITE NORMAL YES

DISABLED_GSR Disable Global Set Reset 0, 1 0 YES

INIT Initialization File for Memory DISABLED, ENABLED DISABLED —

INIT_RECFG Reconfiguring Initialization
through MPI Bus DISABLED, ENABLED DISABLED —

INIT_ID Initialization ID for Initializations
through MPI Bus “0000000000” — —

Add_0 Add _1 Add _0 Add _1 Add _2

Data_0 Data_1

Invalid Data Data_0

Clock

WrEn

Address

Data

Q

ClockEn

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR
tHADDR_EB

R

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_1 Data_2

10

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 8. Single Port RAM Timing Waveform – NORMAL Mode, with Output Registers

Figure 9. Single Port RAM Timing Waveform – WRITE THROUGH Mode, without Output Registers

Add_0 Add _1 Add _0 Add _1 Add _2

Data_0 Data_1

Invalid Data Data_0 Data_1

Clock

WrEn

Address

Data

Q

ClockEn

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR
tHADDR_EB

R

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCOO_EBR

Add_0 Add _1 Add _0

Data_0 Data_1 Data_2 Data_3 Data_4

Invalid Data Data_1

Clock

WrEn

Address

Data

Q

ClockEn

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR
tHADDR_EB

R

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_2Data_0 Data_3 Data_4

11

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 10. Single Port RAM Timing Waveform – WRITE THROUGH Mode, with Output Registers

True Dual Port RAM (RAM_DP_TRUE) – EBR Based

The EBR blocks in LatticeSC devices can be configured as True Dual Port RAM or RAM_DP_TRUE. IPexpress
allows users to generate a Verilog or VHDL netlist along with an EDIF netlist for the memory type selected.

IPexpress generates the memory module as shown in Figure 11.

Figure 11. True Dual Port Memory Module generated by IPexpress

The generated module makes use of the LatticeSC EBR blocks or primitives and cascades them to create the
memory sizes specified by the user in the IPexpress GUI. For memory sizes smaller than one EBR block, the mod-
ule will be created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks
can be cascaded, in depth or width (as required to create these sizes).

The basic memory primitive for LatticeSC devices, RAM_DP_TRUE, is shown in Figure 12.

Add_0 Add _1 Add _0

Data_0 Data_1 Data_2 Data_3 Data_4

Invalid Data Data_1

Clock

WrEn

Address

Data

Q

ClockEn

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCOO_EBR

Data_2Data_0 Data_3

RAM_DP_TRUE

EBR-Based
True Dual Port

Memory

ClockA

ClockEnA

ResetA

WEA

WrAddressA

DataA

QA

ClockB

ClockEnB

ResetB

WEB

WrAddressB

DataB

QB

12

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 12. True Dual Port RAM Primitive or RAM_DP_TRUE for LatticeSC

In True Dual Port RAM mode the input data and address for the ports are registered at the input of the memory
array. The output data of the memory is optionally registered at the output.

The various ports and their definitions for True Dual Port Memory are listed in Table 4. The table lists the corre-
sponding ports for the module generated by IPexpress and for the EBR RAM_DP_TRUE primitive.

Table 4. EBR-based True Dual Port Memory Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

The Chip Select (CS) port in the EBR primitive is useful when memory requires multiple EBR blocks to be cas-
caded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus
and can cascade eight memories easily. If the memory size specified requires more than eight EBR blocks, the
software automatically generates the additional address decoding logic, which is implemented in the PFU (external
to the EBR blocks).

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) for each EBR block of the
LatticeSC device are shown in Table 5.

Port Name in
Generated Module

Port Name in the
EBR Block Primitive Description Active State

ClockA, ClockB CLKA, CLKB Clock for Port A and PortB Rising Clock Edge

ClockEnA, ClockEnB CEA, CEB Clock Enable for Port A and PortB Active High

AddressA, AddressB ADA[x:0], ADB[x:0] Address Bus for Port A and PortB —

DataA, DataB DIA[y:0], DIB[y:0] Data In for Port A and PortB —

QA, QB DOA[y:0], DOB[y:0] Data Out for Port A and PortB —

WEA, WEB WEA, WEB Write Enable for Port A and PortB Active High

ResetA, ResetB RSTA, RSTB Reset for Port A and PortB Active High

— CSA[2:0], CSB[2:0] Chip Select for Port A and PortB —

ADA[x:0]

DIA[y:0]

CLKA

CEA

RSTA

WEA

CSA[2:0]

EBR

DOA[y:0]

ADB[x:0]

DIB[y:0]

CLKB

CEB

RSTB

WEB

CSB[2:0]

DOB[y:0]

13

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 5. Dual Port Memory Sizes for 18K Memory in LatticeSC

Table 6 shows the various attributes available in True Dual Port Memory (RAM_DP_TRUE). Some of these
attributes are user selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table 6. Dual Port RAM Attributes for LatticeSC

The True Dual Port RAM (RAM_DP_TRUE) can be configured as NORMAL or WRITE THROUGH modes. Each of
these modes affects what data comes out of the port Q of the memory during the write operation followed by the
read operation at the same memory location. Detailed discussions of the WRITE modes and the constraints of the
True Dual Port can be found in Appendix A.

Additionally, users can choose to enable the output registers for RAM_DP_TRUE. Figures 13 through 16 show the
internal timing waveforms for the True Dual Port RAM (RAM_DP_TRUE) with these options.

