i atlice Using Memory in
sinini o moration " ispXPLD"5000MX Devices

March 2005 Technical Note TN1030

Introduction

This document describes memory usage and flow in the Lattice ispXPLD™ family of devices. A brief overview of
the ispXPLD’s memory resources are presented along with the parameterizable memory elements supported by
Lattice’s ispLEVER™ design tool.

The ispXPLD architecture is built around the Multifunction Block (MFB), which can be configured either as tradi-
tional logic or as memory. When it is configured as memory it can function as dual-port SRAM, pseudo-dual port
SRAM, single-port SRAM, FIFO, or CAM memory.

Multifunction Blocks

The ispXPLD architecture allows the MFB to be configured as a variety of memory blocks as detailed in Table 1.

Table 1. MFB Memory Configurations

Memory Mode Configurations
Dual-port 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 8
512x 16
Single-port, 16,384 x1
Pseudo Dual Port, 8,192 x 2
FIFO 4,096 x 4
2048 x 8
1024 x 16
512 x 32
CAM 128 x 48

Once the MFB has been configured as memory, no other logic can be implemented in that block. The one excep-
tion is a FIFO block that requires 32 data outputs, as it will need an additional MFB for flag generation. To generate
the control circuitry for the four FIFO flags, four macrocells and six inputs are required. This leaves 28 macrocells
and 62 logic inputs for generic logic implementation in the additional MFB.

Initializing Memory

In each of the memory modes it is possible to specify the power-on state of each bit in the memory array. This
allows the memory to be used as ROM if desired. Each bit in the memory array can have one of four values: 0, 1, X
(always match) or U (never match). Note that X (always match) and U (never match) values only apply for CAM. For
all other memory modes, use ones and zeroes.

Increased Depth And Width

Memory that requires a depth or width that is greater than that supported by a single MFB, can be supported by
cascading multiple blocks. For dual port, single port, and pseudo-dual port memory blocks, additional width is eas-
ily provided by sharing address lines. Additional depth is supported, by multiplexing the RAM output. For FIFO and
CAM modes additional width is supported through the cascading of MFBs. For FIFOs up to four MFBs can be cas-
caded for additional width ranging to 128 bits. The CAM can also cascade up to four MFBs to provide additional
width, allowing the implementation of a CAM to a maximum of 128x192.

Lattice’s ispLEVER design tool automatically combines blocks to support the memory size specified in the user’s
design.

www.latticesemi.com 1 tn1030_05.1

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Bus Size Matching

All of the memory modes apart from the CAM mode support different widths on each of the ports. The RAM bits are
mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of
words for each port varies this mapping scheme applies to each port.

With CAM memory the port size is 48 bits for a single MFB. Cascading up to three additional MFBs can expand the
width of the CAM to 192 bits. Use of the mask register allows for comparisons of less than 48 bits but the port width
will still be 48 bits. This is more fully explained in the CAM description later in this document.

Different Data Bus Widths on Two Ports

True Dual Port and Pseudo Dual Port modes support different data bus widths. The two ports in the memory can
have different data bus widths. In True Dual Port Mode different widths for read/write port A and read/write port B is
supported. In Pseudo Dual Port mode, different widths for the read and write ports can also be specified.

While the two ports are operating with different data bus widths, the addressing scheme ensures that the RAM
location addressed with each address follow a certain order. Each word written on a wider side can be read as suc-
cessive multiple words on a narrower port. For example if port A writes 32-bit words, and port B reads 8-bit words,
one word written on port A is read as four consecutive words from port B.

Supported Memory Modes

True Dual-Port SRAM Mode

In Dual-Port SRAM mode, the Read/Write address lines share two independent read/write ports, and can access
up to 8,192-bits of memory. Data widths of 1, 2, 4, 8, and 16 are supported by the MFB. Figure 1 shows the block
diagram of the dual port SRAM.

Write data, address, chip select and read/write signals are always synchronous (registered). The output data sig-
nals can be synchronous or asynchronous. Resets are asynchronous. All inputs on the same port share the same
clock, clock enable, and reset selections. All outputs on the same port share the same clock, clock enable, and
reset selections. Port A and Port B are completely independent from a data width and from a control standpoint.
There may be instances when both data ports attempt to write to the memory. This should be avoided as there is
no arbitration logic to control which port controls the writing of data into the memory. Table 2 shows the possible
sources for the clock, clock enable and initialization signals for the various registers.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Figure 1. Dual-Port SRAM Block Diagram

SLKO —1% PORT A

ehKe :1 Read/Write Address "\ RD Data A
RESET __>: (ADA[0:8-12]) ! (DOA[0:0-15])
. Reset A (RsTA) ‘:
+ Clock A (cLkA) .

