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Introduction

Memory devices are ubiquitous in today’s communications systems.  As system bandwidths continue

to increase into the multi-gigabit range, memory technologies have been optimized for higher density

and performance.  In turn, memory interfaces for these new technologies pose stiff challenges for

designers. Traditionally, memory controllers were embedded in processors or as ASIC macrocells in

SoCs.  With shorter time-to-market requirements, designers are turning to programmable logic

devices such as FPGAs to manage memory interfaces.  Until recently, only a few FPGAs supported

the building blocks to interface reliably to high-speed, next generation devices, and typically these

FPGAs were high-end, expensive devices.  However, a new generation of low-cost FPGAs has

emerged, providing the building blocks, high-speed FPGA fabric, clock management resources and

the I/O structures needed to implement next generation DDR2, QDR2 and RLDRAM memory

controllers.

Memory Applications

Memory devices are an integral part of a variety of systems.  However, different applications have

different memory requirements.  For networking infrastructure applications, the memory devices

required are typically high-density, high-performance, high-bandwidth memory devices with a high

degree of reliability.  In wireless applications, low-power memory is important, especially for handset

and mobile devices, while high-performance is important for base-station applications.  Broadband

access applications typically require memory devices in which there is a fine balance between cost

and performance.  Computing and consumer applications require memory solutions such as DRAM

modules, Flash cards, and others that are highly cost sensitive while meeting the performance targets

for these applications.  This article will focus primarily upon memory applications in networking and

communications.

Large, fast memory devices are required in networking and communications applications, with tasks

ranging from simple address lookups to traffic shaping/policing to buffer management. Inexpensive,

legacy Fast-Page mode (FMP) and Extended Data Out (EDO) DRAM used in consumer applications

is frequently unsuitable because it is asynchronous (and slower), and requires a precisely-timed

series of command signals to initiate data transfers.  Networking system architects have traditionally

turned to Static RAM (SRAM) to solve latency issues while incurring greater cost.  ZBT (Zero Bus

Turnaround) SRAM was widely used to improve memory bandwidth by eliminating wait states or idle

cycles between read and write cycles.

Recently, system architects have turned to SDRAM for networking architectures, in which reduced

latency meets low-cost.  Each of these tasks comes with a unique set of requirements.  For example,



low- and medium-bandwidth applications require low-latency memory, so ZBT SRAM are ideal.  ZBT

improves memory bandwidth by eliminating wait states or idle cycles between read and write cycles.

Figure 1 illustrates a typical networking architecture.  At 10 Gbps, address lookups with a typical

read-write ratio of 1000:1 could easily be handled with Double Data Rate (DDR) SRAM. Link list

management, traffic shaping and statistics gathering tasks typically have a balanced 1:1 read-to-write

ratio, requiring higher-performance Quad Data Rate (QDR) SRAM.  On the other hand, larger buffer

memories are typically implemented in DDR SDRAMs (Synchronous DRAMs).  A replacement for

DRAM, SDRAM synchronizes memory access with a processor clock for faster data transfer.  Faster

speeds are also achieved because SDRAM allows one block of memory to be accessed while

another is being prepared for access.  Unlike DRAM, SDRAM uses flowing current rather than a

stored charge, eliminating the need for continual refreshing.

Figure 1 - Memories in Networking: Different Functions Require Different Approaches

Two new contenders have entered the high-performance memory arena in the last few years.  Fast

Cycle Random Access Memory (FCRAM) improves performance by using a pipeline operation and

hidden pre-charge to reduce the random access cycle time, and a highly segmented memory core to



reduce power consumption.  The memory core is segmented into smaller arrays such that the data

can be accessed much faster and the latency improved.  These features make FCRAM ideal for use

as buffer memory in high-speed networking applications such as switches and routers, and network

servers.  Reduced Latency DRAM (RLDRAM) provides SRAM-type interface, non-multiplexed

addresses.  RLDRAM II technology provides minimized latency and reduced row cycle times that are

well suited for applications requiring critical response time and very fast random accesses, such as

next generation (10 Gbps and beyond) networking applications.

Table 1 is a comprehensive comparison of the memories employed in high-speed networking

applications.

