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Introduction 
The applications of Digital Signal Processing (DSP) continue to expand, driven by 

trends such as the increased use of video and still images and the demand for 

increasingly reconfigurable systems such as Software Defined Radio (SDR).  Many of 

these applications combine the need for significant DSP processing with cost sensitivity, 

creating demand for high-performance, low-cost DSP solutions. 

 

General-purpose DSP chips and FPGAs are two common methods of implementing 

DSP functions.  Each approach has advantages, and the optimum implementation 

method will vary depending upon application requirements.  This white paper provides 

an overview of common DSP functions and then explores the differences between the 

general purpose DSPs and FPGAs.  This is followed by a description of the 

LatticeECP™-DSP (EConomy Plus Digital Signal Processing) architecture and a 

comparison of the LatticeECP-DSP to existing FPGA solutions. 

Typical Functions 
While a vast array of digital signal processing functions are implemented by designers, 

Finite Impulse Response (FIR) filters, Infinite Impulse Response (IIR) filters, Fast 

Fourier Transforms (FFTs) and mixers are common to many applications.  Each of 

these functions requires a combination of multiply elements along with addition, 

subtraction and accumulation.  This section provides a brief overview of the algorithms 

used to implement these functions. 

Finite Impulse Response (FIR) Filters 

The finite impulse response filter stores a series of n data elements, each delayed by an 

additional cycle.  These data elements are commonly referred to as taps.  Each tap is 

multiplied by a coefficient and the results summed to produce the output.  Some 

implementations perform all the multiplications in parallel.  More generally, the 

implementation is broken down into N stages, with an accumulator passing the partial 

result from one stage to the next.  This implementation trades speed for functional 
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resources, taking N computation stages and requiring n/N multipliers.  Depending upon 

whether the coefficients are static or dynamic, and the design of the coefficient values, 

there are a number of other design optimizations commonly used that are beyond the 

scope of this paper.  Figure 1 shows the implementation of a typical FIR filter. 
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Figure 1 -- Typical FIR Filter 

Fast Fourier Transform (FFT) Functions 

Fast Fourier Transforms are used for a variety of applications, ranging from image 

compression to determining the spectral content of a data sample.  There are a variety 

of methods for implementing the Fast Fourier Transform.  Probably the most common 

method is to use Cooley-Tukey decimation in time approach, which breaks the FFT 

down into a number of smaller FFTs.  The simplest implementation uses an element 

commonly referred to as the Radix-2 butterfly, through which the input data must be 

passed multiple times.  Figure 2 shows the Radix-2 Butterfly.  The calculation is 

conceptually simple, as shown on the left of the diagram.  However, as all the multiplies 

and additions are done with complex numbers, the actual number of multiplies and 

additions required is somewhat more challenging, as shown on the right side of the 

diagram. 
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Figure 2 – Radix-2 Butterfly Commonly Used For Implementing FFTs 
 

Infinite Impulse Response (IIR) Filters 

The Infinite Impulse Response (IIR) filter is similar to the FIR filter, except that feedback 

paths are introduced.  These feedback paths make the design and analysis of IIR filters 

more complex than FIR filters.  However, the IIR approach can provide a more powerful 

filter for the same silicon area.  Although there are several IIR architectures, one 

common approach is to build IIR filters out of second order bi-quads, as shown  

in figure 3. 
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Figure 3 – IIR Second Order Bi-quad 

4 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture 

A Lattice Semiconductor White Paper 



Mixer Functions 

Many applications use mixers to shift the frequency of a signal.  While, conceptually, 

just a single multiplier could be used, in digital applications there are a number of 

advantages to representing the numbers in a complex form.  Most typically this is done 

by representing signals as I and Q components.  Figure 4 shows a mixer that would be 

used in digital up-conversion. 
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speeds run from tens of MHz to 1GHz.  Performance, as measured by Millions of 

Multiply Accumulates (MMAC) per second, typically ranges from 10 to 4000.  Functions 

requiring higher performance have to be split across multiple DSP engines.  The price 

of these chips ranges from a few dollars at the bottom end of the performance range to 

hundreds of dollars at the high end.  The key advantage of this approach is the ability to 

directly implement algorithms written in a high-level programming language such as C. 

 

DSP oriented FPGAs provide the ability to implement many functions in parallel on one 

chip.  General-purpose routing, logic and memory resources are used to interconnect 

the functions, perform additional functions, sequence and, as necessary, store data.  

Some basic devices provide multiplier only support, requiring users to construct all other 

functions in logic.  More sophisticated devices provide addition, subtraction and 

accumulator functions as part of their set of DSP building blocks.  FPGAs typically have 

tens of multiplier elements and can operate at clock speeds of hundreds of MHz.  For 

example, the LatticeECP-DSP 20 FPGA has 28 18x18 multipliers that can run at 

speeds up to 250MHz, delivering performance up to 7,000 MMAC per second.  Table 1 

compares the FPGA and general-purpose approach. 

