Lattice

Semiconductor
Corporation

Bringing the Best Together

SOLVING HIGH-SPEED MEMORY
INTERFACE CHALLENGES WITH LOW-COST FPGAS

A Lattice Semiconductor White Paper
May 2005

Lattice Semiconductor
5555 Northeast Moore Ct.
Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000
www.latticesemi.com

Introduction

Memory devices are ubiquitous in today’s communications systems. As system bandwidths continue
to increase into the multi-gigabit range, memory technologies have been optimized for higher density
and performance. In turn, memory interfaces for these new technologies pose stiff challenges for
designers. Traditionally, memory controllers were embedded in processors or as ASIC macrocells in
SoCs. With shorter time-to-market requirements, designers are turning to programmable logic
devices such as FPGAs to manage memory interfaces. Until recently, only a few FPGAs supported
the building blocks to interface reliably to high-speed, next generation devices, and typically these
FPGAs were high-end, expensive devices. However, a new generation of low-cost FPGAs has
emerged, providing the building blocks, high-speed FPGA fabric, clock management resources and
the 1/O structures needed to implement next generation DDR2, QDR2 and RLDRAM memory
controllers.

Memory Applications

Memory devices are an integral part of a variety of systems. However, different applications have
different memory requirements. For networking infrastructure applications, the memory devices
required are typically high-density, high-performance, high-bandwidth memory devices with a high
degree of reliability. In wireless applications, low-power memory is important, especially for handset
and mobile devices, while high-performance is important for base-station applications. Broadband
access applications typically require memory devices in which there is a fine balance between cost
and performance. Computing and consumer applications require memory solutions such as DRAM
modules, Flash cards, and others that are highly cost sensitive while meeting the performance targets
for these applications. This article will focus primarily upon memory applications in networking and
communications.

Large, fast memory devices are required in networking and communications applications, with tasks
ranging from simple address lookups to traffic shaping/policing to buffer management. Inexpensive,
legacy Fast-Page mode (FMP) and Extended Data Out (EDO) DRAM used in consumer applications
is frequently unsuitable because it is asynchronous (and slower), and requires a precisely-timed
series of command signals to initiate data transfers. Networking system architects have traditionally
turned to Static RAM (SRAM) to solve latency issues while incurring greater cost. ZBT (Zero Bus
Turnaround) SRAM was widely used to improve memory bandwidth by eliminating wait states or idle
cycles between read and write cycles.

Recently, system architects have turned to SDRAM for networking architectures, in which reduced
latency meets low-cost. Each of these tasks comes with a unique set of requirements. For example,

low- and medium-bandwidth applications require low-latency memory, so ZBT SRAM are ideal. ZBT
improves memory bandwidth by eliminating wait states or idle cycles between read and write cycles.

Figure 1 illustrates a typical networking architecture. At 10 Gbps, address lookups with a typical
read-write ratio of 1000:1 could easily be handled with Double Data Rate (DDR) SRAM. Link list
management, traffic shaping and statistics gathering tasks typically have a balanced 1:1 read-to-write
ratio, requiring higher-performance Quad Data Rate (QDR) SRAM. On the other hand, larger buffer
memories are typically implemented in DDR SDRAMs (Synchronous DRAMs). A replacement for
DRAM, SDRAM synchronizes memory access with a processor clock for faster data transfer. Faster
speeds are also achieved because SDRAM allows one block of memory to be accessed while
another is being prepared for access. Unlike DRAM, SDRAM uses flowing current rather than a
stored charge, eliminating the need for continual refreshing.

RLORAM CIC or DDR SRAM is chosen

because READ'WRITE ratio is 1000:1 because READ:'WRITE ratio is 1:1

{ RLORAM 510 or QDR SRAM is chosen

-

INGRESS CORE / EGRESS
Fort 1 Linked List Port 1
Port 2 Port 2

Processing Element(s) E—

Port 3 Port 3
Port X Memory t PortY
- .

QDR SRAM may be needed for DOR DRAM may be needed for
highest performance. RLDRAM 510 may low cost. RLDRAM CIO may
be needed for largest buffering. be needed for higher performance.

Figure 1 - Memories in Networking: Different Functions Require Different Approaches

Two new contenders have entered the high-performance memory arena in the last few years. Fast
Cycle Random Access Memory (FCRAM) improves performance by using a pipeline operation and
hidden pre-charge to reduce the random access cycle time, and a highly segmented memory core to

reduce power consumption. The memory core is segmented into smaller arrays such that the data

can be accessed much faster and the latency improved. These features make FCRAM ideal for use

as buffer memory in high-speed networking applications such as switches and routers, and network

servers. Reduced Latency DRAM (RLDRAM) provides SRAM-type interface, non-multiplexed

addresses. RLDRAM Il technology provides minimized latency and reduced row cycle times that are

well suited for applications requiring critical response time and very fast random accesses, such as

next generation (10 Gbps and beyond) networking applications.