' Clk En A (CENA)

4,\ ! Write/Read A (wRra)

68 Inputs \ : Chip Sel A (csA [0:1])

From D]
Routing /.| Write Data
I/ (DIA[0:0,1,3,7,15])]

Similar signals

as PORT A:
ADBJ[0:8-12], RSTB,
CLKB, CENB, WRB,

CSBI0,1], DIB[0:0,1,3,7,15]

RD Data B
(DOBI[0:0-15])

Table 2. Register Clock, Clock Enable and Reset in Dual-Port SRAM Mode

Register Input Source
Address, Write Data, Clock Selected from CLKA (CLKB) or one of the global clocks (CLKO - CLK3).
Read Data, Read/Write, The selected signal can be inverted if desired.
and Chip Select Clock Enable | Selected from CENA (CENB) or two of the global clocks (CLK1 - CLK 2).
The selected signal can be inverted if required.
Reset Created by the logical OR of the global reset signal and RSTA (RSTB).
RSTA (RSTB) can be inverted if desired.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Pseudo Dual-Port SRAM Mode

In Pseudo Dual-Port SRAM mode the MFB is configured as an SRAM memory with independent read and write
ports that access the same 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB.
Figure 2 shows the block diagram of the Pseudo Dual-Port SRAM

Write data, write address, chip select and write enable signals are always synchronous (registered.) The read data
and read address signals can be synchronous or asynchronous. Reset is asynchronous. All write signals share the
same clock, and clock enable. All read signals share the same clock and clock enable. Reset is shared by both the
read and write signals. Table 3 shows the possible sources for the clock, clock enable and initialization signals for
the various registers.

Figure 2. Pseudo Dual-Port SRAM Block Diagram

ety >
CLK2 —|» | Read Address Read Data
CLK3 — | | (RAD[0:8-13]) (RD[0:0-15))
RESET —» .
Write Address
(WAD[0:8-13])
Write Data 16,384 bit
,\ (WDJ[0:0,1,3,7,15,31]) Pseudo
i Dual
68 Inputs Write Enable (wg) - Pz?t
From Write Clock (wcLk) SRAM
Routing . .
Write Chip Sel (wcsio,1] Array

l/ Write Clk Enable (wcEl

Read Clk Enable (Rcen
Read Clock (RcLK)

Reset (RsT)

Table 3. Register Clock, Clock Enable, and Reset in Pseudo Dual-Port SRAM Mode

Register Input Source
Write Address, Write | Clock Chosen from WCLK or one of the global clocks (CLKO -CLK3).
Data, Write Enable, The selected signal can be inverted if desired.

and Write Chip Select Clock Enable |Chosen from WCEN or two of the global clocks (CLKO - CLK3).
The selected signal can be inverted if desired.

Reset Created by the logical OR of the global reset signal and RST.
RST may have inversion if desired.
Read Data and Read |Clock Chosen from RCLK or one of the global clocks (CLKO - CLK3).
Address The selected signal can be inverted if desired.

Clock Enable |Chosen from RCEN or two of the global clocks (CLK1 - CLK2).
The selected signal can be inverted if desired.

Reset Created by the logical OR of the global reset signal and RST.
RST may have inversion if desired.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Single-Port SRAM Mode

In Single-Port SRAM mode, one port is shared by the Read/Write address lines, and can access up to 16,384-bits
of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure 3 shows the block diagram of the
single-port SRAM.

Write data, write address, chip select and write enable signals are always synchronous (registered). The read data
and read address signals can be synchronous or asynchronous. Reset is asynchronous. All signals share a com-
mon clock, clock enable, and reset. Table 4 shows the possible sources for the clock, clock enable and reset sig-
nals.

Figure 3. Single-Port SRAM Block Diagram

CLKO — >
&rke Iy
&2 1% [Read/Write Address Read Data
RESET —» |(AD[0:8-13]) (DO[0:0-31])
Write Data
(DI[0:0,1,3,7,15,31])
4,\ Write/Read (wRr) N 16 384-Bit
68 Inputs \ _Clock (LK)
from .
Routing Chip Select (cso,1)

Clk Enable (cEn)

l Reset (RsT)

Table 4. Register Clock, Clock Enable, and Reset in Single-Port SRAM Mode

Register Input Source
Address, Write |Clock CLK or one of the global clocks (CLKO - CLK3).
Data, Read Each of these signals can be inverted if required.
Data, -
Read/Write, and Clock Enable |CEN or two of the global clocks (CLK1 - CLK 2).

Each of these signals can be inverted if required.

Reset Created by the logical OR of the global reset signal
and RST. RST is routed by the multifunction array
from GRP, with inversion if desired.

Chip Select

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

FIFO Mode

In FIFO mode the multifunction array is configured as a FIFO (First In First Out) buffer with built in control. The read
and write clocks are independent of each other but can be tied together if the application requires it. Four flags
show the status of the FIFO: Full, Almost Full, /Empty and /Almost Empty. /Empty and /Almost Empty are negative
true signals. The thresholds for almost full and almost empty are programmable by the user. It is possible to reset
the read pointer, allowing support of frame retransmit in communications applications.

