
www.latticesemi.com 1 tn1098_02.1

July 2012 Technical Note TN1098

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
This technical note describes the clocking resources available in the LatticeSC architecture. Details are provided
for primary clocks, edge clocks, and secondary clocks as well as clock elements such as PLLs, DLLs, Clock Divid-
ers, and several other elements. Performance specifications and tolerances for the clocking elements are found in
the LatticeSC/M Family Data Sheet DC and Switching Characteristics section.

Figure 1 provides a high-level view of the clocking structure of the LatticeSC architecture.

Figure 1. LatticeSC Clocking Structure (LFSC3GA25S Device)

General Overview of Clocking Architecture
Clock Networks
There are three types of clock networks in the LatticeSC architecture.

PLL

SERDES
PCS PCS PCSPCS

DLL

PLL

PLL

PLL

DLL

PLLDLL

PLLDLL

DLL

DLL

DLL

DLL

PLL

PLL

DLL

DLL

DLL

DLL

Edge
Clocks

Edge
Clocks

Edge
Clocks

Edge
Clocks

Primary Clocks

SERDES SERDES SERDES

LatticeSC sysCLOCK
PLL/DLL User’s Guide

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

2

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Primary Clock
A Primary clock is the main type of clock on which synchronous FPGA logic functions are performed. These clock
networks are low skew global clocks that can connect to all of the synchronous elements in the array. There are up
to 48 primary clocks on a LatticeSC device.

Edge Clock
Edge clocks are dedicated I/O clocks and are located on the edge of the array. Edge clocks are connected and
arranged by I/O banks or pairs of I/O banks. Edge clocks provide very low skew in a particular bank(s) for creating
I/O busses. There are 40 edge clocks arranged in five groups of eight on a LatticeSC device.

Secondary Clock
Secondary clocks use general purpose data routing to create a localized clock network. Secondary clocks are used
when primary and edge clocks cannot be used.

sysCLOCK™ PLLs and DLLs
The sysCLOCK PLLs can be used in a variety of clock management applications such as clock injection removal,
clock phase adjustment, clock timing adjustment, and frequency synthesis (multiplication and division of a clock).
For systems where EMI is a significant factor, LatticeSC PLLs offer spread-spectrum capabilities to help minimize
EMI noise. There are eight PLLs arranged in pairs in the corners of a LatticeSC device.

The DLLs are also used in a variety of applications such as clock injection removal, clock delay match and time ref-
erence delay (for 90 degree phase shifts). In some modes of operation, the output from the DLL is a clock signal. In
other modes of operation, the output is a digital delay control vector (DCNTL[9:0]) that can be used to adjust an
input delay element elsewhere on the device. There are 12 DLLs arranged in groups of two and four in corners of a
LatticeSC device.

PLL Features
Figure 2 provides a symbolic view of the LatticeSC PLL element.

Figure 2. LatticeSC PLL

Clock Injection Delay Removal
The clock injection delay removal feature of the PLL removes the delay associated with the PLL and clock tree.
This feature is typically used to reduce clock to out timing. This feature is performed by aligning the input clock with
a feedback clock from the clock tree. Optional delay may also be added to the feedback path to further reduce the
clock injection time.

Clock Phase Adjustment
The clock phase adjustment feature of the PLL provides the ability to set a specific phase offset between the two
outputs of the PLL. Phase adjustments can be made in 45 degree increments.

Frequency Synthesis
The PLL can be used to multiply up or divide down an input clock.

CLKI

CLKFB

LatticeSC
PLL

CLKOP

CLKOS

RSTN SMI

3

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Spread Spectrum
The PLL supports spread spectrum clocking to reduce peak EMI by using “down-spread” modulation. The spread
spectrum operation will vary the output frequency (at 30KHz to 500KHz) in a range that is between its nominal
value, down to a frequency that is a programmable 1%, 2% or 3% lower than nominal.

Note: Due to the complex tuning requirements of the PLL in spread spectrum mode, please contact Lattice Techni-
cal Support for detailed information on programming the PLL in spread spectrum mode. See the Technical Support
Assistance section at the end of this document for contact information.

Additional Features
In addition to the major features, the PLL has several other options that can be used in conjunction with the major
modes.

• Additional input delay on CLK1 and CLKFB

• Separate output dividers for the two outputs (divide by 1 to 64)

• Additional output delay on CLKOS

• Runtime programmable output dividers and phase offset via SMI interface

• Reset via the GSR or user reset signal

DLL Features
Figure 3 provides a symbolic view of the LatticeSC DLL element.

Figure 3. LatticeSC DLL

Clock Injection Delay Removal
The clock injection delay removal mode of the DLL removes the delay associated with the DLL and clock tree. This
feature is typically used to reduce clock to out timing. This feature is performed by adding delay to the input clock to
align it to the feedback clock. This delay can also be an output of the DLL on the DCNTL bus to delay other inputs
the same amount.

Time Reference Delay
Time reference delay is used to create a 90 degree phase shifted signal. The DLL produces a DCNTL vector that
will control a DELAY element to delay an input signal by 90 degrees. This delay will track over process, temperature
and voltage changes.

Clock Delay Match
Clock delay match mode accepts two clock inputs and will produce a DCNTL vector that is the delta of the two
clocks phases. This DCNTL value can then be used by an input delay element to perform a transfer between the
two clocks.

CLKI

CLKFB

LatticeSC
DLL

CLKOP

CLKOS

RSTN SMI

UDDCNTL ALUHOLD

DCNTL

4

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Additional Features
In addition to the major modes, the DLL has several other options that can be used in conjunction with the major
modes.

• Additional input delay on CK1 and CLKFB

• Output divider on one of two outputs (divide by 1, 2, or 4)

• Additional phase adjustment on CLKOP and CLKOS

• Runtime programmable output dividers and phase offset via SMI interface

• Reset via the GSR or user reset signal

PLL vs. DLL
The LatticeSC architecture provides both PLLs and DLLs. There are some features that differentiate the PLL from
the DLL. Below is a list identifying distinguishing features.

• A PLL can multiply/divide a clock, whereas the DLL can only divide a clock

• A DLL can propagate its functionality to several elements using the delay control vector while the PLL cannot

• The PLL has a finer granularity of divider options than the DLL

• The DLL can more accurately and precisely follow input jitter compared to the PLL

• The PLL has better jitter filtering and stability

• The PLL has better phase accuracy for phase settings

• The DLL can accept a clock input that stops whereas the PLL cannot

• The PLL provides spread spectrum capability

• The DLL can handle non-periodic signals while the PLL cannot

In general, PLLs are better for clocking signals off-chip due to their improved jitter characteristics while DLLs may
be better suited for clocks that capture input signals.

Overview of Other Clocking Elements
Clock Dividers (CLKDIV)
Clock dividers are provided to create phase-matched divided-down clocks for divide by 2 or 4. Clock dividers are
especially useful for creating the low speed clock used with the I/O Mux/DeMux gearing logic. When using I/O
Mux/DeMux gearing logic, these clock dividers also provide a synchronization reset. There are 20 clock dividers on
a LatticeSC device.

Dynamic Clock Select (DCS)
A dynamic clock select provides a glitchless switch between two clock sources to a primary clock. This clock multi-
plexor allows the gating of a clock signal without leaving dedicated clock resources in the device. There are eight
dynamic clock select blocks on a LatticeSC device.

Clock Shut Off
A clock shut off element is provided to stop an input signal at the input buffer. It is useful for the DQS in memory
interfaces. This element allows clock enable logic to be performed on the edge clock without connecting to a logic
element in the array. It is also useful to shut off any or all input signals to the FPGA. This capability is present in
every PIO input to the device.

5

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Edge Detection
A simple clock edge detection element is provided directly in the I/O logic. This feature is available on every PIO
input. It creates a one-shot output that goes high on the first positive edge after a reset.

Oscillator
An internal oscillator is provided. This is the same oscillator that is used for the master configuration modes when
the FPGA sources the configuration clock. This programmable rate oscillator is made available post-configuration
for the FPGA design. There is only one oscillator on a LatticeSC device.

Detailed Information for LatticeSC Clocking Components

Primary Clock
The primary clock network is the most frequently used clock network of the architecture. This is a low skew clock
network that has connectivity to nearly every synchronous element of the device.

The LatticeSC device is divided into four quadrants with each quadrant providing 12 primary clocks for a total of 48
primary clocks on the device. Primary clocks can also cross quadrants in which case the primary clock would be
shared by more than a single quadrant. This arrangement allows for 12 primary clocks that cover the entire device
not taking into account the quadrant structure.

Primary clocks can be sourced from a variety of FPGA elements as shown in Figure 4. Recovered and reference
clocks from the SERDES can drive primary and secondary clocks.

Figure 4. Primary Clock Sources

The ispLEVER® place and route tools will automatically select a clock net as a primary clock resource based on the
following rules. The selection rules are ordered by priority from highest to lowest.

1. Device connectivity – if a net in the design is sourced from a port that only drives a primary clock then a pri-
mary clock will be used. This is true in the case of the clock dividers which can only drive primary clocks.
Also, the SERDES/PCS block provides specific clock outputs which can only drive primary clocks.

2. The user can select a net in the design to use a primary clock resource. This can be done in the pre-map
Preference Editor using Project Navigator. The preference can also be entered into the ASCII text prefer-
ence file using the following syntax.

USE PRIMARY NET “<net name>”;

DCS

PLL

DLL

Preferred
Pin

PCS/
SERDES

CLKDIV
Primary

Clock Tree

Internal Logic

6

LatticeSC sysCLOCK
PLL/DLL User’s Guide

This preference is only applicable if the source is capable of driving a primary clock. This preference is
useful in directing the place and route tools to select a primary clock on a clock that does not have a large
number of clock loads.

3. The place and route tool will select clocks with the highest number of clock loads until all primary clock
resources are used.

The ispLEVER place and route report indicates which clock signals have been selected to use a primary clock
resource.

The following four signals are selected as primary clocks:
 txclk (driver: oddr/ucdiv, clk load #: 191)
 rxclk (driver: iddr/ucdiv, clk load #: 184)
 clka (driver: clka, clk load #: 34)
 clkb (driver: clkb, clk load #: 28)

Quadrant Clocking
The primary clock network is divided into four quadrants. Each quadrant provides 12 primary clocks for a total of 48
possible primary clocks. Quadrants can be connected and share a primary clock. The user can partition a design
into quadrant clocking by assigning a preference to the clock. This preference can be set in either the pre-map pref-
erence editor or the preference file. The place and route tool will use the user preference and place logic elements
only in the specific quadrant(s) specified. Below is an example of the preference.

USE PRIMARY net “clka” QUADRANT_TL;

If a quadrant is not specified, the logic will use the entire device and automatically share primary clocks across
quadrants. In this case there are only 12 primary clocks in the device.

Figure 5 provides the location and name of each quadrant.

Figure 5. Primary Clock.Quadrants

Edge Clock
The edge clock network is arranged around the perimeter of the device, connecting to the I/O logic. Edge clocks
are localized low skew clocks intended for clocking high speed data in and out of the I/O logic. Edge clocks are tied
to the bank based I/O structure as shown in Figure 6.

QUADRANT_BL

QUADRANT_TR

QUADRANT_BR

QUADRANT_TL

SERDES PCS SERDES PCS

7

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 6. LatticeSC Edge Clock Banking

Edge clocks in banks, 1, 4, and 5 provide low skew connectivity to elements in their bank. There are eight edge
clocks available in each of these banks. Edge clocks in banks 2/3 and 6/7 span the entire side of the device. There
are eight edge clocks that are shared in banks 2/3 and another eight in banks 6/7. For wide I/O data buses it is best
to use a low skew clock on the outside of the device. The edge clocks on the bottom and the side can be driven by
the same source from a PLL/DLL. Primary clocks can also drive edge clocks as shown in Figure 7.

Figure 7. Edge Clock Sources

Edge clock routes can also be used for high speed synchronous resets for the I/O logic. The Mux/DeMux gearing
of the I/O logic requires a synchronous reset to synchronize the entire bus. An edge clock local set/reset (ELSR)
can be used to route this reset with its very low skew as shown in Figure 8. This allows all of the I/O logic blocks to
be reset in the same high speed clock cycle.

Bank 1SerDes
PCS

SerDes
PCS

B
ank 6

Bank 5

B
ank 7

Bank 4

B
a

nk
 2

B
a

nk
 3

Edge Clocks

PLL

DLL

Preferred
Pin Edge Clock

Primary Clock

CLKDIV ELSR

8

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 8. Edge Set/Reset (ELSR)

Edge clocks can also be used for high speed clock inputs to be divided down by either a PLL, DLL, or CLKDIV. For
example, an edge clock could be used to source a 1GHz clock to a PLL to divide down the clock rate for the FPGA
design.