Table 1 is a comprehensive comparison of the memories employed in high-speed networking

applications.
DDR SDRAM RLDRAM FCRAM QDR SRAM
Memory Type
DDR-I DDR-II RL-I RL-II FC-l FC-ll QDR-I QDR-II
Performance (MHz) 100 - 200 200 - 400 200, 250, 300 | 200, 300, 400 | 154 - 267 154 - 333 154 -267 | 154 -
267
Density (Mb) Components: 64 Mb 256 Mb - 2 Gb 256 Mb 288 Mb, 576 | 256 Mb, 288 Mb 0.5-2Mb | 8-36
-512 Mb Mb 512 Mb Mb
DIMMs: 32 Mb - 2
Gb
I/O Standard (V) SSTL-2.5V, Class I/ll| SSTL 1.8V, Class I/ll | HSTL 1.8V HSTL 1.8V | SSTL2.5,| SSTL Class 1.8V, |HSTL2.5V| HSTL
Class I/l Class I/l 1.8V
Burst Lengths 2,4,8 4,8 2,4 2,4,8 2,4 2,4 2,4 2,4
No. of Banks 4 4 8 8 4 4 — —
Component Data Components: Components: 4,8,16 16, 32 9, 18, 36 8, 16 9, 18, 36 8,9,18 |8,9, 18,
Widths 8,16,32 DIMMs: 64, 72 36,
DIMMs: 32, 64, 72
Read Latency CAS latency (2, 2.5, | If AL=0then CAS |CAS latency (5, CAS latency CAS CAS latency (4, 5, 6, 1.5 clock cycles
3 clock cycles) latency (2, 2.5, 3 clock| 6 clock cycles) | (5, 6 clock |latency (3, 7 clock cycles)
cycles) + RCD cycles) 4 clock
required cycles)

Read to Write
Latency

Burst length/2 + CAS
latency cycles

(Burst length/2) +
read latency cycles

1 clock cycle while addressing
DIFFERENT banks, 8 clock

cycles while addressing SAME

bank

(Burst length/2) + CAS latency

cycles

None

Write to Read
Latency

1 clock cycle AFTER
write burst

2 clock cycles

1 clock cycle while addressing
DIFFERENT banks, 8 clock

cycles while addressing SAME

bank

2.5 clock cycles

Row Cycle Time

12 clock cycles

13 - 15 clock cycles

5 - 8 clock cycles

5 clock cycles

Data Strobe Non-free running Differential strobe - | Free running Differential Non- free | Unidirectional: Free |Free running Read &
Non-free running strobe - Free | running | or Non-Free running Write clocks
Running
Data Bits Per 8, 16, 32 8 8, 16 bit-wide | 9, 18 (for 36 8 9, 18 (for 36 bit-wide | One differential pair
Strobe device bit-wide device) per device

device)

Read Data Valid Data valid after CAS latency cycles Data valid signal from memory Data valid after CAS latency — —
cycles
Data Access Row activation required before column can Row and column can be Row activation required before — —
be accessed addressed together. N/A column can be accessed
External Precharge Yes Yes No No No No No No
Required
Initialization Yes Yes Yes Yes Yes Yes No No
Sequence
Auto Refresh Every 15.6 ms or up Every 7.8 ms Every 8 ms Every 3.9 ms | Every 7.8 Every 3.9 ms — —
Required to 140.6 ms during ms
auto refresh

Table 1 - Comparison of Memories Employed in High-speed Networking Applications

Current memory interfaces often require clock speeds in excess of 200 MHz to satisfy the throughput
requirements of line and switch cards. This is a major challenge in FPGA architectures. PLLs are
essential to allow control over the clock data relationship.

Next-generation memory controllers operate at HSTL (High-Speed Transceiver Logic) or SSTL (Stub-
Series Transistor Logic) voltage levels. This lower voltage level swing is required to support the high-
speed data operation of the inputs and outputs of the memory device (and the memory controller).
HSTL is the de-facto I/O standard for high-speed SRAM memory devices, while SSTL is the de facto
I/O standard for high-speed DDR SDRAM memories.

This combination of high-speed differential I/O buffers and specialized circuitry (discussed below) to
enable seamless read and write operation at high bandwidths has traditionally been the domain of
premium FPGAs. Designers no longer wish to pay high prices for utilitarian functions like a memory
controller. Several FPGA vendors have responded with low-cost solutions. One solution employs a
soft IP to manage the timing relationships and interface between the memory and controller. As with
any soft IP solution, this challenges the designer to place & route the IP core within the proprietary
design.

In contrast, other vendors have embedded specialized hardware in low-cost FPGAs to manage the
memory interface. This approach eliminates design concerns about the need to map, place, route
and meet timing requirements on a critical interface.

DDR Memory

In a typical non-DDR system, both the controller and memory in a system transmit or capture data in
response to a single system clock (Figure 2). Designers became familiar with the timing constraints
in these systems, which, over time, have become tighter as clock speeds have increased.

