

HIGH-PERFORMANCE DSP CAPABILITY
WITHIN AN OPTIMIZED

LOW-COST FPGA ARCHITECTURE

A Lattice Semiconductor White Paper

June 2004

Lattice Semiconductor
5555 Northeast Moore Ct.

Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

1 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

http://www.latticesemi.com/

Introduction
The applications of Digital Signal Processing (DSP) continue to expand, driven by

trends such as the increased use of video and still images and the demand for

increasingly reconfigurable systems such as Software Defined Radio (SDR). Many of

these applications combine the need for significant DSP processing with cost sensitivity,

creating demand for high-performance, low-cost DSP solutions.

General-purpose DSP chips and FPGAs are two common methods of implementing

DSP functions. Each approach has advantages, and the optimum implementation

method will vary depending upon application requirements. This white paper provides

an overview of common DSP functions and then explores the differences between the

general purpose DSPs and FPGAs. This is followed by a description of the

LatticeECP™-DSP (EConomy Plus Digital Signal Processing) architecture and a

comparison of the LatticeECP-DSP to existing FPGA solutions.

Typical Functions
While a vast array of digital signal processing functions are implemented by designers,

Finite Impulse Response (FIR) filters, Infinite Impulse Response (IIR) filters, Fast

Fourier Transforms (FFTs) and mixers are common to many applications. Each of

these functions requires a combination of multiply elements along with addition,

subtraction and accumulation. This section provides a brief overview of the algorithms

used to implement these functions.

Finite Impulse Response (FIR) Filters

The finite impulse response filter stores a series of n data elements, each delayed by an

additional cycle. These data elements are commonly referred to as taps. Each tap is

multiplied by a coefficient and the results summed to produce the output. Some

implementations perform all the multiplications in parallel. More generally, the

implementation is broken down into N stages, with an accumulator passing the partial

result from one stage to the next. This implementation trades speed for functional

2 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

resources, taking N computation stages and requiring n/N multipliers. Depending upon

whether the coefficients are static or dynamic, and the design of the coefficient values,

there are a number of other design optimizations commonly used that are beyond the

scope of this paper. Figure 1 shows the implementation of a typical FIR filter.

 Data
In

Coefficient

X

Coefficient

Σ

X X

Coefficient

 Data

Out

Figure 1 -- Typical FIR Filter

Fast Fourier Transform (FFT) Functions

Fast Fourier Transforms are used for a variety of applications, ranging from image

compression to determining the spectral content of a data sample. There are a variety

of methods for implementing the Fast Fourier Transform. Probably the most common

method is to use Cooley-Tukey decimation in time approach, which breaks the FFT

down into a number of smaller FFTs. The simplest implementation uses an element

commonly referred to as the Radix-2 butterfly, through which the input data must be

passed multiple times. Figure 2 shows the Radix-2 Butterfly. The calculation is

conceptually simple, as shown on the left of the diagram. However, as all the multiplies

and additions are done with complex numbers, the actual number of multiplies and

additions required is somewhat more challenging, as shown on the right side of the

diagram.

3 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

(E+jF)

(C+jD)

(A+jB)

Data
In

X

+

+ -

Twiddle
Factor

= A+jB+C*E+C*jF+jD*E+jD*jF

Data
Out

= A+jB-C*E-C*jF-jD*E-jD*jF

Figure 2 – Radix-2 Butterfly Commonly Used For Implementing FFTs

Infinite Impulse Response (IIR) Filters

The Infinite Impulse Response (IIR) filter is similar to the FIR filter, except that feedback

paths are introduced. These feedback paths make the design and analysis of IIR filters

more complex than FIR filters. However, the IIR approach can provide a more powerful

filter for the same silicon area. Although there are several IIR architectures, one

common approach is to build IIR filters out of second order bi-quads, as shown

in figure 3.

+X

X

X

X

X

Data
In

Data
Out

Figure 3 – IIR Second Order Bi-quad

4 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Mixer Functions

Many applications use mixers to shift the frequency of a signal. While, conceptually,

just a single multiplier could be used, in digital applications there are a number of

advantages to representing the numbers in a complex form. Most typically this is done

by representing signals as I and Q components. Figure 4 shows a mixer that would be

used in digital up-conversion.

