

iCE65 mobileFPGA™ Configuration & Programming Overview

05/12/2010

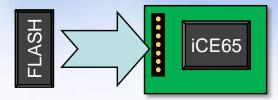
Configuration vs. Programming

CONFIGURATION

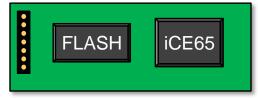
- iCE65 is a standard SRAM FPGA (reconfigurable)
- During power up, a configuration image is loaded into the iCE65 device to start functioning
 - In Master mode, the iCE65 "CONFIGURES" itself from built-in NVCM or external SPI flash memory
 - In Slave mode, a processor/programmer "CONFIGURES" iCE65 FPGAs

PROGRAMMING

- Storing the FPGA configuration image into an external SPI flash memory or built-in NVCM
 - By using programming cable and software
 - SPI flash can be programmed many times
 - NVCM can be programmed only once

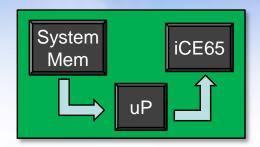

iCE65 Configuration Options

- There are "3" ways to configure iCE65 FPGAs
 - SPI flash configuration
 - SysMem configuration
 - NVCM configuration



SPI FLASH Configuration

Off-board:


- User-programmed SPI FLASH device connects to header on customer board to configure iCE65 device
- On-board:

- User-programmed SPI FLASH device connects directly to iCE65 device
- Header is typically used to program FLASH device
- Benefits
 - Customer in control of SPI FLASH programming (standard programming tools)
 - Familiar to FPGA users
 - Multiple images can be stored

SysMem Configuration

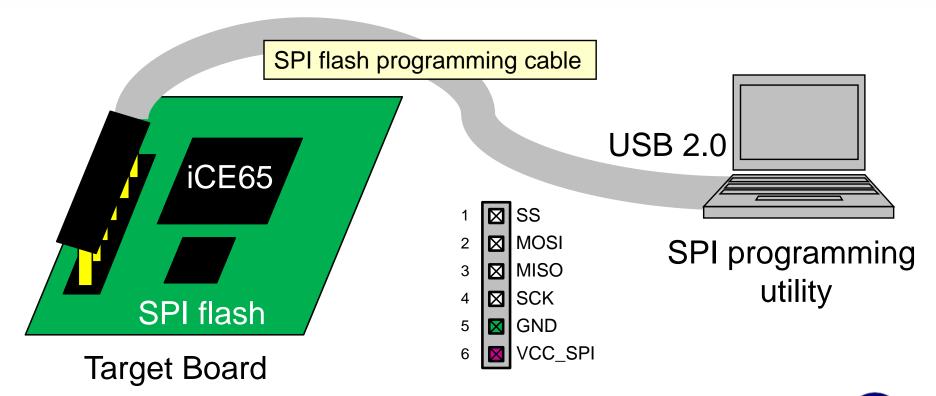
- User-programmed system memory stores iCE65 configuration bitstream
- Microprocessor used to control configuration process
- Benefits
 - Eliminates needs for separate configuration memory
 - Customer in control of system memory programming
 - Familiar to FPGA users
 - Multiple images can be stored
 - Support field upgrade
- Requires user to implement control program in processor

NVCM Configuration

NVCM = Non-Volatile Configuration Memory

- On-chip NVCM memory stores iCE65 configuration bitstream
- Benefits
 - One-chip solution eliminates need for separate configuration memory
 - NVCM consumes less power than FLASH solutions
 - Instant-On
- SiliconBlue recommends factory programming of NVCM memory for production phase
 - 100% programming yield guarantee
 - Can offer other services such as custom marking

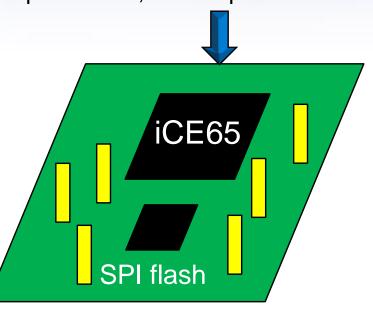
SPI FLASH CONFIGURATION AND PROGRAMMING


SPI Flash Configuration Options

- Two Ways:
 - On-board SPI flash
 - Off-board SPI flash

On-Board Flash

- Best for design needing frequent update
- Same as standard SRAM-based FPGA approach



