s LATTICE 8b/10b Encoder/Decoder

January 2015 Reference Desigh RD1012

Introduction

Many serial data transmission standards utilize 8b/10b encoding to ensure sufficient data transitions for clock
recovery. This reference design describes an encoder/decoder suitable for performing 8b/10b encoding/decoding
within Lattice programmable logic devices. Several generic CPLD and FPGA implementations are shown with this
reference design.

Features

* 8b to 10b encoder and 10b to 8b decoder

* Previous octet disparity input and current disparity output

» Qutput to indicate when invalid control character is requested to be encoded
* Qutput to indicate when invalid data/control character is received

* Running disparity checking

* Conform to 8b/10b specified in IEEE 802.3z and ANSI X3.230-1994

Figure 1. The 8b/10b Encoder/Decoder in a System

MSB LSB MSB LSB
HGFEDCBA
8 8
v
10b to 8b 8b to 10b
Decoder Encoder
=
R] N
A o =
a 10 7]
10 < 3
o =
= (0]
High High =
Speed Speed
Deserializer Serializer

1001110100101011101001100010111100000101
abcdeifghjabcdeifghjabcdeifghjabcecdeifghj

Do.0 D31.5 DO0.0 K28.5
(RD-) (RD-) (RD+) (RD+)

Functional Description

The 8b/10b coding scheme was initially proposed by Albert X. Widmer and Peter A. Franaszek of IBM Corporation
in 1983. This coding scheme is used for high-speed serial data transmission. The encoder on the transmitter side
maps the 8-bit parallel data input to 10-bit output. This 10-bit output is then loaded in and shifted out through a
high-speed Serializer (Parallel-in Serial-out 10-bit Shift Register). The serial data stream will be transmitted
through the transmission media to the receiver. The high-speed Deserializer (Serial-in Parallel-out 10-bit Shift Reg-
ister) on the receiver side converts the received serial data stream from serial to parallel. The decoder will then re-
map the 10-bit data back to the original 8-bit data. When the 8b/10b coding scheme is employed, the serial data
stream is DC-balanced and has a maximum run-length without transitions of 5. These characteristics aid in the
recovery of the clock and data at the receiver. Figure 1 shows the 8b/10b encoder/decoder usage in a communica-
tion system.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 RD1012_01.4

([)
(]] LATTI CE 8b/10b Encoder/Decoder

DC Balance and Run Length

A DC-balanced serial data stream means that it has the same number of Os and 1s for a given length of data
stream. DC-balance is important for certain media as it avoids a charge being built up in the media.

The run-length is defined as the maximum numbers of contiguous Os or 1s in the serial data stream. A small run-
length data stream provides data transitions within a small length of data. Data transitions are essential for clock
recovery. The PLL of the CDR generates a phase-adjustable output clock from the reference clock input. Transi-
tions on the serial data stream provide the transmission clock phase information to the PLL and allow the PLL to
recover the transmission clock with the correct phase. Note that the reference clock input is always necessary for
the CDR. The serial data stream embeds the phase of the transmission clock, not the clock itself. This reference
clock comes from the receiver system, not the transmitter system.

8b/10b Code Mapping

The 8b/10b encoder converts 8-bit code groups into 10-bit codes. The code groups include 256 data characters
named Dx.y and 12 control characters named Kx.y.

Figure 2. The 8b/10b Coding Scheme

code group D or Kx.y

MSB LSB

8b |H|a|F E|D|C|B|A

LSB MSB LSB MSB

10babcdei flglh]|ij

The coding scheme breaks the original 8-bit data into two blocks, 3 most significant bits (y) and 5 least significant
bits (x). From the most significant bit to the least significant bit, they are named as H, G, F and E, D, C, B, A. The 3-
bit block is encoded into 4 bits named j, h, g, f. The 5-bit block is encoded into 6 bits named i, e, d, ¢, b, a. As seen
in Figure 2, the 4-bit and 6-bit blocks are then combined into a 10-bit encoded value.

Disparity
In order to create a DC-balanced data stream, the concept of disparity is employed to balance the number of Os

and 1s. The disparity of a block is calculated by the number of 1s minus the number of Os. The value of a block that
has a zero disparity is called disparity neutral.