Dual Port
Memory Size

Input Data
Port A

Input Data
Port B

Output Data
Port A

Output Data
Port B

Address Port A
[MSB:LSB]

Address Port B
[MSB:LSB]

16K x 1 DIA DIB DOA DOB ADA[13:0] ADB[13:0]

8K x 2 DIA[1:0] DIB[1:0] DOA[1:0] DOB[1:0] ADA[12:0] ADB[12:0]

4K x 4 DIA[3:0] DIB[3:0] DOA[3:0] DOB[3:0] ADA[11:0] ADB[11:0]

2K x 9 DIA[8:0] DIB[8:0] DOA[8:0] DOB[8:0] ADA[10:0] ADB[10:0]

1K x 18 DIA[17:0] DIB[17:0] DOA[17:0] DOB[17:0] ADA[9:0] ADB[9:0]

Attribute Description Values
Default
Value

User Selectable
Through

IPexpress

DATA_WIDTH_A Data Word Width Port A 1, 2, 4, 9, 18 18 YES

DATA_WIDTH_B Data Word Width Port B 1, 2, 4, 9, 18 18 YES

REGMODE_A Register Mode (Pipelining) for Port A NOREG, OUTREG NOREG YES

REGMODE_B Register Mode (Pipelining) for Port B NOREG, OUTREG NOREG YES

RESETMODE Selects the Reset Type ASYNC, SYNC ASYNC YES

CSDECODE_A Chip Select Decode for Port A 000, 001, 010, 011,
100, 101, 110, 111 000 NO

CSDECODE_B Chip Select Decode for Port B 000, 001, 010, 011,
100, 101, 110, 111 000 NO

WRITEMODE_A Read/Write Mode for Port A NORMAL, WRITETHROUGH,
READBEFOREWRITE NORMAL YES

WRITEMODE_B Read/Write Mode for Port B NORMAL, WRITETHROUGH,
READBEFOREWRITE NORMAL YES

DISABLED_GSR Disable Global Set Reset 0, 1 0 YES

INIT Initialization File for Memory DISABLED, ENABLED DISABLED —

INIT_RECFG Reconfiguring Initialization
through MPI Bus DISABLED, ENABLED DISABLED —

INIT_ID Initialization ID for Initialization
through MPI Bus “0000000000” — —

14

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 13. True Dual Port RAM Timing Waveform – NORMAL Mode, without Output Registers

Add _A0 Add _A1 Add _A0 Add _A1 Add _A2

Data_A0 Data_A1

Invalid Data Data_A0

ClockA

WrEnA

AddressA

DataA

QA

ClockEnA

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_A1 Data_A 2

Add_B 0 Add _B1 Add _B0 Add _B1 Add _B2

Data_B 0 Data_B 1

Invalid Data Data_B0

ClockB

WrEnB

AddressB

DataB

QB

ClockEnB

tSUWREN _ EBR tHWREN_EBR

tSUADDR_ EBR tHADDR_ EBR

tSUDATA_ EBR tHDATA_EBR

tSUCE_ EBR tHCE_EBR

tCO_EBR

Data_B1 Data_B 2

15

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 14. True Dual Port RAM Timing Waveform – NORMAL Mode with Output Registers

Add _A0 Add _A1 Add _A0 Add _A1 Add _A2

Data_A0 Data_A1

ClockA

WrEnA

AddressA

DataA

QA

ClockEnA

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

Add_B 0 Add _B1 Add _B0 Add _B1 Add _B2

Data_B 0 Data_B 1

Invalid Data Data _B 0

ClockB

WrEnB

AddressB

DataB

QB

ClockEnB

tSUWREN _ EBR tHWREN_EBR

tSUADDR_ EBR tHADDR_ EBR

tSUDATA_ EBR tHDATA_EBR

tSUCE_ EBR tHCE_EBR

tCOO_EBR

Data_B 1

Invalid Data Data _A 0

tCOO_EBR

Data_A 1

16

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 15. True Dual Port RAM Timing Waveform – WRITE THROUGH Mode, without Output Registers

Add _A0 Add _A1 Add _A0

Data_A0 Data_A1 Data_A2 Data_A3 Data_A4

Invalid Data Data_A1

ClockA

WrEnA

AddressA

DataA

QA

ClockEnA

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_A2Data_A0 Data_A3 Data_A 4

Add _B0 Add _B1 Add _B0

Data_B0 Data_B1 Data_B2 Data_B3 Data_B4

Invalid Data Data_B1

ClockB

WrEnB

AddressB

DataB

QB

ClockEnB

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_B2Data_B0 Data_B3 Data_B 4

17

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 16. True Dual Port RAM Timing Waveform – WRITE THROUGH Mode, with Output Registers

Pseudo Dual Port RAM (RAM_DP) – EBR Based

EBR blocks in LatticeSC devices can be configured as Pseudo-Dual Port RAM or RAM_DP. IPexpress allows users
to generate Verilog or VHDL along with an EDIF netlist for the memory size as per design requirements.

IPexpress generates the memory module, as shown in Figure 17.

