
Copyright © 2017 Lattice Semiconductor Corporation.

Reveal Troubleshooting Guide

This document describes the design restrictions for using on-chip debug.

HDL Language Restrictions
The following features are valid in the VHDL and Verilog languages but are
not supported in Reveal™ Inserter when you use the RTL flow:

 Array types of two dimensions or more are not available for tracing and
triggering.

 Undeclared wires attached to instantiated component instances are not
shown in the hierarchical design tree. You must declare these wires
explicitly if you want to trace or trigger with them.

 Variables used in generate statements are not available for tracing and
triggering.

 Variables used in conditional statements like if-then-else statements are
not available for tracing and triggering.

 Variables used in selection statements like the case statement are not
available for tracing and triggering.

 If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

 Entity and architecture of the same design cannot be in different files.

 In Verilog, you must explicitly declare variables at the very beginning of a
module body to avoid obtaining different results from various synthesis
tools.

 In VHDL, you must declare synthesis attributes within an entity, not within
an architecture, to avoid obtaining different results from various synthesis
tools.

EDIF Support

2 Reveal Troubleshooting Guide

 In VHDL, always define the syn_keep and preserve_signal attributes as
Boolean types when you declare them in your design. Synplify defines
them as Boolean types, and Reveal Inserter will issue an error message if
you define them as strings.

EDIF Support
The EDIF flow is fully supported in Reveal. However, you must be aware of
the following:

 Reveal Inserter must be started from a Diamond project. In order to use
the EDIF flow with Reveal Inserter, you must start Reveal Inserter from a
Diamond project containing either EDIF source or mixed VHDL & Verilog
source files. Projects with only VHDL or Verilog will run Reveal Inserter
with an HDL source flow.

 In the EDIF flow, the representation in Reveal Inserter is of the EDIF
hierarchy and signal names. Buses appear as individual signals instead of
buses, as in the RTL flow.

Reveal Inserter and Diamond Errors
This section discusses errors that can occur when you run Reveal Inserter
from Diamond.

Design Parsing Problems in Reveal
Inserter
When you start Reveal Inserter from Diamond, it parses and statically
elaborates the design in order to build the hierarchy representation and signal
list to make them available for debugging. If the design cannot be parsed and
elaborated because of syntax errors, Reveal Inserter’s graphical user
interface will not open. Instead, a message box opens with an error message
similar to that shown in Figure 1. All warnings and errors while reading the
design are written to the reveal_error.log file, which is located in the
implementation directory of the current Diamond project. This file contains all
the information, warning, and error messages issued by the compiler when it
tries to read the design.

Figure 1: Reveal Inserter Design Parsing Error Message

Reveal Inserter and Diamond Errors

Reveal Troubleshooting Guide 3

Diamond Flow Messages
After Reveal Inserter inserts the debug logic, it generates the debug logic
cores and passes the information to the File List view for building the design.
Several issues could potentially cause the implementation flow to fail because
of the debug insertion. Three types of problems could occur:

 Problems with debug design generation

 Problems with connecting JTAG functionality

 Problems with design implementation

Debug Design Messages
The debug cores are generated in Reveal Inserter. However, the design must
also be modified to allow the debug cores to be connected to the appropriate
signals. The modified design is generated during the Synthesis step in the
Diamond design flow. The design is modified with the necessary connections
for the debug cores, a temporary HDL file is generated, and the files are
synthesized and converted to the Lattice Semiconductor netlist format. Errors
generated during this stage are displayed in the automake.log file.

Design Implementation Messages
During the mapping process, errors can occur, such as running out of
available resources or tracing or triggering on signals that are not available in
the FPGA fabric. During debug insertion, Reveal Inserter checks to make sure
that the debug logic is not using more resources than are available in the
FPGA. But it does not check to see if the debug logic is using more resources
than are available after the design is placed in the FPGA. Currently, resource
use can only be accurately checked during the mapping process. Exceeding
the available resources results in a mapping error, requiring the debug
configuration in Reveal Inserter to be reduced in order to fit.

Another potential failure occurs when you trigger or trace signals that are
implemented as hard routes in the FPGA and that are not available in the
FPGA routing fabric. An example would be the output of a SERDES block.
This output is directly routed within the FPGA and is not available in the FPGA
routing fabric. Design signals that are implemented on these hard routes are
therefore unavailable for debugging since debugging requires access on the
routing fabric. Many hard routes are detected and blocked from use as trigger
or trace signals, but it is still possible to select some signals that cannot be
connected to the debug logic.

