

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

Implementing WiMAX OFDM

Timing and Frequency

Offset Estimation in Lattice FPGAs

A Lattice Semiconductor White Paper

November 2005

Lattice Semiconductor
5555 Northeast Moore Ct.

Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

http://www.latticesemi.com/

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

1

Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is the basis of some WLAN and

WiMax air interfaces. It also has been proposed for use in next generation cellular

systems such as Super-3G and HSOPA (High Speed OFDM Packet Access) in the

3GPP standards group. OFDM has a number of advantageous features, such as good

tolerance to multi-path fading and inter-symbol interference (ISI). By using a number of

sub-carriers, the symbol length can be kept long and a guard period (the cyclic prefix)

used to mitigate ISI. Data is allocated to a number of sub-carriers so that any nulls in

the frequency domain do not knock out a whole allocation. This gives forward error

correction (FEC) a greater chance to recover the data in the receiver.

These advantages do come at a cost. First, the orthogonal modulated carriers need to

be generated. Fortunately, the Inverse Fast Fourier Transform (IFFT) algorithm can be

used to convert suitably constructed frequency domain signals into the required time

domain waveform. Equally, the receiver can use the FFT algorithm to convert back to

the frequency domain before de-modulation. These algorithms are efficient and can be

implemented in either software in a DSP or, for higher bandwidth and increased

processing capacity, in a DSP-enabled FPGA, such as the LatticeECP device. Another

cost associated with OFDM is the use of FFTs and the fact that the receiver has no

prior knowledge of either the symbol timing or exact frequency of the local oscillator at

the transmitter end.

Any time offset between the start of the orthogonal waveforms and the first sample

point used in the FFT will affect the result of a Fourier Transform. Also, any frequency

offset between transmitter and receiver, if not corrected, will result in a blurring of the

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

2

information between the frequency bins. This is called inter-carrier interference (ICI),

and is caused by a loss in the orthogonality of the carriers. In the worst case, in which

the offset is of the order of the sub-carrier spacing, the information will mostly land in

the adjacent bin, causing all the bits on that carrier to be lost.

A number of approaches to estimation timing and frequency offset in OFDM systems

have been presented in the literature. Many of these operate in the time domain

(before the FFT) and use the repeating pattern of the preamble or the cycle prefix, or

both, to gain information about the symbol timing and frequency offset. The timing is

determined by noticing that the correlation of the signal with a delayed version of itself

will reach a peak when the repeated pattern is located. The frequency offset can be

estimated by, for example, calculating the phase offset between one occurrence of a

pattern and the next. Moose [1] presented a simple method using the cycle prefix, as

did Van de Beek et al [2]. This approach is useful in systems in which a continuous

stream of OFDM symbols are transmitted (e.g. DTB-T). The algorithm proposed by

Schmidl and Cox [3] uses the repetition in the preamble, which proves more robust

compared to methods that use the cycle prefix when this is short. Other, more

complex, methods are described in references [4] and [5].

The remainder of this paper shows the data flow for two selected algorithms and how

they can be implemented by a single flexible architecture that uses the DSP resources

found in LatticeECP devices. The IEEE 802.16-2004 standard is used to illustrate the

principles described, but they are applicable to a number of OFDM-based wireless

systems. The architecture has been used in the implementation of an OFDM PHY

reference design base on WiMAX requirement. Details of this can be found in

references [6] and [7].

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

3

Data Flow

The data flow for the two algorithms is discussed in this section. The Van de Beek and

Schmild and Cox algorithms were chosen for this study because they occupy the

middle of the complexity range covered by the surveyed work. The first was described

using the cyclic prefix of the OFDM symbol, but it can be adapted to use the burst

preamble. The WiMAX OFDM preamble is defined differently for the uplink and the

downlink. The specification also defines variants for doing initial ranging on the

downlink. In both cases, the time domain signal has a repeated pattern. The long

preamble, used for downlink ranging, consists of two symbols: a 4x64 pattern symbol,

where a 64-sample pattern is repeated 4 times, and a 2x128 pattern symbol with two

repetitions of a 128-sample pattern. The uplink uses a short preamble with just a

2x128 pattern symbol. These preamble symbols all have the usual cyclic prefix

attached.