The ispLEVER place and route tools will automatically select a clock net as an edge clock resource based on the
following rules. The rules are ordered by priority from highest to lowest.

1. Device connectivity – if it is possible for an edge clock to be used, the place and route tools will use an
edge clock. This relies on three factors.

a. The source of the clock must be capable of driving an edge clock.
b. All destinations of the clock must be capable of receiving an edge clock.
c. There are edge clock resources available in the bank structure.

2. The user preference “USE EDGE NET “<net name>”;” allows the user to force a net to be implemented
using an edge clock. This will only work if the first rule of device connectivity is fulfilled.

Secondary Clock
Secondary clocks are created using a set of extendable horizontal spines and vertical branches which are created
automatically by ispLEVER. These clocks are used when primary and edge clocks cannot be used. Secondary
clocks are buffered every six rows or six columns of the array and do not have the same skew control as the edge
or primary clock network.

PLL
The LatticeSC PLL provides features such as clock injection delay removal, frequency synthesis, phase adjust-
ment, and spread spectrum capabilities. At the center of the PLL is a voltage controlled oscillator (VCO), phase/fre-
quency detector (PFD) to compare its two inputs, CLKI and CLKFB, and a loop filter. At each input and output there
are dividers to control the VCO and output rates. A block diagram for the PLL is shown in Figure 9.

IO
Logic

IO
Logic

IO
Logic

IO
Logic

IO
Logic

IO
Logic

Edge Clock

Edge Reset
(ELSR)

9

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 9. LatticeSC PLL Block Diagram

The LatticeSC PLL allows the user to select an input frequency and output frequencies for its two outputs, CLKOP
and CLKOS. Dividers provide the ability to synthesize different rates based on the input frequency. A mixture of
phase control and programmable delays provide the ability to determine the timing relationships of the clock sig-
nals.

Ports and Descriptions
The LatticeSC PLL is created and configured by IPexpress™ (included in the ispLEVER design tools). The follow-
ing is a list of user port names and descriptions for the PLL. IPexpress will wrap the element shown in Figure 9 to
create a customized PLL module based on user selections.

CLKI Input
The CLKI signal is the reference clock for the PLL. The CLKI input can be sourced from any type of FPGA routing
and pin. The PLL CLKI input has a preferred pin per PLL which will be discussed later in this document. The pre-
ferred pin provides the lowest latency and best case performance. If the input clock CLKI stops, then the PLL will
drift to a frequency in the kHz range.

CLKFB Input
The CLKFB input is only available if the user selects to use a user clock signal for the feedback. If internal feedback
or CLKOS/CLKOP is used for the feedback, this connection will be made inside the module.

The PLL will align the input clock phase with the feedback clock phase to remove clock injection delay. The CLKFB
input also supports a divider for use in frequency synthesis. The PLL CLKFB input has a preferred pin per PLL
which will be discussed later in this document. The preferred pin provides the lowest latency and best case perfor-
mance.

If internal feedback is selected, the PLL feedback is connected internally directly from the VCO. If the feedback
input clock CLKFB stops, the PLL drifts to a frequency at the high range of the PLL operating frequency. A reset is
required to recover from this state.

CLKOP Output
An output of the PLL based on the VCO rate which can be divided. The CLKOP output can drive primary, edge, and
secondary clock routing.

CLKOS Output
An output of the PLL based on the VCO rate which can be divided and/or phase shifted. The CLKOS output can
drive primary, edge, and secondary clock routing.

CLKI

CLKFB

CLKOP

CLKOS

VCO/
Loop Filter

Phase
Adjust

PFD

LOCK

Div

Div

Prog
Delay

Prog
Delay

Prog
Delay

Div

Div

Optional Internal FeedbackRSTN
From PFD

10

LatticeSC sysCLOCK
PLL/DLL User’s Guide

LOCK Output
Once the PLL becomes frequency locked, the PFD tries to match the phase of the CLKI input clock to the CLKFB
feedback clock. The clock signals to the PFD are used to determine if they are close enough in phase for the PLL
to be considered locked by the lock detect circuitry coming from the PLL loop. When this occurs the PLL LOCK sig-
nal will go high as an indicator. If the CLKI and CLKFB input stops, the LOCK output may go low and the VCO will
free-run and drift. At least one edge for CLKI must occur without CLKFB in order for the LOCK signal to go low.

Depending on certain input conditions of the clock frequency, the relative input clock edge and PLL update edge
relationships may cause the digital detect logic of the PLL LOCK signal to transition low for several clock cycles.
While the digitally produced lock signal may transition low for several clock cycles, the analog core of the PLL main-
tains operation within all of its specifications. This LOCK signal transition may indicate a false out-of-lock occur-
rence if not properly filtered by the user design.

The described false out-of-lock signal is due to a synchronization state within the digital lock detect circuit itself and
is not indicative of a true, analog out-of-lock condition of the PLL. To compensate for this potential false indication,
it is recommended that the designer implement a simple circuit which sets the PLL LOCK output high upon lock
and keeps it high until a global reset is issued. An example circuit is shown in Figure 10. A caveat with this solution
is in the unlikely event that the clock source or PLL falls out of lock or is disabled for any reason, the example circuit
shown in Figure 10 will still indicate that the PLL is locked which may not necessarily be the case.

Figure 10. PLL LOCK Circuit

RSTN Input
Active low reset input to reset the VCO and divider logic to operate at a low operating frequency. The PLL can
optionally be reset by the GSR as well. It is recommended that if the PLL requires a reset that the reset is not the
same as the FPGA logic reset. Typically logic requires that a clock is running during a reset condition. If the data
path reset also resets the PLL the source of the logic clock will stop and this may cause problems in the logic.

SMI (Serial Management Interface)
The PLL supports a run time control interface for modifying the behavior of the PLL in the system. Such parameters
as output dividers and phase offset can be changed while in the system without requiring a reconfiguration. This
control interface is known as the Serial Management Interface (SMI). More information on using the SMI will be
found later in this document.

PLL Modes of Operation
PLL Clock Injection Removal
The PLL can be used to reduce clock injection delay. Clock injection delay is the delay from the input pin of the
device to a destination element such as a flip-flop. The PLL will align the CLKI with the CLKFB. If the CLKFB signal
comes from the clock tree (CLKOP, CLKOS) then the delay of the PLL and the clock tree will be removed from the
overall clock path. Figure 11 shows a circuit example and waveform.

lock_in

rstn

lock_out

clk

11

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 11. Clock Injection Delay Removal via PLL

Removing clock injection delay is beneficial for decreasing clock-to-out timing of the device.

PLL Clock Phase Adjustment
The PLL can create fixed phase relationships in 45 degree increments. Creating fixed phase relationships are use-
ful for forwarded clock interfaces where a specific relationship between clock and data is required. There are two
configurations for phase adjustments, CLKOP to CLKOS and CLKI to CLKOS.

CLKOP to CLKOS: Figure 12 shows a circuit example and waveform of a clock phase adjustment between
CLKOP and CLKOS using internal feedback.

Figure 12. Clock Phase Adjustment PLL CLKOP leads CLKOS

In this PLL configuration CLKOP will lead CLKOS by the determined amount of phase adjustment. CLKOP can be
used as the feedback clock in this configuration, but not CLKOS. If CLKOS is used as the feedback clock the phase
adjustment will be removed by the nature of the PLL.

CLKI to CLKOS: Figure 13 shows a circuit example and waveform of a clock phase adjustment between CLKI and
CLKOS.

PLL

CLKI

CLKFB CLKOP/
CLKOS

Clock Tree

CLKI

Clock at
Clock Tree
without PLL

CLKOP/CLKOS
at Clock Tree
with PLL

Clock Injection Delay

PLL

CLKI CLKOP

CLKI

CLKOP

CLKOS with 90
degree phase
shift

CLKOS

12

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 13. Clock Phase Adjustment PLL CLKI leads CLKOS

In this PLL configuration, CLKI will lead CLKOS by the determined amount of phase adjustment. CLKOP is
required to be the feedback clock connected to CLKFB. This feedback path will align the outputs to the CLKI input
if no phase adjustment is specified. If phase adjustment is added the CLKOS output will be delayed by this amount.

Additional Delay Capabilities
In addition to the phase adjustment capability of the PLL there are two other methods for controlling the clock
edges of the PLL outputs.

Fixed Delays: The CLKI, CLKFB, and CLKOS ports support a fixed delay capability. These delays can be added to
further shift the clock edges in time. CLKI and CLKFB provide coarse (0-3ns) and fine (0-700ps) delays. CLKOS
provides only fine delay. Adding delay to CLKI shifts the entire PLL out in time affecting both CLKOP and CLKOS.
Adding delay to CLKFB shifts all of the PLL outputs negatively and removes delay from the PLL. The CLKOS delay
shifts only the CLKOS output port. This can change the overall delay of the PLL if CLKOS is used as the feedback
clock source.

Note: In order to add delay to CLKOS, the CLKOS port must be using the output path that runs through the CLKOS
output divider. If the added delay is used to create a relationship with CLKOP, then the CLKOP port must also run
through the CLKOP output divider. There is a delay matching circuit in the CLKOP path to match a 0ps setting on
CLKOS for this purpose.

CLKOS VCO Delay: The CLKOS port supports a VCO delay which allows the CLKOS port to be delayed a specific
number of VCO clock cycles. This is accomplished by holding the CLKOS output port in reset for the number of
specified VCO clock cycles after a reset or configuration. CLKOS can be delayed 0 to 31 VCO clock cycles. The
VCO rate can be found with the following equation (assuming internal feedback).

CLKI_DIV and CLKFB_DIV can be found by looking in the generated HDL from IPexpress.

Figure 14 provides a simplified block diagram of the PLL additional delayed capabilities.

PLL

CLKI

CLKFB CLKOP

CLKI

CLKOP

CLKOS with 180
degree phase
shift

CLKOS

VCO Rate =
CLKI Rate
CLKI_DIV

X CLKFB_DIV

13

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 14. PLL Fixed Delay Block Diagram

The setting of these additional delays is discussed later in this document under the Advanced Preference Support
section.

Considerations for use of various phase adjustments:

1. The Coarse Phase Delay on CLKI and CLKFB are not PVT compensated.

2. The accuracy of the PLL Clock Phase Adjustment and the CLKOS VCO Delay are much more accurate
over PVT than the Fine Delay Capability.

3. The PLL Clock Phase Adjustment and the CLKOS VCO Delay change as the clock frequency changes -
the Fine Phase Delay remains fixed. Therefore, the Fine Phase Delay should only be used for minor modi-
fications to the clock delays.

PLL Frequency Synthesis
The PLL provides dividers on all of the clock inputs and outputs. A divider on the CLKFB works as a multiplier. For
example, a divide by 2 on the CLKFB produces a VCO rate 2x that of CLKI. Using these dividers and feedback
paths, the PLL can create new clock rates from a single CLKI rate. There is only a single VCO which will run at a
given rate. The CLKOP and CLKOS outputs will need to be divided down rates of the VCO rate. Each divider can
divide the clock signal by up to 64.

IPexpress removes the calculation of the dividers from the user. The user enters the input frequency and the
desired output frequency and the IPexpress performs the calculations of the divider values. The VCO frequency
must always remain within its operating frequency range provided in the LatticeSC/M Family Data Sheet. The divid-
ers can be changed by a preference or at run time via the SMI interface. These topics are discussed later in this
document.

Spread Spectrum
Spread Spectrum is the technique of modulating the operating frequency of a circuit slightly to spread its radiated
emissions over a range of frequencies rather than just one tone. This reduction in the maximum emission for a
given frequency helps meet FCC requirements. The LatticeSC PLL includes a Spread Spectrum feature for design-
ers who want to reduce the EMI emission in their systems. Spread Spectrum in this case is dynamically changing
the PLL output frequency to disperse the PLL output clock energy across a wider frequency range. The frequency
change is controlled, thus changing most of the “jitter” component into a controlled deterministic jitter.

Note: Due to the complex tuning requirements of the PLL in spread spectrum mode, please contact Lattice Techni-
cal Support for detailed information on programming the PLL in spread spectrum mode. See the Technical Support
Assistance section at the end of this document for contact information.

The LatticeSC PLL supports “down-spread” modulation, the output frequency is always lower than or equal to the
nominal output frequency. The PLL does not support “up-spread” or “center-spread” modulation. Figure 15 pro-
vides a plot of down-spread modulation. When enabled, the output frequency will vary in a range that is 0.5%,
1.0%, or 1.5% below its nominal value. This is accomplished by removing a clock cycle periodically.