Signals Unavailable for Tracing and Triggering

4 Reveal Troubleshooting Guide

Preferences Not Recognized Due to Reveal Being
Present
When Reveal Inserter adds debugging information to a design, it must
connect to the signals being used for triggers, traces, and the sample clock. If
any of these signals have preferences on them, there is a chance that the
preference may no longer be recognized. This only occurs on signals that do
not go to the top level of the design when Reveal is not present.

This occurs because when Reveal Inserter adds debugging cores to the
design, the necessary signals are connected to the debugging cores. Signals
are traversed when a design is loaded and the top-level name of the signal is
used for assigning preferences. If the signal now connects to a top-level
debug core, the name on the net segment attached to the debugging core is
now used instead of the original name.

This problem occurs most often on the sample clock. Being a clock signal, it is
likely there is a preference already assigned to this signal. If the sample clock
was not originally present in the top level of the design, the original preference
is not recognized. This results in one or more warnings of the following form
when Design Planner is opened:

WARNING - baspe: Semantic Error: clocksig_200 matches no nets in the
design. Occurred in "USE PRIMARY PURE NET "clocksig_200" ; ". Disabled
this preference.

One solution is to copy the preference for the original signal and make a new
preference for the net name that is now being used. Reveal Inserter always
generates a name in the format of reveal_ist_<number>.

In the case of the above warning, the Period/Frequency sheet of Spreadsheet
View in Design Planner shows a clknet named reveal_ist_67 instead of
clocksig_200. In the preference file (<projectname>.lpf), this can be corrected
by copying the existing preference line ‘USE PRIMARY PURE NET
“clocksig_200” ;’ and adding the line ‘USE PRIMARY PURE NET
“reveal_ist_67” ;’.

In ispLEVER 8.0 and later releases and in Diamond 1.0, Reveal Inserter
attempts to automatically prevent errors by creating an alias in the constraints
file (.lpf) for any clock signals that are used. In the constraints file, a
preference of the form 'rvl_alias "reveal_clock_signal" "original_clock_signal";'
is automatically created for signals that are recognized as clocks by Reveal
Inserter.

Signals Unavailable for Tracing and Triggering
Some signals in a VHDL design appear in the signal hierarchy but are not
available for triggering or tracing. The following signals are currently
unavailable:

 Signals used in “generate” statements are not available for tracing and
triggering.

Signals Unavailable for Tracing and Triggering

Reveal Troubleshooting Guide 5

 If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

 Signals that are user-defined enumerated types, integer type, or Boolean
type are not available for tracing or triggering.

Some signals in a Verilog design appear in the signal hierarchy but are not
available for triggering or tracing. The following signals are currently
unavailable:

 Array types of two dimensions or more are not shown in the port or node
section.

 Undeclared wires attached to instantiated component instances are not
shown in the hierarchical design tree. You must declare these wires
explicitly if you want to trace or trigger with them.

 If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

Some signals that are used in a design but are implemented as hard routes in
the FPGA instead of using the FPGA routing fabric are not available for
tracing or triggering. Examples are connections to IB and OB components.
Many common hard routes are automatically shown as unavailable in Reveal
Inserter, but some are not. If you select a signal for tracing or triggering that is
implemented as a hard route, an error will occur during the synthesis,
mapping, placement, or routing steps.

Understanding errors reported because of hard routes can be difficult. Here is
an example error from the synthesis log file, <cktname>.log:

@E:"f:\cws\bugs\cr37986\reveal_workspace\tmprveal\rx_ddr_rvl.vh
d":648:8:648:12|Port 'serin' on Chip 'RX_DDR' drives 1 PAD
loads and 1 non PAD loads

In this example error message, the serin signal is a hard route, and serin is
not the name of the original signal that was traced. The hierarchical path
shown is for the debug core that was generated. It is not part of the original
design and is not information displayed during the debug insertion. The error
message does not specify which user-selected signal used as a trace or
trigger is causing the problem. To manually determine which signal is causing
this error, you can use two approaches.

 Remove signals one by one in Reveal Inserter to see which caused the
error. If you have only a few signals, this would be the best approach.

 Manually look through the design to determine the problem. If you have
many signals, this approach would be the best.