Figure 1 shows the data flow for the Van de Beek algorithm configured for the 4x64

preamble. The preamble pattern also is shown for reference. The diagram includes a

modification of the algorithm to exploit the 64-sample repeating pattern, so that

frequency offsets of greater than half a sub-carrier spacing can be handled. The labels

in brackets (i.e. x1, x2, ms1, ms2, ms3) are included to help relate this diagram to the

hardware mapping shown later in this paper.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

4

Figure 1 - Data Flow Diagram of Modified Van de Beek Algorithm

This algorithm data flow consists of two branches, one calculating an energy term and

the other a correlation term. In the modified algorithm, the correlation term is

calculated between data samples separated by the length of a symbol, exploiting the

cyclic prefix. A second correlation is performed between data that is one repetition of

the preamble pattern apart. This second value is used to calculate the frequency

offset, ε. Equation 1 shows the calculation of the energy part where N is the symbol

length of 256 samples and L is the length of the cyclic prefix (shown as Cplen in Figure

1). In IEEE802.16-2004 the cyclic prefix can be 64, 32, 16 or 8 samples long. Equation

2 shows the calculation of the correlation part. Here, both N and L are equal to the

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

5

length of the repeated pattern in the preamble: that is, 64 samples. The factor ρ/2

should depend on the signal to noise ratio (SNR), but it was found by simulation that it

was safe to set this to one.

∑
−+

=

+≡
1

)()(23 *
Lm

mk
Nkrkrms (1)

∑
−+

=

++≡
1

22)()(
2

1
Lm

mk
Nkrkrms ρ

 (2)

The moving sum ms2 and ms3 only differ in the value of N so equation (1) describes

them both as ms23. The correlation with delay 64 is used to calculate an angle that is

used only when the magnitude of the difference between ms1 and ms2 reaches a

maximum (argmax). This operation ensures that the frequency offset calculation is

done at the best time, i.e., when the correlation over the actual received symbol cyclic

prefix is complete.

Figure 2 shows the data flow for the Schmidl and Cox algorithm. This appears to be

slightly less complex because it requires one less moving sum. However, an additional

multiplication is required in this implementation to avoid taking a square root. The

pipelining of the data out signal has been shown for completeness in this diagram. This

extra delay is used to make sure the data output is correctly aligned for the next stage

of processing.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

6

Figure 2 - Data Flow for Schmidl and Cox Algorithm with 2x128 Preamble

The Schmidl and Cox paper [3] derives the algorithm using the follow equation:

2

2

))((
)(

)(
kR
kP

kM = (3)

where:

∑
−

=
+++=

1

0

*)()(
L

m
Lmkmk rrkP (4)

and:

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

7

21

0
)(∑

−

=
++=

L

m
LmkrkR (5)

In these equations, L is equal to the length of the preamble repeated pattern, i.e., 128

on the uplink. The R(k)1 term is the energy term and P(k) the correlation term and M(k)

is a metric used to identify the location of the start of a burst. The frequency offset is

given by using θ = angle(P(d)) and ∆f = θ/(πT) where T is L*Ts and Ts is the sample

period. In Figure 2 ms1 is equal to R(k) and ms2 is equal to P(k) and the

threshold/peak detect block replaces the division in equation 3. The frequency offset

estimation, ε, is taken when the correlation term reaches a peak as long as it is greater

than one eighth of the energy term. This peak also identifies the start of the burst and

is used to set the data output offset pointer.

Implementation

The LatticeECP low cost FPGA family features memory blocks (EBRs), fast carry

adders and dedicated sysDSP blocks. The latter, as shown in Figure 3, contain a

combination of multipliers, adder/subtractor/accumulators, as well as a summation unit.

These are capable of carrying out a multiply-add/sub operation at up to 250Mhz. This

valuable resource can be shared across a number of operations in a given algorithm if

the data rate is a fraction of the target clock speed. Further, multiple channels of data

can be processed if this fraction is small enough.

 1 The Van de Beek paper used d; we use k for consistency.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

8

Figure 3 - Lattice DSP Block Structure

The sysDSP blocks can be configured to operate on 9, 18 or 36-bit inputs. Figure 3

shows the resources available in 18-bit mode. In 9-bit mode there are twice as many

multipliers available, so it is attractive to attempt to limit the bit-widths to get more

processing capacity.