Add_A0 Add_A1 Add_A0

Data_A0 Data_A1 Data_A2 Data_A3 Data_A4

Invalid Data Data _A1

ClockA

WrEnA

AddressA

DataA

QA

ClockEnA

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCOO_EBR

Data_A2Data _A0 Data _A3

Add_B0 Add_B1 Add_B0

Data_B0 Data_B1 Data_B2 Data_B3 Data_B4

Invalid Data Data _B1

ClockB

WrEnB

AddressB

DataB

QB

ClockEnB

tSUWREN _EBR tHWREN _EBR

tSUADDR_EBR tHADDR_EBR

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

tCOO_EBR

Data_B2Data _B0 Data _B3

18

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 17. Pseudo Dual Port Memory Module Generated by IPexpress

The generated module makes use of the LatticeSC EBR blocks or primitives and cascades them to create the
memory sizes specified by the user in the IPexpress GUI. For memory sizes smaller than one EBR block, the mod-
ule will be created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks
can be cascaded, in depth or width (as required to create these sizes).

The basic Pseudo Dual Port memory primitive for the Lattice LatticeSC devices is shown in Figure 23.

Figure 18. Pseudo Dual Port RAM primitive or RAM_DP for LatticeSC

In the Pseudo Dual Port RAM mode, the input data and address for the ports are registered at the input of the
memory array. The output data of the memory is optionally registered at the output.

The various ports and their definitions in Pseudo Dual Port Memory are included in Table 7. The table lists the cor-
responding ports for the module generated by IPexpress and for the EBR RAM_DP primitive.

RAM_DP

EBR-Based Pseudo
Dual Port Memory

WrClock

WE

WrClockEn

Reset

WrAddress

Data

RdClock

RdClockEn

RdAddress

Q

ADW[x:0]

DI[y:0]

CLKW

CEW

RST

WE

CS[2:0]

EBR

ADR[x:0]

CLKR

CER

DO[y:0]

19

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 7. EBR based Pseudo-Dual Port Memory Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

The Chip Select (CS) port in the EBR primitive is useful when memory requires multiple EBR blocks to be cas-
caded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus
and can cascade eight memories easily. If the memory size specified requires more than eight EBR blocks, the
software automatically generates the additional address decoding logic, which is implemented in the PFU (external
to the EBR blocks).

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) for each EBR block of the
LatticeSC device are shown in Table 8.

Table 8. Pseudo-Dual Port Memory Sizes for 18K Memory for LatticeSC

Table 9 shows the various attributes available in Pseudo Dual Port Memory (RAM_DP). Some of these attributes
are user selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Port Name in
Generated Module

Port Name in the EBR
Block Primitive Description Active State

RdAddress ADR[x:0] Read Address —

WrAddress ADW[x:0] Write Address —

RdClock CLKR Read Clock Rising Clock Edge

WrClock CLKW Write Clock Rising Clock Edge

RdClockEn CER Read Clock Enable Active High

WE WE Write Enable Active High

WrClockEn CEW Write Clock Enable Active High

Q DO[y:0] Read Data —

Data DI[y:0] Write Data —

Reset RST Reset Active High

— CS[2:0] Chip Select —

Pseudo-Dual Port
Memory Size

Input Data Port A
(Write Port)

Output Data Port B
(Read Port)

Read Address Port A
[MSB:LSB]

Write Address Port B
[MSB:LSB]

16K x 1 DI DO RAD[13:0] WAD[13:0]

8K x 2 DI[1:0] DO[1:0] RAD[12:0] WAD[12:0]

4K x 4 DI[3:0] DO[3:0] RAD[11:0] WAD[11:0]

2K x 9 DI[8:0] DO[8:0] RAD[10:0] WAD[10:0]

1K x 18 DI[17:0] DO[17:0] RAD[9:0] WAD[9:0]

512 x 36 DI[35:0] DO[35:0] RAD[8:0] WAD[8:0]

20

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 9. Pseudo-Dual Port RAM Attributes for LatticeSC

Users have the option of enabling the output registers for Pseudo-Dual Port RAM (RAM_DP). Figures 19 and 20
show the internal timing waveforms for the Pseudo-Dual Port RAM (RAM_DP) with these options.

Figure 19. PSEUDO DUAL PORT RAM Timing Diagram - without Output Registers

Attribute Description Values Default Value

User Selectable
Through

IPexpress

DATA_WIDTH_W Write Data Word Width 1, 2, 4, 9, 18, 36 18 YES

DATA_WIDTH_R Read Data Word Width 1, 2, 4, 9, 18, 36 18 YES

REGMODE Register Mode (Pipelining) NOREG, OUTREG NOREG YES

RESETMODE Selects the Reset type ASYNC, SYNC ASYNC YES

CSDECODE_W Chip Select Decode for Write 000, 001, 010, 011, 100, 101, 110, 111 000 NO

CSDECODE_R Chip Select Decode for Read 000, 001, 010, 011, 100, 101, 110, 111 000 NO

DISABLED_GSR Disable Global Set Reset 0, 1 0 YES

INIT Initialization File for Memory DISABLED, ENABLED DISABLED —

INIT_RECFG Reconfiguring initialization
through MPI Bus DISABLED, ENABLED DISABLED —

INIT_ID Initialization ID for initializa-
tions through MPI Bus “0000000000” — —

Data_0 Data_1 Data_2

Invalid Data Data_0

WrClock

Data

Q

WrClockEn

tSUDATA_EBR tHDATA_EBR

tSUCE_EBR tHCE_EBR

WE

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_1
Dat
a_2

Add _0 Add _1 Add _2RdAddress

tSUADDR_EBR tHADDR_EBR

RdClock

RdClockEn

tSUCE_EBR tHCE_EBR

Add _0 Add _1 Add _2WrAddress

tSUADDR_EBR tHADDR_EBR

21

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 20. PSEUDO DUAL PORT RAM Timing Diagram - with Output Registers

Read Only Memory (ROM) - EBR Based
EBR blocks in LatticeSC devices can be configured as Read Only Memory or ROM. IPexpress allows users to gen-
erate Verilog or VHDL along with an EDIF netlist for the memory size as per design requirements. Users are
required to provide the ROM memory content in the form of an initialization file.

