
Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

August 2013 Reference Design RD1008

www.latticesemi.com 1 rd1008_03.5

© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The evolution of digital systems over the past two decades has placed new requirements on system designers.
They now need to design interfaces that are both high performance and compatible with other vendors’ systems. At
the same, time they need to meet immense time-to-market demands. The compatibility issue has been resolved by
designing systems with bus interfaces that are standards in the industry such as ISA, EISA, VESA and Micro
Channel.

As performance became an increasingly important factor, a new interface standard called PCI (Peripheral Compo-
nent Interconnect) was developed to meet the requirements of today’s digital computer systems. PCI is a well-doc-
umented standard supported by a special interest group and features the performance of a 33MHz, 32-bit version
of the specification reaching 132Mbytes per second at its peak transfer rate. This document describes a reference
design solution for a 33MHz, 32-bit PCI target for LatticeECP3™, LatticeXP2™, MachXO™ and ispMACH®

devices. It is designed to provide users with a starting point for designing a PCI target into Lattice devices.

The reference design source code is available from Lattice upon the signing of a simple non-disclosure agreement.
The 33MHz, 32-bit PCI target reference design comes with a fully-automated HDL test environment and RTL
source code. This gives the designer the flexibility to modify the back-end interface to meet the requirements of the
interfacing system. Using the design’s fully-developed test bench to verify its functionality, both new and experi-
enced designers will quickly be “up and running.” Although this design is not guaranteed to be fully PCI 2.2 compli-
ant, efforts have been made to ensure its conformity.

Design Goals and Limitations
The following goals were considered during development of this reference design:

• 33MHz PCI and back-end interface clock speeds

• 32-bit PCI and back-end I/O interfaces

• Support for two base address regions (I/O and memory regions)

• Single cycle and burst mode support for read and write cycles

• Implementation of all required PCI configuration registers

• Support for one interrupt signal from the back-end device to the PCI bus

• Parity generation for all read cycles

• Strive for compliance with all PCI 2.2 requirements

• Implementation in the latest LatticeECP3, LatticeXP2, MachXO and ispMACH devices

• Hierarchical HDL design, for simple end-user modifications

• A fully-automated and self-checking HDL test bench for ease of verification

The PCI Target does not support the following features:

• PERR and SERR (optional in embedded systems)

• Expansion ROM

• Built-in Self Test (BIST)

• Burst cycles into the configuration register space

• Cache line register

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

2

Theory of Operation
Overview
PCI is a highly documented specification. A special interest group (SIG) called the PCI SIG publishes the PCI Local
Bus Specification (currently at Rev. 2.2). To understand the basic functionality of the PCI Bus, Rev. 2.2 is recom-
mended reading for the PCI bus system designer. This reference design will not detail the functionality or electrical
characteristics of the specification. Please review the latest version of the specification for more details. Consult
PCI System Architecture by Tom Shanley and Don Anderson for a clearer interpretation of the specification.

The PCI bus is a multiplexed bus, where the same bus is shared for both address and data. During the address
phase, a PCI command is present on the PCI_CBE_L bus telling the target device what PCI cycle is taking place.
In the data phase, the same PCI_CBE_L bus is used to determine which bytes of data are enabled during the
transaction. Bus cycle timing between the initiator and target PCI devices is handled by PCI_FRAME_L,
PCI_TRDY_L, PCI_IRDY_L, PCI_STOP_L, PCI_DEVSEL_L, PCI_IDSEL, PCI_INTA_L, PCI_CLK and PCI_RST.
Cycles supported by this PCI target reference design are I/O Read and Write, Memory Read and Write, and Con-
figuration Read and Write.

The back-end interface of this reference design is user-configurable. The back-end device is provided with 20 bits
of address space and a 32-bit data bus. During the data phase, the byte enables are passed from the PCI bus to
the back-end device and two separate chip selects are provided, one for each base address region. Bus cycle tim-
ing between the back-end device and the PCI target is controlled by R_W_L, DATA_WRITE_L, DATA_READ_L,
READY_L, DATA_STOP_L, BKEND_INT_L, BKEND_ABORT_L and PCI_CLK.