——)

DATA DATA
+ ra
Memory Controller Memory
ADDRESS il p ADDRESS
CLOCK T T
SOURCE

Figure 2 - Typical Non-DDR System

As designers moved to a DDR memory implementation, data rates effectively doubled. The
downside (for the designer) was that this effectively cut the data window in half. To accomplish this
method of data transfer, DDR SDRAM interfaces rely on the use of a data strobe signal (DQS). DQS
is generated from the differential clock fed to the DDR memory and a DLL inside the DDR memory is
used to generate and align DQS to outgoing data. Although a DDR memory does not use the
differential input clock to launch or capture data, the DQS signal that is used is related to the
incoming clock frequency.

The DQS signal has several characteristics:

* DAQS is bi-directional

* A DQS line is typically generated for 8 lanes of data from the DDR memory

* The phase of DQS relative to the data depends on the operation being performed (Write or
Read)

DQS is not free running

In the memory device, DQS is generated by DLL to minimize the skew between it and data
DQS has a Preamble state just after the signal comes out of tristate where DQS goes low
DQS has a Postamble state just before returning to tristate where DQS goes low

Figure 3 depicts a DDR memory and FPGA controller with the associated data and control lanes.
Note that the clock signal provided to the memory is differential (CLK/CLKN) to minimize duty cycle
variations. It is important to understand that it is not the clock signal that is used to capture or launch
data to or from the memory. DDR memory also requires a Data Mask (DM) signal, which is used to
mask data bits during the write cycles. This allows writes to the memory on only one of the two edges
of DQS that occur in a cycle.

FPGA DDR Memory
(DDR Memory Controller)

DOS p DOS

oM b DM
ADDRESS i p ADDRESS
COMMAND r b COMMAND
CONTROL v p CONTROL
CLKICLKMN b CLKICLKN

Figure 3 - Typical DDR interface

SDRAM interfaces typically are implemented with x8, x16 or x32 bits for each DQS signal. Note that
the ratio of DQS to data bits is independent of the overall width of the memory.

DDR Memory Controller Support in FPGAs

Implementing high performance DDR memory or write interfaces requires dedicated DDR register
structures in the inputs (for read operations) and in the outputs (for write operations). Embedded
hardware can provide this capability while freeing up FPGA logic for vital user-defined logic.
Additional elements are required to simplify the design of input structures for read operations: a DQS
delay block and polarity control logic. These blocks are critical for implementing reliable high-speed
DDR SDRAM Controllers.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly
capture data at the input register. For most interfaces, a PLL is used for this adjustment; however, in
DDR memories the clock (referred to as DQS) is not free running, so this approach cannot be used.
In DDR memory interfaces the DQS to Master Clock relationship varies due to factors such as PCB
trace length and the memory device being used.

Figure 4 illustrates a method for including automatic clock transfer circuitry that simplifies the memory
interface design and ensures robust operation. Additionally, the DQS Delay block provides the
required clock alignment for DDR memory interfaces. The DQS signal feeds from the PAD through a
DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control
logic, which controls the polarity of the clock to the sync registers in the input register blocks.

~1
Delay .~ PIO
Control [
Eus ,"’ffz? |nput EFEID DDltjE
e Register Block Buffer atain
Palarity
5 Flip FI
Sy i 5 Flip Flops) ' PAD
Bus Pd I TQRSyn-:. .
GSR|—p Eg.
DQas / CLKI I-—+_CJ\—I-
Bus ® ~» CEl > Y
pQs nas SRRl © O0R &
[]
FIO syslO Das
Buffer Strobe
Folarity Control
4 Logic
Das !
< DOSDEL
A Calibration Bus
i from DLL

Figure 4 - Block Diagram of Dedicated DQS Circuitry

Temperature, voltage and process variations of the dedicated DQS delay block are compensated for
by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL
(Figure 5) compensates DQS Delays in its half of the device. The DLL loop is compensated for by
the system clock and dedicated feedback loop. This is an important architectural feature, because
the device is not hampered with the stringent I/O layout requirements common with other FPGAs.

DE!,‘:!" Control Bus DQS Bus Polarity Control Bus
\ i

Device Core

N

Figure 5 - DLL Calibration Bus and DQS/DQS Transition Distribution

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS
strobe and the internal system Clock (during the Read cycle) is unknown. For embedded hardware to
be used to prevent setup and hold violations at the domain transfer between DQS (delayed) and the
system clock, a clock-polarity-selector is used. This changes the edge on which the data is

registered in the synchronizing registers in the input register block. This requires evaluation at the
start of each Read cycle of the correct clock polarity. Prior to the Read operation in DDR memories,
DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of
the preamble state. A dedicated circuit detects this transition. This signal is used to control the
polarity of the clock to the synchronizing registers.

Conclusion

As line rates continue to grow, DDR SDRAMSs are experiencing wider adoption in networking
applications. These increasing system bandwidth requirements are pushing memory interface
speeds while costs continue to be driven down. Some FPGA vendors are responding with low-cost
devices offering soft-IP solutions. On the other hand, Lattice Semiconductor employs built-in circuitry

in its new low-cost LatticeEC and LatticeECP families.

#Hit#