 

Device Clock 
Speed 

Number of 
Multipliers 

MMAC/s 1K Unit 
Cost* 

Cost per 
MMAC/s 

TI DSP 1GHz 4 4000 $256 $0.064 
TI DSP 300MHz 4 1200 $40 $0.033 
ECP-DSP20 250MHz 28 7000 $59 $0.008 
* Approximate 1K pricing through NA distributors 

Table 1 – Comparison of General-Purpose DSP and FPGA approaches 

LatticeECP-DSP Architecture 
The LatticeECP-DSP devices consist of a low-cost FPGA fabric coupled with between 

four and ten sysDSPTM blocks.  Figure 5 shows the overall block diagram of the ECP 

devicei.  The sysDSP block in the LatticeECP family supports four functional elements in 

three data path widths:  9, 18 and 36.  The user selects a function element for a DSP 

block and then selects the width and type (signed/unsigned) of its operands. The 

operands in the sysDSP Blocks can be either signed or unsigned, but not mixed within a 
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function element.  Similarly, the operand widths cannot be mixed within a block. The 

resources in each sysDSP block can be configured to support the following four 

elements: 

• MULT (Multiply, Figure 6) 

• MAC (Multiply Accumulate, Figure 7) 

• MULTADD (Multiply Addition/Subtraction, Figure 8) 

• MULTADDSUM (Multiply Addition/Subtraction Summation, 9) 

The number of elements available in each block depends upon the width selected from 

the three available options:  x9, x18, and x36. A number of these elements are 

concatenated for highly parallel implementations of DSP functions.  Table 2 shows the 

capabilities of the block. 

 
Width of Multiply X9 X18 X36 
MULT 8 4 1 
MAC 4 2 -- 
MULTADD 4 2 -- 
MULTADDSUM 2 1 -- 

 

Table 2 – Maximum Number of Elements in a sysDSP Block 
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Figure 5 – LatticeECP-DSP Block Diagram 
 

The sysDSP block has built-in optional pipelining at the input, intermediate and output 

stages.  In addition, inputs can be loaded in parallel or shifted across the array as 

necessary.  Options are also provided for dynamically switching between signed and 

unsigned arithmetic and subtraction and addition. 

 

 
Figure 6– MULT (Multiplier) Element 

 

 
Figure 7 – MAC (Multiply Accumulate) Element 
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Figure 8 – MULTADD (Multiplier Addition/Subtraction) Element 

 

 
 

Figure 9 – MULTADDSUM (Multiplier Addition/Subtraction Summation)  
Element 

9 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture 

A Lattice Semiconductor White Paper 



 

Performance and Device Utilization Improvements 
The availability of pipelining registers, summation, subtraction and accumulation within 

the sysDSP blocks increases their utility.  As illustrated, in typical functions it is very 

common to need to combine multiplication with addition, summation, or accumulation.  

Pipelining registers, while conceptually simple, rapidly consume significant resources 

when implemented on wide data paths.  The sysDSP blocks’ ability to implement these 

functions results in lower consumption of general-purpose FPGA resources and higher 

performance.  Both of these factors translate directly into lower costs, as in many cases 

they allow designers to select smaller devices with lower speed grades. 

LatticeECP-DSP Design Flow 
Lattice provides designers with four simple methods to access the capabilities of the 

sysDSP Block: 

• The Module/IP Manager is a graphical interface provided in the ispLEVER® tools 

that allows the rapid creation of modules implementing DSP elements.  These 

modules can then be used in HDL designs as appropriate. 

• The coding of certain functions into a design’s HDL and allowing the synthesis 

tools to Inference the use of a DSP block. 

• The implementation of designs in MathWork’s Simulink tool using a Lattice 

Block set.  The ispLeverDSP portion of the ispLEVER tools will then convert 

these blocks into HDL as appropriate. 

• Instantiation of DSP primitives directly in the source code. 

 

The method chosen for any design will depend upon the DSP algorithm design 

methodology and the degree of control desired over the physical implementation.  

Figure 10 illustrates the specification of a MULT element using the module manager.  

Figure 11 shows the use of Lattice block sets in MathWork’s Simulink tool. 

 

 

10 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture 

A Lattice Semiconductor White Paper 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Configuring A Multiplier Element in the Module Manager 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Using the Lattice Block Set In MathWork’s Simulink Tool 
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Low-Cost FPGA Implementations 
With the introduction of the LatticeECP/EC devices, users can now choose among three 

current generation, low-cost FPGAs: the Spartan III devices from Xilinx, Altera’s 

Cyclone family and the LatticeECP/EC devices.   

 

Altera’s Cyclone FPGAs contain no DSP oriented element, making it challenging to 

implement large DSP functions in these devices without consuming a significant number 

of internal resources.  Naturally, achieving high-performance with these 

implementations is equally challenging.  The Xilinx Spartan III FPGA family does 

provide some basic multiplier capability.  While this is certainly preferable to having no 

DSP capability at all, significant resources must still be consumed to implement the 

adders, subtractors, accumulators and pipeline registers found in typical designs. 

 

To measure the effect of providing these resources, Lattice benchmarked performance 

and utilization for a FIR filter and an IIR filter.  The FIR used was a 64-tap filter with 18-

bit wide data.  The IIR filter used was 4th order arranged as two bi-quads and an 18-bit 

data path.  Figure 12 shows the results for both the Spartan III and LatticeECP-DSP 

devices. 
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Figure 12 – FIR and IIR implementations in LatticeECP-DSP and  
Spartan III Devices 
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Summary 
The use of DSP techniques will continue to grow at the expense of analog 

implementations.  An analysis of the functions typically used in DSP applications 

indicates that a combination of multiplier, addition, subtraction and accumulation 

elements is required.  The LatticeECP devices provide a sophisticated DSP block 

combined with a low-cost FPGA fabric.  Through the implementation of addition, 

subtraction, accumulation and pipelining within the sysDSP block, performance and 

LUT utilization are considerably higher than those of alternative low-cost FPGA 

solutions that provide only basic multiplier capabilities.  The speed and utilization 

advantages of the sysDSP block help users reduce costs through the selection of 

smaller and lower speed grade devices. 

### 

                                            
i Please see the Lattice Whitepaper “Optimizing FPGAs For High-Volume Applications” for more details 

on the FPGA fabric used for the LatticeECP-DSP devices. 
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