Functional Description
This 33MHz, 32-bit PCI target reference design is used to interface a back-end device that does not support the
PCI protocol to the PCI bus. The PCI target responds to PCI cycles started by a PCI initiator. The PCI target func-
tions as a data path controller, transferring data to and from the back-end device onto the PCI bus. When a partic-
ular PCI initiator has been granted the PCI bus, it performs read or write cycles with PCI targets on the bus. The
PCI target that decodes the cycle address as a “base address hit” acknowledges and completes the cycle.

Figure 1. PCI Target I/O Interface

BKEND_AD[19:0]

BKEND_DAT[31:0]

BASE_REGION0_L

R_W_L

READY_L

DATA_STOP_L

BKEND_INT_L

BASE_REGION1_L

DATA_WRITE_L

DATA_READ_L

BKEND_ABORT_L

BE_L[3:0]

33MHz/32-Bit
PCI Target

PCI_AD[31:0]

PCI_CBE_L[3:0]

PCI_FRAME_L B
ack E

nd Interface

P
C

I B
us Interface

PCI_IRDY_L

PCI_IDSEL

PCI_CLK

PCI_RST_L

PCI_TRDY_L

PCI_STOP_L

PCI_DEVSEL_L

PCI_INTA_L

PCI_PAR

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

3

Table 1. PCI Signal Descriptions

Name Direction Active State Description

PCI_AD Bi-Directional N/A The multiplexed PCI address/data bus

PCI_CBE_L Input Active Low The multiplexed PCI command/byte enables

PCI_PAR Bi-Directional Even Parity The even parity bit. The PCI target drives this signal during
read cycles. The PCI initiator drives this signal during the
address phase of all transactions and the data phase dur-
ing writes.

PCI_FRAME_L Input Active Low The PCI initiator drives this signal low at the beginning of a
cycle and high at the clock edge before the last data phase
on a burst operation.

PCI_TRDY_L Output Active Low The PCI target drives this signal low prior to the positive
edge of a clock when it can complete a data phase.

PCI_IRDY_L Input Active Low The PCI initiator drives this signal low prior to the positive
edge of a clock when it can complete a data phase.

PCI_STOP_L Output Active Low The PCI target drives the stop signal low during a transac-
tion to indicate the termination of a cycle, signaling a retry,
disconnect or abort (consult Rev. 2.2 of the specification).

PCI_DEVSEL_L Input Active Low The PCI target drives DEVSEL low to indicate the address
of the current transaction is in the address space of one of
the base address registers.

PCI_IDSEL Input Active High The PCI initiator will drive the IDSEL signal high at the input
of the PCI target that should complete the current configu-
ration cycle on the PCI bus.

PCI_CLK Input Positive Edge Sensitive The clock input to all PCI devices on the PCI bus including
PCI targets, PCI initiators and PCI arbiters.

PCI_RST_L Input Active Low The active low reset for all PCI devices on the PCI bus.

PCI_INTA_L Output Active Low The interrupt signal passed through the PCI target from the
back-end device.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

4

Table 2. Back-End Signal Descriptions

Back-End Design Requirements
The following list contains requirements that the back-end device must follow to ensure proper operation of the sys-
tem:

• The back-end device must tie DATA_STOP_L to a logical zero if it cannot support burst mode

• If the back-end device can handle bursts, then DATA_STOP_L should be a logical one at the start of a cycle
• Once the back-end device starts a burst cycle, it is not permitted to insert wait states. It must support full

bursts or stop the transaction.
• In order for the back-end device to stop a burst transaction, it must assert DATA_STOP_L two clock cycles

ahead of where a FIFO would be empty or full. On a FIFO, application DATA_STOP_L is a function of the
almost empty and almost full flags.

Name Direction Active State Description

BKEND_AD Output N/A The 20-bit address bus for the back-end device.

BKEND_DAT Bi-Directional N/A The 32-bit data bus for the back-end device.

BE_L Output Active Low The active low byte enables are passed through to the back-
end device from the PCI bus. They can be used to determine
which byte lane is active.

BASE_REGION0_L Output Active Low This signal goes low to tell the back-end device a transaction
is starting, and the cycle is accessing the address space
decoded by Base Address Register 1.

BASE_REGION1_L Output Active Low This signal goes low to tell the back-end device a transaction
is starting and that the cycle is accessing the address space
decoded by Base Address Register 0.

R_W_L Output 1 = RD 0 = WR This output tells the back-end device if the current transaction
is going to be a read or a write.