CLKI

CLKFB

VCO

CLKOS

CLKOP
CLKI_FDEL

CLKFB_FDEL CLKOS_VCODELCLKOS_FDEL

CLKI_PDEL

CLKFB_PDEL

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

14

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 15. Down-Spread Modulation Plot

For information regarding enabling spread spectrum in the LatticeSC PLL, contact Lattice Technical Support. Con-
tact information is found at the end of this document.

Programmable Loop Bandwidth
The LatticeSC PLL provides a programmable bandwidth. This bandwidth is the measure of the PLL’s ability to track
jitter in the incoming reference clock. A low bandwidth PLL will filter out high frequency jitter while a high bandwidth
PLL will track high frequency jitter and provide a shorter lock time. IPexpress supports a medium (default) and high
bandwidth setting for the PLL. IPexpress uses the frequency of the VCO and bandwidth setting to determine set-
tings for the loop filter resistance and current. After the PLL settings have been calculated in IPexpress, the VCO
frequency and bandwidth are displayed for the user.

Creating a PLL using ispLEVER
IPexpress is used to create and configure a PLL. The user will use the graphical user interface to select parameters
for the PLL. The result is an HDL model to be used in the simulation and synthesis flow.

Configuration Tab
The GUI will automatically determine and set the divider values for the PLL to create a VCO rate and
CLKOP/CLKOS output rate based on user criteria.

CLKI Frequency – The rate (MHz) of the CLKI input.

CLKOP/CLKOS Desired Frequency – The rate at which the user wants the CLKOP/CLKOS output to run.

CLKOP/CLKOS Tolerance (%) – The accuracy required for the actual frequency from the desired frequency.
The GUI is actually calculating how to use the internal dividers for CLKI, CLKFB, CLKOP, and CLKOS to create
the output rates from the input rate. It may not be possible to create the exact frequency desired by the user.
The tolerance field informs the GUI of the accuracy required for each clock output compared to the other output
clock. This provides flexibility for the GUI to find a solution. If a solution is not possible the GUI will inform the
user to make changes to the selections.

Un-modulated
Clock

Modulated Clock
(Spread Spectrum Clock)

Down-Spread Rate

EMI Reduction

S
p

e
ct

ra
l

D
e

n
si

ty

Frequency

15

LatticeSC sysCLOCK
PLL/DLL User’s Guide

CLKOS Phase Shift – The CLKOS output can be phase shifted in reference to the CLKOP output. This field
specifies the CLKOS to CLKOP phase offset in 45 degree increments. CLKOP will lead CLKOS by the amount
of phase shift selected.

CLKFB Feedback Mode – Sets the feedback mode of the PLL to either internal, CLKOP, CLKOS, or User
Clock. If internal feedback is selected minimal clock injection delay is removed. If CLKOP/CLKOS is selected
then the clock tree injection delay for the specific output clock will be removed. If User Clock is selected then
the user will be provided with the CLKFB port on the PLL.

CLKFB Frequency – If User Clock is selected for Feedback Mode the GUI needs to know the input frequency
of the CLKFB port to calculate the divider values.

Advanced Tab

Provide RSTN port – The RSTN port allows the user to reset the PLL VCO and dividers via a user signal.

Enable GSR to Reset PLL – Enabled, the PLL VCO and dividers will be reset via the GSR. No user signal is
required. When applying a reset to the PLL, the VCO operates at a low frequency.

Provide SMI Ports – The SMI ports allow the user to change PLL behavior for output dividers and phase offset
in system.

Use High Bandwidth – Enables IPexpress to create a high bandwidth loop filter in PLL.

DLL
The LatticeSC DLL provides features such as clock injection delay removal, delay match, time reference delay (90
degree phase delay), and output phase adjustment. The DLL performs clock manipulation by adding delay to the
CLKI input signal to create specific phase relationships. There are two types of outputs of the DLL. The first are
clock signals similar to the PLL CLKOP and CLKOS. The other type of output is a delay control vector
(DCNTL[9:0]). The delay control vector is connected to a DELAY element located in the I/O logic which matches
the delay cells in the DLL. This delay vector allows the DLL to dynamically delay an input signal by a specific
amount. Figure 16 provides a block diagram of the LatticeSC DLL.

Figure 16. LatticeSC DLL Block Diagram

Clock injection delay removal and output phase adjustment both use only the clock outputs of the DLL. Time refer-
ence delay and delay match modes use the delay control vector output. Specific examples of these features will be
discussed later in this document.

CLKI

CLKFB

CLKOP

CLKOS

UDDCNTL

ALUHOLD

DCNTL

Delay
Chain

ALU

Duty50

Duty50Phase Adj

PFD

DCNTL
Gen

LOCK

Phase Adj

RSTN

16

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Ports and Descriptions
The LatticeSC DLL is created and configured by IPexpress. The following is a list of port names and descriptions
for the DLL. There are four library elements used to implement the DLL. These include CIDDLLA (clock injection
delay), SDCDLLA (clock injection delay with DCNTL), CIMDLLA (clock delay match), and TRDDLLA (time refer-
ence delay). IPexpress will wrap one of these library elements to create a customized DLL module based on user
selections.

CLKI Input
The CLKI signal is the reference clock for the DLL. The CLKI input can be sourced from any type of FPGA routing
and pin. The DLL CLKI input has a preferred pin per DLL which will be discussed later in this tech note. The pre-
ferred pin provides the lowest latency and best case performance.

CLKFB Input
The CLKFB input is only available if the user selects to use a user clock signal for the feedback or in clock delay
match mode. If internal feedback or CLKOS/CLKOP is used for the feedback this connection will be made inside
the module.

In clock injection delay removal mode the DLL will align the input clock phase with the feedback clock phase by
delaying the input clock.

In clock delay match mode the DLL will calculate the delta between the CLKI and CLKFB signals. This delay value
is then output on the DCNTL vector.

The DLL CLKFB input has a preferred pin per DLL which will be discussed later in this user’s guide. The preferred
pin provides the lowest latency and best case performance.

CLKOP Output
An output of the DLL based on the CLKI rate. The CLKOP output can drive primary, edge, and secondary clock
routing.

CLKOS Output
An output of the PLL based on the CLKI rate which can be divided and/or phase shifted. The CLKOS output can
drive primary, edge, and secondary clock routing.

DCNTL[9:0] Output
This output of the DLL is used to delay an I/O input signal a specific amount. The DCNTL[9:0] vector connects to a
DELAY element that is located in the I/O logic. The DLL can then control multiple input delays from a single DLL.
The DLL uses the exact same DELAY elements as the I/O logic and will have the same compensation to process,
voltage and temperature conditions.

There are two 10-bit delay control vector routes available in each bank. Delay control vectors can be shared across
banks as well.

The DCNTL[9:0] bus can also be driven by FPGA user logic instead of the DLL. For more information on using the
DCNTL bus, refer to TN1088, LatticeSC PURESPEED™ I/O Usage Guide.

UDDCNTL Input
This input is used to enable or disable updating of the DCNTL[9:0]. To ensure that the signal is captured by the syn-
chronizer in the DLL block, it must be driven high for a time equal to at least two clock cycles when an update is
required. If the signal is driven high and held in that state, the DCNTL[9:0] outputs are continuously updated.

ALUHOLD Input
This active high input stops the DLL from adding and subtracting delays to the CLKI signal. The DCNTL[9:0],
CLKOP, and CLKOS outputs will still be valid, but will not change from the current delay setting.

www.latticesemi.com/dynamic/view_document.cfm?document_id=28642

17

LatticeSC sysCLOCK
PLL/DLL User’s Guide

LOCK Output
Active high lock indicator output. The LOCK output will be high when the CLKI and CLKFB signal are in phase. This
is true for both external and internal feedback configurations.

If the CLKI input stops the LOCK output will remain asserted. The clock is stopped so there is no clock to de-assert
the LOCK output. Note that this is different from the operation of the PLL where the VCO continues to run when the
input clock stops.

RSTN Input
Active low reset input to reset the DLL. The DLL can optionally be reset by the GSR as well. It is recommended that
if the DLL requires a reset that the reset is not the same as the FPGA logic reset. Typically logic requires that a
clock is running during a reset condition. If the data path reset also resets the DLL the source of the logic clock will
stop and this may cause problems in the logic.

SMI (Serial Management Interface)
The DLL supports a run time control interface for modifying the behavior of the DLL in the system. Such parame-
ters as output dividers and phase offset can be changed while in the system. This control interface is known as the
Serial Management Interface (SMI). More information on using the SMI will be found later in this tech note.

DLL Modes of Operation
DLL Clock Injection Removal
The DLL can be used to reduce clock injection delay (CIDDLLA). Clock injection delay is the delay from the input
pin of the device to a destination element such as a flip-flop. The DLL will add delay to the CLKI input to align CLKI
to CLKFB. If the CLKFB signal comes from the clock tree (CLKOP, CLKOS) then the delay of the DLL and the clock
tree will be removed from the overall clock path. Figure 17 shows a circuit example and waveform.

Figure 17. Clock Injection Delay Removal via DLL

Clock injection removal mode can also provide a DCNTL port. In this mode the delay added to the CLKI signal is
output on the DCNTL port so that other input signals can be delayed the same amount. This is very useful if several
clocks are used in the same circuit to minimize the number of DLLs required. When using the DCNTL the DLL
delay will be limited to the range of the DCNTL vector. Therefore, IPexpress will restrict the CLKI rate from 300MHz
to 700MHz.

DLL Time Reference Delay (90 Degree Input Phase Delay)
The Time Reference Delay (TRDDLLA) mode of the DLL is used to calculate 90 degrees worth of delay to be
placed on the DCNTL vector. This is a useful mode in delaying a clock 90 degrees for use in clocking a DDR type
interface. Figure 18 provides a circuit example of this mode.

DLL

CLKI

CLKFB CLKOP/
CLKOS

Clock Tree

CLKI

Clock at
Clock Tree
without DLL

CLKOP/CLKOS
at Clock Tree
with DLL

Clock Injection Delay

18

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 18. Time Reference Delay Circuit Example

In this mode, CLKI accepts a clock input. The DLL produces a DCNTL vector that will delay an input signal by 90
degrees of a full period of the CLKI signal. This DCNTL vector can then be connected to an I/O delay element to
delay the signal by 90 degrees of the full period of CLKI. More information on using the time reference delay mode
of the DLL can be found in TN1088, LatticeSC PURESPEED I/O Usage Guide.

For applications requiring delays slightly less than or slightly greater than 90 degrees, the DCNTL 90 degree phase
shift can be incremented or decremented by setting the DLL SMI offset 0x8 [7:0] register setting. This register set-
ting will either add (DLL SMI offset 0x8 bit 7 = 0) or subtract (DLL SMI offset 0x8 bit 7 = 1) tFDEL delays from the
default 90 degree phase shift. The number of tFDEL delays to be added or subtracted is specified by DLL SMI offset
0x8 bits [0:6].

Note: The specification of tFDEL is located in the DC and Switching Characteristics section of the LatticeSC/M Fam-
ily Data Sheet.

DLL Clock Delay Match
The Clock Delay Match (CIMDLLA) mode of the DLL allows two synchronous clock inputs to be used to create a
DCNTL vector that is the delta of the delay between the two clocks. In this circuit the DLL will compare the phase
difference between the CLKI and CLKFB inputs to create a delay vector. This is a useful mode when data is trans-
mitted off one clock (CLKI) and captured on a different clock (CLKFB) that is synchronous to each other. By delay-
ing the data inside the I/O logic before being latched by CLKFB the data signal will be delayed the same amount as
the difference in the clock delay. Figure 19 provides a circuit example of the mode.

Clk’
DLL

Clk DLL
Delay

DCNTL

Data
FFDelay

Edge Clock

ECLK Injection

CLKI

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
www.latticesemi.com/dynamic/view_document.cfm?document_id=28642

19

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 19. Clock Delay Match Circuit Example

In Clock Delay Match mode the maximum delay is limited to the extent of the DCNTL bus (3.9ns).

Additional DLL Features
In addition to the major modes of operation the DLL has several features that are available in all modes.

CLKI and CLKOS Dividers
The CLKI and CLKOS ports support a divide by 2 or divide by 4 clock divider. When using the CLKOS divider
CLKOP is compensated to maintain the correct phase alignment. The CLKI divider setting is not available when
creating the module using the IPexpress. Setting this divider will be discussed later in this document in the
Advanced Preference Support section.

CLKOS Phase Shift
The CLKOS output also allows the user to set a phase offset in reference to the CLKOP output. The CLKOP output
will lead the CLKOS output by the amount of phase set on CLKOS.

Duty Cycle Correction
The DLL can also correct the duty cycle of the CLKI input signal to create a “50/50” output clock. This feature is
available on both the CLKOP and CLKOS outputs of the DLL. Duty cycle correction can be enabled in the Pre-Map
Preference Editor.