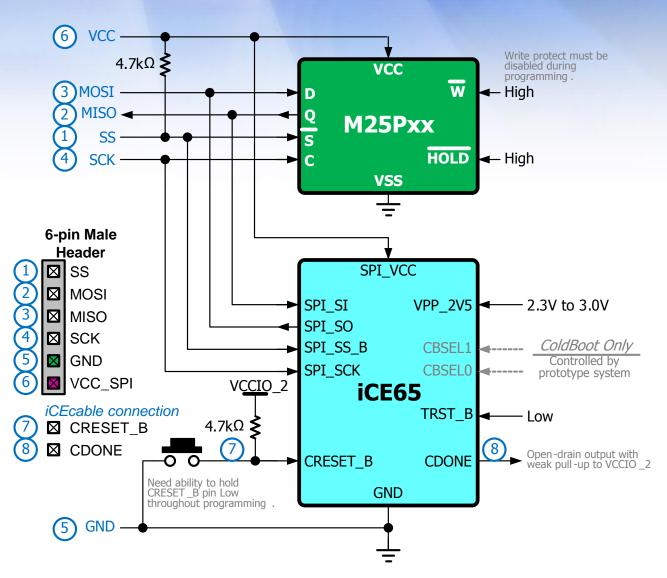
Connections on Prototype

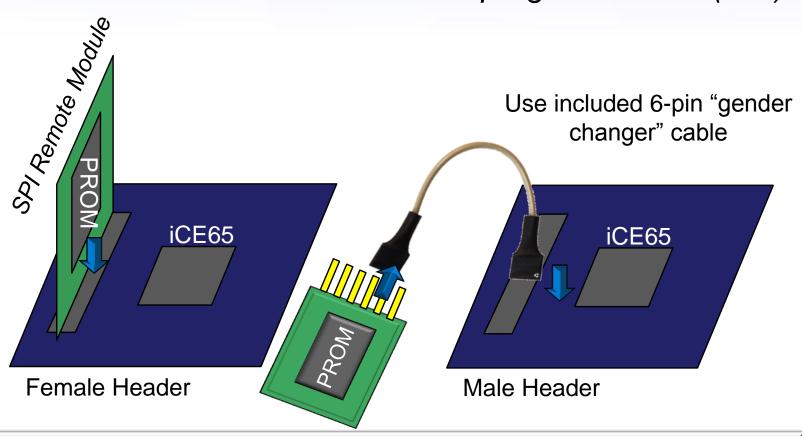
Optional "Flying Leads"

- Little to no board space required on prototype
- Connect to test points on board (Digilent part number: 6-Pin MTE)
- Optionally spot solder leads to pads on prototype

Prototype does not have room for 6 pin header, so test points are used

Recommended 3rd Party SPI Flash Programming Cables


	Dedi-prog	Aardvark
Product Name	SF100	I2C/SPI Host Adapter
Availability	Now	Now
Software	DediProgrammer Pro	Flash Center Software
Unit Price	\$210	\$250

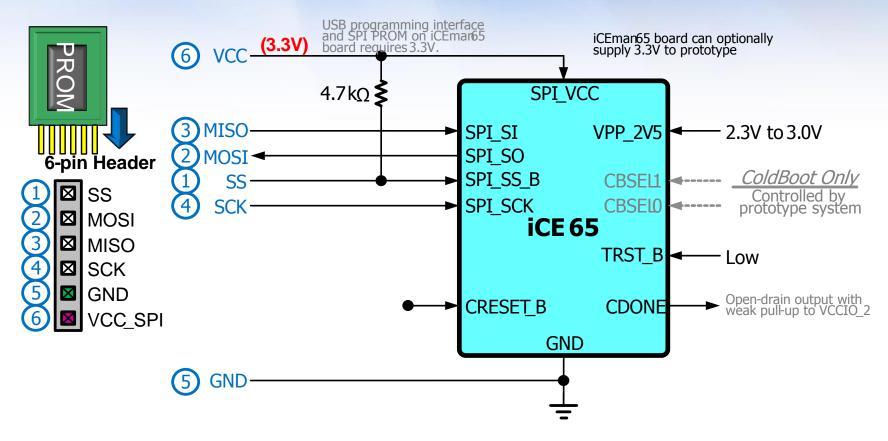

Connection to SPI Flash

Using Remote Configuration Module

- Easier migration to NVCM production model
- Same header can be used to program NVCM (ISP)