If both the 4-bit and 6-bit blocks are disparity neutral, a combined 10-bit encoded data will be disparity neutral as
well. This will create a perfect DC-balanced code. However, this is not possible. Because only 6 out of the 16 pos-
sible values of the 4-bit block are disparity neutral, they are not enough for encoding the 8 values of the 3-bit block.
Likewise, only 20 values of the 6-bit block are disparity neutral and they are not enough for encoding the 32 values
of the 5-bit block. Because both the 4-bit and 6-bit blocks have an even number of bits, the disparity is not possible
to be +1 or -1. Therefore, the values with a disparity of +2 and -2 are also used in the 8b/10b coding scheme.

Table 1 and Table 2 are the values that are used for the 3-bit to 4-bit encoding and the 5-bit to 6-bit encoding
respectively. Concatenating the 4-bit and 6-bit blocks together generates the 10-bit encoded value. Note that some
of the encoded values in Table 1 and Table 2 have two possible values, one with a disparity value of +2 and the
other with a disparity value of -2. The 8b/10b coding scheme was designed to combine the values of the 4-bit and
6-bit blocks perfectly so that the worst case disparity value of the 10-bit code group will be at most +2 or -2. For

2

([)
(]] LATTI CE 8b/10b Encoder/Decoder

example, the 4-bit encoded values with disparity value+2 will not be combined with the 6-bit encoded values with
disparity value +2 because this will create a 10-bit value with disparity value +4.

Table 1. 3-Bit to 4-Bit Encoding Values

3b Decimal 3b Binary (HGF) 4b Binary (fghi)
0 000 0100 or 1011
1 001 1001
2 010 0101
3 011 0011 or 1100
4 100 0010 or 1101
5 101 1010
6 110 0110
7 111 0001 or 1110 or 1000 or 0111

Table 2. 5-Bit to 6-Bit Encoding Values

5b Decimal 5b Binary (EDCBA) 6b Binary (abcdei)
0 00000 100111 or 011000
1 00001 011101 or 100010
2 00010 101101 or 010010
3 00011 110001
4 00100 110101 or 001010
5 00101 101001
6 00110 011001
7 00111 111000 or 000111
8 01000 111001 or 000110
9 01001 100101
10 01010 010101
11 01011 110100
12 01100 001101
13 01101 101100
14 01110 011100
15 01111 010111 or 101000
16 10000 011011 or 100100
17 10001 100011
18 10010 010011
19 10011 110010
20 10100 001011
21 10101 101010
22 10110 011010
23 10111 111010 or 000101
24 11000 110011 or 001100
25 11001 100110
26 11010 010110
27 11011 110110 or 001001
28 11100 001110
29 11101 101110 or 010001
30 11110 011110 or 100001
31 11111 101011 or 010100

= LATTICE

8b/10b Encoder/Decoder

Running Disparity

Since the worst disparity of the 10-bit encoded data value is either +2 or -2, it is still possible that more 10-bit
encoded data values with +2 (or -2) disparity are transmitted through the serial data stream. In this case, the data
stream will no longer be DC-balanced. In order to maintain a DC-balance data stream, each code group will be
converted to one of the two possible values as seen in the RD- and RD+ columns of the Table 3. The RD- disparity
will be either +2 or 0 (disparity neutral) and the RD+ disparity will be either -2 or 0. The encoder will pick one of the
two values based on the calculation of current Running Disparity.