DDR SDRAM RLDRAM FCRAM QDR SRAM
Memory Type

DDR-I DDR-II RL-I RL-II FC-I FC-II QDR-I QDR-II

Performance (MHz) 100 - 200 200 - 400 200, 250, 300 200, 300, 400 154 - 267 154 - 333 154  -267 154 -
267

Density (Mb) Components: 64 Mb
- 512 Mb

DIMMs: 32 Mb - 2
Gb

256 Mb - 2 Gb 256 Mb 288 Mb, 576
Mb

256 Mb,
512 Mb

288 Mb 0.5 – 2Mb 8 - 36
Mb

I/O Standard (V) SSTL-2.5V, Class I/II SSTL 1.8V, Class I/II HSTL 1.8V HSTL 1.8V SSTL 2.5,
Class I/II

SSTL Class 1.8V,
Class I/II

HSTL 2.5 V HSTL
1.8V

Burst Lengths 2, 4, 8 4, 8 2, 4 2, 4, 8 2, 4 2, 4 2, 4 2, 4

No. of Banks 4 4 8 8 4 4 — —

Component Data
Widths

Components:
8,16,32

DIMMs: 32, 64, 72

Components: 4,8,16
DIMMs: 64, 72

16, 32 9, 18, 36 8, 16 9, 18, 36 8, 9, 18 8, 9, 18,
36,

Read Latency CAS latency (2, 2.5,
3 clock cycles)

If AL=0 then CAS
latency (2, 2.5, 3 clock

cycles) + RCD
required

CAS latency (5,
6 clock cycles)

CAS latency
(5, 6 clock

cycles)

CAS
latency (3,

4 clock
cycles)

CAS latency (4, 5, 6,
7 clock cycles)

1.5 clock cycles

Read to Write
Latency

Burst length/2 + CAS
latency cycles

(Burst length/2) +
read latency cycles

1 clock cycle while addressing
DIFFERENT banks, 8 clock

cycles while addressing SAME
bank

(Burst length/2) + CAS latency
cycles

None

Write to Read
Latency

1 clock cycle AFTER
write burst

2 clock cycles 1 clock cycle while addressing
DIFFERENT banks, 8 clock

cycles while addressing SAME
bank

2.5 clock cycles — —

Row Cycle Time 12 clock cycles 13 - 15 clock cycles 5 - 8 clock cycles 5 clock cycles — —

Data Strobe Non-free running Differential strobe -
Non-free running

Free running Differential
strobe - Free

Running

Non- free
running

Unidirectional: Free
or Non-Free running

Free running Read &
Write clocks

Data Bits Per
Strobe

8, 16, 32 8 8, 16 bit-wide
device

9, 18 (for 36
bit-wide
device)

8 9, 18 (for 36 bit-wide
device)

One differential pair
per device



Read Data Valid Data valid after CAS latency cycles Data valid signal from memory Data valid after CAS latency
cycles

— —

Data Access Row activation required before column can
be accessed

Row and column can be
addressed together.

Row activation required before
N/A column can be accessed

— —

External Precharge
Required

Yes Yes No No No No No No

Initialization
Sequence

Yes Yes Yes Yes Yes Yes No No

Auto Refresh
Required

Every 15.6 ms or up
to 140.6 ms during

auto refresh

Every 7.8 ms Every 8 ms Every 3.9 ms Every 7.8
ms

Every 3.9 ms — —

Table 1 - Comparison of Memories Employed in High-speed Networking Applications

Current memory interfaces often require clock speeds in excess of 200 MHz to satisfy the throughput

requirements of line and switch cards.  This is a major challenge in FPGA architectures.  PLLs are

essential to allow control over the clock data relationship.

Next-generation memory controllers operate at HSTL (High-Speed Transceiver Logic) or SSTL (Stub-

Series Transistor Logic) voltage levels.  This lower voltage level swing is required to support the high-

speed data operation of the inputs and outputs of the memory device (and the memory controller).

HSTL is the de-facto I/O standard for high-speed SRAM memory devices, while SSTL is the de facto

I/O standard for high-speed DDR SDRAM memories.

This combination of high-speed differential I/O buffers and specialized circuitry (discussed below) to

enable seamless read and write operation at high bandwidths has traditionally been the domain of

premium FPGAs.  Designers no longer wish to pay high prices for utilitarian functions like a memory

controller.  Several FPGA vendors have responded with low-cost solutions. One solution employs a

soft IP to manage the timing relationships and interface between the memory and controller.  As with

any soft IP solution, this challenges the designer to place & route the IP core within the proprietary

design.

In contrast, other vendors have embedded specialized hardware in low-cost FPGAs to manage the

memory interface.  This approach eliminates design concerns about the need to map, place, route

and meet timing requirements on a critical interface.