Remote Configuration Module

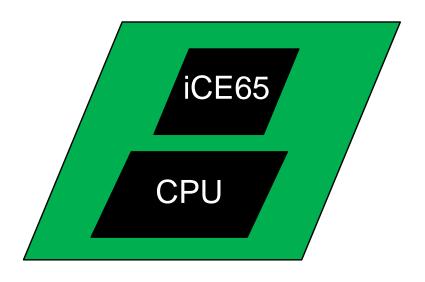
- 16Mbit SPI storage module
 - 3.3V M25P16 Flash PROM
 - Large enough for multiple ColdBoot, WarmBoot images
- Program using download cable
 - Plugs directly into cable
- After programming, plug it into iCE65 prototype
- Includes 6-pin "gender changer" cable
- Can be purchased from Digilent Inc.



www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=489&Prod=PMOD-SF

Connection to Remote Configuration Module

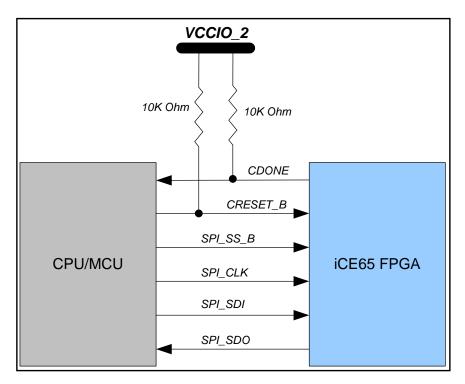
When ready for production, connect CRESET_B to program NVCM



SYSMEM CONFIGURATION AND PROGRAMMING

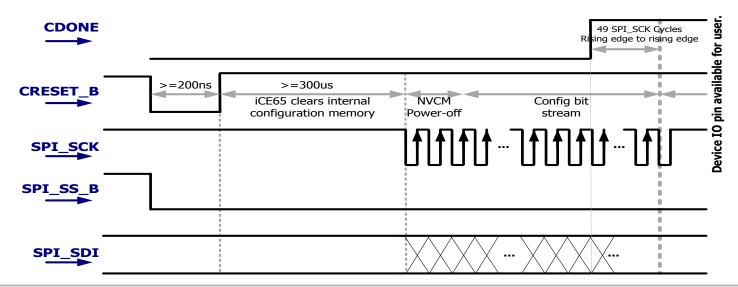
SysMem Configuration

- Saves extra memory cost
- Provides seamless field upgrade capability
- Familiar to all FPGA designers



Target Board

SysMem Configuration Connections


- Also known as "processor/CPU configuration"
- Very popular & well known to FPGA designers
- Reference code available in ARM, MIPS, & PXA270

Configuration Procedures

- Set SPI_SS_B to low
- 2. Pulse CRESET_B low for at least 200 ns
- 3. Wait 300 µs for internal CRAM to be cleared
- 4. Send NVCM power off instructions (to minimize power)
- 5. Send entire bitstream file with 5 ~ 25MHz and 50% duty cycle clock, drive data with falling edge clock with MSB first
- 6. Continue to send extra 50 clocks, CDONE pin will go high
- 7. Release all SPI I/F, iCE65 should enter user mode

Configuration File Update

- Bitstream file can be stored in the system memory or implemented as part of the CPU/processor code
- When implemented as part of CPU code, it will allow virtually seamless field upgrade
 - FPGA configuration file will be updated during firmware update

Conclusion

- Three options = Maximum flexibility
- Choose the iCE65 configuration mode that best matches your application requirements
 - Self-loaded (automatically "boot" at power-up)
 - ASIC-like single chip option
 - Ability to do field upgrade
- No Limits: Use just one mode or use all three in the same application

NVCM PROGRAMMING LOGISTICS

Programming Success Factors and Influences

Factor

- Robust electrical connections between the programmer and the device
 - Clean, strong contacts
 - Careful handling
- Proper application of electrical pulses to sufficiently program the device
 - Number of pulses
 - Timing