DATA_WRITE_L Output Active Low This signal is a write enable for the back-end device. Once the
back-end device asserts READY_L a transaction will start,
and a write is performed on a positive going transition (PGT)
of PCI_CLK while DATA_WRITE_L is asserted.

DATA_READ_L Output Active Low This signal is a read enable for the back-end device. Once the
back-end device asserts READY_L a transaction will start,
and a read is performed on a PGT of PCI_CLK while
DATA_READ_L is asserted.

READY_L Input Active Low The READY_L signal comes from the back-end device and is
active following the assertion of BASE_REGION0_L or
BASE_REGION1_L. This signals to the PCI target state
machine that the back-end device is ready to start the transac-
tion.

DATA_STOP_L Input Active Low This active low input comes from the back-end device and sig-
nals the PCI target state machine that the back-end device will
need to stop the burst cycle in two data phases. Note: the
back-end device is required to tie this signal low if it does not
support bursts.

BKEND_INT_L Input Active Low The interrupt signal is an active low input and is passed
through the PCI target to the PCI bus.

BKEND_ABORT_L Input Active Low The back-end device asserts this active low input to the PCI
target when a catastrophic failure is encountered.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

5

Register Transfer Level (RTL) Implementation
The HDL code for this reference design contains the following functional blocks:

• PCI target top

• Miscellaneous glue logic block

• Configuration multiplexer block

• Base address check block

• State machine

• Parity generation block

• Retry counter block

Figure 2. The 33MHz, 32-Bit PCI Target Block Diagram

PCI Target Top
This is the top-level HDL block of this reference design. This block was created to instantiate the tristate buffers,
and all the lower-level blocks of the design.

Miscellaneous Glue Logic Block
This module contains the miscellaneous glue logic required for the design. It contains the PCI address registers,
CBE registers and the IDSEL register. It latches these during the address phase of any PCI transaction.

Configuration Multiplexer Block
This block implements the PCI target configuration registers and the PCI data output MUX. It controls when data is
written into the configuration registers and what data is presented onto the output data bus (PCI_DAT_OUT) during
reads.

The read values for the base address registers are set in this block. BA0 and BA1 always return the size of the
memory block for the back-end application when read. All other read-only configuration registers are hard-wired in
this block and the user can modify them in accordance with the PCI Local Bus Specification, Rev. 2.2.

The designer may modify this block of the HDL code to implement features of configuration registers the applica-
tion-specific design may require. The HDL code is broken up into sections implementing the specific configuration
registers, and the designer can add or remove registers depending on the system requirements. Consult the com-
ments embedded in the HDL code for specific implementations of the following registers.

Glue Logic Retry Counter

Parity Block Configuration
Multiplexer

State
Machine

PCI Target Top

Base Address
Check

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

6

Configuration Register Implementation

Table 3. Reg00h Device ID and Vendor ID

Table 4. Reg04 Status and Command

Table 5. Reg08h Class Code and Revision ID

Table 6. Reg0Ch BIST, Header Type, Latency Timer and Cache Line Size

The base address register’s BA0 and BA1 can be configured as either memory or I/O regions. The HDL is written
such that Reg10h is for I/O space and Reg14h is for memory space. The designer can modify the HDL code for the
configuration multiplexer block to change the size, location or region type for the registers.

Bit Direction Name Description

31-16 R Device ID The device ID is user-defined by a vendor. It is hard wired to
0120h in this design.

15-0 R Vendor ID The vendor ID identifies the manufacturer, and is set to
AMD = 1022h

Bit Dir. At Reset Name Description

31-28 R 0 Status Bits Unimplemented status bits that return 0’s when read.

27 R/W 0 Status Bit - Signalled Target Abort Set to a 1 when the target aborts a transaction. Reset
to 0 by writing a 1 to this register.

26-25 R 10b Status Bits - DEVSEL Timing Status bits for DEVSEL timing. Hard wired to
10b = slow.

24-16 R 0 Status Bits Unimplemented status bits that return 0’s when read.

15-2 R 0 Command Bits Unimplemented command bits that return 0’s when
read.

1 R/W 0 Command Bit - Memory Space Enable This command register bit enables accesses to base
address regions configured as memory space. This
register MUST contain a 1 for the PCI target to
respond to memory transactions. Make sure PCI con-
figuration software writes a 1 to this register during
configuration.