DDR Memory

In a typical non-DDR system, both the controller and memory in a system transmit or capture data in

response to a single system clock (Figure 2).  Designers became familiar with the timing constraints

in these systems, which, over time, have become tighter as clock speeds have increased.



Figure 2 - Typical Non-DDR System

As designers moved to a DDR memory implementation, data rates effectively doubled.  The

downside (for the designer) was that this effectively cut the data window in half.  To accomplish this

method of data transfer, DDR SDRAM interfaces rely on the use of a data strobe signal (DQS).  DQS

is generated from the differential clock fed to the DDR memory and a DLL inside the DDR memory is

used to generate and align DQS to outgoing data.  Although a DDR memory does not use the

differential input clock to launch or capture data, the DQS signal that is used is related to the

incoming clock frequency.

The DQS signal has several characteristics:

• DQS is bi-directional
• A DQS line is typically generated for 8 lanes of data from the DDR memory
• The phase of DQS relative to the data depends on the operation being performed (Write or

Read)
• DQS is not free running
• In the memory device, DQS is generated by DLL to minimize the skew between it and data
•    DQS has a Preamble state just after the signal comes out of tristate where DQS goes low
•    DQS has a Postamble state just before returning to tristate where DQS goes low

Figure 3 depicts a DDR memory and FPGA controller with the associated data and control lanes.

Note that the clock signal provided to the memory is differential (CLK/CLKN) to minimize duty cycle

variations.  It is important to understand that it is not the clock signal that is used to capture or launch

data to or from the memory.  DDR memory also requires a Data Mask (DM) signal, which is used to

mask data bits during the write cycles. This allows writes to the memory on only one of the two edges

of DQS that occur in a cycle.



Figure 3 - Typical DDR interface

SDRAM interfaces typically are implemented with x8, x16 or x32 bits for each DQS signal. Note that

the ratio of DQS to data bits is independent of the overall width of the memory.

DDR Memory Controller Support in FPGAs

Implementing high performance DDR memory or write interfaces requires dedicated DDR register

structures in the inputs (for read operations) and in the outputs (for write operations).  Embedded

hardware can provide this capability while freeing up FPGA logic for vital user-defined logic.

Additional elements are required to simplify the design of input structures for read operations:  a DQS

delay block and polarity control logic. These blocks are critical for implementing reliable high-speed

DDR SDRAM Controllers.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly

capture data at the input register.  For most interfaces, a PLL is used for this adjustment; however, in

DDR memories the clock (referred to as DQS) is not free running, so this approach cannot be used.

In DDR memory interfaces the DQS to Master Clock relationship varies due to factors such as PCB

trace length and the memory device being used.

Figure 4 illustrates a method for including automatic clock transfer circuitry that simplifies the memory

interface design and ensures robust operation.  Additionally, the DQS Delay block provides the

required clock alignment for DDR memory interfaces.  The DQS signal feeds from the PAD through a

DQS delay element to a dedicated DQS routing resource.  The DQS signal also feeds polarity control

logic, which controls the polarity of the clock to the sync registers in the input register blocks.



Figure 4 - Block Diagram of Dedicated DQS Circuitry

Temperature, voltage and process variations of the dedicated DQS delay block are compensated for

by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device.  Each DLL

(Figure 5) compensates DQS Delays in its half of the device.  The DLL loop is compensated for by

the system clock and dedicated feedback loop.  This is an important architectural feature, because

the device is not hampered with the stringent I/O layout requirements common with other FPGAs.



 Figure 5 - DLL Calibration Bus and DQS/DQS Transition Distribution

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS

strobe and the internal system Clock (during the Read cycle) is unknown.  For embedded hardware to

be used to prevent setup and hold violations at the domain transfer between DQS (delayed) and the

system clock, a clock-polarity-selector is used.  This changes the edge on which the data is

registered in the synchronizing registers in the input register block.  This requires evaluation at the

start of each Read cycle of the correct clock polarity.  Prior to the Read operation in DDR memories,

DQS is in tri-state (pulled by termination).  The DDR memory device drives DQS low at the start of

the preamble state.  A dedicated circuit detects this transition.  This signal is used to control the

polarity of the clock to the synchronizing registers.



Conclusion

As line rates continue to grow, DDR SDRAMs are experiencing wider adoption in networking

applications.  These increasing system bandwidth requirements are pushing memory interface

speeds while costs continue to be driven down.  Some FPGA vendors are responding with low-cost

devices offering soft-IP solutions.  On the other hand, Lattice Semiconductor employs built-in circuitry

in its new low-cost LatticeEC and LatticeECP families.

###