Figure 4 shows a block diagram of an architecture that is capable of implementing

either algorithm using 2 multiply-add/sub blocks (i.e., one half of a DSP block when

using 9x9 multipliers) and one or two EBRs. To do this, the circuit needs to run at least

5 times the sample frequency (i.e. about 55Mhz for a 10Mhz bandwidth 256 point

OFDM signal). The additional EBR is needed when using a preamble of 2x128

samples. Multiplexing is kept to a minimum with the inputs to the DSP block selected

by the control signals called multimode and x*y. The multimode control determines if a

magnitude squared (|•|2) or complex multiply (X) is being done. Note that two

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

9

magnitude-squared operations can be done in one cycle. The x*y control signal

multiplexes a zero onto one operand so a real multiply can be done using one of the

mult-add/sub units.

Figure 4 - Block Diagram of FPGA Hardware Capable of

Implementing Either Algorithm

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

10

Data Storage
Delaying the input data by 256 and 64 samples only consumes 256 locations, as the

delay of 64 can be taken as a tap off the larger delay. Each moving sum requires a

number of locations equal to the length of the cyclic prefix in the Van de Beek case,

and the preamble repeat length for Schmild and Cox, so 128 locations per moving sum

are needed in the worst case. Assuming the input data, r(k), is complex 2x8 bits wide

and the required output precision for frequency offset is 8 bits, then it can be

determined that at least 11 bits are needed in the moving sum calculation. One EBR

will store 512 words of 18 bits or 1024 words of 9 bits. The complex data will require 16

bits. Because 256+64+64+64 is less than 512, 1 EBR will be sufficient.

Each moving sum requires a register. One option is to use distributed RAM to

implement this storage, as it will reduce the number of multiplexers required. An

alternative is to use an N-bit wide shift register with output taps as required to supply

data in the appropriate processing cycles. The second option was chosen in the

OFDM reference design.

Mapping the van de Beek Algorithm to the architecture
Table 1 shows the allocation of operations to clock cycles, taking into account the data

dependencies identified in the data flow. The operations carried out by the DSP block

are magnitude (x2+y2), complex multiply (X) and real multiply (x*y). This mapping does

not take into account any pipelining that may be necessary to achieve the target

processing speed. Given that it takes 5 cycles to complete the required calculations,

the circuit will need to run at least five times the sample rate. For a 10Mhz nominal

channel in IEEE 802.16-2004, the target speed will be about 60Mhz. The accumulator

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

11

register has 2 ports (write and read) and holds the moving sums. A temporary register

(tmp reg) holds intermediate results for multi-cycle calculations. The EBR needs to be

dual port to allow the moving sum data to be updated, while also writing and reading

the input data to implement the delays. The memories required by the algorithm,

shown as Z256, Z64, ms1, ms2 and ms3 in Figure 1, are implemented as one EBR.

The complex multiply and the DSP block in mult-add/sub mode implements magnitude.

The angle operation ‘<’ (arctan(y/x)) is broken down and a look-up table used for 1/x, a

real multiply to give y/x and a look-up table for arctan. The look-up table can be

implemented in a single shared ROM. The sumzero signal is asserted in the initial

cycles to zero the memory contents and registers.

Table 1: Sequencing to Map the van de Beek Algorithm to Architecture

Cycl

e

Operatio

n

EBR

wr

EBR

read1

EBR

read2

Reg rd Reg wr tmp

reg

look-up

mode

1 x2+y2

x2+y2

Msum

1

Z256 Msum1 Msum1 Msum

1

- -

2 X Msum

2

Z256 Msum2 Msum2 Msum

2

- -

4 x2+y2 - - - Msum2 - - sqrt

3 X Msum

3

Z64 Msum3 Msum3 Msum

3

wr 1/x

5 x*y r(k) - - - - rd atan

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

12

Implementing the “Argmax” Function
The architecture in Figure 4 implements the algorithm separately from the “argmax”

function. An implementation of this is described here. The receiver does not know

when the transmitted signal will arrive, and it is assumed that the input to the circuit will

be noise before the preamble is seen. The correlation between data at a distance of

the symbol length averaged over CPlen points will tend to be zero for noise, but the

energy will be non-zero. This means that the output of the subtractor will be negative

until the start of the preamble (or any symbol). Taking advantage of this, the “argmax”

circuit can defer searching for a maximum until its input crosses zero and goes

positive. This point is about one half of the CPlen or less distance away from the peak.