0 R/W 0 Command Bit - I/O Space Enable This command register bit enables accesses to base
address regions configured as I/O space. This register
MUST contain a 1 for the PCI target to respond to
I/O transactions. Make sure PCI configuration software
writes a 1 to this register during configuration.

Bit Direction Name Description

31-8 R Class Code The class code identifies the function of the PCI target and its
subclass. This is hard wired to 0580h.

7-0 R Revision ID The revision number of this PCI target. Hard wired to 01h.

Bit Direction Name Description

31-0 R BIST, Header Type, Latency
Timer, & Cache Line Size

Miscellaneous registers hard wired to 0000_0000h.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

7

Table 7. Reg10h Base Address 0 Configured for I/O Space

Table 8. Reg14h Base Address 1 Configured for Memory Space

Table 9. Reg2Ch Subsystem ID and Subsystem Vendor ID

Table 10. Reg3Ch Max_Lat, Min_Gnt, Interrupt Pin and Interrupt Line

Base Address Check Block
The base address check block has two functions. It is used to control the write-only registers for Reg10h through
Base Address 0 and Reg14h through Base Address 1. The top-level “address decode” for both regions are stored
here. The second function of this block is to decode an address hit in Base Address Region 0 or 1 and assert a sig-
nal informing the PCI target state machine. If only one base address region is used, the designer can remove the
check for the unused region from the HDL.

The State Machine
Description
The PCI target state machine is at the heart of this reference design. It controls the bus cycle timing of all data flow
paths to and from the PCI bus and back-end bus. The state machine goes from the idle state to one of three possi-
ble paths during any given PCI operation. While in the PCI address phase of a transaction the values on
PCI_CBE_L and PCI_IDSEL determine if the transaction is a configuration read or write, memory-I/O read or a
memory-I/O write.

The designer can modify the state machine HDL code if the functionality of the back-end device has special system
requirements. It may be necessary to implement wait states, or new enable signals for particular applications.
These require modifications to the HDL code, but embedded HDL comments will guide the designer through the
state machine implementation and signal descriptions.

Bit Direction Name Description

31-2 R/W Base Address 0 Register Base Address Register 0 is configured as an I/O region. Hard
wired to a 1MB of memory mapped I/O (size can be changed).

1 R Reserved Set to 0b

0 R I/O Space Indicator Set to 1b indicating I/O space.

Bit Direction Name Description

31-4 R/W Base Address 1 Register Base Address Register 1 is configured for a memory region.
Hard wired to allocate a 1MB block (size can be changed).

3 R Prefetchable Set to 0b (Prefetch OFF)

2-1 R Type Allocates where in memory this region must reside. Hard wired
to 00b meaning anywhere in the 32-bit address space.

0 R Memory Space Indicator Set to 0b indicating memory space.

Bit Direction Name Description

31-16 R Subsystem ID Hard wired to 0120h

15-0 R Subsystem Vendor ID Hard wired to 1022h

Bit Direction Name Description

31-16 R Max_Lat, and Min_Gnt Miscellaneous registers hard wired to 0000h

15-8 R Interrupt Pin The interrupt pin is hard wired to 01h indicating only one inter-
rupt is available.

7-0 R/W Interrupt Line The configuration software will write the interrupt line register to
set the system IRQ used for this device.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

8

Configuration Read Write Cycles
The PCI target only responds to certain types of configuration transactions. The HDL is coded so the target only
responds to type 00 transactions (PCI_AD[1:0] == 00b) directed at function 0 (PCI_AD[10:8] == 000b). During con-
figuration cycles, the address bits PCI_AD[7:2] determine which configuration double word is being accessed,
while the PCI_CBE_L[3:0] bits determine if the cycle is a configuration read or configuration write.

The target will respond to configuration reads to unimplemented registers, and return a value of 0000_0000h. The
target will respond to writes to a configuration register that is not implemented, although the data will never be writ-
ten.

Burst addressing of the configuration registers is uncommon and is not supported.

For further information on PCI configuration transactions, consult the PCI Local Bus Specification, Rev. 2.2.