The Almost Full and /Almost Empty flags indicate the status of the stack pointer with respect to Full and /Empty.
Almost Full is an offset subtracted from the highest memory address, and /Almost Empty is an offset added to the
lowest memory address. These flags are defined in the instantiation template via the Ipm_amempty_flag and
Ipm_amfull_flag parameters. Values for both can range from 1 to the maximum number of address locations.

In this mode one port accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the
MFB. Figure 4 shows the block diagram of the FIFO. These MFB blocks are cascaded to create FIFO sizes larger
than 16K. Cascading sometimes requires extra logic elements like counters that occupy additional macrocells. For
width cascading, no external logic is required if the depth can fit into the maximum depth of a single block. How-
ever, for depth cascading, external counters are needed. For example, in a 16K x 16 (depth x width) FIFO configu-
ration, no extra counters are needed. This is width cascading. For 32K X 1 FIFO, counters will be needed since the
depth (32K) is larger than the depth available in a single MFB (16K). When the configuration needs both width and
depth cascading, the software optimizes it to the maximum depth with width cascading.

Write data, write enable, flag outputs and read enable are synchronous. The Write Data, Almost Full flag and Full
flag share the same clock and clock enables. Read outputs are synchronous. The Read Data, /Empty flag and
/Almost Empty flag share the same clock and clock enables. Reset is shared by all signals. Table 5 shows the pos-
sible sources for the clock, clock enable and reset signals for the various registers.

The Full and Almost Full flags are based on the write port. The Full and Almost Full flags change state only on write
clock rising edges. The Empty and Almost Empty flags are based on the read port. The /Empty and /Almost Empty
flags change state only on read clock rising edges. FIFO flag latency is reduced when both read/write clocks are
left running. If the read/write clocks are free running, data is inserted/retrieved by synchronously controlling the
Read/Write Enable strobes.

Once the Full or Empty flag goes active, the internal FIFO pointer is frozen at the last active value, and no opera-
tion is performed on the memory. In other words, Writes to the FIFO after the full flag goes active or Reads after the
Empty flag goes active are ignored.

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Figure 4. FIFO Block Diagram

CLKO — 1 Write Enable (we) N
Stﬂ _1y Write Clock wcLk) N
CLK3 — o FIFO
RESET —» _Reset (Rsn) N FIFO Flags*
Control [N
Read Clock (RCLK) ~ Logic Aot bl
Reset_RP (RsTRP) _ Almost Empty,
Read Enable (rg) _
68 Inputs
From
Routing

]

Write Data
(DI[0:0-31])

i RctZ8 18 Read Data
SRAM (DO[0:0-31])

Array

*Control logic can be
duplicated in adjacent MFB
in 32-bit mode

Table 5. Register Clocks, Clock Enables, and Initialization in FIFO Mode

CAM Mode

Register Input Source
Write Data, Clock WCLK or one of the global clocks (CLKO - CLK3).
Write Enable Each of these signals can be inverted if required.
Clock Enable |WEN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.
Reset N/A
Full and Almost |Clock WCLK or one of the global clocks (CLKO - CLK3).
Full Flags Each of these signals can be inverted if required.
Clock Enable |WEN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.
Reset Created by the logical OR of the global reset signal and
RST. RST is routed by the multifunction array from GRP,
with inversion if desired
Read Data, Clock RCLK or one of the global clocks (CLKO - CLK3).
Empty and Each of these signals can be inverted if required.
AmostEMPYY [Clock Enable | REN or two of the global clocks (CLKT - CLK 2).
ags Each of these signals can be inverted if required.
Reset Created by the logical OR of the global reset signal and
RST. RST is routed by the multifunction array from GRP,
with inversion if desired

In CAM mode the multifunction array is configured as a ternary Content Addressable Memory (CAM.) CAM
behaves like a reverse memory where the input to the memory is data and the output is an address at which the
input data is located. It can be used to perform a variety of high-performance look-up functions. As such CAM has
two modes of operation. In write or update mode the CAM behaves as a RAM, and the data is written to the sup-
plied address. When reading or comparing, data is supplied to the CAM. If that data matches any of the entries in
the CAM array the Match or Multi-Match (if there is more than one match) flag is set to true, and the lowest address
with matching data is the output. The MFB can be configured as a CAM that contains 128 entries of 48 bits.
Figure 5 shows the block diagram of the CAM

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

To further enhance the flexibility of the CAM a mask register is available for both update and compare operations. If
the mask register is enabled during updates, bits corresponding to those set to a ‘1’ in the mask register are not
updated. If it is enabled during compare operations, bits corresponding to those set to a ‘1’ in the mask register are
not included in the compare. A Write Don’t Care signal allows don’t cares to be programmed into the CAM if
desired. As with other write operations, the mask register controls this.

Data is written into the Mask Register by enabling the WrMask (Write Mask) bit. When WrMask is enabled during
write mode, the data written into the CAM array is also automatically stored in the Mask Register. Once the mask is
configured, it can be used during Update and Compare modes by enabling the EnMask (Enable Mask) bit.

