

Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

May 2005

Lattice Semiconductor
5555 Northeast Moore Ct.

Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000

www.latticesemi.com

1 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

http://www.latticesemi.com/

The Need for Seamless Field Logic Updates
An increasing number of engineers are designing equipment that allows the logic within

Field Programmable Gate Arrays (FPGAs) to be updated while it is deployed in the field.

The ability to update logic in the field provides unprecedented flexibility to fix bugs,

respond to changing standards and add new features and services. See Figure 1.

Systems typically have been placed in a non-operational “maintenance mode” for the

update of logic. However, there is increasing pressure on system manufacturers to

increase system up-time. In many applications, demands for “5 nines” (99.999%) up-

time are rapidly increasing. New solutions from programmable logic vendors that allow

logic to be updated while the system operates are urgently needed.

Programming Files

FPGA

Micro-
processorCommunication Link

Ethernet, Internet, RF,
Land Line

System Deployed In Field

FPGA

Figure 1 – Field Update of Logic

Programmable Logic Solution Requirements
There are four key capabilities required in order for programmable logic devices to be

able to support the field update of logic while the system operates, as detailed below.

Lattice delivers these capabilities with its Transparent Field Reconfiguration (TransFR™

or TFR) solution that allows the LatticeXP™ family of devices to be field updated while

the system operates.

2 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

Embedded Programming Support

In order to do field programming it is necessary that the system microprocessor

be able to program the FPGA. FPGA vendors typically provide C programs that

can be compiled for and executed on the system microprocessor. These

programs allow the microprocessor to take a file of programming data and

provide it to the FPGA.

Fast Reconfiguration Capability

As the FPGA cannot process data (its inputs) while it is being reconfigured, it is

essential that the entire update process be completed quickly to minimize the

time the system has to wait for reconfiguration to take place.

Output States Preserved

Often, outputs from the FPGA drive key control signals within the system. For

example, chip resets or power supply enables. During configuration it is critical

that these signals continue to be driven in the correct state. A glitch on one of

these signals could cause a system reset, which can result in a system re-boot

process that takes several minutes.

Device States Controlled

It is essential to control the state of the logic within the FPGA prior to exiting the

configuration process. This allows the device logic to drive the correct levels on

its outputs immediately, when control of I/O is passed back to the FPGA logic at

the end of the configuration cycle.

LatticeXP Architecture
At the core of the LatticeXP devices are Programmable Function Units (PFUs) that

allow the implementation of logic and, for 25% of the blocks, distributed memory. Logic

is implemented using four input look-up tables (LUT-4s) and register pairs, which is the

de facto standard for the FPGA industry and is well understood by system designers

and logic synthesis tool suppliers.

3 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

 Distributed memory provides an efficient method for designers to implement small

blocks of scratch pad memory. Rows of sysMEM Embedded Block RAM (EBR) provide

9kb blocks of memory for use in implementing larger memory blocks. At the end of the

rows of sysMEM memories are sysCLOCK PLLs that allow clocks to be aligned for

improved set-up and clock-to-out times, and new clocks to be synthesized.

Around the periphery of the device are sysIO interfaces that allow the device to

interconnect to a variety of I/O standards, including LVCMOS, PCI, LVTTL, LVDS,

SSTL and HSTL. Additionally, LVPECL, BLVDS and RSDS interface standards can be

emulated with the addition of external resistors. DLL calibrated DQS delay blocks, DDR

registers and clock transfer circuitry provide a pre-engineered high performance DDR

memory interfaces up to 333Mbps. Generic DDR interfaces up to 700Mbps can also be

implemented with the device. The various functional blocks of the architecture are

interconnected with a routing fabric that provides an optimum balance between speed,

flexibility and cost. Figure 2 illustrates the overall architecture.

ispXP FLASH Memory
Instant-on, Secure and

Single-chip

JTAG

sysMEMTM Block RAM
9kbit Dual Port

Optimized sysIOTM Buffers
Support Mainstream I/O;
LVCMOS/LVTTL, LVDS,

SSTL, HSTL,DDR
Memory Interfaces

sysCLOCKTM PLLs
Frequency Synthesis &

Clock Alignment

Optimized Programmable
Function Units (PFUs)

25% – Logic + RAM
75% – Logic Only

Flexible Routing
Optimized for Speed, Cost

and Routability

Figure 2 – LatticeXP Architecture

4 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

Non-Volatile and SRAM Memory

SRAM configuration bits control the operation of the LatticeXP devices. At power-up,

these bits are loaded via the on-chip, non-volatile memory, resulting in logic availability

in less than 1ms after power good. During device operation the SRAM may be

reconfigured from the Flash by toggling a pin or issuing the correct commands through

the device configuration ports. Both the Flash memory and the SRAM memory can be

reprogrammed/reconfigured via either a JTAG port or a sysCONFIG port (8-bit

microprocessor interface). Configuration of the SRAM via these ports takes between

tens and hundreds of milliseconds, depending on the chosen interface and device size.