IPexpress generates the memory module as shown in Figure 21.

Figure 21. ROM – Read Only Memory Module Generated by IPexpress

The generated module makes use of the LatticeSC EBR blocks or primitives and cascades them to create the
memory sizes specified by the user in the IPexpress GUI. For memory sizes smaller than one EBR block, the mod-
ule will be created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks
can be cascaded, in depth or width (as required to create these sizes).

The basic ROM primitive for LatticeSC devices is shown in Figure 22.

Data_0 Data_1 Data_2

Invalid Data Data_0

WrClock

Data

Q

WrClockEn

tSUDATA_EBR tHDATA_EBR

tSUCE_EBR t HCE_EBR

WE

tSUCE_EBR t HCE_EBR

tCOO_EBR

Dat
a_1

Add _0 Add _1 Add _2RdAddress

t SUADDR_EBR tHADDR_EBR

RdClock

RdClockEn

tSUCE_EBR tHCE_EBR

Add _0 Add _1 Add _2WrAddress

t SUADDR_EBR tHADDR_EBR

ROM

EBR based Read Only
Memory

OutClock

OutClockEn

Reset

Address

Q

22

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 22. ROM primitive for LatticeSC

In ROM mode, the address for the port is registered at the input of the memory array. The memory output data is
optionally registered at the output.

The various ports and their definitions for ROM mode are listed in Table 10. The table lists the corresponding ports
for the module generated by IPexpress and for the ROM primitive.

Table 10. EBR-based ROM Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

The Chip Select (CS) port in the EBR primitive is useful when memory requires multiple EBR blocks to be cas-
caded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus
and can cascade eight memories easily. If the memory size specified requires more than eight EBR blocks, the
software automatically generates the additional address decoding logic, which is implemented in the PFU (external
to the EBR blocks).

When generating the ROM using IPexpress, the user is required to provide an initialization file to pre-initialize the
contents of the ROM. These *.mem files can be of Binary, Hex or Addressed Hex formats. The initialization files are
discussed in detail in the Initializing Memory section of this technical note.

Users have the option of enabling the output registers for Read Only Memory (ROM). Figures 23 and 24 show the
internal timing waveforms for ROM with these options.

Port Name in
Generated Module

Port Name in the EBR
Block Primitive Description Active State

Address AD[x:0] Read Address —

OutClock CLK Clock Rising Clock Edge

OutClockEn CE Clock Enable Active High

Reset RST Reset Active High

— CS[2:0] Chip Select —

AD[x:0]

CLK

CE EBR DO[y:0]

RST

CS[2:0]

23

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 23. ROM Timing Waveform – without Output Registers

Figure 24. ROM Timing Waveform – with Output Registers

First In First Out (FIFO_DC)
EBR blocks in LatticeSC devices can be configured as First In First Out Memory – FIFO_DC. FIFO_DC (or Dual
Clock FIFO) has separate clocks for the read and write ports. IPexpress allows users to generate Verilog or VHDL
along with an EDIF netlist for the memory size, as per design requirements.

The LatticeSC device supports either EBR or PFU based FIFOs. They both share the same timing characteristics,
the only difference is that PFU-based FIFOs should only be used for very small sizes (smaller than one EBR block).
EBR-based FIFOs are much more efficient as sizes increase. It should also be noted that large PFU-based FIFOs
will not only be very large relative to EBR-based FIFOs, but they will also have worse timing since they are distrib-
uted across a portion of the FPGA fabric. In the following discussion, we will focus on the EBR-based FIFO as this
is the more common application.

IPexpress generates the FIFO_DC memory module shown in Figure 25.

Add_0 Add _1 Add _2 Add _3 Add _4

Invalid Data Data_0

OutClock

Address

Q

OutClockEn

tSUADDR_EBR tHADDR_EBR

tSUCE_EBR tHCE_EBR

tCO_EBR

Data_1 Data_2 Data_3 Data_4

Add_0 Add _1 Add _2 Add _3 Add _4

Invalid Data Data_0

OutClock

Address

Q

OutClockEn

tSUADDR_EBR tHADDR_EBR

tSUCE_EBR tHCE_EBR

tCOO_EBR

Data_1 Data_2 Data_3

24

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 25. FIFO_DC Module Generated by IPexpress

The generated module makes use of the LatticeSC EBR blocks or primitives and cascades them to create the
memory sizes specified by the user in the IPexpress GUI. For memory sizes smaller than one EBR block, the mod-
ule will be created in one EBR block. If the specified memory is larger than one EBR block, multiple EBR blocks
can be cascaded, in depth or width (as required to create these sizes).