The WrDC (Write Don’t Care) bit functions much like the EnMask and WrMask inputs. When in write mode and
WrDC is set to a 1, the data written to the CAM array during the next write operation is stored in the Write Don’t
Care register.

The Write/Comp Data, Write Address, Write Enable, Write Chip Select, and Write Don’t Care signals are synchro-
nous. The CAM Output signals, Match flag, and Multi-Match flag signals can be either synchronous or asynchro-
nous. The Enable mask register input is not latched but must meet setup and hold times relative to the Write Clock.
All inputs must use the same clock and clock enable signals. All outputs must use the same clock, and clock enable
signals. Reset is common for both inputs and outputs. Table 6 shows the allowable sources for clock, clock enable,
and reset for the various CAM registers.

For additional information on the CAM memory in the ispXPLD family of devices please refer to application note
ANB8071, Content Addressable Memory Applications for ispXPLD Devices.

Figure 5. CAM Mode

SkE? —1 Write/Comp Data
gll:% —» | (WD[0:31])
—>
RESET —» _ CAM
Write Address Output

(WAD[0:6]) CO[0:6]

En Mask Reg (EN_MASK)

[\ Write Enable (wE) 128X48
Write Chip Sel (wcsio:1)) CAM
68,::10%“5 WR Mask Reg (WR_MAS
Routing / WR don’t care wR_pc)
—V Reset (RsT)

CLK (cLk)
Clock Enable (cg)

Table 6. Register Clocks, Clock Enables, and Initialization in CAM Mode

Register Input Source
Write data, Write address, Clock CLK or one of the global clocks (CLKO - CLK3).
Enable mask register, Write Each of these signals can be inverted if required.

e“?b'g’ write Ch‘%i?\'/leg’ and [Ciock Enable |WE or two of the global clocks (CLKT - CLK 2).
write don't care, utput, Each of these signals can be inverted if required.

Match, and Multimatch

Reset Created by the logical OR of the global reset signal
and RST. RST is routed by the multifunction array
from GRP, with inversion if desired

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Including Memory in ispXPLD 5000MX Designs

To use memory in ispXPLD 5000MX designs the desired memory function must be instantiated into the HDL
source code describing the design. This is done in the form of LPM primitives, which are passed through the syn-
thesis tool to Lattice backend design tools. These backend tools then work to implement the memory requested in
the source code. The remainder of this document details the LPM primitives and example templates.

Configurable Memory Primitives

Configurable memory primitives are provided to allow easy configuration of the MFBs. These primitives are added
to your design source. With the addition of parameters these memory primitives can be easily configured to match
your design needs.

This section describes the six types of configurable memory primitives that are supported.

* LPM_RAM_DP — Dual-Port RAM

* LPM_RAM_DP_PSEUDO - Pseudo Dual Port RAM
* LPM_RAM_DQ — Single-port RAM

* LPM_FIFO_DC - FIFO

* LPM_CAM - CAM

* LPM_ROM — ROM

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

True Dual-Port Random Access Memory (LPM_RAM_DP)

DatalnA ’ '
AddressA _> oA
ClockA >
ClockEnA - »
WrA — p
ResetA >
LPM_RAM_DP
DatalnB _>
AddressB ’ —’QB
ClockB >
ClockEnB >
WrB —
ResetB >
Ports
Port Type Description Comments
QA Out Data out, port A Port width is user defined
DatalnA In Data in, port A Port width is user defined
AddressA In Address, port A Address depth is user defined
ClockA In Clock, port A
ClockEnA In Clock Enable, port A
WrA In Write Enable, Port A
ResetA In Reset, port A Asynchronous Reset
QB Out Data out, port B Port width is user defined
DatalnB In Data in, port B Port width is user defined
AddressB In Address, port B Address depth is user defined
ClockB In Clock, port B
ClockEnB In Clock Enable, port B
WrB In Write Enable, Port B
ResetB In Reset, port B Asynchronous Reset

10

Lattice Semiconductor

Using Memory in

ispXPLD 5000MX Devices

Properties

Parameter Description Comments Value
Ipm_widtha Defines data width for port A User-defined Number of data bits
Ipm_widthada Defines address width for port A User-defined Number of address lines

Ipm_numwordsa

Defines memory depth for port A

User-defined

Number of address locations

nous

Ipm_widthb Defines data width for port B User-defined Number of data bits
Ipm_widthadb Defines address width for port B User-defined Number of address lines
Ipm_numwordsb Defines memory depth for port B User-defined Number of address locations
Ipm_outdata Defines read data to be synchronous or asyn- User-defined Registered or Unregistered
chronous
Ipm_indata Defines write data to be synchronous Synchronous Registered
Ipm_addressa_control |Defines that port A address lines will be synchro- |Synchronous Registered
nous
Ipm_addressb_control |Defines that port B address lines will be synchro- |Synchronous Registered

Ipm_init_file

Defines initialization file

File for initializing
data in the RAM

Name of the initialization file

True Dual Port RAM with Asynchronous Read

Write/ Read A (WRA)

Write/ Read B (WRB)

topcEAS]

Clk En A (CENA) { |
|

|

|

|

toPRWAS

tDPRWAH

L

|

! tDPRWBS/F:ﬁ toPRWEBH
| |

t |

clockA(CLKA) 7 N /T N AT N\ N\

Clk En B (CENB)
Clock B (CLKB) _/___)/___)/___)/__

|

toPmsAs !

