Lattice

Semiconductor
Corporation

Bringing the Best Together

HIGH-PERFORMANCE DSP CAPABILITY
WITHIN AN OPTIMIZED
LOW-COST FPGA ARCHITECTURE

A Lattice Semiconductor White Paper
June 2004

Lattice Semiconductor
5555 Northeast Moore Ct.
Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

1 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

http://www.latticesemi.com/

Introduction

The applications of Digital Signal Processing (DSP) continue to expand, driven by
trends such as the increased use of video and still images and the demand for
increasingly reconfigurable systems such as Software Defined Radio (SDR). Many of
these applications combine the need for significant DSP processing with cost sensitivity,

creating demand for high-performance, low-cost DSP solutions.

General-purpose DSP chips and FPGAs are two common methods of implementing
DSP functions. Each approach has advantages, and the optimum implementation
method will vary depending upon application requirements. This white paper provides
an overview of common DSP functions and then explores the differences between the
general purpose DSPs and FPGAs. This is followed by a description of the
LatticeECP™-DSP (EConomy Plus Digital Signal Processing) architecture and a
comparison of the LatticeECP-DSP to existing FPGA solutions.

Typical Functions

While a vast array of digital signal processing functions are implemented by designers,
Finite Impulse Response (FIR) filters, Infinite Impulse Response (lIR) filters, Fast
Fourier Transforms (FFTs) and mixers are common to many applications. Each of
these functions requires a combination of multiply elements along with addition,
subtraction and accumulation. This section provides a brief overview of the algorithms

used to implement these functions.

Finite Impulse Response (FIR) Filters

The finite impulse response filter stores a series of n data elements, each delayed by an
additional cycle. These data elements are commonly referred to as taps. Each tap is
multiplied by a coefficient and the results summed to produce the output. Some
implementations perform all the multiplications in parallel. More generally, the
implementation is broken down into N stages, with an accumulator passing the partial

result from one stage to the next. This implementation trades speed for functional

2 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

resources, taking N computation stages and requiring n/N multipliers. Depending upon
whether the coefficients are static or dynamic, and the design of the coefficient values,
there are a number of other design optimizations commonly used that are beyond the

scope of this paper. Figure 1 shows the implementation of a typical FIR filter.

Data
—>

In

> >

Coefficient

~SA

Coefficient Coefficient

~SA '

Data
Out

Figure 1 -- Typical FIR Filter

Fast Fourier Transform (FFT) Functions

Fast Fourier Transforms are used for a variety of applications, ranging from image
compression to determining the spectral content of a data sample. There are a variety
of methods for implementing the Fast Fourier Transform. Probably the most common
method is to use Cooley-Tukey decimation in time approach, which breaks the FFT
down into a number of smaller FFTs. The simplest implementation uses an element
commonly referred to as the Radix-2 butterfly, through which the input data must be
passed multiple times. Figure 2 shows the Radix-2 Butterfly. The calculation is
conceptually simple, as shown on the left of the diagram. However, as all the multiplies
and additions are done with complex numbers, the actual number of multiplies and
additions required is somewhat more challenging, as shown on the right side of the

diagram.

3 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

(A+jB) = A+jB+C*E+C*jF+jD*E+|D*F

Data Data
In Out
(C+D) —p = A+|B-C*E-C*jF-|D*E-|D*jF
Twiddle
Factor
(E+F)

Figure 2 — Radix-2 Butterfly Commonly Used For Implementing FFTs

Infinite Impulse Response (lIR) Filters

The Infinite Impulse Response (lIR) filter is similar to the FIR filter, except that feedback
paths are introduced. These feedback paths make the design and analysis of IIR filters
more complex than FIR filters. However, the IIR approach can provide a more powerful
filter for the same silicon area. Although there are several IIR architectures, one

common approach is to build IIR filters out of second order bi-quads, as shown

in figure 3.
Data ____ p» Data
In Out

AN
@

Figure 3 —lIR Second Order Bi-quad

4 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Mixer Functions

Many applications use mixers to shift the frequency of a signal. While, conceptually,
just a single multiplier could be used, in digital applications there are a number of
advantages to representing the numbers in a complex form. Most typically this is done
by representing signals as | and Q components. Figure 4 shows a mixer that would be

used in digital up-conversion.