Table 3. Portion of the 8b/10b Encoding/Decoding Mapping Table

8-bit data 10-bit data 10-bit data 10-bit data 10-bit data
Code (RD-) (RD+) Code kin/ 8-bit data (RD-) (RD+)
Group |kin/ kout| HGF EDCBA abcdei fghj abcdei fghj Group kout HGF EDCBA abcdei fghj abcdei fghj
DO0.0 0 000 00000 100111 0100 011000 1011 DO.1 0 001 00000 100111 1001 011000 1001
D1.0 0 000 00001 011101 0100 100010 1011 D1.1 0 001 00001 011101 1001 100010 1001
D2.0 0 000 00010 101101 0100 010010 1011 D2.1 0 001 00010 101101 1001 010010 1001
D3.0 0 000 00011 110001 1011 110001 0100 D3.1 0 001 00011 110001 1001 110001 1001
D31.0 0 000 11111 101011 0100 010100 1011 D31.1 0 001 11111 101011 1001 010100 1001
DO0.2 0 010 00000 100111 0101 011000 0101 DO0.3 0 011 00000 100111 0011 011000 1100
D1.2 0 010 00001 011101 0101 100010 0101 D1.3 0 011 00001 011101 0011 100010 1100
D2.2 0 010 00010 101101 0101 010010 0101 D2.3 0 011 00010 101101 0011 010010 1100
D3.2 0 010 00011 110001 0101 110001 0101 D3.3 0 011 00011 110001 1100 110001 0011
D31.2 0 010 11111 101011 0101 010100 0101 D31.3 0 011 11111 101011 0011 010100 1100
DO0.4 0 100 00000 100111 0010 011000 1101 D0.5 0 101 00000 100111 1010 011000 1010
D1.4 0 100 00001 011101 0010 100010 1101 D1.5 0 101 00001 011101 1010 100010 1010
D2.4 0 100 00010 101101 0010 010010 1101 D2.5 0 101 00010 101101 1010 010010 1010
D3.4 0 100 00011 110001 1101 110001 0010 D3.5 0 101 00011 110001 1010 110001 1010
D31.4 0 100 11111 101011 0010 010100 1101 D31.5 0 101 11111 101011 1010 010100 1010
DO0.6 0 110 00000 100111 0110 011000 0110 DO0.7 0 111 00000 100111 0001 011000 1110
D1.6 0 110 00001 011101 0110 100010 0110 D1.7 0 111 00001 011101 0001 100010 1110
D2.6 0 110 00010 101101 0110 010010 0110 D2.7 0 111 00010 101101 0001 010010 1110
D3.6 0 110 00011 110001 0110 110001 0110 D3.7 0 111 00011 110001 1110 110001 0001
D31.6 0 110 11111 101011 0110 010100 0110 D31.7 0 111 11111 101011 0001 010100 1110
K28.0 1 000 11100 001111 0100 110000 1011
K28.1 1 001 11100 001111 1001 110000 0110
K28.2 1 010 11100 001111 0101 110000 1010
K28.3 1 011 11100 001111 0011 110000 1100
K28.4 1 100 11100 001111 0010 110000 1101
K28.5 1 101 11100 001111 1010 110000 0101
K28.6 1 110 11100 001111 0110 110000 1001
K28.7 1 111 11100 001111 1000 110000 0111
K23.7 1 111 10111 111010 1000 000101 0111
K27.7 1 111 11011 110110 1000 001001 0111
K29.7 1 111 11101 101110 1000 010001 0111
K30.7 1 111 11110 011110 1000 100001 0111

The transmitter assumes a negative Running Disparity (RD-) at start up. When an 8-bit data is encoding, the
encoder will use the RD- column for encoding. If the 10-bit data been encoded is disparity neutral, the Running Dis-
parity will not be changed and the RD- column will still be used. Otherwise, the Running Disparity will be changed
and the RD+ column will be used instead. Similarly, if the current Running Disparity is positive (RD+) and a dispar-
ity neutral 10-bit data is encoded, the Running Disparity will still be RD+. Otherwise, it will be changed from RD+

= LATTICE

8b/10b Encoder/Decoder

back to RD- and the RD- column will be used again. The state diagram in Figure 3 describes how the current Run-
ning Disparity is calculated.

Figure 3. Running Disparity State Machine

if the 10-bit

encoded data of

the current

transmitting

code group

disparity neutral

is

Power Up otherwise

if the 10-bit
encoded data of
the current
transmitting
code group is
disparity neutral

RD-

use RD- column
for encoding

RD+

use RD+ column
for encoding

otherwise

Encoder and Decoder Pin Descriptions

The 8b/10b encoder and 10b/8b decoder are implemented in HDL language. These designs can be combined to
create a full duplex channel. The pin descriptions of the designs are shown in the following tables.

Table 4. Encoder Pin Descriptions

Name Type Description
clk | Encoder Clock. This pin is the main clock of the encoder. All registered inputs and outputs of the
encoder are based on the rising of this clock.
reset n | Master Reset. This low active asynchronous reset will reset all internal registers of the encoder to

their initial states.

datain_8b_[7:0]

8-bit Data Input. This is the 8-bit raw data to be encoded.

kin

Character Type Control. This high active signal indicates that the 8-bit data on datain_8b bus is
going to be encoded to a control character instead of a data character.

rdispin

Running Disparity Input. This pin provides to the encoder the running disparity before the encod-
ing of current 8-bit data on datain_8b bus.

dataout_10b_[9:0]

10-bit Data Output. This is the 10-bit encoder output.

rdispout

Running Disparity Output. This is the running disparity of the present dataout_10b bus.

k_err

O |O|lO

Invalid Control Character Requested. This high active signal indicates that a invalid control char-
acter is requested.