The Flash memory can be programmed in as little as 2 seconds. Figure 3 shows the

operation of the different memories within the LatticeXP devices.

SR
AM

 C
on

fig
ur

at
io

n
B

its
(C

on
tr

ol
 D

ev
ic

e
O

pe
ra

tio
n)

FLASH MEMORY

FLASH MEMORY

Control Logic

Control Logic

sysCONFIG
Port

JTAG
Port

Use sysCONFIG™ To
Configure SRAM or

Program FLASH

Use JTAG Port
(IEEE 1532/1149.1)

To Configure SRAM or
Program FLASH

On Chip Non-Volatile
Single Chip Solution

Excellent Security

Massively Parallel Wide
Data Transfer & Multiple

Blocks Provide Secure and
Fast SRAM Configuration

“Instant-on”

Figure 3 – Configuration Memories in the LatticeXP

Field Logic Updates Using TransFR Solution
The LatticeXP devices can be updated while a system continues to operate using the

TransFR solution. This capability consists of four steps which are easily orchestrated

5 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

with Lattice’s ispVM® toolset, which can be downloaded free of charge from the Lattice

web site at www.latticesemi.com. The ispVM programming tool runs on a Windows

machine and can communicate with the LatticeXP devices via a programming cable.

Alternatively, the ispVM tool will generate the source code required for ispVM

Embedded. This source code can be complied and then executed on the embedded

processor within the system. The ispVM software will generate a series of programming

files that are interpreted by the ispVM Embedded software or a user’s own code in order

to complete the desired programming operation.

Step 1—Background Programming

The first step of the TransFR process is to background program the Flash portion of the

FPGA configuration. During the programming of the Flash, the logic continues to

operate based on the configuration stored in the SRAM. For example, Figure 4 shows

the device operating based on configuration 1, which is in the SRAM, while

configuration 2 is loaded into the Flash memory.

FLASH
(Configuration 1)

Logic – SRAM
(Config. 1)

FLASH
(Config. 2)

Figure 4 -- Background Programming

6 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

http://www.latticesemi.com/

Step 2—I/O States Locked

The second step of the process is to lock the I/Os. Through the boundary SCAN

registers, all the I/Os can be individually locked high/low, high-impedance or sampled

and then driven to the current value. This I/O lock state can be specified individually on

a pin-by-pin basis within the ispVM I/O Vector Editor graphical interface (Figure 5).

FLASH
(Configuration 1)

Logic – SRAM
(Config. 1)

FLASH
(Config. 2)

Figure 5 -- Locking I/O States Using ispVM

Step 3—Update SRAM Configuration

The next step of the configuration process is to update the SRAM memory from the

Flash memory, as show in Figure 6. In the LatticeXP devices, this transfer is done in a

massively parallel fashion and takes less than 1mS.

7 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

Logic – SRAM
(Configuration 1)

FLASH
(Config. 2)

Logic – SRAM
(Config. 2)

Figure 6 -- Updating the SRAM Configuration From FLASH

Step 4—Transfer I/O Control To User Logic

The last step in the TransFR process is to return control of the I/O to the user logic.

After configuration, the FPGA logic has been reset and is responsive to inputs. PLLs

will relock if necessary, taking less than 150uS. If desired, the FPGA can be placed into

a known state by manipulating pin(s) via an external device or through JTAG. Finally,

control of the I/Os is returned to the user logic and the FPGA can resume operation in

the system.

Figure 7 – FPGA Resumes Normal Operation

Logic – SRAM
(Config. 2)

FLASH
(Config. 2)

8 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

Sum
here is increasing interest in the ability to field update logic within FPGAs without

tem operation. This is driven by a desire to utilize the flexibility

 in field updates combined with a need to maintain high system

ity of the

vices’ dual SRAM + FLASH configuration spaces with easy to use ispVM

ld

mary
T

interrupting sys

associated with

availability.

Lattice’s TransFR solution uniquely allows designers to transparently update logic

without disturbing system operation. The solution combines the inherent flexibil

LatticeXP de

software, which is available at no cost. This provides designers with a method to fie

update logic while meeting demands for increased system up-time.

For more information on TransFR please contact your Lattice sales representative or

visit the Lattice web site at www.latticesemi.com.

9 Field Update FPGAs While System Operates

A Lattice Semiconductor White Paper

	The Need for Seamless Field Logic Updates
	Programmable Logic Solution Requirements
	Embedded Programming Support
	Fast Reconfiguration Capability
	Output States Preserved
	Device States Controlled

	LatticeXP Architecture
	Non-Volatile and SRAM Memory

	Field Logic Updates Using TransFR Solution
	Step 1—Background Programming
	Step 2—I/O States Locked
	Step 3—Update SRAM Configuration
	Step 4—Transfer I/O Control To User Logic

	Summary