Chip Sel A (CSA[0:1]) {; ;

|

Chip Sel B (CSB[0:1]) }

|

|

Read/ Write Address A (ADA[0:8-12])

|

|
Read/ Write Address B (ADB[0:8-12]) |
Write Data A (DIA[0:0,1,3,7,15])
Write Data B (DIB[0:0,1,3,7,15])
RD Data A (DOA[0:0-15]) | Invalid/ Previous Data

RD Data B (DOB[0:0-15]) |

1 toPcEAH
|

«!DPCLKSKEW	1

NS

|
|
|
| 'oPmsBs
|
|
|

| —q toPMSAH
|
|
|
T
|
|

l Add_0_A, + Add_1_ """IX -
| | 1 |
| | | | |
tDPADDAS ‘tDPADDAH l/Add 0B ‘ ! Add_1_A ! Add_1_B
T _0_| T T L1 T L1
t
: [—T—/‘ : : DPDATAAS T~ Tt 00 aTAAH : :
| 'bpappBs| | 'bPADDBH ‘ ‘ - !
| | | | Data_1_ Dalafzf»y |
| | | | | | |
| | | | | | j S E—
t t t t Data_1_B
| | | | | |
| IoPRCLKAO | ‘ ‘ ‘ |y -
| | | | . 'bpPDATABS \ . {DPDATABH
Data 0_A X Data_1_A X Daa2A
‘ | ‘ | topi CLKBO‘ | | ‘ | ‘ | ‘ |
Invalid/ Previous Data Data_0_B >< Data_1_A >< Data_2_A ><€ala,1,a

Note: While one port is writing and the other port tries to read or write at the same memory location, there must be a minimum tppc kskew
between the two clocks.

11

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

True Dual Port RAM with Synchronous Read

topRWAS 'DPRWAH
| | | |

Write/ Read A (WRA) ‘ \ I I

Write/ Read B (WRB)

|
|
|
|
opcEAS ! {DPCEAH
Clk En A (CENA) | | |
| | |
| |

cockACLKA) N/ [N\ [N [N [N NS NS
Clk En B (CENB) : ‘L

| | | __/
| | | |
| | | |
! ! £/ loPCLKSKEW !
| | | |

! }‘DP(EBS !
cockB(ELKB) /" N/ N/ N N N N\ N\
topmsAS | | | | | | |
! ! ! ! I thPMSAH
Chip Sel A (CSA[0:1]) : : \ I I I | |
DPMSBS } ; : : :
| |
Chip Sel B (CSB[0:1]) | ! ! ; | ; 1
| | | | | | |
Read/ Write Address A (ADA[0:8-12]) Add 0.4 } } } Add_1_A (Add_1_A }
| | | | | |
tDPADDAS | fDPADDAH || ey [w e | |

Read/ Write Address B (ADBJ[0:8-12]) - ;

|
t t
| DPDATAAS |, DPDATAAH
tbPADDBS tDPADDBH

| | | |
I | I I
Write Data A (DIA[0:0,1,3,7,15)) ! ! ‘ ! Gata_1_A Data 2 A |
I I I I [[I
| | | | | | |
L L L L L L L
Write Data B (DIB[0:0,1,3,7,15]) ! ! ! | | | |
! | 'oPRCLKAD | ! ! ! !
RD Data A (DOA[0:0-15]) Invalid/ Previous Data ek Data_0_A >< Data_1_A X Data_2_A
! ‘ ! ‘ ! IDPRCLKBO | | L] | ‘
RD Data B (DOBJ[0:0-15]) | Invalid/ Previous Data Data_0_B >< Data_1_A ><3a|a,2,A

Note: While one port is writing and the other port tries to read or write at the same memory location, there must be a minimum tppc| KSKEW
between the two clocks.