Memory – I/O Read Cycles
The PCI target state machine supports unlimited length burst reads and single cycle reads. During a typical opera-
tion, the state machine determines if the address is a hit to one of its base address regions. It accepts the cycle,
and informs the back-end device of a transaction by asserting BASE_REGION0_L or BASE_REGION1_L. After
the back-end acknowledges the cycle by asserting READY_L, the first double word is read. If the transaction is a
burst, the next double word is then read. Once the master starts a burst, if the back-end device supports bursts, it
must assert DATA_STOP_L to inform the target state machine when it can no longer provide burst read data. The
state machine expects to see DATA_STOP_L asserted, two data phases before the back-end must halt the burst
reads. This gives the state machine time to stop the cycle, smoothly. If a catastrophic failure occurs, the back-end
device can assert BKEND_ABORT_L at any time once the read operation begins.

Memory – I/O Write Cycles
The PCI target state machine supports unlimited length burst writes and single cycle writes. Just as the read cycles
worked, during a typical operation the state machine determines if the address is a hit to one of its base address
regions. If the target accepts the cycle, the state machine informs the back-end device of a transaction by asserting
BASE_REGION0_L or BASE_REGION1_L. The back-end device acknowledges the cycle by asserting READY_L.
The PCI target will assert PCI_TRDY_L, and if the initiator has PCI_IRDY_L asserted, a data write will occur. If the
transaction is a burst, the next double word can be written at the next clock edge. Once the initiator starts a burst, if
the back-end device supports bursts, the back-end must assert DATA_STOP_L to inform the target state machine
when it can no longer accept burst write data. The state machine expects to see DATA_STOP_L asserted, two data
phases before the back-end must halt the burst writes. This gives the state machine time to stop the cycle,
smoothly. If a catastrophic failure occurs, the back-end device can assert BKEND_ABORT_L at any time once the
write operation begins.

Parity Generation Block
Parity is generated on configuration read, and memory-I/O reads cycles. The parity signal PCI_PAR is pipelined to
guarantee the 11ns tCO requirement for 33MHz systems, in accordance with the PCI Local Bus Specification, Rev.
2.2. The parity generated by the PCI initiator is not checked in this design. Most applications utilizing this reference
design will be in embedded systems where PERR and SERR are unmonitored. Simple HDL code modifications
can be made to implement these signals, and the hard XOR of the ispMACH 4A3 devices will provide the designer
the flexibility to easily meet all timing and area constraints.

Retry Counter Block
If the PCI target acknowledges a read or write cycle, it must provide or accept data within 16 clock cycles of assert-
ing DEV_SEL. If the PCI target acknowledges a cycle, and the back-end device does not assert READY_L within
12 clock cycles, the PCI target will initiate a data retry. A data retry can only be asserted before the first data phase
completes. Once the back-end device acknowledges the cycle, it must provide or accept the requested data. The
retry counter block implements the counter used to signal the state machine when the back-end device “time out”
occurs.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

9

HDL Verification
The Functional Blocks of the HDL Test Suite
The HDL code for the 33MHz, 32-bit PCI target reference design test suite contains the following functional blocks:

• PCI test bench

• PCI stimulus generator

• PCI clock and reset block

• Back-end daemon

• Device-under-test (PCI target)

Figure 3. 33MHz, 32-Bit PCI Target Test Suite

PCI Test Bench
The PCI test bench is a self-contained HDL test suite used to verify the timing and functionality of the 33MHz, 32-
bit PCI target reference design. The HDL test bench is a fully-automated, self-checking test environment that tests
all normal and corner case scenarios that a PCI target will encounter interfacing to a typical back-end device.

The Device-Under-Test (The PCI Target)
The Device-Under-Test (DUT) is the 33MHz, 32-bit PCI target reference design. For RTL simulations, the DUT is
the Verilog or VHDL RTL source code implementation of the design prior to synthesis. The gate-level HDL netlist
and its associated Standard Delay File (SDF) are written by Lattice ispLEVER® software after fitting the design.
The gate-level netlist and SDF are then used in the gate-level simulations with timing to verify functionality and tim-
ing paths.

PCI Clock and Reset Block
The PCI clock and reset block are used to generate the 33MHz PCI and back-end clock and generate a 120ns
active low reset pulse for the test suite.