However, the error message refers to the temporary HDL design that is
generated during debug logic insertion. Normally this HDL source is
deleted after the database is built. To save this temporary HDL source in
the case of errors in mapping, you must set an environment variable.

a. In the System control panel, click on the Advanced tab, then click on
the environment variable button at the bottom of the window.

b. Create a new environment variable named KEEP_REVEAL_TEMP.
The value can be anything, but it is normally set to TRUE.

JTAG Restrictions

6 Reveal Troubleshooting Guide

c. Once this variable is set, exit Diamond.

d. Open Diamond and rebuild the database.

You can now open the generated HDL to determine which signal caused
the error. You can open this file with a text editor, or use HDL Explorer
(which is part of ispLEVER) to open and explore the design. The top-level
generated file is located at <project_directory>/reveal_workspace/
tmpreveal/<project_name>_rvl.<v or vhd>.

Following is another example of an error generated during mapping. This one
is caused by forcing a register whose input is being traced to be implemented
as an input flip-flop because of a preference, USE DIN.

ERROR - map: IO register/latch FF_inst cannot be implemented in
PIC.

In this case, allowing the register to be implemented as an internal flip-flop by
removing the preference resolves the issue.

JTAG Restrictions
Reveal requires a JTAG connection for configuring the debug logic and
transferring captured data to the PC. If other modules or components that also
use JTAG are present, an error will occur during the Translate step in the
Process view, indicating that there are multiple JTAG modules present. The
same error occurs if an IP or module contains a JTAG module. An instantiated
JTAG component primitive causes the same error.

Reveal supports debugging a device in a JTAG chain with multiple devices on
the chain. Reveal also supports debugging a device with multiple cores.
However, when you debug a design with multiple devices on a JTAG chain, all
the cores must be present in a single device. Multiple cores distributed among
multiple devices are not currently supported.

If you are debugging an FPGA in a JTAG chain, you must supply an .xcf file in
Reveal Analyzer project. The .xcf file must reside in the project directory; it
cannot reside in any other location.

Incorrect Signature and Sample Clock
Reveal software uses a signature mechanism to insure that the design loaded
in the software and the design programmed in the FPGA match. This prevents
wasted time caused by trying to debug one design configuration while a
different one is actually loaded. When Reveal Inserter writes out the debug
information into its file (.rvl file) a signature is added based on the timestamp.
This signature is implemented into the debug core which is programmed into
the FPGA. When Reveal Analyzer creates a new file (.rva file), it reads the
Reveal Inserter file and also reads the signature from the debug core. If they
do not match, this causes the incorrect signature error message. There are
three main causes for this error.

Incorrect Signature and Sample Clock

Reveal Troubleshooting Guide 7

The first cause is that a different design is programmed into the FPGA than is
represented by the Reveal Inserter file (.rvl file). This can be caused by
programming an old bit file or by changing the Reveal Inserter file after
programming the FPGA. Opening Reveal Inserter and then saving the file
after the design has been programmed will cause this error. In this situation
the error message will look similar to the message below where the mismatch
is between two valid numbers.

The second cause is from a sample clock problem.

The sample clock is used by Reveal debug logic to clock data into the trace
buffer and in the triggering logic. The sample clock is also needed when
Reveal Analyzer communicates with the debug logic through JTAG. If the
sample clock is not running or is running too slow, Reveal Analyzer cannot
detect that the Reveal debug logic is available. This information is especially
important when you create a new Reveal Analyzer project. Reveal Analyzer
checks the debug logic for a signature to make sure that the bitstream
matches the design. If Reveal Analyzer cannot communicate with the debug
logic because the sample clock is not running, the project creation or the
Reveal Analyzer run command will fail with an error, and Reveal Analyzer
issues an error message similar to that shown in Figure 3. For these reasons,
the sample clock should be a signal with a reasonably regular frequency
rather than a signal with intermittent pulses. The frequency of the sample
clock should also be faster than the speed of the JTAG clock that is used.

The third cause for the incorrect signature error message is when the sample
clock is not correctly connected to the debug logic. This can occur if a
problem happens in the implementation flow. The signature read from the
device will be all ones in this situation. To resolve this, the post-map netlist
needs to be viewed directly to determine the root cause. Contact Lattice
Technical Support if encountering this message.

Figure 2: Reveal Analyzer Invalid Design Error Message

Figure 3: Reveal Analyzer Sample Clock Error Message

Unexpected Reveal Analyzer Results

8 Reveal Troubleshooting Guide

Unexpected Reveal Analyzer Results
Using a trigger signal that is the output of a very large logic cone may produce
confusing results in Reveal Analyzer. A glitch on an asynchronous trigger
signal in rare cases may cause the trigger logic to become active prematurely.
If you encounter this situation, register your trigger signal with the sample
clock and use that as the trigger.