Creating a DLL using ispLEVER
IPexpress is used to create and configure a DLL. The user will use the graphical user interface to select parameters
for the DLL. The result is an HDL model to be used in the simulation and synthesis flow.

Configuration Tab
Usage Mode – Select the mode of the DLL (Time Reference Delay, Clock Injection Delay Removal, or Clock
Delay Match). This selection will enable or disable further options in the GUI.

CLKI Frequency – The rate (MHz) of the CLKI input.

CLKOS Divide – Set the divider for the CLKOS output to be either no divide, divide by 2, or divide by 4.

CLKOS Phase Shift – Set the phase offset of the CLKOS to the CLKOP output. CLKOP will lead CLKOS by
the amount of phase shift selected.

CLKFB Feedback Mode – Sets the feedback mode of the DLL to either internal, CLKOP, CLKOS, or User
Clock. If internal feedback is selected then minimal clock injection delay is removed. If CLKOP/CLKOS is

ClkS

DLL

CLKI

D
Delay

DCNTL

FF

ClkD
CLKFB

FF

Off Chip On Chip

20

LatticeSC sysCLOCK
PLL/DLL User’s Guide

selected then the clock tree injection delay for the specific output clock will be removed. If User Clock is
selected then the user will be provided with the CLKFB port on the DLL.

CLKFB Frequency – This is a read-only field to display to the user the rate of the CLKFB input.

Provide RSTN port – The RSTN port allows the user to reset the DLL through a user signal.

Enable GSR to reset DLL – If selected the DLL will be reset via the GSR. No user signal is required.

Provide SMI ports – The SMI ports allow the user to change DLL behavior for output dividers and phase offset
in system.

Provide DCNTL port – In Clock Injection Delay Mode it is possible to obtain the delay added to the CLKI port
on the DCNTL port. This can then be used to delay other clock inputs by the same amount by connecting the
DCNTL vector to DELAY elements.

PLL/DLL Cascading
It is possible to connect together several arrangements of PLLs and DLLs or fine phase shifts of an output clock
signal. There are four possible cascading schemes:

• PLL to PLL

• PLL to DLL

• DLL to DLL

• DLL to PLL

Cascading the DLL to the PLL
The DLL can be used to drive the PLL to create fine phase shifts of an input clock signal. Figure 20 provides a dia-
gram of the cascading configuration where the DLL shifts all outputs for CLKOP and CLKOS out in time.

Figure 20. DLL to PLL

Note: This figure shows the PLL using internal feedback. It is also possible to use external feedback using either
CLKOP or CLKOS.

By cascading the DLL to the PLL, the DLL can add very fine delay to the CLKI input resulting in fine phase shifting
at the output of the PLL. As the DLL provides finer phase resolution than the 45 degree setting of the PLL, this
application is useful in clock forwarding applications where the data and clock relationship can be slightly offset.
The PLL is used at the output to filter the jitter of the incoming clock.

In this application the DLL must be programmed to use static delay. Typically the DLL is changing its delay setting
to maintain a relationship between the CLKI and CLKFB. In this system there is no DLL CLKFB and the delay set-
ting will remain constant. This is necessary since the PLL will not be able to tolerate abrupt phase changes that
could be created by the DLL. When using this cascading scheme it is best to use edge clock routing from the
CLKOS output clock of the DLL to the PLL input. This can be accomplished by using a USE EDGE NET prefer-
ence.

Figure 21 provides a diagram of the cascading configuration where the DLL shifts only CLKOP out in time.

DLL PLL
CLKOP

CLKOS
CLKOSCLKI

SMI Bus

21

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 21. PLL to DLL

Note: This figure shows the PLL using internal feedback. It is also possible to use external feedback using either
CLKOP or CLKOS.

Figure 22 provides a diagram of the cascading configuration where the DLL shifts only CLKOS out in time.

Figure 22. PLL to DLL

Note: This figure shows the PLL using internal feedback. It is also possible to use external feedback using either
CLKOP or CLKOS.

Cascading PLLs
When cascading PLLs, the second PLL may not lock during simulation due to rounding errors caused by certain
values of clkop. For example, when clkop=clki/3 and clkop is used as the input to the second PLL, the second PLL
does not lock because the time period is not the same. In this situation, it is recommended to use an input fre-
quency that will avoid this issue.

Figure 23. Cascading PLLs

The DLL creates delay through a series of delay blocks as shown in Figure 24.

PLL DLL CLKOSCLKOPCLKI

SMI Bus

PLL DLL CLKOSCLKOSCLKI

SMI Bus

3.3 ns 3.3 ns 3.4 ns

10 ns

clki

clkop=clki/3

22

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 24. DLL Delay Architecture

The user must select how much delay is added in the CLKI to CLKOS path. This selection is done using two con-
trols. The first control selects how many delay blocks are used in the DLL path. The second control selects the
delay of each delay block. Notice that the same delay value is used in each delay block. The total delay of the DLL
can be found using the following formula.

Total DLL Delay = Static DLL delay (tDLL) + (Static Delay block delay (tFDEL) * Delay Setting Value * Number of
Delay blocks selected by the CLKOS Mux Ctrl)

Note: Delay Setting Value = (DLL SMI offset 0x6 [0:7] register setting) where 0 ð (DLL SMI offset 0x6 [0:7] register
setting) ð 0x8F (decimal 143).

Note: The specification of tDLL and tFDEL are located in the DC and Switching Characteristics section of the Lattic-
eSC/M Family Data Sheet.

Creating and Configuring the DLL
IPexpress is used to create a Time Reference Delay DLL configuration with a SMI. The feedback clock selection in
IPexpress is not important since the feedback path is not used in this application. The SMI will be required to con-
trol the CLKOS mux as well as the delay setting. Refer to the Serial Management Interface (SMI) section of this
document to learn how to use the SMI. The SMI is the only method for setting the static delay value.

Once the DLL is created the user will need to program the CLKOS mux and delay setting at run time. The following
steps will need to be performed. Reference the SMI Interface DLL memory map found later in this document.

1. Force the DLL to use a static delay value by setting SMI offset 0x3 bit6 to 1
2. Select the number of delay blocks to use in the clock path using the CLKOS Mux Ctrl (SMI offset 0x1 bits

[5:7] as specified in the DLL memory map).
3. Set the Delay Setting using SMI offset 0x6 [0:7] as specified in the DLL memory map.

These values can be changed at any time once the FPGA design has been loaded and the SMI interface is avail-
able. Run time changes to the static delay value are not represented in TRACE or timing simulation. TRACE and
timing simulation will only show the static delay of the DLL.

The PLL configuration for accepting a clock from the DLL is not specific. Any PLL configuration can be used.

IPexpress Output
There are two outputs of IPexpress that are important for use in the design. The first is the <module_name>.[v|vhd]
file that is produced. This is the user-named module that was generated by the tool to be used in both synthesis
and simulation flows. The second file is a template file <module_name>_tmpl.[v|vhd]. This file contains a sample

DEL0 DEL1 DEL2 DEL3

CLKOS

CLKI

Delay
Setting

CLKOS
Mux Ctrl

SMI Interface
SMI Bus

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

23

LatticeSC sysCLOCK
PLL/DLL User’s Guide

instantiation of the module. This file is only provided for the user to copy/paste the instance and is not intended to
be used in the synthesis or simulation flows directly.

For the PLL/DLL, IPexpress sets attributes in the HDL module created that are specific to the data rate selected.
Although these attributes can be easily changed they should only be modified by re-running the GUI so that the
performance of the PLL/DLL is maintained. After the map stage in the design flow FREQUENCY preferences will
be included in the preference file to automatically constrain the clocks produced from the PLL/DLL.

Clock Dividers
The clock divider (CLKDIV) can divide a clock by 2 or 4 and drives a primary clock network. The clock dividers are
useful for providing the low speed FPGA clocks for I/O shift registers (x2, x4) and DDR (x2, x4) I/O logic interfaces.
To guarantee a synchronous transfer in the I/O logic the CLKDIV input clock must come from an edge clock and the
output drive a primary clock. In this case they are phase matched.

A CLKDIV can also be used to create a low skew edge local set/reset (ELSR) using edge clock routing. This is
especially useful for synchronously resetting the I/O logic when Mux/DeMux gearing is used in order to synchro-
nize the entire data bus as shown in Figure 25. Using the low skew characteristics of the edge clock routing a reset
can be provided to all bits of the data bus to synchronize the Mux/DeMux gearing.

Figure 25. CLDIV Example Circuit with I/O Logic

There are special connections for the edge clock CLKI and ELSR ports of the CLKDIV element. These connections
are provided later in this document in the Design Implementation section.

Creating a CLKDIV
There are two methods for creating a CLKDIV for use in the FPGA design. The first method is via IPexpress. When
creating SDR and DDR I/O interfaces using Mux/DeMux gearing in IPexpress the user can select to use a CLKDIV.
In this method the CLKDIV becomes part of the I/O interface and all attributes are set for the specific interface.

The second method is to instantiate the CLKDIV library element directly in the HDL code. Figure 26 provides the
CLKDIV library element definition.

Figure 26. CLKDIV Library Element

FF
Mux/

DeMux
Gearing

Q

CLKDIV
Asynchronous

Rst

ELSR

Data

I/O Logic

Edge Clock

Primary Clock

CLKDIV

CLKOCLKI

LSR ELSR

24

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 1. CLKDIV Port Definition

Table 2. CLKDIV Attribute Definition

CLKDIV Instantiation in HDL
VHDL Example

component CLKDIV
-- synopsys translate_off
generic (DIV : in Integer);
-- synopsys translate_on
port (CLKI: in std_logic; LSR: in std_logic;
 CLKO: out std_logic; ELSR: out std_logic);
end component;

attribute DIV : string;
attribute DIV of I : label is “2”;

I: CLKDIV
-- synopsys translate_off
generic map (DIV=> 2)
-- synopsys translate_on
port map (CLKI=>EClk, LSR=>Rst, CLKO=>SClk, ELSR=>ERst);

Verilog Example
// synopsys translate_off
defparam I.DIV = 2;
// synopsys translate_on
CLKDIV I (.CLKI(EClk), .LSR(Rst), .CLKO(SClk), .ELSR(ERst))
/* synthesis DIV=”2” */;
// exemplar attribute I DIV 2

Dynamic Clock Select (DCS)
DCS is a global clock buffer incorporating a smart multiplexer function that takes two independent input clock
sources and avoids generating glitches or runt pulses on the output clock, regardless of where the enable signal is
toggled.

The DCSs are located in pairs at the center of each edge. There are eight of them in each LatticeSC device.

The output of the DCS drives only primary clock. Figure 27 shows the block diagram of the DCS.

Name Description

CLKI Clock Input

LSR Asynchronous Active High Reset Input

CLKO Clock Output

ELSR Synchronous Edge Reset Output clocked out on CLKI

Name Description Value Default

DIV Divider 1,2,4 (1: off) 1

GSR GSR Enable Enable/Disable Disable

25

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 27. DCS Library Element

Table 3. DCS Port Definitions

There are eight different modes user can select from. Table 4 describes how each mode is configured.

Table 4. DCS Modes of Operation

DCS Timing Diagrams
Each mode performs its unique operation. The clock output timing is determined by input clocks and the edge of
SEL signal. Figure 28 describes the timing of each mode.

I/O Name Description

Input

SEL Input Clock Select (see Table 4)

CLK0 Clock input 0

CLK1 Clock Input 1

Output DCSOUT Clock Output

Attribute Name Description

Output

ValueSEL=0 SEL=1

DCSMODE

Rising edge triggered, latched state is high CLK0 CLK1 POS

Falling edge triggered, latched state is low CLK0 CLK1 NEG

Sel is active high, Disabled output is low 0 CLK1 HIGH_LOW

Sel is active high, Disabled output is high 1 CLK1 HIGH_HIGH

Sel is active low, Disabled output is low CLK0 0 LOW_LOW

Sel is active low, Disabled output is high CLK0 1 LOW_HIGH

Buffer for CLK0 CLK0 CLK0 CLK0

Buffer for CLK1 CLK1 CLK1 CLK1

DCS

DCSOUT
CLK0

SEL

CLK1

26

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 28. Timing Diagrams by DCSMODE

CLK0

CLK1

SEL

DCSOUT

SEL Falling edge:
- Wait for CLK1 rising edge,
 latch output & remain high
- Switch output at CLK0 rising edge

SEL Rising edge:
- Wait for CLK0 rising edge,
 latch output & remain high
- Switch output at CLK1 rising edge

DCS MODE = POS

CLK0

CLK1

SEL

DCSOUT

SEL Falling edge:
- Wait for CLK1 falling edge,
 latch output & remain low
- Switch output at CLK0 falling edge

SEL Rising edge:
- Wait for CLK0 falling edge,
 latch output & remain low
- Switch output at CLK1 falling edge

DCS MODE = NEG

CLK1

SEL

DCSOUT

- Switch low @CLK1 falling edge.
- If SEL is low, output stays low at on
 CLK1 rising edge. SEL must not
 change during setup prior to rising clock.