——0
Data out

Direct Digital
Synthesizer

Figure 4 — Typical Up Converter Mixer using Complex Arithmetic

General Purpose DSP Solutions

Versus FPGA Implementations

As illustrated in the description of common functions, multipliers, followed by addition,
subtraction or accumulation are at the heart of most DSP applications. General-
purpose DSP chips combine efficient implementations of these functions with a general-
purpose microprocessor. The number of multipliers is generally in the range of one to
four, and the microprocessor will sequence data to pass it through the multiply and
other functions storing intermediate results in memory or accumulators. Performance is

increased primarily by increasing the clock speed used for multiplication. Typical clock

5 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

speeds run from tens of MHz to 1GHz. Performance, as measured by Millions of
Multiply Accumulates (MMAC) per second, typically ranges from 10 to 4000. Functions
requiring higher performance have to be split across multiple DSP engines. The price
of these chips ranges from a few dollars at the bottom end of the performance range to
hundreds of dollars at the high end. The key advantage of this approach is the ability to

directly implement algorithms written in a high-level programming language such as C.

DSP oriented FPGAs provide the ability to implement many functions in parallel on one
chip. General-purpose routing, logic and memory resources are used to interconnect
the functions, perform additional functions, sequence and, as necessary, store data.
Some basic devices provide multiplier only support, requiring users to construct all other
functions in logic. More sophisticated devices provide addition, subtraction and
accumulator functions as part of their set of DSP building blocks. FPGAs typically have
tens of multiplier elements and can operate at clock speeds of hundreds of MHz. For
example, the LatticeECP-DSP 20 FPGA has 28 18x18 multipliers that can run at
speeds up to 250MHz, delivering performance up to 7,000 MMAC per second. Table 1

compares the FPGA and general-purpose approach.

Device Clock Number of | MMAC/s 1K Unit Cost per
Speed Multipliers Cost* MMAC/s
TI DSP 1GHz 4 4000 $256 $0.064
TI DSP 300MHz 4 1200 $40 $0.033
ECP-DSP20 250MHz 28 7000 $59 $0.008

* Approximate 1K pricing through NA distributors
Table 1 — Comparison of General-Purpose DSP and FPGA approaches

LatticeECP-DSP Architecture

The LatticeECP-DSP devices consist of a low-cost FPGA fabric coupled with between
four and ten sysDSP™ blocks. Figure 5 shows the overall block diagram of the ECP
device'. The sysDSP block in the Lattice ECP family supports four functional elements in
three data path widths: 9, 18 and 36. The user selects a function element for a DSP
block and then selects the width and type (signed/unsigned) of its operands. The

operands in the sysDSP Blocks can be either signed or unsigned, but not mixed within a

6 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

function element. Similarly, the operand widths cannot be mixed within a block. The
resources in each sysDSP block can be configured to support the following four
elements:

e MULT (Multiply, Figure 6)

e MAC (Multiply Accumulate, Figure 7)

e MULTADD (Multiply Addition/Subtraction, Figure 8)

e MULTADDSUM (Multiply Addition/Subtraction Summation, 9)
The number of elements available in each block depends upon the width selected from
the three available options: x9, x18, and x36. A number of these elements are
concatenated for highly parallel implementations of DSP functions. Table 2 shows the
capabilities of the block.

Width of Multiply X9 X18 X36
MULT 8 4 1
MAC 4 2

MULTADD 4 2

MULTADDSUM 2 1

Table 2 — Maximum Number of Elements in a sysDSP Block

Programmable 110 Cell
(PIC) includes syslO

N

HENEEEEEEEEEEEEEE
mmnmninmnnni
== I
e E e e eI e e e e
ANEEEEEEEEEEEEEE

H | |
R g
sysDSP Eoc«”'[gj AR EEEEEEEEEEnn B

2rsMEM Embedded
" Block RAM (EBR)

— JTAG Port

| baanodgl

sysCOMNFIG Programming
Port {includes dedicated
and dual use pins)

I [[[[[[[|
I = N
ENEEEEEEEEEEEEEE

|I'II'II'II'II'II'II'II'I||I'II'II'II'II'II'II'II'I|

Programmalile
Functicnal Unit (PFU}

7 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Figure 5 — LatticeECP-DSP Block Diagram

The sysDSP block has built-in optional pipelining at the input, intermediate and output
stages. In addition, inputs can be loaded in parallel or shifted across the array as

necessary. Options are also provided for dynamically switching between signed and
unsigned arithmetic and subtraction and addition.