([)
(]] LATTI CE 8b/10b Encoder/Decoder

Table 5. Decoder Pin Descriptions

Name Type Description
Decoder Clock. This pin is the main clock of the decoder. All registered inputs and outputs of the
clk I S ;
decoder are based on the rising of this clock.
Master Reset. This low active asynchronous reset will reset all internal registers of the decoder
reset_n I -
to their initial states.
datain_10b_[9:0] I 10-bit Data Input. This is the 10-bit raw data to be decoded.
rdispin | Running Disparity Input. This pin provides to the decoder the running disparity before the
P decoding of current 10-bit data on datain_10b bus.
dataout_8b_[7:0] (0] 8-bit Data Output. This is the 8-bit decoder output.
kout o Character Type Output. This high active signal indicates that the 8-bit data on dataout_8b bus
is a control character instead of a data character.
rdispout o] Running Disparity Output. This is the running disparity of the present dataout_8b bus.
disp_err (0] Disparity Error. This high active signal indicates that a running disparity error has occurred.
Invalid Code Group Error. This high active signal indicates that an invalid 10-bit code group has
code_err (0] .
been received.

Block Diagrams and Implementation Guidelines

The block diagrams of the encoder and decoder are shown in Figure 4 and Figure 5. Notice that the encoder con-
tains a clock latency of 2 and the decoder contains a clock latency of 3. The clock latency allows the throughput to
be increased. All signals in the designs are based on the rising edge of the main clock. Once the data inputs are
provided and the setup/hold times are satisfied, the data inputs will be sampled at the rising edge of the clock. As
seen in Figure 6, the data outputs will be available after another one or two rising edges and a clock-to-output

delay.

For both the encoder and decoder designs, the rdispout output should be connected back to the rdispin input.
Except clk, reset_n, and rdispin, the other inputs are pipelined to generate the outputs. However, since the running
disparity of the data currently being transmitted is required for the encoding of the following data, the rdispin-to-rdi-
spout loopback path can only contain one register level and cannot be pipelined.

Figure 4. Encoder Block Diagram

datain_8b_[7:0]

== 5b/6b
- 5 | Encoding .) > "o|———» dataout_10b_[9:0]
’| Table 6|10 10
el
.| 3b/db
3 Encoding
Table N 4
> 6
. 8 Controls
kin oo} 4
B CR) » k_err
an Q T | |
Disarity -
rdlispin Generation »——r
D) » rdispout
Ik
c T
reset_n —l—

([)
(]] LATTI CE 8b/10b Encoder/Decoder

Figure 5. Decoder Block Diagram

- 5™ ; » dataout_8b_[7:0]
i : ool > ..
datain_10b_[9:0] j . 6b/5b -
) »>Decoding
»| Table ° ER » kout
> 4b/3b iy
4
»>Decoding S »——,_
> Table ERE] » disp_err
>)
10
»> Controls >——,_
> 570 » code_err
)
. Disparity
rdispin > .
Generation
50 » rdispout
clk -
an Q
reset_n
Figure 6. Timing Diagrams
ck /SN /N /N S\ ck SN/ NN N
data|n_8b_[7:£i]r,] [it X in@ Y in@ X in@) datain_10b_[9:0] [X in(1) X in@ X in@ X in() X in()
dataout_10b_[9:0], dataout_8b_[7:0],
rdispout, [X out(1) X out(2) rdispout, [¥ out(1) X out(2)
k_err kout,
Encoder Timing disp_err, Decoder Timing
code_err

Encoder and Decoder Behavior

This 8b/10b encoder/decoder is fully tested to cover all possible cases. The encoder will generate the correctly
encoded 10-bit codes based on the kin, datain_8b_[7:0], and rdispin inputs. The total number of combination cases
is 2 x 256 x 2 = 1024. In these 1024 cases, only (256 + 12) x 2 = 536 cases are valid and the k_err will be gener-
ated for the rest of the 488 cases. The decoder will convert 10-bit codes into 8-bit outputs. The code_err will be
generated for all invalid 10-bit codes the decoder received. However, in some cases even though the received 10-
bit input data is one of the 536 valid codes, the disp_err will be generated if the running disparity rule is violated.
The behavior of all possible input combinations of the 8b/10b encoder/decoder is shown in Table 6 and Table 7.