DCS MODE = HIGH_LOW

CLK0

SEL

DCSOUT

- Switch low @CLK0 falling edge.
- If SEL is high, output stays low at
 on CLK0 rising edge.

DCS MODE = LOW_LOW

27

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 28. Timing Diagrams by DCSMODE (Cont.)

DCS Instantiation in HDL
VHDL Example

component DCS
-- synthesis translate_off
generic (
 DCSMODE : string := “POS”
-- synthesis translate_on
PORT (
CLK0 : IN std_logic;
CLK1 : IN std_logic;
SEL : IN std_logic;
DCSOUT : OUT std_logic);
END COMPONENT;

attribute DCSMODE : string;
attribute DCSMODE of I: label is “POS”;

I : DCS
-- synthesis translate_off
generic map (
DCSMODE => “POS”)
-- synthesis translate_on
port map (
SEL => clksel,
CLK0 => dcsclk0,
CLK1 => dcsclk1,
DCSOUT => dcsclk);

Verilog Example
// synopsys translate_off
defparam I.DCSMODE = “POS”;
// synopsys translate_on
DCS I (.SEL(clksel), .CLK0(dcsclk0), .CLK1(dcsclk1), .DCSOUT(dcsout))
/* synthesis DCSMODE=”POS” */;
// exemplar attribute I DCSMODE “POS”

CLK1

SEL

DCSOUT

- Switch high @CLK1 rising edge.
- If SEL is low, output stays low high
 on CLK1 falling edge.

DCS MODE = HIGH_HIGH

CLK0

SEL

DCSOUT

- Switch high @ CLK0 rising edge.
- If SEL is high, output stays high on
 CLK0 falling edge.

DCS MODE = LOW_HIGH

28

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Dynamic Clock Switching at PLL/DLL Inputs
Input Reference Clock Switchover
A dynamically controlled 2:1 mux is included in the reference clock path to allow for dynamic switching of the refer-
ence clock. The intent of this feature is to allow the PLL/DLL to switch between two reference input clocks. This can
be used in systems with clock redundancy and in dual clock domain systems where one of the clocks may stop
running for some reason.

A user signal from the FPGA core is used to switch the reference clock from CLK0 to CLK1. A circuit example of
the PLL reference clock switchover is shown in Figure 29. The two clocks from pads are inputs to a 2:1 mux that is
controlled by the clock switchover circuit. The output of the mux drives into the Reference clock input of the
PLL/DLL block.

Figure 29. PLL Reference Clock Switchover Circuit Example

Clock Shut Off (CLKCNTL)
The clock control block CLKCNTL is used to synchronously stop and asynchronous start a primary, edge, or sec-
ondary clock that is sourced by an input buffer. This element allows a clock to be gated by a logic signal without
requiring the use of a LUT. This feature is useful in DDR memory interfaces to perform the DQS postamble correc-
tion. Figure 30 provides the block diagram of the CLKCNTL library element.

Figure 30. CLKCNTL Block Diagram and Example Waveform

PLL

SEL

CLKI

CLK0

CLK1

DCSOUT
Primary Clock

D

CE

CLK/Q

D Q

 Q

RST

CE

CLK

D Q
Primary, Edge, or
Secondary Clock

1

29

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 5. CLKCNTL Library Element

The CLKCNTL is implemented in the I/O logic and is available on every I/O pin. It can also be used to force any or
all inputs to the device low synchronously.

A DQS Postamble Solution can be created using IPexpress which uses the CLKCNT element to perform the DQS
shutoff. After the postamble occurs on DQS pad, it is possible for spurious transitions or runt pulses to occur due to
the tristate condition. Incorrect data could then be transferred into next stage of registers if rising edge of clock
occurs after postamble. The CLKCNTL element is used to stop the edge clock so that incorrect data is not latched.

CLKCNTL Instantiation in HDL
VHDL Example

component CLKCNTL
PORT (
D : IN std_logic;
CLK : IN std_logic;
CE : IN std_logic;
Q : OUT std_logic);
END COMPONENT;

I : CLKCNTL
port map (
D => clkin,
CLK => clkout,
CE => enable,
Q => clkout);

Verilog Example
CLKCNTL I (.D(clkin), .CLK(clkout), .CE(enable), .Q(clkout));

Clock Edge Detection (CLKDET)
The clock edge detection (CLKDET) element as shown in Figure 31 is a single shot rising edge detector that is
available in the I/O logic of every I/O pin. This element has many uses an example of which is its use for DQS pre-
amble detection for DDR memory interfaces.

I/O Name Description

Input

D Input Clock Signal

CLK Output Clock Signal Feedback

CE Async Active High Clock Enable
Sync Active Low Clock Disable (synchronous to CLK falling edge)

Output Q Output Clock Signal

30

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 31. CLKDET Block Diagram

Table 6. CLKDET I/O Definition

Table 7. CLKDET Attribute Definition

CLKDET Instantiation in HDL
VHDL Example

component CLKDET
-- synthesis translate_off
generic (
 CLKMODE : string := “ECLK”
-- synthesis translate_on
PORT (
CK : IN std_logic;
RST : IN std_logic;
Q : OUT std_logic);
END COMPONENT;

attribute CLKMODE : string;
attribute CLKMODE of I: label is “ECLK”;

I : CLKDET
port map (
CK => clkin,
RST => clkrst,
Q => clkdet);

Verilog Example
// synopsys translate_off
defparam I.CLKMODE = “ECLK”;
// synopsys translate_on
CLKDET I (.CK(clkin), .RST(clkrst), .Q(clkdet));

I/O Name Description

Input
CK Clock input

RST Async Reset Input

Output Q Detection Output

Attribute Name Description

CLKMODE
ECLK Input clock is Edge Clock

SCLK Input clock is System Clock

D Q

RST

VCC

CK

Q

RST

31

LatticeSC sysCLOCK
PLL/DLL User’s Guide

/* synthesis CLKMODE=”ECLK” */;
// exemplar attribute I CLKMODE “ECLK”

Oscillator
The internal oscillator (OSCA) is the source of the configuration clock in master config modes. It may also be used
after configuration as a general-purpose clock. After configuration, the frequency is set with the DIV attribute on the
OSCA library element. The OSCA has a frequency range of 1 to 130MHz with tolerance of -30% to +45%.

During configuration the rate of the oscillator is set via the SYSCONFIG preference.

SYSCONFIG MCCLK_FRQ=4; // Mhz

Post configuration the rate of the oscillator is set via the DIV attribute on the library element. The library element is
shown in Figure 32.

Figure 32. Oscillator Library Element

Table 8. Oscillator Attribute Definition

OSCA Instantiation in HDL
VHDL Example

component OSCA
-- synthesis translate_off
generic (
 DIV : integer := 8
-- synthesis translate_on
PORT (
OSC : OUT std_logic);
END COMPONENT;

attribute DIV : integer;
attribute DIV of I: label is 8;

I : OSCA
port map (
OSC => clk);

Verilog Example
// synopsys translate_off
defparam I.DIV = 8;
// synopsys translate_on
OSCA I (.OSC(clk));
/* synthesis DIV = 8 */;
// exemplar attribute I DIV 8

Attribute Description Values Default

DIV Divider Value 1,2,4,8,16,32,64,128 1 (about 130 MHz)

OSCA

OSC

32

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Clock Boosting
Clock boosting uses programmable clock delays inside the PFU, PIC, and EBRs to be configured by ispLEVER to
trade short data delays with long data delays to increase overall system performance. For example, if a data path is
meeting timing on a very short routing path and missing timing on a long routing path a clock delay can be added to
the long data route to help in meeting timing. The trade off will be on the hold side of the short data path. The isp-
LEVER clock boosting tool understands this timing trade off and will set the clock delays to optimize system perfor-
mance. The ispLEVER clock boosting tool also verifies that any clock boosting performed does not introduce any
hold time issues. For more information on clock boosting, please refer to TN1131, Clock Boosting in Lattice SC/M
FPGAs.

It is also possible to manually set these clock delays in the preference file. The CLKDELAY preference allows the
user to set a clock delay on a CELL (PFU or PIC) or ASIC (EBR). Below are two examples. Valid values for CLK-
DELAY are DEL0 (no delay), DEL1, DEL2, and DEL3. See the LatticeSC/M Family Data Sheet for delay values for
DEL1, DEL2, and DEL3.

CLKDELAY CELL “ff_a” DEL1

CLKDELAY ASIC “EBR1” PIN CLKIDEL DEL3

Design Implementation
The following sections detail how to use preferences, set locations and choose input pins for the clocking elements.

PLL, DLL, and CLKDIV Locations
Figure 33 shows the locations, site names, and connectivity of the PLLs, DLLs, CLKDIVs and edge clocks. Please
note, only the PCLK pins with an arrow going directly to the CLKDIV can drive that CLKDIV directly. The dots indi-
cate connectivity to the CLKDIV for either the PLL or DLL, but not the ECLK line as a whole. For example,
PCLKT3_0 cannot drive CLKDIV2C, only CLKDIV2C, only PCLKT2_2, DLL_URCC (P) and DLL_URCD (S) out-
puts can. Table 9 shows the CLKDIVs and their available sources.

Table 9. Valid CLKDIV Drivers

CLKDIV CLKDIV Input Source

CLKDIV1A PCLKT1_0

CLKDIV1B PCLKT1_1

CLKDIV1C PCLKT1_2

CLKDIV1D PCLKT1_3

CLKDIV2A PCLKT2_0 PLL_URCA (S) PLL_URCB (P)

CLKDIV2B PCLKT2_1 PLL_URCB (S) DLL_URCC (S)

CLKDIV2C PCLKT2_2 DLL_URCC (P) DLL_URCD (S)

CLKDIV2D PCLKT2_3 PLL_URCA (P) DLL_URCD (P)

CLKDIV4A PCLKT4_0 DLL_LRCE (S) PLL_LRCA (S) PLL_LRCB (P) DLL_LRCF (P)

CLKDIV4B PCLKT4_1 DLL_LRCF (S) PLL_LRCB (S) DLL_LRCC (P)

CLKDIV4C PCLKT4_2 DLL_LRCC (S) DLL_LRCD (P)

CLKDIV4D PCLKT4_3 PLL_LRCA (P) DLL_LRCE (P) DLL_LRCD (S)

CLKDIV5A PCLKT5_0 DLL_LLCE (S) PLL_LLCA (S) PLL_LLCB (P) DLL_LLCF (P)

CLKDIV5B PCLKT5_1 DLL_LLCF (S) PLL_LLCB (S) DLL_LLCC (P)

CLKDIV5C PCLKT5_2 DLL_LLCC (S) DLL_LLCD (P)

CLKDIV5D PCLKT5_3 PLL_LLCA (P) DLL_LLCE (P) DLL_LLCD (S)

CLKDIV7A PCLKT7_0 PLL_ULCA (S) PLL_ULCB (P)

CLKDIV7B PCLKT7_1 PLL_ULCB (S) DLL_ULCC (S)

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028
www.latticesemi.com/dynamic/view_document.cfm?document_id=22415
www.latticesemi.com/dynamic/view_document.cfm?document_id=22415

33

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Figure 33. PLL, DLL, CLKDIV, and Edge Clock Locations and Connectivity

As shown in Figure 33 the specific PLLs, DLLs, and CLKDIV ELSRs can only drive specific edge clocks. Care must
be taken when choosing a PLL, DLL, or CLKDIV to make sure there is no contention of edge clock resources.
Table 10 is a tabular description of the information in Figure 33. Each row in the table represents the shared
resources of a single edge clock.