The basic FIFO_DC primitive for LatticeSC devices is shown in Figure 26.

Figure 26. FIFO_DC Primitive for LatticeSC

The following flags are generated for FIFO control: Full and Almost Full (to limit excess write cycles to memory),
and Empty and Almost Empty (to limit excess read cycles). The range of program values for these flags is in the
Attributes section. It should be noted that although assertion of Empty and Almost Empty flags is immediate, deas-
sertion has a delay of a couple clock cycles. This delay is inherently necessary in a switch between two clock
domains.

FIFO resets are supported, including FIFO reset (RST) and re-transmit reset (RPRESET). The retransmit pin is the
read port reset input. Note that when the FIFO comes out of reset, both the empty and almost empty flags (EF and
AEF) are initially set to high.

Each EBR block consists of 18,432 bits of RAM. Table 11 shows the FIFO_DC configurations that are supported.

For PFU-based FIFOs, the only hard restriction on size is the size of the device, but it is impractical to have a PFU-
based FIFO larger than the size of one EBR block.

RAM_DP_TRUE

EBR-Based
True Dual Port

Memory

Data

WrClock

RdClock

WrEn

RdEn

Reset

RPReset

Q

Empty

Full

AlmostEmpty

AlmostFull

EBR

25

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 11. EBR based FIFO_DC Sizes

The Chip Select (CS) port in the EBR primitive is useful when memory requires multiple EBR blocks to be cas-
caded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus
and can cascade eight memories easily. If the memory size specified requires more than eight EBR blocks, the
software automatically generates the additional address decoding logic, which is implemented in the PFU (external
to the EBR blocks).

The various ports and their definitions for the FIFO are listed in Table 12. The table lists the corresponding ports for
the module generated by IPexpress and for the FIFO_DC primitive.

Table 12. EBR-based FIFO and FIFO_DC Memory Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

Programmable Flag Values
The FIFO flags are programmable. The programmable ranges for the four FIFO flags for are specified in Table 13.

Table 13. FIFO Flag Settings

The only restriction is that the values must be in a particular order (Empty=0, Almost Empty next, followed by
Almost Full and Full, respectively). The value of the Almost Empty Flag cannot be set to ‘0’ which is the value of
Empty Flag. If they are equal, a warning is generated and the value of Empty is used in place of Almost Empty.

FIFO Size Input Data Output Data

16K x 1 DI DO

8K x 2 DI[1:0] DO[1:0]

4K x 4 DI[3:0] DO[3:0]

2K x 9 DI[8:0] DO[8:0]

1K x 18 DI[17:0] DO[17:0]

512 x 36 DI[35:0] DO[35:0]

Port Name in
Generated Module Description Active State

CLKR Read Port Clock Rising Clock Edge

CLKW Write Port Clock Rising Clock Edge

WE Write Enable Active High

RE Read Enable Active High

RPRESET Read Pointer Reset Active High

RST Reset Active High

DI Data Input —

DO Data Output —

FF Full Flag Active High

AF Almost Full Flag Active High

EF Empty Flag Active High

AE Almost Empty Active High

FIFO Attribute Name Description Programming Range Program Bits

FF Full flag setting 2N - 1 16

AFF Almost full setting 1 to (FF-1) 16

AEF Almost empty setting 1 to (FF-1) 16

EF Empty setting 0 5

26

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Similarly, the Almost Full Flag cannot be equal to the Full Flag. When coming out of reset, the active high flags
Empty and Almost Empty are set to high, since they are true.

The user should specify the offset value of the address at which the Almost Full Flag will go true. For example, if
the Almost Full Flag is required to go true at address location 500 for a FIFO of depth 512, then user should specify
the value 500 in IPexpress.

FIFO Reset
A FIFO reset will clear the contents of the FIFO by resetting the read and write pointers. It will also put the FIFO
flags in the initial reset state.

Read Pointer Reset
The read pointer reset indicates retransmit of data in the FIFO and is commonly used in “packetized” communica-
tions. In this application, it is necessary to keep careful track of when a packet is written into or read from the FIFO.

When the read pointer reset is enabled, the FIFO read address will reset to location "0" in the FIFO. This will allow
a packet of data to be read again from the FIFO if four conditions are met:

1. The size of the packet of data is less than the number of words in the FIFO.

2. No writes to the FIFO occur beyond the current packet that may be re-transmitted.
3. When a packet is to be re-transmitted, the RPRESET signal is pulsed for a clock cycle before reading. This

should be done following the reset rules of the FIFO.
4. When no more re-transmits of the data are required and the last word of the FIFO has been read, the FIFO

must be reset with the RST input before the next packet of data is written.

Register Mode
There are two modes for registering and pipelining the read and write cycles of the memory. At the minimum mode,
a single set of input registers allows synchronous write cycles into the memory array, with the other register banks
bypassed. The additional mode includes using the output registers.

Figure 27 shows the timing waveforms for the FIFO_DC in the LatticeSC device.

Figure 27. FIFO_DC Timing Diagram for LatticeSC

WrEn

WrClock

RdEn

RdClock

Data

Q

Full

Almost Full

Empty

Almost Empty

tSUWREN_EBR

tSUDATA_EBR tHDATA_EBR

tCOO_EBR

tHWREN_EBR

Data _0 Data _1 Data _2

Data _0 Data _1Invalid Data

27

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Distributed Single Port RAM (Distributed_SPRAM) – PFU Based
PFU-based Distributed Single Port RAM is created using the 4-input LUT (Look-Up Table) available in the PFU.
These LUTs can be cascaded to create larger distributed memory sizes.