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

12

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)

Data _> —> Q
WrAddress _>
WrClock —pp|
WrClockEN —
LPM_RAM_DP
RdAddress _> PSEUDO
RdClock —
RdClockEN |
WE —>
Reset — P
Ports
Port Type Description Comments
Q Out Data out Port width is user defined
Data In Data in Port width is user defined
WrAddress In Write Address Address Depth is user defined
WrClock In Write Clock
WrClockEN In Write Clock Enable
RdAddress In Read Address Address Depth is user defined
RdClock In Read Clock
RdClockEN In Read Clock Enable
WE In Write Enable
Reset In Reset Asynchronous Reset
Properties
Parameter Description Comments Value
Ipm_widthw Defines data width for write port User-defined Number of data bits to write
Ipm_widthadw Defines address width for write port User-defined Number of write address lines

Ipm_numwordsw

Defines memory depth for write

User-defined

Number of address locations

Ipm_widthr

Defines data width for read port

User-defined

Number of data bits to read

Ipm_widthadr

Defines address width for read port

User-defined

Number of read address lines

Ipm_numwordsr

Defines memory depth for read

User-defined

Number of read address locations

Ipm_outdata

Defines read data to be synchronous or
asynchronous

User-defined

Registered or unregistered

synchronous

Ipm_addressr_control |Defines that read address lines will be Synchronous Registered
synchronous
Ipm_addressw_control |Defines that write address lines willbe |Synchronous Registered

Ipm_init_file

Defines initialization file

File for initializing
data in the RAM

Name of the initialization file

13

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Pseudo Dual Port RAM with Asynchronous Read

|
Write Chip Select (WCS[0,1]) 4)@

|
T

|

t | |
PDPMSS |
| |
|

!

|

|

|

| | tPDPMSHk—\}\
| tF’DF’RWS/[,——’,“——\L‘F’DF’RWH | |
1 1 1 / T\ 1
Write Clock WCLK) / N\ /| _/__)/__/__/:/__/__)/_\

| |
| |
| | |
tPDRWCES t
| F:*ﬂ PDPWCEH . |
| | | |
T T
| |
| |
| |
| |

Write Enable (WE)

|
|
|
Write Clk Enable (WCEN) :
T T
[tPDPCLKSKEW!
| L |
|
|

ReadClock RCLK) /7 N[/~ U/ ./ _J/ L/ L/

|
| |
tPDPRCES tPDPRCEH
Read Clk Enable (RCEN) | I

T

|
|
|
|
|
1tPDPWADDS
|
‘
|
|
|
|

| |
! ! tPDPWADDH
Write Address (WAD[0:0,1,3,7,15,31]) I . .
1 1 Add_1 l Add_2
| | | Add71 | Add 2 |
Read Address (RAD[0:8-13]) tPDPRADDS I\I'/f:\’l 'PDPRADDH ‘ j) j) j ‘
t
| 'Add_0 ! ! } : U SPADDDATA
| | | t | | | |
Write Data (WD[0:0,1,3,7,15,31]) [[| PDPDATAS [r—2—) IPDPDATAH — |
T T T I\ /l T / T
! ! ! Data_1 ! Data_3 !
| tPDPRCLKD | | | | |
Read Data (RD[0:0-15 - -
(RDL D | Invalid / Previous Data % Data_0 >< Data_1 >< Data_2 Data_3
" T T T T T T T T T T T T

Notes:

While Write port is writing and the Read port tries to read at the same memory location, there must be a minimum tpppcl KSKEW
between the two clocks. As shown above, if Add_1 is where the the read and write is occurring then there should be a minimum clock
skew of tPDF’CLKSKEW between the RCLK and WCLK.

Further, when we read from an address and in the next Write clock cycle, we start writing to that address, then the Read Data gets
updated tgpapppaTa after the address is stable. This is shown, when we are reading Add_2 and the Read Data is Data_2. In the next
write clock cycle, Add_2 is witten with Data_3. The Read Data gets updated tgpapppaTa after the Add_2 is stable. Both Data_2 and
Data_3 are from the same location Add_2.

14

Lattice Semiconductor

Using Memory in

ispXPLD 5000MX Devices

Pseudo Dual Port RAM with Synchronous Read

Write Chip Select (WCS|0,1])

Write Enable (WE)

Write Clock (WCLK)

Write Clk Enable (WCEN)

Read Clock (RCLK)

Read Clk Enable (RCEN)

Write Address (WAD[0:0,1,3,7,15,31])

Read Address (RAD[0:8-13])

Write Data (WD[0:0,1,3,7,15,31])

Read Data (RD[0:0-15])

Notes:

Lt

teppinss

PRWS. | .tp

|
f—{PDPMSH\
| |
|

—

! tpDPRCES, tPDPRCEH

DDPWCEl-‘|
|

—
n)
o

PCLKSKEW
|

m

|
tPDPRADDH

|
|
|
Il
|
PDPWADOH
|
|
|
|
|

=
it

a1 " Add_

|
PDPDATAH
|

PDPRCLKQ

[Invalid / Previous Data

X

While the Write port is writing and the Read port tries to read at the same memory location, there must be a minimum tpppcLksSKEW
between the two clocks. As shown above, if Add_1 is where the the read and write is occurring then there should be a minimum clock
skew of tpppcLkskew between the RCLK and WCLK.

Further, when we read from an address and in the next Write clock cycle, we start writing to that address, then the Read Data gets

updated tgpapppaTa after the address is stable. This is shown when we are reading Add_2 and the Read Data is Data_2. In the next
write clock cycle, Add_2 is witten with Data_3. The Read Data gets updated tgpaoDDDATA after the Add_2 is stable. Both Data_2 and
Data_3 are from the same location, Add_2.