= LATTICE

8b/10b Encoder/Decoder

Table 6. 8b/10b Encoder Behavior

Inputs Outputs
kin datain_8b_[7:0] rdispin dataout_10b_[9:0] rdispout k_err
0 10-bit dataout from the (RD-) column of |0, If dataout has 5 one’s
0 Any of the 256 Dx.y the corresponding Dx.y row in Table 3 |1, If dataout has 6 one’s
8-bit Data Characters] 10-bit dataout from the (RD+) column of |0, If dataout has 4 one’s
the corresponding Dx.y row in Table 3 |1, If dataout has 5 one’s 0
0 10-bit dataout from the (RD-) column of |0, If dataout has 5 one’s
Any of the 12 Kx.y the corresponding Kx.y row in Table 3 |1, If dataout has 6 one’s
8-bit Control Characters] 10-bit dataout from the (RD+) column of |0, If dataout has 4 one’s
] the corresponding Kx.y row in Table 3 |1, If dataout has 5 one’s
0 10-bit dataout from the (RD-) column of |0, If dataout has 5 one’s
Other undefined 244 Kx.y the corresponding Dx.y row in Table 3 |1, If dataout has 6 one’s 1
8-bit Control Characters] 10-bit dataout from the (RD+) column of |0, If dataout has 4 one’s
the corresponding Dx.y row in Table 3 |1, If dataout has 5 one’s
Table 7. 10b/8b Decoder Behavior
Inputs Outputs
datain_10b_[9:0] | rdispin | code_err disp_err kout | dataout_8b_[7:0] rdispout
Any 10-bit data from 0 0, if data is from (RD-) column 0, If dataout has 5 one’s
either the (RD-) or 1, if data is from (RD+) column 0 1, If dataout has 6 one’s
(RD+) column of the 1 0, if data is from (RD+) column 0, If dataout has 4 one’s
Dx.y rows in Table 3 0 1, if data is from (RD-) column Corresponding |1 If dataout has 5 one’s
Any 10-bit data from 0 0, if data is from (RD-) column 8-bit Data 0, If dataout has 5 one’s
either the (RD-) or 1, if data is from (RD+) column 1 1, If dataout has 6 one’s
(RD+) column of the 1 0, if data is from (RD+) column 0, If dataout has 4 one’s
Kx.y rows in Table 3 1, if data is from (RD-) column 1, If dataout has 5 one’s
0 0, If rdispin is 0
Others . 1 X X X 1, If rdispin is 1

Note: X means that the outputs may be 0 or 1 and should be ignored because of the code_err.

an
(]] LATTI CE 8b/10b Encoder/Decoder

HDL Simulation and Verification

Figure 7 shows the timing simulation of the 8b/10b encoder/decoder implemented in a LC4128V-5T100C device.
After reset, D3.7 (RD-), D0.6 (RD+), D0.0 (RD-), D0.0 (RD-), ..., are transmitted.

Figure 7. Timing Simulation Diagrams

Harme | Hierachy [vokee | 7ams . maw . ot T L AW L TN L MM T
o oregat n | 1 |

+ & ene_dataout

B enc_k_err

o ene_datain_d0

+ & enc_dabain_di

* W g _datain_dZ

W enc_datain_d3

& & e _datain_d+

o enc_dstacut_d0

* = pnc_datacut_di

+ & enc_dabaout_dZ2

= dee_digp_err |]
® dec_code_er 0

= LATTICE

8b/10b Encoder/Decoder

Implementation

This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 8. Performance and Resource Utilization