Performance
When you open Reveal Inserter for an RTL project, it must first parse the
entire design in order to build the design hierarchy and signal list. Normally
this occurs within a few seconds. Very large designs may take significantly
longer.

When you open Reveal Inserter for an EDIF project, it must read and load the
entire design in order to build the design hierarchy and signal list. For very
large designs, loading can take several minutes. On these large designs,
there is a delay until Reveal Inserter starts and then a further delay while it
builds the hierarchy and signal list. Although load times may be long, the
delay is approximately the same as that of other tools loading similar-sized
designs.

When you change trigger settings in Reveal Analyzer, the settings must be
downloaded to the debug logic on the FPGA when you press the Run button.
While the debug logic settings are being downloaded, the Configuring ...
message appears in the upper left corner of the window. The time taken to
configure the debug logic depends on how many trigger units (TUs) and
trigger expressions (TEs) are used. For a few TUs and one or two TEs, the
time is usually a few seconds. For a maximum configuration of 16 TUs and 16
TEs on multiple debug logic cores, the time to configure could take several
minutes. The debug logic does not start looking for the triggers set until the
Configuring ... message is gone and the Running Device ...
message appears.

Each debug logic core offers an optional trigger-out signal. The Reveal
triggering logic, which is composed of trigger units and trigger expressions,
offers unique capabilities and flexibility. However, there is a latency of five
sample clocks to the output of the final trigger condition. Reveal Analyzer
software automatically handles this latency delay so that the trigger point lines
up with the correct data when waveforms are displayed in the Waveform view.
The trigger-out signal also has this five-clock latency delay. When you use the
trigger-out signal as an input to another core or as an external trigger-out
signal, the five-sample-clocks delay from the actual trigger event must be
taken into account. Otherwise, the captured data will not line up with the
desired event.

Creating a Reveal Analyzer Project

Reveal Troubleshooting Guide 9

Creating a Reveal Analyzer Project
When you create a new Reveal Analyzer project, some additional setup is
required that Reveal Inserter does not require. The target board is expected
to be programmed and turned on. When you first start Reveal Analyzer, the
cable settings should be set up. Even if the cable has already been set up in
ispVM System, you must specify it in Reveal Analyzer. If you are using
multiple USB cables on the PC, Reveal Analyzer only recognizes the cable at
the USB 0 slot. Other cables are not available. It may be necessary to switch
USB cables to enable Reveal Analyzer to see the target device in this
situation.

If you are debugging an FPGA in a JTAG chain, you must supply an .xcf file in
the Reveal Analyzer project. The .xcf file must reside in the project directory; it
cannot reside in any other location.

As noted in “Incorrect Signature and Sample Clock” on page 6, the sample
clock should be running when you create a new project or open Reveal
Analyzer on an existing project. If the sample clock is not running, Reveal
Analyzer cannot detect that the Reveal debug logic is available. When you
create or open a project, Reveal Analyzer checks the debug logic for a
signature to make sure the bitstream matches the design. If Reveal Analyzer
cannot communicate with the debug logic because the sample clock is not
running, the project creation will fail with an error.

Reveal checks both the debug project files and the bitstream in the FPGA to
make sure that they match. Reveal Inserter generates a unique signature
code that is stored in the settings file and is implemented as hardware in the
debug logic core. It prevents you from looking at the settings read from the
design files while trying to debug a different setup that was downloaded by
mistake to the FPGA. However, if you used Reveal Inserter to change the
debug settings, even though the design has not been re-implemented and
programmed into the FPGA, a signature error similar to that shown in Figure 4
will occur. Most of the debug settings files, which contain the automatically
generated signature, are shared between Reveal Inserter and Reveal
Analyzer. You can change the settings in Reveal Analyzer without any
signature mismatches occurring. Since Reveal Inserter can change settings
that affect the debug implementation, any changes in Reveal Inserter cause
the signature to be regenerated. Opening Reveal Inserter without changing
any settings and saving the project also causes the signature to be
regenerated.

If you run Reveal Analyzer with a 7.0 SP2 version of the .rvl file or earlier, you
will see a “Core version number mismatch” error

Figure 4: Reveal Analyzer Mismatch Error Message

Failure Points of Analyzer Function

10 Reveal Troubleshooting Guide

Failure Points of Analyzer Function
The following are typical failure points of Reveal Analyzer, along with
proposed solutions.