SRIB SRIA
Operand A n .
¥
Operand B n n n
¥ Input Data n Multiplier
Register A 55
n n al n >
50
]
Input Data n Oz Output
Register B Pipeline
0 Ragister
n
SignedAB | Input Fipeline To
"|_Register Register Multiplier
CLK {CLKD,CLK1.CLK2,CLK3)
»
CE {CED.CE1,CE2,CE3)
>
RST(RSTO,RST1.RST2,R5TI)
L
v SROB v SROA
SRIB SRIA
Operand A o n
Aceumulator
Operand B n n .
Input Data Multiplier “a% o -
Register A c:)‘ 5 outot
Input Data
Register B Pipeline
4 Register
" -
SignedAB T — >
gl =J " r||?utl __.l Elpe_h:: |_' T Q\.rerﬂow
| Register SETE1 muitiplier signal
AddnSub ; —
Input +| Elpell:; |_> To
| Reister :
Accumsioad L Hears — Accurnulator CLK [CLKD.CLKY, CLKZ.CLKS)
w| Input Pipeline |_.. p— P >
®| Repister ™| Register AernOL tor CE (CED,CE1.CE2,CE3)
RET{RSTO,RET1,RET2RETI)
o
ySROB v SROA

Figure 7 — MAC (Multiply Accumulate) Element

High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

SRIB SRIA

Operand AD - n CLK (CLKD,CLK1,CLK2,CLK3)
CE {{

E0,CE1,.CE2.CE3)

o 480 . RST(RSTO.RSTI,RSTZRSTS)
peran _— %

Input Data Multiplier

Register A

Input Data
Register B
AddiSub

Operand A1

Oufput
—»

Operand B1 n

Input Data
Register A

Input Data

Register B Pipeline
serd | n Register
SignedAB " inpa Fipeline
I e T,
AddnSub e
: TnpuE | [Pipeline To
*| _Register Repister Accumulator

SROB SROA
4 A\

Figure 8 - MULTADD (Multiplier Addition/Subtraction) Element

SRIB SRIA

Operand AD n n

CLK (CLKD.CLK1.CLKZ.CLKZ)

CE (CED,CE1,CE2CEY)
—»

RST(RSTD,RST1.RST2ZASTI)
—_—

Operand BO|

Multiplier

Input Data
Repgister A

Input Data
Register B

AddlSubd

Fipaing
Raglater

Operand A1l

Operand B1|

Input Data
Register A

Input Data
Register B Flpaling SUM

Operand A2 o Output

Operand g

Input Data Multiplier

Register A

Input Data
Register B

Fipaing
Raglater

Add/Sub1

Operand A3 n

r
Operand B3| c i"

Input Data
Register A

Input Data
Register B Plpsiing
w Raglatar
n
o tnput Fipeling
Reglatar _" To Multiplier
AddnSub0 i
. put Fipeling
* n;usm '__' Regster To Add/Subl
AddnSub1 i
put Fipeling S
Ly ﬁ;;mer l— Reglster To Add/Sub1

v SROB | SROA

SignedAB

Figure 9 — MULTADDSUM (Multiplier Addition/Subtraction Summation)
Element

High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Performance and Device Utilization Improvements

The availability of pipelining registers, summation, subtraction and accumulation within
the sysDSP blocks increases their utility. As illustrated, in typical functions it is very
common to need to combine multiplication with addition, summation, or accumulation.
Pipelining registers, while conceptually simple, rapidly consume significant resources
when implemented on wide data paths. The sysDSP blocks’ ability to implement these
functions results in lower consumption of general-purpose FPGA resources and higher
performance. Both of these factors translate directly into lower costs, as in many cases

they allow designers to select smaller devices with lower speed grades.

LatticeECP-DSP Design Flow

Lattice provides designers with four simple methods to access the capabilities of the
sysDSP Block:

e The Module/IP Manager is a graphical interface provided in the ispLEVER® tools
that allows the rapid creation of modules implementing DSP elements. These
modules can then be used in HDL designs as appropriate.

e The coding of certain functions into a design’s HDL and allowing the synthesis
tools to Inference the use of a DSP block.

e The implementation of designs in MathWork’s Simulink tool using a Lattice
Block set. The ispLeverDSP portion of the ispLEVER tools will then convert
these blocks into HDL as appropriate.

e Instantiation of DSP primitives directly in the source code.

The method chosen for any design will depend upon the DSP algorithm design
methodology and the degree of control desired over the physical implementation.
Figure 10 illustrates the specification of a MULT element using the module manager.

Figure 11 shows the use of Lattice block sets in MathWork’s Simulink tool.