Figure 28 shows the Distributed Single Port RAM module as generated by IPexpress.

Figure 28. Distributed Single Port RAM Module generated by IPexpress

The generated module makes use of the 4-input LUT available in the PFU. The Clock and reset are generated by
utilizing the resources available in the PFU. The basic Distributed Single Port RAM primitive for the LatticeSC
devices is shown in Figure 29.

Figure 29. Distributed Single Port RAM for LatticeSC

The ports Read Clock (RdClock) and Clock Enable (ClockEn) are not available in the hardware primitive. These are
generated by IPexpress when the user wants to enable the output registers in the IPexpress configuration.

The various ports and their definitions are listed in Table 14. The table lists the corresponding ports for the module
generated by IPexpress and for the primitive.

PFU-Based
Distributed Single Port

Memory

Clock

ClockEn

Reset

WE

Address

Q

Data

DI[1:0]

WRE

DO[1:0]CK

AD[3:0]

PFU

WPE

28

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Table 14. PFU-based Distributed Single Port RAM Port Definitions

Users have the option to enable the output registers for Distributed Single Port RAM (Distributed_SPRAM). Figures
30 and 31 show the internal timing waveforms for the Distributed Single Port RAM (Distributed_SPRAM) with these
options.

Figure 30. PFU Based Distributed Single Port RAM Timing Waveform – without Output Registers

Port Name in
Generated Module

Port Name in the PFU
Block Primitive Description Active State

Clock CK Clock Rising Clock Edge

ClockEn - Clock Enable Active High

Reset - Reset Active High

WRE Write Read Enable Write when High

Read when Low WPE Write Port Enable

— WE — Write Enable

Write when High Read when Low Address AD[3:0]

Address — Data DI[1:0]

Data In — Q DO[1:0]

Data Out —

Add_0 Add _1 Add _0 Add _1 Add _2

Data_0 Data_1

Invalid Data Data_0

Clock

WE

Address

Data

Q

ClockEn

tHWREN _PFU

tSUADDR_ PFU tHADDR_PFU

tSUDATA_ PFU tHDATA _PFU

tCORAM _PFU

Data_1 Data_2

tSUWREN _ PFU

29

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 31. PFU Based Distributed Single Port RAM Timing Waveform – with Output Registers

Distributed Dual Port RAM (Distributed_DPRAM) – PFU Based
PFU-based Distributed Dual Port RAM is created using the 4-input LUT (Look-Up Table) available in the PFU.
These LUTs can be cascaded to create larger distributed memory sizes.

Figure 32 shows the Distributed Single Port RAM module generated by IPexpress.

Figure 32. Distributed Dual Port RAM Module Generated by IPexpress

The generated module makes use of a 4-input LUT available in the PFU. The clock and reset are generated by uti-
lizing the resources available in the PFU. The basic Distributed Dual Port RAM primitive for LatticeSC devices is
shown in Figure 33.

Add_0 Add _1 Add _0 Add _1 Add _2

Data_0 Data_1

Invalid Data Data_0

Clock

WE

Address

Data

Q

ClockEn

tHWREN _PFU

tSUADDR_ PFU tHADDR_PFU

tSUDATA_ PFU tHDATA _PFU

tCO?

Data_1

tSUWREN _ PFU

PFU-Based
Distributed Single Port

Memory

WrAddress

RdAddress

RdClock

RdClockEn

Reset Q

WE

WrClock

WrClockEn

Data

30

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 33. PFU-based Distributed Dual Port RAM for LatticeSC

The ports Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware primitive.
These are generated by IPexpress when the user wants the to enable the output registers in the IPexpress config-
uration.

The various ports and their definitions are included in Table 15. The table lists the corresponding ports for the mod-
ule generated by IPexpress and for the primitive.

Table 15. PFU-based Distributed Dual-Port RAM Port Definitions

Users have the option of enabling the output registers for Distributed Dual Port RAM (Distributed_DPRAM). Fig-
ures 34 and 35 show the internal timing waveforms for the Distributed Dual Port RAM (Distributed_DPRAM) with
these options.

Port Name in
Generated Module

Port Name in the EBR
Block Primitive Description Active State

WrAddress WAD[23:0] Write Address —

RdAddress RAD[3:0] Read Address —

RdClock — Read Clock Rising Clock Edge

RdClockEn — Read Clock Enable Active High

WrClock WCK Write Clock Rising Clock Edge

WrClockEn — Write Clock Enable Active High

WRE WRE Write Read Enable Write when High

Read when Low WPE WPE Write Port Enable

— Data DI[1:0] Data Input

— Q RDO[1:0] Data Out

DI[1:0]

WRE
RDO[1:0]

WCK

WAD[3:0]

PFU

WPE

WDO[1:0]

RAD[3:0]

31

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 34. PFU Based Distributed Dual Port RAM Timing Waveform – without Output Registers

Figure 35. PFU Based Distributed Dual Port RAM Timing Waveform – with Output Registers