CLKDIV7C PCLKT7_2 DLL_ULCC (P) DLL_ULCD (S)

CLKDIV7D PCLKT7_3 PLL_ULCA (P) DLL_ULCD (P)

Table 9. Valid CLKDIV Drivers

CLKDIV CLKDIV Input Source

PLL_LRCA

PLL_LRCBPLL_LLCB

PLL_LLCA

DLL_LLCD

DLL_LLCC

DLL_LLCF

DLL_LLCE

DLL_LRCC

DLL_LRCD

DLL_LRCE

DLL_LRCF

P
L

L_
U

R
C

A

P
L

L_
U

R
C

B

D
LL

_
U

R
C

C

D
LL

_
U

R
C

D

CLKDIV7A

P
LL

_U
LC

A

P
LL

_U
LC

B

D
L

L_
U

L
C

C

D
L

L_
U

L
C

D

P
C

LK
T

1
_0

SP SP SP SP

S

P

S

P

S

P

S

P

P

S

P

S

S

P

S

P

S

P

S

P

P

S

P

S

S PSP SP SP

ELSR

CLKDIV7B

ELSR

CLKDIV7C
ELSR

CLKDIV7D
ELSR

ELSR

CLKDIV1A CLKDIV1B

ELSR

CLKDIV1C CLKDIV1D

ELSR ELSR

CLKDIV2A

CLKDIV2C

CLKDIV2B

CLKDIV2D

ELSR

ELSR

ELSR

ELSR

C
LK

D
IV5D

C
LK

D
IV5C

C
LKD

IV
5B

C
LKD

IV
5A

ELSR ELSR ELSR ELSR

C
LKD

IV
4A

C
LKD

IV
4B

C
LKD

IV
4C

C
LKD

IV
4D

ELSR ELSR ELSR ELSR

P
C

LK
T

1
_1

P
C

LK
T

1
_2

P
C

LK
T

1
_3

P
C

LK
T

1
_4

4

P
C

LK
T

1
_5

4

P
C

LK
T

1
_6

4

P
C

LK
T

1
_7

4

PCLKT7_1

PCLKT7_2

PCLKT7_3

PCLKT6_04

PCLKT6_14

PCLKT6_24

PCLKT6_34

PCLKT7_0 PCLKT2_0

PCLKT2_1

PCLKT2_2

PCLKT2_3

PCLKT3_04

PCLKT3_14

PCLKT3_24

PCLKT3_34

P
C

LK
T

5
_0

P
C

LK
T

5
_1

P
C

LK
T

5
_2

P
C

LK
T

5
_3

P
C

LK
T

5
_4

4

P
C

LK
T

5
_5

4

P
C

LK
T

5
_6

4

P
C

LK
T

5
_7

4

P
C

L
K

T
4

_
0

P
C

L
K

T
4_

1

P
C

L
K

T
4_

2

P
C

L
K

T
4_

3

P
C

L
K

T
4_

4
4

P
C

L
K

T
4_

5
4

P
C

LK
T

4
_6

4

P
C

LK
T

4
_7

4

1. This connection dot shows a connection from a PLL source to the CLKDIV.
2. This connection dot shows a connection from a DLL source to the CLKDIV.
3. PCLK inputs can drive an edge clock where indicated by an arrowhead, and certain ones can also drive the CLKDIV as indicated in Table 9.
4. These PCLK pins CANNOT drive CLKDIVs.

1

1 1

1

1

1

1

1

2

2

2

2

2 2

22

1

1 1

1

2

2 2

2

1 1

1

1

2

2 2

2

34

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 10. Edge Clock Shared Resources

Bank Edge Clock PLL/DLL PLL/DLL PIO ELSR
General Routing/
Primary Clocks1

1

1 PLL_URCA.P PCLKT1_1 CLKDIV1B.ELSR 2 connections

2 PLL_URCA.S PCLKT1_0 CLKDIV1A.ELSR 2 connections

3 PLL_URCB.P PCLKT1_3 CLKDIV1D.ELSR 2 connections

4 PLL_URCB.S PCLKT1_2 CLKDIV1C.ELSR 2 connections

5 DLL_URCC.P PCLKT1_4 CLKDIV1A.ELSR 2 connections

6 DLL_URCC.S PCLKT1_5 CLKDIV1B.ELSR 2 connections

7 DLL_URCD.P PCLKT1_6 CLKDIV1C.ELSR 2 connections

8 DLL_URCD.S PCLKT1_7 CLKDIV1D.ELSR 2 connections

2/3

1 PLL_URCA.P PLL_LRCA.P PCLKT2_1 CLKDIV2B.ELSR 2 connections

2 PLL_URCA.S PLL_LRCA.S PCLKT2_0 CLKDIV2A.ELSR 2 connections

3 PLL_URCB.P PLL_LRCB.P PCLKT2_3 CLKDIV2D.ELSR 2 connections

4 PLL_URCB.S PLL_LRCB.S PCLKT2_2 CLKDIV2C.ELSR 2 connections

5 DLL_LRCC.P DLL_URCC.P PCLKT3_0 CLKDIV2A.ELSR 2 connections

6 DLL_LRCC.S DLL_URCC.S PCLKT3_1 CLKDIV2B.ELSR 2 connections

7 DLL_LRCD.P DLL_URCD.P PCLKT3_2 CLKDIV2C.ELSR 2 connections

8 DLL_LRCD.S DLL_URCD.S PCLKT3_3 CLKDIV2D.ELSR 2 connections

4

1 PLL_LRCA.P DLL_LRCE.S PCLKT4_1 CLKDIV4B.ELSR 2 connections

2 PLL_LRCA.S DLL_LRCE.P PCLKT4_0 CLKDIV4A.ELSR 2 connections

3 PLL_LRCB.P DLL_LRCF.S PCLKT4_3 CLKDIV4D.ELSR 2 connections

4 PLL_LRCB.S DLL_LRCF.P PCLKT4_2 CLKDIV4C.ELSR 2 connections

5 DLL_LRCC.P PCLKT4_4 CLKDIV4A.ELSR 2 connections

6 DLL_LRCC.S PCLKT4_5 CLKDIV4B.ELSR 2 connections

7 DLL_LRCD.P PCLKT4_6 CLKDIV4C.ELSR 2 connections

8 DLL_LRCD.S PCLKT4_7 CLKDIV4D.ELSR 2 connections

5

1 PLL_LLCA.P DLL_LLCE.S PCLKT5_1 CLKDIV5B.ELSR 2 connections

2 PLL_LLCA.S DLL_LLCE.P PCLKT5_0 CLKDIV5A.ELSR 2 connections

3 PLL_LLCB.P DLL_LLCF.S PCLKT5_3 CLKDIV5D.ELSR 2 connections

4 PLL_LLCB.S DLL_LLCF.P PCLKT5_2 CLKDIV5C.ELSR 2 connections

5 DLL_LLCC.P PCLKT5_4 CLKDIV5A.ELSR 2 connections

6 DLL_LLCC.S PCLKT5_5 CLKDIV5B.ELSR 2 connections

7 DLL_LLCD.P PCLKT5_6 CLKDIV5C.ELSR 2 connections

8 DLL_LLCD.S PCLKT5_7 CLKDIV5D.ELSR 2 connections

6/7

1 PLL_ULCA.P PLL_LLCA.P PCLKT7_1 CLKDIV7B.ELSR 2 connections

2 PLL_ULCA.S PLL_LLCA.S PCLKT7_0 CLKDIV7A.ELSR 2 connections

3 PLL_ULCB.P PLL_LLCB.P PCLKT7_3 CLKDIV7D.ELSR 2 connections

4 PLL_ULCB.S PLL_LLCB.S PCLKT7_2 CLKDIV7C.ELSR 2 connections

5 DLL_LLCC.P DLL_ULCC.P PCLKT6_0 CLKDIV7A.ELSR 2 connections

6 DLL_LLCC.S DLL_ULCC.S PCLKT6_1 CLKDIV7B.ELSR 2 connections

7 DLL_LLCD.P DLL_ULCD.P PCLKT6_2 CLKDIV7C.ELSR 2 connections

8 DLL_LLCD.S DLL_ULCD.S PCLKT6_3 CLKDIV7D.ELSR 2 connections

1. There are two total connections per bank to edge clock routing from general routing or primary clocks.

35

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Similarly, Table 11 is a tabular description of the primary clock shared resources. Each row in the table represents
the shared resources of a single primary clock.

Table 11. Primary Clock Shared Resources

SERDES PLL DLL PIO CLKDIV DCS

PCS36000.FF_SYSCLK_P1 PLL_ULCA.P CLKDIV7A

PCS36000.FF_RXCLK_P1 PLL_ULCA.S CLKDIV7B

PCS36000.FF_RXCLK_P2 PLL_ULCB.P CLKDIV7C

PCS36100.FF_SYSCLK_P1 PLL_ULCB.S CLKDIV7D

PCS36100.FF_RXCLK_P1 DLL_ULCC.S PCLKT6_3

PCS36100.FF_RXCLK_P2 DLL_ULCC.P PCLKT7_3

PCS36200.FF_SYSCLK_P1 DLL_ULCD.S PCLKT6_2

PCS36200.FF_RXCLK_P1 DLL_ULCD.P PCLKT7_2

PCS36200.FF_RXCLK_P2 PCLKT6_1 DCSLB

PCS36300.FF_SYSCLK_P1 PCLKT7_1 DCSLA

PCS36300.FF_RXCLK_P1 DLL_LLCE.S PCLKT6_0

PCS36300.FF_RXCLK_P2 DLL_LLCE.P PCLKT7_0

PCS36300.FF_RXCLK_P2 DLL_LLCF.S PCLKT7_0

PCS36300.FF_RXCLK_P1 DLL_LLCF.P PCLKT6_0

PCS36300.FF_SYSCLK_P1 PCLKT7_1 DCSLA

PCS36200.FF_RXCLK_P2 PCLKT6_1 DCSLB

PCS36200.FF_RXCLK_P1 PLL_LLCA.P PCLKT7_2

PCS36200.FF_SYSCLK_P1 PLL_LLCA.S PCLKT6_2

PCS36100.FF_RXCLK_P2 PLL_LLCB.P PCLKT7_3

PCS36100.FF_RXCLK_P1 PLL_LLCB.S PCLKT6_3

PCS36100.FF_SYSCLK_P1 DLL_LLCC.S

PCS36000.FF_RXCLK_P2 DLL_LLCC.P

PCS36000.FF_RXCLK_P1 DLL_LLCD.S

PCS36000.FF_SYSCLK_P1 DLL_LLCD.P

PCS3E000.FF_SYSCLK_P1 PLL_URCA.P CLKDIV2A

PCS3E000.FF_RXCLK_P1 PLL_URCA.S CLKDIV2B

PCS3E000.FF_RXCLK_P2 PLL_URCB.P CLKDIV2C

PCS3E100.FF_SYSCLK_P1 PLL_URCB.S CLKDIV2D

PCS3E100.FF_RXCLK_P1 DLL_URCC.S PCLKT3_3

PCS3E100.FF_RXCLK_P2 DLL_URCC.P PCLKT2_3

PCS3E200.FF_SYSCLK_P1 DLL_URCD.S PCLKT3_2

PCS3E200.FF_RXCLK_P1 DLL_URCD.P PCLKT2_2

PCS3E200.FF_RXCLK_P2 PCLKT3_1 DCSRA

PCS3E300.FF_SYSCLK_P1 PCLKT2_1 DCSRB

PCS3E300.FF_RXCLK_P1 DLL_LRCE.S PCLKT3_0

PCS3E300.FF_RXCLK_P2 DLL_LRCE.P PCLKT2_0

PCS3E300.FF_RXCLK_P2 DLL_LRCF.S PCLKT2_0

PCS3E300.FF_RXCLK_P1 DLL_LRCF.P PCLKT3_0

PCS3E300.FF_SYSCLK_P1 PCLKT2_1 DCSRB

PCS3E200.FF_RXCLK_P2 PCLKT3_1 DCSRA

PCS3E200.FF_RXCLK_P1 PLL_LRCA.P PCLKT2_2

PCS3E200.FF_SYSCLK_P1 PLL_LRCA.S PCLKT3_2

36

LatticeSC sysCLOCK
PLL/DLL User’s Guide

PLLs, DLLs, and CLKDIVs can be located to a specific site using the LOCATE preference. Below is an example for
each type.

LOCATE COMP “mypll/mypll_0_0” SITE “PLL_URCA”;

LOCATE COMP “mydll/mydll_0_0” SITE “DLL_LLCC”;

LOCATE COMP “myclkdiv” SITE “CLKDIV7A”;

Preferred Input Pins
There are preferred pins for the PLL, DLL, CLKDIVs, primary clocks, and edge clocks.

Preferred pins provide the best routing for reduced jitter and clock injection delay. These preferred pins can be
found in the LatticeSC/M Family Data Sheet pinout section under the Dual-Function column for a given package.
All preferred clock pins can be differential or single ended.

I/O pins can be located to a specific pin using the LOCATE or IOBUF preference. Below is an example of each pref-
erences.

LOCATE COMP “pll_in” SITE “D3”;

IOBUF PORT “pll_in” IO_TYPE=LVDS SITE=D3;

There are two types of preferred pins, PLL/DLL pins and Primary/Edge/CLKDIV pins.

PLL/DLL Preferred Pins
Preferred pins for the PLLs and DLLs use dedicated routes to the inputs of the PLL and DLL. If the PLL or DLL is
located via the LOCATE preference the ispLEVER place and route tools will select the preferred pin automatically if
available. Likewise, if a preferred pin is selected as the input to a PLL or DLL the ispLEVER place and route tools
will select the PLL or DLL associated with the preferred pin automatically. If the preferred pin for the PLL/DLL is not
available an edge clock is the best second choice for performance.