Back-End Daemon
This block is a daemon or behavioral model used to model the functionality of a generic back-end device. A dae-
mon is a special simulation module that once activated will operate without user intervention to emulate the func-
tionality of a particular interface. Any back-end device, whether an SDRAM, SRAM, FIFO or simple I/O device, will
need to implement control logic to arbitrate the back-end signals with the PCI target state machine. The control
logic can easily be added to the free space available in the ispMACH 4A3 device for the specific application. This

PCI Stimulus
Generator

Block

PCI Target
Reference

Design (DUT)

PCI Clock
and

Reset Block

Back End
Daemon

Block

PCI Test Bench

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

10

daemon simply arbitrates the back-end signals and reads and writes the data to the appropriate memory bank.
Depending on the address and bank written to, this daemon will respond normally, or with a retry, a stop, an abort
or an interrupt. There are two banks of memory in the daemon, and they correspond to the two base address
regions allocated inside the PCI target. Base Address Region 0 uses BK0 and Base Address Region 1 uses BK1.
All reads and writes to BK0 will function normally. BK1 has added functionality to test a retry, a stop, and an abort.
To use the special features of BK1, the cycle must start with the specified address. The daemon WILL burst by the
address with no effect if the special address is not the starting address.

• If a write is made to address 000A0h and BK1, the daemon will NOT respond with READY_L, causing a data
retry.

• If a write is made to address 000B0h and BK1, the daemon will start the cycle then respond with
DATA_STOP_L == 0 causing a data stop.

• If a write is made to address 000C0h and BK1, the daemon will start the cycle, but respond with
BKEND_ABORT_L == 0 an abort.

• If a write is made to address 000D0h and BK1, the daemon will run the cycle, but respond with
BKEND_INT_L == 0 causing an interrupt to be passed through the PCI target.

• if a write is made to address 000E0h and BK1, the daemon will run the cycle, but respond with
BKEND_INT_L == 1 causing the interrupt to be disabled.

PCI Stimulus Generator
The PCI stimulus generator block is the heart of the PCI test suite. The stimulus generator creates all the PCI
cycles as a PCI initiator would on a PCI bus, and also checks the data returned from the PCI target and the condi-
tion of its control signals. All the simulation tasks and functions are defined and executed in this block. It controls all
the automation and self check verification features of the whole test suite. Each major task or function is derived of
minor tasks or functions used to generate the transactions. The following is a list of tasks contained in this module:

• pci_reset – Sets the stimulus block up for a reset.

• read_config – Performs a PCI configuration read.

• write_config – Performs a PCI configuration write.

• read_cycle – Performs a single-cycle, burst, memory or I/O PCI read cycle.

• write_cycle – Performs a single-cycle, burst, memory or I/O PCI write cycle.

• pci_sniff – Calls the entire configuration read and write cycle set needed to initialize the PCI target.

• write_test – Calls memory and I/O read write cycles to test burst and single-cycle transactions.

• write_special_cycle – Calls special read and write cycles to test data retry, data stop, data abort, data interrupt
on/off.

• single_cycle_only_test – Calls a test that ensures that if the back-end device ties data_stop_l low, the PCI tar-
get only accepts single-cycle transactions or issues a data stop after the first data phase.

• read_special_cycle – Calls a test that performs data reads when the back-end asserts data_stop_l mid-burst.

• check_cycle – Tests the termination of any PCI cycle and determines if the cycle was a data transfer, a data
transfer with a stop, a data retry, an abort or a violation of the PCI protocol. The result of this check is passed
onto the other tasks for self-checking.

• kill_time – Runs the simulation and spaces out PCI transactions by five PCI clock cycles.

• check_data – Checks data returned by the PCI target during configuration, memory or I/O reads and compares
them with expected values.

• check_parity – Checks the PCI parity value returned during a configuration, memory or I/O read and compares
it with the expected parity value.

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

11

The 33MHz, 32-Bit PCI Target Transaction Waveforms
The following waveforms illustrate a typical operation of the 32-bit PCI target reference design implemented in an
M4A3-384/192-65FAC. All the waveforms were taken from functional gate-level simulations using the ModelSim®

simulator from Model Technology®. ispLEVER software can export a gate-level HDL netlist and an SDF for use in
at-speed gate-level simulations. These simulations are run at 33MHz using typical gate-level delays from the Stan-
dard Delay File (SDF).