Data_0 Data_1 Data_2

Invalid Data Data_0

WrClock

Data

Q

WrClockEn

tSUDATA_ PFU tHDATA _PFU

tSUCE_ PFU tHCE_PFU

tCORAM _PFU

Data_1
Dat
a_
2

Add _0 Add _1 Add _2RdAddress

tSUADDR_ PFU tHADDR_PFU

RdClock

RdClockEn

tSUCE_ PFU tHCE_PFU

Add_0 Add _1WrAddress

tSUADDR_ PFU tHADDR_PFU

WE

Add_2

Data_0 Data_1 Data_2

Invalid Data Data_0

WrClock

Data

Q

WrClockEn

tSUDATA _EBR tHDATA _EBR

tSUCE_EBR tHCE_EBR

Dat
a_
1

Add _0 Add _1 Add _2RdAddress

tSUADDR_EBR tHADDR_EBR

RdClock

RdClockEn

tSUCE_EBR tHCE_EBR

Add_0 Add _1 Add _2WrAddress

tSUADDR_EBR tHADDR_EBR

WE

32

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Distributed ROM (Distributed_ROM) – PFU Based
PFU-based Distributed ROM is created using the 4-input LUT (Look-Up Table) available in the PFU. These LUTs
can be cascaded to create larger distributed memory sizes.

Figure 36 shows the Distributed ROM module as generated by IPexpress.

Figure 36. Distributed ROM Generated by IPexpress

The generated module makes use of 4-input LUT available in the PFU. The basic Distributed ROM primitive for the
LatticeSC device is shown in Figure 37.

Figure 37. PFU-based Distributed ROM LatticeSC

Ports Reset, Out Clock (OutClock) and Out Clock Enable (OutClockEn) are not available in the hardware primitive.
These are generated by IPexpress when the user wants the to enable the output registers in the IPexpress config-
uration.

The various ports and their definitions are included in Table 16. The table lists the corresponding ports for the mod-
ule generated by IPexpress and for the primitive.

Table 16. PFU-based Distributed ROM Port Definitions

Users have the option of enabling the output registers for Distributed ROM (Distributed_ROM). Figures 38 and 39
show the internal timing waveforms for the Distributed ROM with these options.

Port Name in
Generated Module

Port Name in the EBR
Block Primitive Description Active State

Address AD[3:0] Address —

OutClock — Out Clock Rising Clock Edge

OutClockEn — Out Clock Enable Active High

Reset — Reset Active High

Q DO Data Out —

PFU-Based
Distributed ROM

Address

OutClock

OutClockEn

Reset

Q

PFU DOAD[3:0]

33

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Figure 38. PFU Based ROM Timing Waveform – without Output Registers

Figure 39. PFU Based ROM Timing Waveform – with Output Registers

Initializing Memory
Memories can be pre-initialized with the memory array. Users fill in the desired values during configuration and
memory can be used in the read mode if desired. Each bit in the memory array can have one of two values: 0, 1.

Initialization File Format
The initialization file is an ASCII file, which can be created and edited using any ASCII editor. IPexpress supports
three types of Memory File formats:

1. Binary file

2. Hex File

3. Addressed Hex

The file name for the memory initialization file is *.mem (<file_name>.mem). Each row depicts the value to be
stored in a particular memory location and the number of characters (or the number of columns) represents the
number of bits for each address (or the width of the memory module).

The Initialization File is primarily used for configuring the ROMs. RAMs can also use this Initialization File also to
preload the memory contents.

Binary File
The binary file is essentially a text file of 0’s and 1’s. The rows indicate the number of words and columns indicate
the width of the memory.

Add_0 Add _1 Add _2

Invalid Data Data_0

OutClock

Address

Q

OutClockEn

tSUADDR_ PFU tHADDR_PFU

tCORAM _PFU

Data_1 Data_2

Add_0 Add _1 Add _2

Invalid Data Data_0

OutClock

Address

Q

OutClockEn

tSUADDR_ PFU tHADDR_PFU

Data_1

34

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Memory Size 20x32

00100000010000000010000001000000
00000001000000010000000100000001
00000010000000100000001000000010
00000011000000110000001100000011
00000100000001000000010000000100
00000101000001010000010100000101
00000110000001100000011000000110
00000111000001110000011100000111
00001000010010000000100001001000
00001001010010010000100101001001
00001010010010100000101001001010
00001011010010110000101101001011
00001100000011000000110000001100
00001101001011010000110100101101
00001110001111100000111000111110
00001111001111110000111100111111
00010000000100000001000000010000
00010001000100010001000100010001
00010010000100100001001000010010
00010011000100110001001100010011

Hex File
The Hex file is essentially a text file of Hex characters arranged in a similar row-column arrangement. The number
of rows in the file is the same as the number of address locations, with each row indicating the content of the mem-
ory location.

Memory Size 8x16
A001
0B03
1004
CE06
0007
040A
0017
02A4

Addressed Hex
Addressed Hex consists of lines of address and data. Each line starts with an address, followed by a colon, and
any number of data. The format of memfile is address: data data data data ... where address and data are hexa-
decimal numbers.

-A0: 03 F3 3E 4F
-B2: 3B 9F

The first line puts 03 at address A0, F3 at address A1, 3E at address A2,and 4F at address A3. The second line
puts 3B at address B2 and 9F at address B3.