<u>Influence</u>

 Qualified hardware that is well maintained

- Latest released programming software
- Proper board design and layout (In-System Programming)

Prototype NVCM Programming

 Prototype programming support is intended for low quantities, typically less than 100 units

- Two methods are supported:
 - ISP with iCEcable Programming Kit: Devices are mounted on customer's board with a header for programming
 - Header can be used for both SPI configuring and NVCM programming
 - Stand-alone station with iCEprog Programming Kit

Production Programming

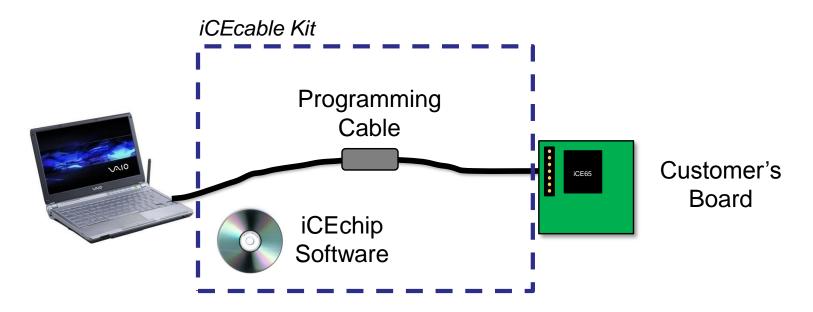
- Production programming support is intended for large quantities
- Objective is to ensure customer satisfaction by:
 - Maximizing programming yield
 - Note that mounted devices are considered "consumed" and not eligible for return
 - SBT will not accept non-blank devices for return
 - Simplify board and system design
 - Removing barriers to customer adoption

Production Programming Options

- Factory programmed iCE devices
 - Low programming cost
 - No programming yield issues: All devices shipped are guaranteed to be properly programmed
 - Secure: Security bit prevents examination of NVCM contents
 - Customization available (such as marking)
- Non-ISP programming by customer
 - Using iCEprog for 1000 to 5000 units
 - Using qualified 3rd party equipment Dediprog (http://www.dediprog.com)
- Qualified programming house (available mid-2010)
 - Using qualified 3rd party equipment

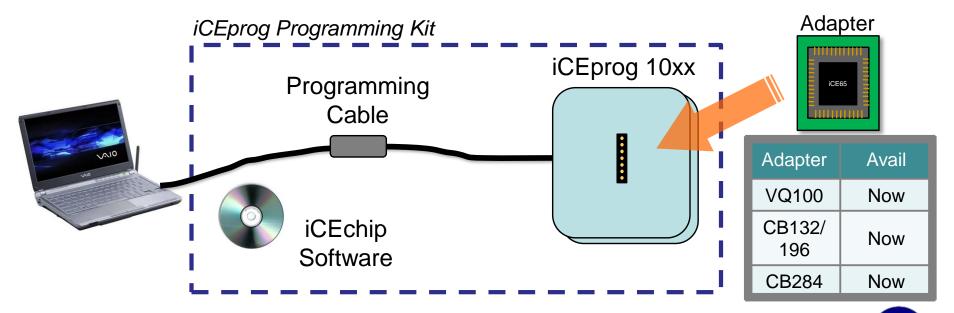
Summary of Production Programming Options

Option	Benefit	Risk	Supported Packages	Other
Factory Programming	 Low (no) cost Least impact to customer Secure – security bit locks design Allows special support (e.g. marking) 	• None	• All	
Customer Non-ISP Programming	Customer controls programming	 Limited quantities for iCEprog stand-alone programmer (1K – 5K) 3rd party equipment (Dediprog) Yield loss is customer's responsibility 	• VQ100 • CB132/196 • CB284	CS36, CS63 and CC72 not supported
Qualified Programming House	Customer can choose vendor	• 3 rd party equipment not available until mid - 2010	VQ100CB132/196CB284	 CS36, CS63 and CC72 not supported