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

15

Using Memory in

Lattice Semiconductor ispXPLD 5000MX Devices

Single-Port RAM (LPM_RAM_DQ)

Data —> _> Q
Address —’
Clook ——p| LPM_RAM_DQ
ClockEN ——— P
WE ———P»
Reset ————P»|
Ports
Port Type Description Comments
Q Out Data Out Port width is user defined
Data In Data In Port width is user defined
Address In Read/Write Address Port width is user defined
Clock In Clock
ClockEn In Clock Enable
WE In Write Enable
Reset In Reset Asynchronous Reset
Properties
Parameter Description Comments Value
Ipm_width Defines Data width User-defined Number of data bits
Ipm_widthad Defines address width User-defined Number of address lines

Ipm_numwords

Defines memory depth

User-defined

Number of address locations

Ipm_outdata

Defines read data to be synchronous or
asynchronous

User-defined

Registered or unregistered

Ipm_address_control

Defines the value of the read address
lines. In unregistered mode, the output
toggles at each address change. In regis-
tered mode, Q is toggled by the clock.

User-defined

Registered or unregistered

Ipm_init_file

Defines initialization file

File for initializing data in
the RAM

Name of the initialization file

16

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Single Port RAM with Asynchronous Read

tSPRWSI/::{spRWH
Write/ Read (WR)
tspces
Clk Enable (CEN) —— / \
Clock (CLK) /—\— —\— —\— —\— S

tSPADDS k— tSPADDH
. . — { Add_0 Ach_1\
Read / Write Address (AD[0:8-13]) Wi ‘
SPADDDATA
Write Data (DI[0:0,1,3,7,15,31]) . Data_1
SPDATAS T tsppATAH
Read Data (DO[0:0-31]) | Invalid/ Previous Data Data_0 X Data_1

Single Port RAM with Synchronous Read

tSPRWTﬁiSPRWH
Write/ Read (WR)

tspces

Clk Enable (CEN)

Clock (CLK) /—_ —_ —_ —_ N

Read / Write Address (AD[0:8-13)) — | AE Add_1
tsPADDS tSPADDH
Write Data (DI[0:0,1,3,7,15,31]) Data_1
ISPCLKO tgppamas T tSPDATAH
Read Data (DO[0:0-31]) | Invalid/ Previous Data Data_0 >< Data_1
T — T T

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

17

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

First-In-First-Out Memory (LPM_FIFO)

Data —’ I Q
Wr\c,:vl?;: 4’. » Ful
RdClock —————», LPM_FIFO ——p Empty
RIEN ———p - AmFull
RPReset ———— P p AmEmpty
Reset ——— P
Ports
Port Type Description Comments
Q Out Data Out Port width is user defined
Full Out Flag Set when FIFO is Full, user defined
Empty Out Flag Clear (logic “0”) when FIFO is empty
AmFull Out Flag Set at user defined value
AmEmpty Out Flag Clear (logic “0”) at user defined value
Data In Data In Port width is user defined
WrClock In Write Clock
WrEn In Write Enable
RdClock In Read Clock
RdEnN In Read Enable
RPReset In Read Control Pointer
Reset In Reset Asynchronous Reset
Properties
Parameter Description Comments Value
Ipm_width Defines data width User-defined Number of data bits
Ipm_widthu Defines address width User-defined Number of address lines required to access
Ipm_numwords FIFO entries
Ipm_numwords Defines memory depth |User-defined Number of data entries the FIFO can store
Ipm_amfull_flag Almost full flag User-defined offset | Offset subtracted from Ipm_numwords
Ipm_amempty_flag [Almost empty flag User-defined offset |Offset added to address 0

18

Using Memory in

ispXPLD 5000MX Devices

triFoweH

triFowes

Lattice Semiconductor

FIFO

TN
{w

i

)
3tFl:I:';Ejl TY
)|

i

A
i

|

)

|

V)
V)
)
(
)
3

trIFQREH
I
1
|
|
|
|
|
T
|
Data_2

q
Write Clock (WCLK) /—'_/—_/—'_/—;_/—7_/—_/__/_‘-_/
X DatalZX

Data_OX Data_1 X

triFbRES

T

I

|

|

(

|

|

T
I‘j
ItFIFORGLKON
I

|

I

|

I

1

I

|

I

|

|

|

|

|

Invalid Data

ltFIFQwCLKH

Data_0 X Data_1

|

|

T

|

1

|

1

|
(ﬂ:,bCLKSK Ew

Read Enable (RE)
Almost Full
Empty

most Empty

Write Data (DI[0:0-31])
Read Data (DOJ[0:0-31])

19

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Content Addressable Memory (LPM_CAM)