There is no limitation on the values of address and data. The value range is automatically checked based on the
values of addr_width and data_width. If there is an error in an address or data value, an error message is printed.
Users need not specify data at all address locations. If data is not specified at a certain address, the data at that
location is initialized to 0. IPexpress makes memory initialization possible through both the synthesis and simula-
tion flows.

35

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

EBR Wake-up Sequence
For EBR designs, GSR (Global Set/Reset) must be released before GOE (Global Output Enable) during wake-up.
See the LatticeSC sysCONFIG Usage Guide (TN1080) for recommended signal wake-up sequences allowed for
EBR designs.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History
Date Version Change Summary

February 2006 01.0 Initial release.

October 2006 01.1 Added dual port memory access notes in Appendix A.

February 2007 01.2 Changed references to “Module Manager” to “IPexpress” throughout.

Updated Utilizing IPexpress section.

Updated Read Pointer Reset section.

April 2007 01.3 Updated First In First Out (FIFO_DC) section.

July 2007 01.4 Updated First In First Out (FIFO_DC) section - added information about
delay associated with deassertion of Empty and Almost Empty flags.

March 2008 01.5 Updated text and figures in the IPexpress Flow section. Updated
WRITEMODE definition in Appendix A.

June 2008 01.6 Removed references to read-before-write (not supported).

Added section on EBR Asynchronous Reset.

July 2008 01.7 Added new section for EBR wake-up sequence.

Added definition in Appendix A for GOE.

November 2008 01.8 Added WE port to EBR RAM_DP module.

36

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

Appendix A. Attribute Definitions
DATA_WIDTH
Data Width is associated with the RAM and FIFO elements. The DATA_WIDTH attribute defines the number of bits
in each word. It takes the values as defined in the RAM size tables in each memory module.

REGMODE
The REGMODE or Register mode attribute is used to enable pipelining in the memory. This attribute is associated
with the RAM and FIFO elements. The REGMODE attribute takes the NOREG or OUTREG mode parameter that
disables and enables the output pipeline registers.

RESETMODE
The RESETMODE attribute allows users to select the mode of reset in the memory. This attribute is associated
with the block RAM elements. RESETMODE takes two parameters: SYNC and ASYNC. SYNC means that the
memory reset is synchronized with the clock. ASYNC means that the memory reset is asynchronous to clock.

CSDECODE
CSDECODE or the Chip Select Decode attributes are associated to block RAM elements. CS, or Chip Select, is
the port available in the EBR primitive that is useful when memory requires multiple EBR blocks cascaded. The CS
signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade
8 memories easily. CSDECODE takes the following parameters: “000”, “001”, “010”, “011”, “100”, “101”, “110”, and
“111”. CSDECODE values determine the decoding value of CS[2:0]. CSDECODE_W is chip select decode for
write and CSDECODE_R is chip select decode for read for Pseudo Dual Port RAM. CSDECODE_A and
CSDECODE_B are used for true dual port RAM elements and refer to the A and B ports.

WRITEMODE
The WRITEMODE attribute is associated with the block RAM elements. It takes the NORMAL, WRITETHROUGH,
and READBEFOREWRITE mode parameters.

In NORMAL mode, the output data is invalid during the write operation.

In WRITETHROUGH mode, the output data is updated with the input data during the write cycle.

In READBEFOREWRITE mode, the output data port is updated with the existing data stored in the write-address,
during a write cycle.

WRITEMODE_A and WRITEMODE_B are used for dual port RAM elements and refer to the A and B ports in the
case of True Dual Port RAM.

For all modes of the Dual Port modules, simultaneous read access from one port and write access from the other
port to the same memory address is not recommended. The read data may be unknown in this situation. Also,
simultaneous write access to the same address from both ports is not recommended. When this occurs, the data
stored in the address becomes undetermined when one port tries to write a 'H' and the other tries to write a 'L'.

It is recommended that users control logic to identify this situation if it occurs and then either:

1. Implement status signals to flag the read data as possibly invalid, or

2. Implement control logic to prevent the simultaneous access from both ports.

GSR
GSR, or the Global Set/Reset attribute, enables or disables the global set/reset for RAM element.

37

On-Chip Memory Usage Guide
Lattice Semiconductor for LatticeSC Devices

GOE
The GOE or Global Output Enable control, after the standard wake-up sequence has completed, determines when
the outputs are turned over to User Logic control.

	On-Chip Memory Usage Guide for LatticeSC Devices
	Introduction
	Memories in LatticeSC Devices
	Utilizing IPexpress
	IPexpress Flow
	Example Module Generation

	Utilizing the PMI
	Memory Modules
	Single Port RAM (RAM_DQ) - EBR Based
	True Dual Port RAM (RAM_DP_TRUE) – EBR Based
	Pseudo Dual Port RAM (RAM_DP) – EBR Based
	Read Only Memory (ROM) - EBR Based
	First In First Out (FIFO_DC)
	Distributed Single Port RAM (Distributed_SPRAM) – PFU Based
	Distributed Dual Port RAM (Distributed_DPRAM) – PFU Based
	Distributed ROM (Distributed_ROM) – PFU Based

	Initializing Memory
	Initialization File Format

	EBR Wake-up Sequence
	Technical Support Assistance
	Revision History
	Appendix A. Attribute Definitions
	DATA_WIDTH
	REGMODE
	RESETMODE
	CSDECODE
	WRITEMODE
	GSR
	GOE