The search window can start at the zero crossing point and continue for CPlen/2 plus

an error margin to account for noise-induced error in the zero-crossing point. In the

absolute worst case, the search window size would equal CPlen, which is 64. The

consequence is that memory is needed to store 64 results from the arctan(y/x)

calculation. This will take 64 locations in an EBR, which is small compared to the other

storage.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

13

Figure 5 - Matlab Plot of the Signal Feeding Argmax

Mapping the Schmidl and Cox Algorithm
Table 2 shows how the Schmidl and Cox algorithm can be mapped to the hardware

architecture as shown in Figure 4. The table can be compared to Table 1 and it can be

seen that this algorithm can be mapped in to one less clock cycle.

Table 2: Sequencing to map Schmidl and Cox algorithm to architecture

Cycle Operation EBR wr EBR rd Reg rd Reg wr tmp

Reg

look-up

mode

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

14

1 x2+y2 Msum1 Msum1 Msum1 Msum1 rd atan

2 x2+y2 x2+y2 Msum2 Msum2 Msum2 Msum2 - -

3 X r(k) Z128 - - - sqrt

4 x*y - - - - wr 1/x

Table 3 shows how operations in Table 2 need to be scheduled to allow for pipelining

in the multipliers. Each mult-add/sub unit is shown as ALU_r and ALU_I, denoting their

outputs in cases in which they are performing a complex multiply operation. The DSP

blocks support latencies from zero to three clock cycles, depending on which pipeline

registers are enabled in the configuration. Each row in the Table shows the input,

operation and output of a given resource. The first two columns indicate the resource

and what is it doing in each cycle. Each subsequent column represents a clock cycle.

This algorithm only requires 4 clock cycles for implementation. The Table includes

extra pipeline balancing delays (p1, del, P1, P2, P3) and shows how the overall latency

means that the calculation takes 4 sample periods, assuming the hardware is clocked

at four times the sample rate. For example, the operation |•|1 in cycle 2, the first

magnitude squared operation, produces a result in cycle 5. This is shown as |•|1’ in

clock cycle 1 of the next computation cycle. The computation cycle takes 4 clock

cycles, so a throughput meeting the sampling rate can be achieved with a clock

running at 4 times the sample rate. Values obtained from operations on previous

results from the previous computation cycle have another tick added. So ALU_I out in

cycle 5 is |•|4’ and it is seen as |•|4’’ in cycle 1.

Table 3 - Scheduling of the Schmidl and Cox Algorithm

Resource port 1 2 3 4 5 6 7

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

15

in -
r(k)

r(k)

r(k)

Z128 -

op - |•|1 X -
ALU_r

out |•|1’ X’ - - |•|1 X

in
Ms1’

Ms1’

Ms2’

Ms2’

r(k)

Z128 1/x’’

op |•|3 |•|4 X x*y’’
ALU_i

out |•|4’ x/y’’’ |•|3 |•|4 X x/y’’

p1 out |•|3’ |•|3

del out |•|3’’

rdaddr Z128 dout Ms1 Ms2

wraddr Ms1’ Ms2’ r(k) -

rddata Ms1’ Ms2’ Z128 dout
Mem

wrdata Ms1’ Ms2’

Reg out Ms1’’ Ms2’’ Ms1’ Ms2’

P1 out Ms1’ Ms2’

P2 out Ms2’’ Ms1’ Ms2’

P3 out Ms1’’ Ms2’’

in Ms2’’ x/y’’’

op 1/x atan Lookup

out 1/x’’ atan(x/y)’’’

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

16

Implementing the “Angle” Function
There are a number of alternative ways to implement the angle function. Taking the

arctangent of the ratio of imaginary to real parts of the complex number is the most

obvious. This involves a division and the arctangent function that is shown in Figure 4

as implemented by a look-up table in the form of a block RAM initialized with

appropriate data. This is also shown in the mapping and scheduling as it makes more

use of the DSP block.

Another option is to use the CORDIC algorithm that can be implemented using a small

amount of hardware, if the iterations can be executed over a number of clock cycles.

As it happens, the angle calculation needs to be done only once per burst and a small

amount of latency is not a problem. There is, then, a trade-off between using block

RAM (EBR) resource for a look-up table and FPGA LUTs for the adders in the

CODRIC. There are scaling problems when using a 1/x look-up to implement y/x, so

the CORDIC implementation was used in the Lattice OFDM reference design. The

read address for the data output buffer was adjusted to compensate for the extra

latency introduced by the serial implementation of the CORDIC.