10 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

MULT

Basic Advanced |

— Select Pipelining

r— Block Diagram
Clock Clock Enable Reset
Enable Input Register & r | clkojcLkijcikarcies =| [cenicerjcezices] | [rsTojRsT1RST2(RSTS =
Enabls Input Redistar B r | clkojcLkijcikarcies =| [cenicejcezices | [rsTojRsT1RST2(RSTS =
Enable Pipeline Register [oo poikepoies x| [ceorcerjcezices x| [rstojmstiRaTzRsTs |
Enable Output Register [oo poikepoies x| [ceorcerjcezices x| [rstojmstiRaTzRsTs |
Enabla Sgned Input Register r A
Enable Signed Pipsline Registsr Tl Ge |Ad\‘ﬁ”59d|
— Block Disgram — Spacify the sizs of the DSPMULT block. Salect Block Options
Specify number of DSP Blocks Used | Multiplicand bit Size l— cperaon e -
o : Signed/UnsigredDynamic =
Multiplisr bit Size: l— e lm
Praduct bit Size l—
— Select shift for Data
Selesct shift For Muliplicand & r
Select Shift for Multiplicand B r
— Select Pipelining
Enable Input Registers r
Enable Pipeling Registers r
Enable OUtpLE Registers r
Figure 10 — Configuring A Multiplier Element in the Module Manager
' =Bl
TR T
O Fl&S &kl s RE®
|
| 1
G W Latcs datesus s
[ETTTE =
s
Srere
Lol Db S e 8
I-: _E.r-._uhi. _l 1-1"_ ‘lq
- =
LB Add s EGemnni)
-
s
1 [wa
T o
O
1 2l
Pty b e i
. . . y . .
Figure 11 — Using the Lattice Block Set In MathWork’s Simulink Tool
11 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Low-Cost FPGA Implementations

With the introduction of the LatticeECP/EC devices, users can how choose among three
current generation, low-cost FPGAs: the Spartan Ill devices from Xilinx, Altera’s
Cyclone family and the LatticeECP/EC devices.

Altera’s Cyclone FPGAs contain no DSP oriented element, making it challenging to
implement large DSP functions in these devices without consuming a significant number
of internal resources. Naturally, achieving high-performance with these
implementations is equally challenging. The Xilinx Spartan Ill FPGA family does
provide some basic multiplier capability. While this is certainly preferable to having no
DSP capability at all, significant resources must still be consumed to implement the
adders, subtractors, accumulators and pipeline registers found in typical designs.

To measure the effect of providing these resources, Lattice benchmarked performance
and utilization for a FIR filter and an IIR filter. The FIR used was a 64-tap filter with 18-
bit wide data. The IIR filter used was 4™ order arranged as two bi-quads and an 18-bit
data path. Figure 12 shows the results for both the Spartan Il and LatticeECP-DSP

devices.
160 1400
N
T 140 D 1200
= 120 =
- o - 1000
100 2] o
o a
c 0 O 800
o 80 E_) O
>
2 60 5 ? 600
9 40 O 400
LL —_
20 N 200
O' Ol 7
FIR IR FIR IR
(64-tap, (4t Order, (64-tap, (4th Order,
18-bit data) 18-bit data) 18-bit data) 18-bit data)

Figure 12 — FIR and IIR implementations in LatticeECP-DSP and
Spartan Ill Devices

12 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Summary

The use of DSP techniques will continue to grow at the expense of analog
implementations. An analysis of the functions typically used in DSP applications
indicates that a combination of multiplier, addition, subtraction and accumulation
elements is required. The LatticeECP devices provide a sophisticated DSP block
combined with a low-cost FPGA fabric. Through the implementation of addition,
subtraction, accumulation and pipelining within the sysDSP block, performance and
LUT utilization are considerably higher than those of alternative low-cost FPGA
solutions that provide only basic multiplier capabilities. The speed and utilization
advantages of the sysDSP block help users reduce costs through the selection of
smaller and lower speed grade devices.

Hit#

i Please see the Lattice Whitepaper “Optimizing FPGAs For High-Volume Applications” for more details
on the FPGA fabric used for the LatticeECP-DSP devices.

13 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

	Introduction
	Typical Functions
	Finite Impulse Response (FIR) Filters
	Fast Fourier Transform (FFT) Functions
	Infinite Impulse Response (IIR) Filters
	Mixer Functions

	General Purpose DSP Solutions
	Versus FPGA Implementations
	LatticeECP-DSP Architecture
	Performance and Device Utilization Improvements
	LatticeECP-DSP Design Flow
	Low-Cost FPGA Implementations
	Summary