PCS3E100.FF_RXCLK_P2 PLL_LRCB.P PCLKT2_3

PCS3E100.FF_RXCLK_P1 PLL_LRCB.S PCLKT3_3

PCS3E100.FF_SYSCLK_P1 DLL_LRCC.S

PCS3E000.FF_RXCLK_P2 DLL_LRCC.P

PCS3E000.FF_RXCLK_P1 DLL_LRCD.S

PCS3E000.FF_SYSCLK_P1 DLL_LRCD.P

 PCLKT5_3 CLKDIV5A DCSBB

 PCLKT5_2 CLKDIV5B DCSBA

 PCLKT5_1 CLKDIV5C DCSBB

 PCLKT5_0 CLKDIV5D DCSBA

 PCLKT4_3 CLKDIV4A DCSBA

 PCLKT4_2 CLKDIV4B DCSBB

 PCLKT4_1 CLKDIV4C DCSBA

 PCLKT4_0 CLKDIV4D DCSBB

 PCLKT1_3 CLKDIV1A DCSTA

 PCLKT1_2 CLKDIV1B DCSTB

 PCLKT1_1 CLKDIV1C DCSTB

 PCLKT1_0 CLKDIV1D DCSTA

Table 11. Primary Clock Shared Resources (Continued)

SERDES PLL DLL PIO CLKDIV DCS

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

37

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 12 maps the data sheet preferred pins name to the site location of the PLL and DLL. These preferred pins for
the CLKI and if necessary CLKFB input to the PLL and DLL. Only the true pin of each differential pair is shown in
the table. For more pinout information, refer to the LatticeSC/M Family Data Sheet.

Table 12. Preferred PLL/DLL Pins

Primary, Edge, and CLKDIV Preferred Pins
Preferred pins for the primary clocks, edge clocks, and CLKDIVs provide the lowest latency routes into each of
these elements.

Table 13 maps the data sheet preferred pin name to a primary clock, edge clock, or CLKDIV site. Only the true pin
of each differential pair is shown in the table.

Preferred Pin Label PLL CLKI DLL CLKI

ULC_PLLT_IN_A PLL_ULCA

ULC_PLLT_IN_B PLL_ULCB

ULC_DLLT_IN_C DLL_ULCC

ULC_DLLT_IN_D DLL_ULCD

LLC_PLLT_IN_A PLL_LLCA

LLC_PLLT_IN_B PLL_LLCB

LLC_DLLT_IN_C DLL_LLCC

LLC_DLLT_IN_D DLL_LLCD

LLC_DLLT_IN_E DLL_LLCE

LLC_DLLT_IN_F DLL_LLCF

LRC_PLLT_IN_A PLL_LRCA

LRC_PLLT_IN_B PLL_LRCB

LRC_DLLT_IN_C DLL_LRCC

LRC_DLLT_IN_D DLL_LRCD

LRC_DLLT_IN_E DLL_LRCE

LRC_DLLT_IN_F DLL_LRCF

URC_PLLT_IN_A PLL_URCA

URC_PLLT_IN_B PLL_URCB

URC_DLLT_IN_C DLL_URCC

URC_DLLT_IN_D DLL_URCD

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

38

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 13. Preferred Primary, Edge, and CLKDIV Pins

Clocking Timing Constraints (Preferences)
Clocks in the LatticeSC architecture need to be constrained for ispLEVER to implement the design to the desired
performance. The following is a list of preferences that can be used to constrain clocks. For additional information
on using these preferences and the Preference Editor see the ispLEVER Help System.

Note that PLLs and DLLs automatically produce frequency preferences for their outputs which will be added to the
preference file after the map process.

FREQUENCY – Specifies the minimum operating frequency for all sequential output to sequential input elements
clocked by the specified clock.

FREQUENCY port “clkin” 200 MHz;

FREQUENCY net “rxclk” 156 MHz;

PERIOD – Specifies the minimum period for all sequential output to sequential input elements clocked by the spec-
ified clock. Exactly the same as the FREQUENCY preference but uses ns instead of MHz.

PERIOD port “clkin” 20 ns;

PERIOD net “rxclk” 6.41ns;

Preferred Pin Label CLKDIV Primary Edge

PCLKT7_0 CLKDIV7A Input

Bank 6/7

PCLKT7_1 CLKDIV7B Input

PCLKT7_2 CLKDIV7C Input

PCLKT7_3 CLKDIV7D Input

PCLKT6_[0:3] Input

PCLKT5_0 CLKDIV5A Input

Bank 5

PCLKT5_1 CLKDIV5B Input

PCLKT5_2 CLKDIV5C Input

PCLKT5_3 CLKDIV5D Input

PCLKT5_[4:7]

PCLKT4_0 CLKDIV4A Input

Bank 4

PCLKT4_1 CLKDIV4B Input

PCLKT4_2 CLKDIV4C Input

PCLKT4_3 CLKDIV4D Input

PCLKT4_[4:7]

PCLKT3_[0:3] Input

Bank 3/2

PCLKT2_0 CLKDIV2A Input

PCLKT2_1 CLKDIV2B Input

PCLKT2_2 CLKDIV2C Input

PCLKT2_3 CLKDIV2D Input

PCLKT1_0 CLKDIV1A Input

Bank 1

PCLKT1_1 CLKDIV1B Input

PCLKT1_2 CLKDIV1C Input

PCLKT1_3 CLKDIV1D Input

PCLKT1_[4:7]

39

LatticeSC sysCLOCK
PLL/DLL User’s Guide

MULTICYCLE – Allows for relaxation of previously defined PERIOD or FREQUENCY constraints on a path.

MULTICYCLE from cell “block_a*” to cell “block_b*” 2x;

CLKSKEWDIFF – Allows the user to specify the clock skew between two top-level input clocks. This skew will then
be used by ispLEVER when timing the clock domain transfers between the two clocks.

CLKSKEWDIFF CLKPORT “clk1” CLKPORT “clk2” 2ns;

Modifying the PLL/DLL through Advanced Preference Support
The PLL and DLL have several features that can be controlled by preferences. This allows the behavior of the PLL
and DLL to change without having to regenerate the module. Preference changes to the PLL and DLL must be
included in the preference file prior to the map process. The Preference Editor can be used to change several of
these features.

The ASIC preference is used to modify non-FPGA based elements. The type of the element needs to be defined in
the ASIC preference. This type is the name of the library element used for the element. The PLL always uses the
EHXPLLA type. The DLL uses four different library elements depending on the mode of operation. The library ele-
ment name can be found in the <module_name>.[v|vhd] file.

The following is a list of features that can be controlled via preferences. These features can also be changed in
EPIC.

Divider Settings – The output dividers can be changed for the PLL CLKOP/CLKOS and the DLL CLKI/CLKOS. For
the PLL the output divider can only be changed if that particular output is not the source of the CLKFB.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” CLKOP_DIV=4 CLKOS_DIV=8;

ASIC “dll/dll_0_0” TYPE “CIMDLLA” CLKOS_DIV=2 CLKI_DIV=2;

Table 14 provides a list of divider attributes and possible values. Note for the DLL, if CLKOS is used as the feed-
back clock then the CLKI_DIV and CLKOS_DIV must be equal.

Table 14. Divider Attributes

CLKOS VCO Delay: The CLKOS port supports a VCO delay which allows the CLKOS port to be delayed a specific
number of VCO clock cycles. This is accomplished by holding the CLKOS output port in reset for the number of
specified VCO clock cycles after a reset or configuration. CLKOS can be delayed 0 to 31 VCO clock cycles.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” CLKOS_VCODEL=4;

Programmable Delay Settings: The PLL has programmable delays that can be added to certain ports. The PLL
can add programmable fixed delay to the CLKI, CLKFB, and CLKOS ports.

The PLL uses coarse delays (PDEL) and fine delays (FDEL). For a range of values for each PDEL value see the
LatticeSC/M Family Data Sheet. Table 15 provides a list of delay attributes and possible values. For ports that sup-
port both coarse and fine delays the delay is the summation of both.

Remember, to use the PLL CLKOS fine delay the CLKOS output divider path needs to be used.

Attribute Values

PLL

CLKOP_DIV 1-64

CLKOS_DIV 1-64

DLL

CLKI_DIV 1, 2, 4

CLKOS_DIV 1, 2, 4

www.latticesemi.com/dynamic/view_document.cfm?document_id=19028

40

LatticeSC sysCLOCK
PLL/DLL User’s Guide

ASIC “pll/pll_0_0” TYPE “EHXPLLA” CLKI_PDEL=DEL0 CLKFB_PDEL=DEL1;

ASIC “pll/pll_0_0” TYPE “EHXPLLA” CLKOS_FDEL=DEL0 CLKOS_MODE=DIV CLKOP_MODE=DIV;

Table 15. Fixed Delay Attributes

In addition to the programmable fixed delays the PLL CLKOS output also supports a VCO delay which allows the
clock to be delayed by a specific number of VCO clock cycles. The attribute CLKOS_VCODEL has possible values
of 0, 1, 2, 3, ...,31. Note that this delay works in increments of the VCO clock period, not CLKOS period.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” CLKOS_VCODEL=4;

CLKOP vs. CLKOS Phase Adjustment: The PLL and DLL can produce a fixed phase relationship between the
CLKOP and CLKOS outputs.

The DLL only provides phase offsets between CLKOP and CLKOS in Time Reference Delay mode. There are three
attributes that can be adjusted as shown in Table 16. The CLKOS_PHASE and CLKOS_FPHASE are cumulative to
create the total phase offset for CLKOS.

Table 16. DLL Phase Adjustment Attributes

The PLL uses the PHASE_ADJ single keyword to control the CLKOP to CLKOS phase offset. PHASE_ADJ has
possible values of 0, 45, 90, etc. The PHASE_ADJ attribute controls the phase offset at the output of the VCO. If
the CLKOP or CLKOS output is divided down using the output dividers this will change the ultimate phase offset at
the output of the PLL.

Note that for both the PLL and DLL phase changes on output ports that are used as the CLKFB source are not
valid.

Spread Spectrum: The PLL spread spectrum capabilities can be enabled and the down spread drift set via a pref-
erence. The SPREAD keyword enables or disables the spread spectrum feature. Valid values are ENABLED/DIS-
ABLED. The SPREAD_DRIFT keyword sets the down-spread drift percentage. Valid values are 1, 2, and 3. The
output frequency will vary in a range that is below its nominal value down to a frequency that is 1%, 2%, or 3%
lower than nominal. This option uses values of 0.5%, 1.0%, and 1.5% in the front-end GUI referring to the average
frequency. A 0.5% selection yields SPREAD_DRIFT=1 for example.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” SPREAD=ENABLED SPREAD_DRIFT=1;

GSR: The PLL and DLL can be reset by the GSR if enabled. The GSR keyword can be set to ENABLED/DIS-
ABLED.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” GSR=DISABLED;

Attribute Values

CLKI_PDEL DEL0, DEL1, DEL2, DEL3

CLKI_FDEL 100, 200, ..., 700

CLKFB_PDEL DEL0, DEL1, DEL2, DEL3

CLKFB_FDEL 100, 200, ..., 700

CLKOS_FDEL 100, 200, ..., 700

Note. FDEL values are an approximation of ps.

Attribute Values (degrees)

CLKOP_PHASE 0, 90, 180, 270, 360

CLKOS_PHASE 0, 90, 180, 270, 360

CLKOS_FPHASE 0, 11, (for 11.25), 22 (for 22.5), 45

41

LatticeSC sysCLOCK
PLL/DLL User’s Guide

PLL/DLL Lock Time Control
The PLL and DLL will lock when the CLKI and CLKFB phases are aligned. In a simulation environment the lock
time has a fixed delay of 100µs. This value can be changed through an HDL parameter or preference (for the back
annotation simulation). The PLL/DLL contains a parameter named LOCK_DELAY which accepts an integer value
for the total time in us until the lock output goes high. Below is an example of how to set this value for front-end sim-
ulation.

Verilog

defparam mydll.mypll_0_0.LOCK_DELAY=500;
mydll dll_inst(.CLKI(clkin), .CLKOP(clk1), .CLKOS(clk2),

VHDL

Not supported

For back annotation simulation LOCK_DELAY needs to be set in the preference file. Below is an example for the
PLL.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” LOCK_DELAY=200;

Serial Management Interface (SMI)
The PLL and DLL can connect to the system bus via the serial management interface (SMI). The SMI allows a sub-
set of the PLL and DLL features to be modified during run time. The DLL must be created in Time Reference Delay
mode to use this capability. The SMI interface is a broadcast protocol that is driven from the system bus or from
FPGA logic and runs at a maximum of 50 MHz. The SMI bus is connected via FPGA routing to all of the SMI tar-
gets that are instantiated in the FPGA design. Each target is given an offset address. When a user accesses the
system bus at this specific offset address the SMI bus will transact with the given target. It is also possible to given
several SMI targets the same offset address to broadcast data to all of them. For more information on the SMI pro-
tocol and the System Bus see TN1085, LatticeSC MPI/System Bus.