SILICONBLUE PROGRAMMING PRODUCTS

iCEcable Programming Kit


Ca	Cable		Software	Comments	
Model	Avail	Version	Avail	Comments	
iCEcable	Now	2.x & Up	Now	Improvements; faster support	

iCEprog Programming Kit

Ca	Cable iCEprog iCEchip Software		iCEprog iCEchip S		Software	Comments
Model	Avail	Model	Avail	Version	Avail	Comments
iCEcable	Now	1050	Now	2.1.5	Now	Improve manufacturability

DEDIPROG PROGRAMMING PRODUCTS

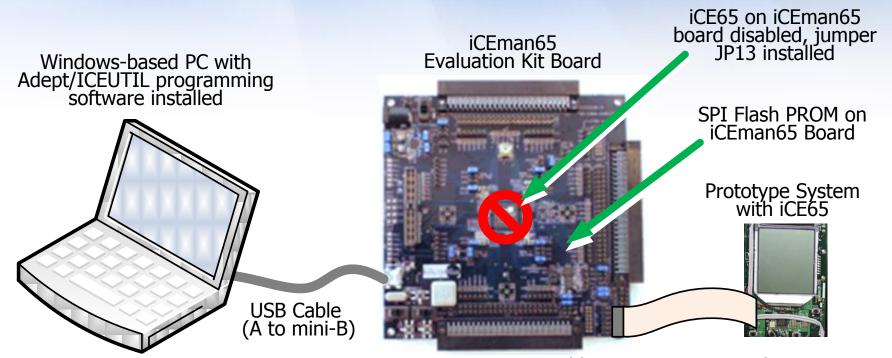
Summary of Dediprog Programming Products

Gang Programming Products	Description
Race100-S4	 4 position gang programmer http://www.dediprog.com/SPI-flash-gang- programmer/Race100-S4
Race 100-S8	 8 position gang programmer http://www.dediprog.com/SPI-flash-gang- programmer/Race100-S8

Socket Adapter Products	Description
050-VQ100-1414	Race100 Socket adapter for VQ100 packages
50-CB-196-88	Race 100 Socket adapter for CB196 packages
50-CB-132-88	Race 100 Socket adapter for CB132 packages
50-CB-284-88	Race 100 Socket adapter for CB284 packages

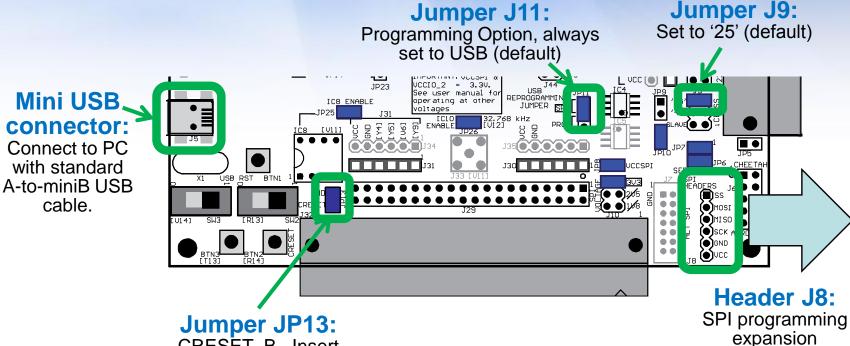
Cable Products	Description
SF100-SBT	 Supports iCE65 SRAM configuration, plus generic SPI flash NVCM not supported

ICEMAN EVALUATION BOARD



iCEman65 Board for Configuration

- iCEman65 evaluation board includes a USB-based programming solution and SPI expansion header
- Use iCEman65 board to configure another prototype iCE65 system
- Connect prototype to 6-pin header J8 on iCEman65 board
- Program SPI serial Flash on iCEman65 board
- Configure iCE65 on prototype PCB from SPI Flash on iCEman65 board
- VCC_SPI on prototype must be 3.3V


iCEman Configuration Setup

Cable or wires connected to Header J8 on iCEman65 board (3.3V interface, power optionally supplied from iCEman65 Board)

iCEman Jumper Locations

CRESET_B. Insert jumper to hold iCE65 on iCEman65 board in reset, forcing all I/O pins to Hi-Z. Borrow jumper from JP10 if needed.

Connect to SPI configuration/ programming expansion header to prototype system. Use 6-pin cable included with iCEman65 kit or connect to testpoints on prototype system.