Q

Figure 4 – Typical Up Conv

General Purpose DSP So

Versus FPGA Implementa

As illustrated in the description of co

subtraction or accumulation are at th

purpose DSP chips combine efficien

purpose microprocessor. The numb

four, and the microprocessor will seq

other functions storing intermediate

increased primarily by increasing the

5 High-Performance DSP Capability

A Latti
X

- t
X

erter Mixer usi

lutions

tions

mmon functions

e heart of most

t implementatio

er of multipliers

uence data to

results in memo

 clock speed u

Within an Optimized Lo

ce Semiconductor Whit
Direct Digital

Synthesizer
I

ng Comp

, multiplie

 DSP app

ns of thes

 is genera

pass it thr

ry or accu

sed for mu

w-Cost FPGA

e Paper
Data ou
lex Arithmetic

rs, followed by addition,

lications. General-

e functions with a general-

lly in the range of one to

ough the multiply and

mulators. Performance is

ltiplication. Typical clock

Architecture

speeds run from tens of MHz to 1GHz. Performance, as measured by Millions of

Multiply Accumulates (MMAC) per second, typically ranges from 10 to 4000. Functions

requiring higher performance have to be split across multiple DSP engines. The price

of these chips ranges from a few dollars at the bottom end of the performance range to

hundreds of dollars at the high end. The key advantage of this approach is the ability to

directly implement algorithms written in a high-level programming language such as C.

DSP oriented FPGAs provide the ability to implement many functions in parallel on one

chip. General-purpose routing, logic and memory resources are used to interconnect

the functions, perform additional functions, sequence and, as necessary, store data.

Some basic devices provide multiplier only support, requiring users to construct all other

functions in logic. More sophisticated devices provide addition, subtraction and

accumulator functions as part of their set of DSP building blocks. FPGAs typically have

tens of multiplier elements and can operate at clock speeds of hundreds of MHz. For

example, the LatticeECP-DSP 20 FPGA has 28 18x18 multipliers that can run at

speeds up to 250MHz, delivering performance up to 7,000 MMAC per second. Table 1

compares the FPGA and general-purpose approach.

Device Clock
Speed

Number of
Multipliers

MMAC/s 1K Unit
Cost*

Cost per
MMAC/s

TI DSP 1GHz 4 4000 $256 $0.064
TI DSP 300MHz 4 1200 $40 $0.033
ECP-DSP20 250MHz 28 7000 $59 $0.008
* Approximate 1K pricing through NA distributors

Table 1 – Comparison of General-Purpose DSP and FPGA approaches

LatticeECP-DSP Architecture
The LatticeECP-DSP devices consist of a low-cost FPGA fabric coupled with between

four and ten sysDSPTM blocks. Figure 5 shows the overall block diagram of the ECP

devicei. The sysDSP block in the LatticeECP family supports four functional elements in

three data path widths: 9, 18 and 36. The user selects a function element for a DSP

block and then selects the width and type (signed/unsigned) of its operands. The

operands in the sysDSP Blocks can be either signed or unsigned, but not mixed within a

6 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

function element. Similarly, the operand widths cannot be mixed within a block. The

resources in each sysDSP block can be configured to support the following four

elements:

• MULT (Multiply, Figure 6)

• MAC (Multiply Accumulate, Figure 7)

• MULTADD (Multiply Addition/Subtraction, Figure 8)

• MULTADDSUM (Multiply Addition/Subtraction Summation, 9)

The number of elements available in each block depends upon the width selected from

the three available options: x9, x18, and x36. A number of these elements are

concatenated for highly parallel implementations of DSP functions. Table 2 shows the

capabilities of the block.

Width of Multiply X9 X18 X36
MULT 8 4 1
MAC 4 2 --
MULTADD 4 2 --
MULTADDSUM 2 1 --

Table 2 – Maximum Number of Elements in a sysDSP Block

7 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Figure 5 – LatticeECP-DSP Block Diagram

The sysDSP block has built-in optional pipelining at the input, intermediate and output

stages. In addition, inputs can be loaded in parallel or shifted across the array as

necessary. Options are also provided for dynamically switching between signed and

unsigned arithmetic and subtraction and addition.

Figure 6– MULT (Multiplier) Element

Figure 7 – MAC (Multiply Accumulate) Element

8 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Figure 8 – MULTADD (Multiplier Addition/Subtraction) Element

Figure 9 – MULTADDSUM (Multiplier Addition/Subtraction Summation)
Element

9 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Performance and Device Utilization Improvements
The availability of pipelining registers, summation, subtraction and accumulation within

the sysDSP blocks increases their utility. As illustrated, in typical functions it is very

common to need to combine multiplication with addition, summation, or accumulation.

Pipelining registers, while conceptually simple, rapidly consume significant resources

when implemented on wide data paths. The sysDSP blocks’ ability to implement these

functions results in lower consumption of general-purpose FPGA resources and higher

performance. Both of these factors translate directly into lower costs, as in many cases

they allow designers to select smaller devices with lower speed grades.