Architecture

Device Family Language Speed Grade Utilization fmax (MHz) I/0s Resources
MachXO3L ° Verilog_LSE -5 160 LUTs >100 43 N/A
Verilog-Syn -5 160 LUTs >100 43 N/A
VHDL-LSE -5 160 LUTs >100 43 N/A
VHDL-Syn -5 160 LUTs >100 43 N/A
MachXQ2™ 2 Verilog-LSE —6 160 LUTs >100 43 N/A
Verilog-Syn —6 160 LUTs >100 43 N/A
VHDL-LSE —6 160 LUTs >100 43 N/A
VHDL-Syn —6 160 LUTs >100 43 N/A
MachXQ™ 3 Verilog-LSE -3 160 LUTs >100 43 N/A
Verilog-Syn -3 160 LUTs >100 43 N/A
VHDL-LSE -3 160 LUTs >100 43 N/A
VHDL-Syn -3 160 LUTs >100 43 N/A
ECP5™ 9 Verilog_LSE —6 167 LUTs >200 43 N/A
Verilog-Syn —6 167 LUTs >200 43 N/A
VHDL-LSE —6 167 LUTs >200 43 N/A
VHDL-Syn —6 167 LUTs >200 43 N/A
LatticeECP3™ # Verilog-Syn —7 188 LUTs >200 43 N/A
VHDL-Syn —7 188 LUTs >200 43 N/A
LatticeECP2M™ ®| Verilog-Syn —6 192 LUTs >200 43 N/A
VHDL-Syn —6 192 LUTs >200 43 N/A
LatticeECP™ © Verilog-Syn -5 173 LUTs >100 43 N/A
VHDL-Syn -5 173 LUTs >100 43 N/A
LatticeXP2™ 7 Verilog-Syn -5 190 LUTs >100 43 N/A
VHDL-Syn -5 184 LUTs >100 43 N/A
ispMACH® 4000 & Verilog-Syn -3 74 Macrocells >90 43 N/A
VHDL-Syn -3 74 Macrocells >90 43 N/A

1. Utilization is the total resources used for the Encoder and Decoder. The Encoder occupies about 30% of the total resource used.

2. Performance and utilization characteristics are generated using LCMX02-1200HC-6MG132C with Lattice Diamond® 3.3 design software
with Lattice Synthesis Engine (LSE) and Synplify Pro®.

3. Performance and utilization characteristics are generated using LCMX0O1200C-3T100C with Lattice Diamond 3.3 design software with Lat-
tice Synthesis Engine (LSE) and Synplify Pro.

N

Synplify Pro.

©ENOo

Synthesis Engine (LSE) and Synplify Pro.
10. Performance and utilization characteristics are generated for LCMOX3L-4300C-5BG256C, with Lattice Diamond 3.3 design software with
Lattice Synthesis Engine (LSE) and Synplify Pro.

. Performance and utilization characteristics are generated using LFE3-150EA-7FN1156C with Lattice Diamond 3.3 design software with

Performance and utilization characteristics are generated using LFE2M-50E-6F672C with Lattice Diamond 3.3 design software with Synplify Pro.
Performance and utilization characteristics are generated using LFECP-6E-5T144C with Lattice Diamond 3.3 design software with Synplify Pro.
Performance and utilization characteristics are generated using LFXP2-5E-5M132C with Lattice Diamond 3.3 design software with Synplify Pro.

. Performance and utilization characteristics are generated using LC4256B-3T100C with ispLEVER® Classic 1.3 design software.

. Performance and utilization characteristics are generated for LFE5U-45F-6MG285C, with Lattice Diamond 3.3 design software with Lattice

10

([)
(]] LATTI CE 8b/10b Encoder/Decoder

Technical Support Assistance

e-mail: techsupport@Iatticesemi.com
Internet: www.latticesemi.com

Revision History

Date Version Change Summary

1.4 Updated Implementation section. Updated Table 8, Performance and
Resource Utilization.

— Added support for ECP5 and MachXOS3L.

— Added support for Lattice Diamond 3.3 design software.
— Added support for LSE and Synplify Pro.

— Updated values and footnotes.

January 2015

Updated Technical Support Assistance information.

February 2012 01.3 Updated document with new corporate logo.

April 2011 01.2 Added support for LatticeECP2M and LatticeECP3 device families.

Added support for Lattice Diamond design software.

Removed ispXPLD® 5000MX from Implementation table.

June 2010 01.1 Updated for LatticeXP2, LatticeECP and MachXO device support.
Updated Timing Simulation diagram.
November 2002 01.0 Initial release.

11

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

	Introduction
	Features
	Functional Description
	DC Balance and Run Length
	8b/10b Code Mapping
	Disparity
	Running Disparity
	Encoder and Decoder Pin Descriptions
	Block Diagrams and Implementation Guidelines
	Encoder and Decoder Behavior

	HDL Simulation and Verification
	Implementation
	Technical Support Assistance
	Revision History