Schmidl and Cox Simulation Results
The Schmidl and Cox algorithm was implemented in Verilog RTL and simulated in

Modelsim. Figure 6 shows the Matlab reference results for a SUI-1 channel model and

frequency offset of 0.13 of a sub-carrier spacing. The green horizontal block on the

correlation plot shows where the peak detector is active. The red vertical line shows

the point where the burst start has been detected. The metric shown in the plot is

taken from the Schmidl and Cox paper. As this involves a division to form the metric, it

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

17

was decided to use a different method to locate the burst start in the hardware

implementation, as discussed below.

Figure 6: Matlab Plot Showing Power, Correlation and

Frequency Error Against Sample Number

The RTL simulation results are shown in Figure 7. The burst start is detected by

locating the peak in the correlation value under the condition that it is at least 1/8 of the

power level. To mitigate the effects of noise, the peak detector locates the point on the

downward slope that is 7/8 of the peak value and then backs-off from this by a number

of samples that is determined by the cyclic prefix length. This back-off value was

determined empirically by collecting data from a number of Matlab simulations.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

18

Figure 7 - RTL Simulation Waveform Plot of Key Signals in Schmidl and Cox

Implementation

The prs_freq_err signal is scaled such that 215, as seen in the plot, equates to 0.132 of

a carrier spacing. This compares well with the Matlab result, representing an error of

1.5%.

Implementation Results

The design was implemented as part of the complete OFDM reference design. This

section gives the resource usage and Fmax for the timing and frequency offset

estimation block.

Registers 406

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

19

Slices 602

EBR 2

DSP blocks ½

The design achieved an Fmax of 110Mhz, which is twice as fast as necessary. This

means it would be possible to process two bursts in parallel by increasing the storage.

Such a capability would be useful in a basestation supporting more than one channel.

Conclusions

This paper has shown how the flexible sysDSP blocks in a LatticeECP FPGA can be

combined with a small amount of logic implemented in LUTs and 2 block memories to

create a simple engine capable of performing two variants of a key algorithm in WiMAX

OFDM signal processing. This generic structure could be adapted to perform a wide

range of signal processing tasks at sample rates of up to 50Ms/s. More complex

algorithms could be implemented in this way by using a small amount of extra resource

for additional registers while still being able to support respectable sample rates.

References

[1] Moose P., "A Technique for Orthogonal Frequency Division Multiplexing Frequency

Offset Correction", IEEE Transactions on Communications, Vol. 42, No. 10, pages

2908-2914, October 1994

[2] Jan-Jaap van de Beek, Magnus Sandell, Per Ola Börjesson, "ML Estimation of Time

and Frequency Offset in OFDM Systems", IEEE Transactions on Signal Processing, April

1996.

Implementing WiMax OFDM Timing and Frequency Offset Estimation

A Lattice Semiconductor White Paper

20

[3] T. M. Schmidl and D. C. Cox, "Robust frequency and timing synchronization for

OFDM," IEEE Trans. Commun., vol. 45, pp. 1613--1621, Dec. 1997.

[4] T. Yücek and M. K. Nezami, Joint Channel and Frequency Offset Estimation for

OFDM Systems, IEEE Military Communications Conference, Monterey, CA, October

31 - November 3, 2004.

[5] H. Liu and U. Tureli, "A high efficiency carrier offset estimator for OFDM

communications,'' IEEE Communications Letters, CL-2 (4), 1998.

[6] “OFDM Transceiver Reference Design”, Lattice Semiconductor OFDM Transceiver

design package, 2005.

[7] “Implementation of an OFDM Wireless Transceiver using IP Cores on an FPGA”,

Lattice Semiconductor white paper, 2005.

http://www.eng.usf.edu/%7Eyucek/papers/yucek_milcom04.pdf
http://www.eng.usf.edu/%7Eyucek/papers/yucek_milcom04.pdf

	Introduction
	Data Flow
	Implementation
	Data Storage
	Mapping the van de Beek Algorithm to the architecture
	Implementing the “Argmax” Function

	Mapping the Schmidl and Cox Algorithm
	Implementing the “Angle” Function
	Schmidl and Cox Simulation Results

	Implementation Results
	Conclusions
	References