LatticeECP-DSP Design Flow
Lattice provides designers with four simple methods to access the capabilities of the

sysDSP Block:

• The Module/IP Manager is a graphical interface provided in the ispLEVER® tools

that allows the rapid creation of modules implementing DSP elements. These

modules can then be used in HDL designs as appropriate.

• The coding of certain functions into a design’s HDL and allowing the synthesis

tools to Inference the use of a DSP block.

• The implementation of designs in MathWork’s Simulink tool using a Lattice

Block set. The ispLeverDSP portion of the ispLEVER tools will then convert

these blocks into HDL as appropriate.

• Instantiation of DSP primitives directly in the source code.

The method chosen for any design will depend upon the DSP algorithm design

methodology and the degree of control desired over the physical implementation.

Figure 10 illustrates the specification of a MULT element using the module manager.

Figure 11 shows the use of Lattice block sets in MathWork’s Simulink tool.

10 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Figure 10 – Configuring A Multiplier Element in the Module Manager

Figure 11 – Using the Lattice Block Set In MathWork’s Simulink Tool

11 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Low-Cost FPGA Implementations
With the introduction of the LatticeECP/EC devices, users can now choose among three

current generation, low-cost FPGAs: the Spartan III devices from Xilinx, Altera’s

Cyclone family and the LatticeECP/EC devices.

Altera’s Cyclone FPGAs contain no DSP oriented element, making it challenging to

implement large DSP functions in these devices without consuming a significant number

of internal resources. Naturally, achieving high-performance with these

implementations is equally challenging. The Xilinx Spartan III FPGA family does

provide some basic multiplier capability. While this is certainly preferable to having no

DSP capability at all, significant resources must still be consumed to implement the

adders, subtractors, accumulators and pipeline registers found in typical designs.

To measure the effect of providing these resources, Lattice benchmarked performance

and utilization for a FIR filter and an IIR filter. The FIR used was a 64-tap filter with 18-

bit wide data. The IIR filter used was 4th order arranged as two bi-quads and an 18-bit

data path. Figure 12 shows the results for both the Spartan III and LatticeECP-DSP

devices.

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y
M

H
z

FIR
(64-tap,

18-bit data)

IIR
(4th Order,
18-bit data)

EC
P-

D
SP

Lo
w

 C
os

t W
ith

Si

m
pl

e
 1

8x
18

0

200

400

600

800

1000

1200

1400

Sl
ic

es
 O

cc
up

ie
d

FIR
(64-tap,

18-bit data)

IIR
(4th Order,
18-bit data)

EC
P-

D
SP

Lo
w

 C
os

t W
ith

Si

m
pl

e
 1

8x
18

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y
M

H
z

FIR
(64-tap,

18-bit data)

IIR
(4th Order,
18-bit data)

EC
P-

D
SP

Lo
w

 C
os

t W
ith

Si

m
pl

e
 1

8x
18

0

200

400

600

800

1000

1200

1400

Sl
ic

es
 O

cc
up

ie
d

FIR
(64-tap,

18-bit data)

IIR
(4th Order,
18-bit data)

EC
P-

D
SP

Lo
w

 C
os

t W
ith

Si

m
pl

e
 1

8x
18

Figure 12 – FIR and IIR implementations in LatticeECP-DSP and
Spartan III Devices

12 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

Summary
The use of DSP techniques will continue to grow at the expense of analog

implementations. An analysis of the functions typically used in DSP applications

indicates that a combination of multiplier, addition, subtraction and accumulation

elements is required. The LatticeECP devices provide a sophisticated DSP block

combined with a low-cost FPGA fabric. Through the implementation of addition,

subtraction, accumulation and pipelining within the sysDSP block, performance and

LUT utilization are considerably higher than those of alternative low-cost FPGA

solutions that provide only basic multiplier capabilities. The speed and utilization

advantages of the sysDSP block help users reduce costs through the selection of

smaller and lower speed grade devices.

i Please see the Lattice Whitepaper “Optimizing FPGAs For High-Volume Applications” for more details

on the FPGA fabric used for the LatticeECP-DSP devices.

13 High-Performance DSP Capability Within an Optimized Low-Cost FPGA Architecture

A Lattice Semiconductor White Paper

	Introduction
	Typical Functions
	Finite Impulse Response (FIR) Filters
	Fast Fourier Transform (FFT) Functions
	Infinite Impulse Response (IIR) Filters
	Mixer Functions

	General Purpose DSP Solutions
	Versus FPGA Implementations
	LatticeECP-DSP Architecture
	Performance and Device Utilization Improvements
	LatticeECP-DSP Design Flow
	Low-Cost FPGA Implementations
	Summary