Figure 4. 33MHz, 32-Bit PCI Target – Configuration Write

Figure 5. 33MHz, 32-Bit PCI Target – Configuration Read

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

12

Figure 6. 33MHz, 32-Bit PCI Target – Single Write

Figure 7. 33MHz, 32-Bit PCI Target – Single Read

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

13

Figure 8. 33MHz, 32-Bit PCI Target – Burst Write

Figure 9. 33MHz, 32-Bit PCI Target – Burst Read

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

14

Implementation
This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 11. Performance and Resource Utilization

Implementing a Design in MachXO and LatticeXP2 Devices
The design requires 46 PCI33 compatible interface signals and a total of 111 I/O pins.

The MachXO1200 and MachXO2280 devices support 3.3V PCI on the top bank of the I/O buffers of the device.
Therefore, MachXO devices that can support PCI33 are the LCMXO1200 and LCMXO2280 devices in 256-ball or
larger packages.

For LatticeXP2 devices, the 3.3V PCI is supported on both the top and bottom banks of the I/O buffers of the
device. This design can be supported in any LatticeXP2 device that has enough usable I/O pins to meet the I/O pin
requirement.

Conclusion
This reference design is free to the design engineer implementing digital systems using Lattice devices. Except for
the LatticeECP3 and ispMACH 4A3 device families, 3.3V PCI I/O buffers are supported in specific banks of the
device. The implementation results shown in Table 11 provide guidelines for selecting the appropriate device speed
grade to meet the PCI specification.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Device Family Language Speed Grade Utilization fMAX (MHz) I/Os
Architecture
Resources

LatticeECP3™ 1
Verilog -8 250 LUTs 33 111 N/A

VHDL -8 247 LUTs 33 111 N/A

LatticeXP2™ 2
Verilog -7 252 LUTs 33 111 N/A

VHDL -7 251 LUTs 33 111 N/A

MachXO2™ 3
Verilog -6 248 LUTs 33 111 N/A

VHDL -6 257 LUTs 33 111 N/A

MachXO™ 4
Verilog -5 244 LUTs 33 111 N/A

VHDL -5 249 LUTs 33 111 N/A

ispMACH® 40005
Verilog -3.5ns 270 Macrocells 33 111 N/A

VHDL -3.5ns 270 Macrocells 33 111 N/A

1. Performance and utilization characteristics are generated using LFE3-70E-8FN484C, with Lattice Diamond™ 1.2 software.
2. Performance and utilization characteristics are generated using LFXP2-5E-7FT256C, with Lattice Diamond 1.2 software.
3. Performance and utilization characteristics are generated using LCMXO2-2000HC-6FTG256C, with Lattice Diamond 1.2 software.
4. Performance and utilization characteristics are generated using LCMXO-2280C-5FT256C, with Lattice Diamond 1.2 software.
5. Performance and utilization characteristics are generated using LC4512V-35176C, with Lattice ispLEVER® Classic 1.4 software.

http://www.latticesemi.com/

Designing a 33MHz, 32-Bit PCI Target
Using Lattice Devices

15

Revision History
Date Version Change Summary

— — Previous Lattice releases.

July 2007 03.1 Updated Implementation Using MachXO Devices section.

September 2009 03.2 Added VHDL support.

January 2010 03.3 Added support for LatticeXP2 and ispMACH 4A3 device families.

April 2011 03.4 Added support for LatticeECP3 device family.

Added support for Lattice Diamond 1.2 design software.

August 2013 03.5 Updated document with new corporate logo.

Updated Table 7 title to Reg10h Base Address 0 Configured for I/O
Space.

	Introduction
	Design Goals and Limitations
	Theory of Operation
	Overview
	Functional Description
	Back-End Design Requirements

	Register Transfer Level (RTL) Implementation
	PCI Target Top
	Miscellaneous Glue Logic Block
	Configuration Multiplexer Block
	Configuration Register Implementation

	Base Address Check Block
	The State Machine
	Description
	Configuration Read Write Cycles
	Memory – I/O Read Cycles
	Memory – I/O Write Cycles

	Parity Generation Block
	Retry Counter Block

	HDL Verification
	The Functional Blocks of the HDL Test Suite
	PCI Test Bench
	The Device-Under-Test (The PCI Target)
	PCI Clock and Reset Block
	Back-End Daemon
	PCI Stimulus Generator
	The 33MHz, 32-Bit PCI Target Transaction Waveforms

	Implementation
	Implementing a Design in MachXO and LatticeXP2 Devices

	Conclusion
	Technical Support Assistance
	Revision History