When connecting the SMI of the PLL or DLL to the system bus, all of the connections can be directly connected
and the system bus will handle all of the protocol timing. If the user is creating their own SMI master interface to
drive the PLL or DLL's target interface, the protocol for the SMI needs to be handled by the user. Information on the
specifics of the SMI can be found in TN1085, LatticeSC MPI/System Bus. Note that the smi_rstn port of the SMI
needs to toggled low once the bistream has been loaded. When connected to the system bus this is handled by
the release of the GSR. For a user's master interface the smi_rstn port needs to be toggled low after the release of
GSR for a few SMI clock cycles.

The PLL and the DLL each have a memory map that describes registers accessible from the SMI. The PLL and
DLL are first configured via the FPGA bitstream. Once the configuration is loaded into the FPGA the registers avail-
able on the SMI bus are loaded with the configuration set in the bitstream. A subset of these settings can now be
changed at run time. For example, the phase offset can be changed as well as the output dividers.

The SMI capabilities of the PLL and DLL are not supported in simulation. SMI transactions can be simulated, but
the PLL and DLL will not respond to any changes during simulation.

The user must set the SMI offset address for the PLL or DLL. Below are examples for setting the PLL target
address to 0x410 in the preference file.

ASIC “pll/pll_0_0” TYPE “EHXPLLA” SMI_OFFSET=“0x410“;

When making modifications to the PLL or the DLL a reset must be issued following the write transaction. The reset
must be performed via the RSTN port or GSR. Be sure to include a RSTN port on the PLL or DLL when creating
the module if the SMI interface will be utilized.

www.latticesemi.com/dynamic/view_document.cfm?document_id=19023
www.latticesemi.com/dynamic/view_document.cfm?document_id=19023

42

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 17 provides the memory map for the PLL. This memory map begins at the base address specified by the
SMI_OFFSET value.

Table 17. PLL Memory Map

Register Bits Description

0x0 [0:7] Reserved (Do not change these bits)

0x1 [0:7] Reserved (Do not change these bits)

0x2

[0:1]

CLKOS Output Mode (refer to Figure 7)
00 - Bypass VCO (CLKI to CLKOS)
01 - Fine Delay Only - The clock path will go from the VCO through the fine
delay block and to the CLKOS port. The divider will be bypassed.
10 - VCO - The clock path will go from the VCO directly to the CLKOS port. The
fine delay and divider will be bypassed.
11 - Divider and Fine Delay - The clock path will go through both the fine delay
and divider.

[2:7]

CLKOS Divider Can only be changed if CLKOS is not the source of CLKFB.
Assert RSTN after change to reset divider.
000000 - Divide by 1
100000 - Divide by 2
010000 - Divide by 3
...
011111 - Divide by 63
111111 - Divide by 64

0x3

[0:1]

CLKOP Output Mode (refer to Figure 7)
00 - Bypass VCO (CLKI to CLKOS)
01 - CLKOS Fine Delay Match Only - The clock path will go from the VCO
through the CLKOS fine delay matching block and to the CLKOP port. This is to
ensure the phase relationship between the CLKOS and CLKOP. The divider will
be bypassed.
10 - VCO - The clock path will go from the VCO directly to the CLKOP port. The
fine delay and divider will be bypassed.
11 - Divider and Fine Delay Match - The clock path will go through both the fine
delay match and divider.

[2:7]

CLKOP Divider Can only be changed if CLKOP is not the source of CLKFB.
Assert RSTN after change to reset divider.
000000 - Divide by 1
100000 - Divide by 2
010000 - Divide by 3
...
011111 - Divide by 63
111111 - Divide by 64

43

LatticeSC sysCLOCK
PLL/DLL User’s Guide

0x4

[0:2]

CLKI Fine Delay
000 to 0ps
100 to 100 ps
010 to 200 ps
110 to 300 ps
001 to 400 ps
101 to 500 ps
011 to 600 ps
111 to 700 ps

[3:5]

CLKFB Fine Delay
000 to 0ps
100 to 100 ps
010 to 200 ps
110 to 300 ps
001 to 400 ps
101 to 500 ps
011 to 600 ps
111 to 700 ps

[6:7] Reserved (Do not change these bits)

0x5

[0:2]

CLKOS Fine Delay
000 to 0ps
100 to 100 ps
010 to 200 ps
110 to 300 ps
001 to 400 ps
101 to 500 ps
011 to 600 ps
111 to 700 ps

[3:5]

Phase Offset. CLKOP will lead CLKOS by this amount.
Can only be changed if CLKOS is not the source of CLKFB. The Phase Offset is
the offset at the output of the VCO. If the CLKOP and CLKOS output is divided
down by the output dividers specified in the netslist, the phase offset changes at
the output of the PLL.
000 to 0 degrees
100 to 45 degrees
010 to 90 degrees
110 to 135 degrees
001 to 180 degrees
101 to 225 degrees
011 to 270 degrees
111 to 315 degrees

[6:7] Reserved (Do not change these bits)

0x6

[0]
CLKOS VCO Delay Enable
1 - Enable VCO Delay
0 - No additional VCO Delay

[1:6]

VCO Delay Control. Assert RSTN after change to any of these bits.
000000 - CLKOS aligned with CLKOS
100000 - CLKOS delayed by 1 VCO clock
010000 - CLKOS delayed by 2 VCO clocks
...
011111 - CLKOS delayed by 30 VCO clocks
111111 - CLKOS delayed by 31 VCO clocks

[7] Reserved (Do not change this bit)

0x7 [0:7] Reserved (Do not change these bits)

Table 17. PLL Memory Map (Continued)

Register Bits Description

44

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Table 18 provides the memory map for the DLL. This memory map begins at the base address specified by the
SMI_OFFSET value.

0x8

[0:1] Reserved (Do not change these bits)

[2]
Spread Spectrum Enable
0 - Disabled
1 - Enabled

[3:7] Reserved (Do not change these bits)

0x9 [0:7] Reserved (Do not change these bits)

0xa [0:7] Reserved (Do not change these bits)

0xb
[0]

Power down the PLL
1 - Powered Up
0 - Powered Down

[1:7] Reserved (Do not change these bits)

Table 18. DLL Memory Map

Register Bits Description

0x0

[0:4] Reserved (Do not change these bits)

[5:7]

CLKOP Phase Shift. CLKOP will be delayed by this amount
000 - 90 degrees
100 - 180 degrees
010 - 270 degrees
110 - 360 degrees
001 - 0 degrees

0x1

[0:4] Reserved (Do not change these bits)

[5:7]

CLKOS Phase Shift. CLKOS will be delayed by this amount if the Force Static
Delay (register 0x3 bit 6) is set to 0x1.
000 - 90 degrees
100 - 180 degrees
010 - 270 degrees
110 - 360 degrees
001 - 0 degrees

CLKOS will be delayed by this amount if the Force Static Delay (register 0x3 bit
6) is set to (0x0).
000 - 4 delays
100 - 3 delays
010 - 2 delays
110 - 1 delay
001 - 0 delays

0x2

[0:1] Reserved (Do not change these bits)

[2:3]

CLKOS Fine Phase Shift. Added to CLKOS Phase Shift to create total delay if
0x3 bit 5 is set.
00 - 0 degrees
01 - 45 degrees
10 - 22.5 degrees
11 - 11.24 degrees

[4:5] Reserved (Do not change these bits)

[6:7]

CLKOS Divider
00 - Divide by 1
10 - Divide by 2
01 - Divide by 4
11 - 50% Duty Cycle Correction

Table 17. PLL Memory Map (Continued)

Register Bits Description

45

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

0x3

[0:4] Reserved (Do not change these bits)

[5]
CLKOS Fine Phase Shift Enable
0 - No fine phase shift
1 - Add fine phase shift (register 0x2 bits [2:3]) to CLKOS Phase shift

[6]
Force Static Delay
0 - ALU controlled
1 - Static Delay (see register 0x6 bits [0:7])

[7] Hold

0x4 [0:7] Reserved (Do not change these bits)

0x5 [0:7] Reserved (Do not change these bits)

0x6 [0:7]

Delay setting. Only valid if the Force Static Delay (register 0x3 bit 6) is set to
0x1.

Delay setting = (0x6 [0:7] register setting) * tFDEL where 0 ð (0x6 [0:7] register
setting) ð 0x8F (decimal 143).

Note: The specification of tFDEL is located in the DC and Switching Characteris-
tics section of the LatticeSC/M Family Data Sheet.

0x7 [0:7] Reserved (Do not change these bits)

0x8
[0:6]

Adjust DCNTL phase shift to INDEL by the number of tFDELs specified.

Note: The specification of tFDEL is located in the DC and Switching Characteris-
tics section of the LatticeSC/M Family Data Sheet).

[7] 0 - Add value to DCNTL phase shift
1 - Subtract value from DCNTL phase shift

0x9 [0:7] Reserved (Do not change these bits)

Table 18. DLL Memory Map (Continued)

Register Bits Description

http://www.latticesemi.com/

46

LatticeSC sysCLOCK
PLL/DLL User’s Guide

Revision History
Date Version Change Summary

February 2006 01.0 Initial release.

January 2007 01.1 Added additional information on the PLL Lock operation.

Added information on cascading DLLs to PLLs.

June 2007 01.2 Updated DLL to PLL diagram.

Added Cascading PLLs section and related diagram.

Updated PLL Memory Map text (Register 0x2, Bits [2:7] and Register
0x3, Bits [2:7]).

August 2007 01.3 Added Primary Clock Shared Resources table.

October 2007 01.4 Updated DLL Memory Map

Updated Clock Phase Adjustment PLL CLKOP Leads CLKOS diagram.

November 2007 01.5 Corrected references for DLL SMI offset register. Corrected OSCA
Instantiation in VHDL example. Modified paragraph below Figure 33.
Added table for edge clock resource sharing. Corrected Table 16,
entries 0x3 through 0x8.

February 2008 01.6 Updated PLL, DLL, CLKDIV, and Edge Clock Locations and Connectiv-
ity diagram.

Updated Edge Clock Shared Resources table.

July 2008 01.7 Updated Serial Management Interface (SMI) text section.

Updated PLL Memory Map table, bits [0:1] for registers 0x2 and 0x3.

March 2009 01.8 Updated Lock Output text section.

Added PLL LOCK Circuit diagram.

September 2009 01.9 Updated Edge Clock Shared Resources table.

June 2010 02.0 Updated PLL, DLL, CLKDIV, and Edge Clock Locations and Connectiv-
ity figure.

July 2012 02.1 Document updated with new corporate logo.

Added Valid CLKDIV Drivers table.

PLL, DLL, CLKDIV, and Edge Clock Locations and Connectivity dia-
gram – Updated footnotes.

	LatticeSC sysCLOCK
	PLL/DLL User’s Guide
	Introduction
	General Overview of Clocking Architecture
	Clock Networks

	sysCLOCK™ PLLs and DLLs
	PLL Features
	DLL Features
	PLL vs. DLL

	Overview of Other Clocking Elements
	Clock Dividers (CLKDIV)
	Dynamic Clock Select (DCS)
	Clock Shut Off
	Edge Detection
	Oscillator

	Detailed Information for LatticeSC Clocking Components
	Primary Clock
	Quadrant Clocking
	Edge Clock
	Secondary Clock

	PLL
	Ports and Descriptions
	CLKI Input
	CLKFB Input
	CLKOP Output
	CLKOS Output
	LOCK Output
	RSTN Input
	SMI (Serial Management Interface)
	PLL Modes of Operation
	Creating a PLL using ispLEVER

	DLL
	Ports and Descriptions
	DLL Modes of Operation
	Additional DLL Features
	Creating a DLL using ispLEVER

	IPexpress Output
	Clock Dividers
	Creating a CLKDIV
	CLKDIV Instantiation in HDL

	Dynamic Clock Select (DCS)
	DCS Timing Diagrams
	DCS Instantiation in HDL

	Dynamic Clock Switching at PLL/DLL Inputs
	Input Reference Clock Switchover
	Clock Shut Off (CLKCNTL)
	CLKCNTL Instantiation in HDL
	Clock Edge Detection (CLKDET)
	CLKDET Instantiation in HDL
	Oscillator
	OSCA Instantiation in HDL

	Clock Boosting
	Design Implementation
	PLL, DLL, and CLKDIV Locations

	Serial Management Interface (SMI)
	Technical Support Assistance
	Revision History