1. Reveal software client tool which communicates with the cable server.
Some of the functions are providing the register settings, trigger points,
downloading trace data, etc. The problem can include not beomg able to
communicate with the cable server, which may not be responding, or
receiving wrong data from the cable server which may be running in
corrupted state.

Solution: Terminate existing cable server process.

2. The cable server communicates with the device on the board through a
cable. The cable should be the correct cable with the correct port and
should be selected in the GUI. The type should match with the actual
physical cable.

Solution: Select the correct cable port.

3. The JTAG ports (TDI, TCK, TDO, TMS) should be properly located and
connected on the board so that the cable has the correct connection from
the Reveal Analyzer client to the device. The JTAG IO pins must not be
shared with any other wires on the board.

Solution: Check the JTAG pins located in Diamond Signal/Pad report.

4. The JTAG communicates with the user design using the Debugger
inserted pre-synthesis. The trace trigger and data are in sample clock
domain. The sample clock must be clean and continuous and not
intermittent. The sample clock frequency also must be more-than or
equal-to the JTAG clock frequency.

Solution: Run PAR Trace to check for timing violations.

5. The board must be properly powered-up.

Solution: Connect the board to a power supply with the correct voltage. If
there is on/off switch on the board, make sure it is turned to ON.

6. The right config file should be used for configuration. Sometimes users
use wrong or old config file by mistake.

Solution: Select config file by correct name and correct type from rbt, bit,
jed.

7. The Reveal project files .rvl, .rva files need to be under design directory.

Solution: Select correct rvl to create new rva in Startup Wizard.

8. When SOFT-JTAG is used in some devices, the scan function for device
id should not be used and correct port is selected and located.

Solution: select correct cable port for debug different from programming
port.

9. When multiple devices are chained then the correct chain information
needs to be in the .xcf file.

Solution: Select correct .xcf to create new rva in Startup Wizard.

Using the Reveal Debug Projects

Reveal Troubleshooting Guide 11

Using the Reveal Debug Projects
If you are having trouble running Reveal with your design, Lattice provides the
following pre-verified Reveal Debug Projects to allow you to verify that Reveal
is working correctly on your computer.

 counter_reveal_ECP2

 counter_reveal_ECP3

 counter_reveal_ECP5

 counter_reveal_LIFMD

 counter_reveal_MACHXO2

 counter_reveal_XO

 counter_reveal_XP2

The Reveal Debug Projects are located in a folder in the examples directory:

<diamond_install_path>\examples\reveal_debugger\

Your computer must be connected to a board with the appropriate Lattice
device.

The reference design is a 32-bit counter which includes one input reset and 4
outputs LEDPIO_OUT0, LEDPIO_OUT1, LEDPIO_OUT2 and
LEDPIO_OUT3.

Choose the appropriate device package and locate the output ports to see if
the counter is toggling with the LED.

The clock signal is driven by internal oscillator and the LEDPIO_OUT3 to
LEDPIO_OUT0 are connecting to the most significant bit cnt[31:28]. This
reference design has a Reveal module inserted and has trace signal TU1 that
monitoring cnt[5:0] equal to 6b'100000 as trigger condition.

To start the Reveal example project:

1. Choose File > Open > Project.

The Open Example dialog box opens.

2. Browse to the desired Reveal Debug Project folder, and choose the
apppropriate .ldf file.

3. Click Open.

4. Ensure that the Diamond project settings match the device on your board.

5. Follow the steps outlined in the “Performing Logic Analysis” section of the
Diamond online help.

 If you are able to run the Reveal Debug Project successfully in Reveal,
then the problem may be with your design or in the clock source.

 If you are unable to run the Reveal Debug Project successfully in
Reveal, contact Lattice Technical Support and send the project with
the log files.

Using the Reveal Debug Projects

12 Reveal Troubleshooting Guide

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of
Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their
respective owners.

http://www.latticesemi.com/legal

	HDL Language Restrictions
	EDIF Support
	Reveal Inserter and Diamond Errors
	Design Parsing Problems in Reveal Inserter
	Diamond Flow Messages

	Signals Unavailable for Tracing and Triggering
	JTAG Restrictions
	Incorrect Signature and Sample Clock
	Unexpected Reveal Analyzer Results
	Performance
	Creating a Reveal Analyzer Project
	Failure Points of Analyzer Function
	Using the Reveal Debug Projects