Data ——p>

WAD —— P
Clock ——— P

ClockEn ——— P

WE ——p
EnMask ——— P
WrMask —— P

—> Address

+———p Match
LPM_CAM +——p MulMatch

WrDc ——— P
Reset ———— P
Ports
Port Type Description Comments

Address Out Write Address Port width is user defined

Match Out Flag Set when match

MulMatch |Out Flag Set when Multiple matches

Data In Data In Port width is user defined

Wad In Write Address Port width is user defined

Clock In Clock

ClockEn In Clock Enable

We In Write Enable

EnMask In Enable Mask Register |Enables use of global mask register

WrMask In Write Mask Register Enables writing to the Mask Register

WrDC In Write Don’t Care Don’t Cares can be written to the CAM

Reset In Reset Asynchronous Reset

Properties
Parameter Description Comments Value

Ipm_width Defines data width User-defined Number of data bits
Ipm_widthad Defines address width User-defined Number of address lines
Ipm_numwords |Defines memory depth User-defined Number of address locations
Ipm_init_file Defines initialization file [File for initializing data in the CAM Name of the initialization file

20

Lattice Semiconductor

Using

Memory in

ispXPLD 5000MX Devices

CAM with Asynchronous Read

Write Enable (WE)

En Mask Reg (EN_MASK)

WR Mask Reg (WR_MASK)
WR don't care (WR_DC)

Clock Enable (CE)

CLK (CLK)

Write / Comp Data (WD[0:31])
Write Address (WADI[0:6])
Match Out (MATCH)
Multi-Match Out (MUL_MATCH)

CAM Output (CO[0:6])

CAM with Synchronous

Write Enable (WE)

En Mask Reg (EN_MASK)

WR Mask Reg (WR_MASK)
WR don’t care (WR_DC)

Clock Enable (CE)

CLK (CLK)

Write / Comp Data (WD[0:31])
Write Address (WAD[0:6])
Match Out (MATCH)
Multi-Match Out (MUL_MATCH)

CAM Output (CO[0:6])

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

tcamcEs |H

tcAmMRWS

—

tcAMRWH

tcAMENMSKS Fﬂ tcAMENMS

N

tcam

WMSKS

__\itCAMWMSKH

tcaMcES

tgampcs Fﬂ tcaMDCH

7
N

A N (R

-

Data_0 |—<Data_

tcAMDATAS tcAMDATAH

Addreﬁsj

Addres‘sj

_2)—Data_3)—— Data_3)—Data_4

tCAMMATCH

N

AMADDS

S

tcAMMMATCH

o]

tcAMADDH

N 2 N

j tcamc

Invalid Address Address_0 X Address_2 X Address_4 X
I I T T T T
Read
teAMRWS tCAMRWH
tcAMENMSKS Fﬂ t{CAMENMSKH
tcamwmsKs tcAMWMSKH

CAMDCS Fﬁ tcAMDCH

/__/

/__/

tcAMMATCH

tcAMADDS

tcAMADDH

[[—

t

H‘ CAMMMATCH

Datafo>'—< Data_1>—< Data_2)y—— Data_3)—— Data_3)—— Data_4)————
' Address_4
tCAMDATAS tcAMDATAH J_— AddregrSj
- 7/

/S

Invalid Address

tcamco
H‘ Address_0

X

Address_2

X Address_4 |

21

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Read-Only Memory (LPM_ROM)

Address —’
OutClock ———— P

OutClockEn ——— P LPM_ROM
Reset ——— P
Ports
Port Type Description Comments
Q Out Data Out Port width is user defined
Address In Read Address Port width is user defined
OutClock In Clock
OutClockEn In Clock Enable
Reset In Reset Asynchronous Reset
Properties
Parameter Description Comments Value
Ipm_width Defines data width User-defined Number of data bits
Ipm_widthad Defines address width User-defined Number of address lines

Ipm_numwords

Defines memory depth

User-defined

Number of address locations

Ipm_outdata

Defines read data to be synchronous or
asynchronous

User-defined

Registered or unregistered

Ipm_address_control

Defines the value of the read address
lines. In unregistered mode, the output
toggles at each address change. In regis-
tered mode, Q is toggled by the clock.

User-defined

Registered or unregistered

Ipm_init_file

Defines initialization file

File for initializing
data in the ROM

Name of the initialization file

Clk Enable (CEN)

Clock (CLK) /—\—

Read Address (AD[0:8-13])

Read Data (DO[0:0-31])

ROM with Asynchronous Read

T

Ad

Invalid/ Previous Data

it
|

Data_0

Data_1

22

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

ROM with Synchronous Read

Clk Enable (CEN)

Clock (CLK) /—\— —\— —\— —\— | —

SN [a2\
Read Address (AD[0:8-13]) _Add_0 \ Add_1)
Read Data (DO[0:0-31]) | Invalid/ Previous Data Data_0 >< Data_1

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

23

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Appendix A. Memory Primitive Source Examples (Verilog)

Note: The Verilog templates shown here can also be found in the software examples directory:
\<isptools_instalation_directory>\ispcpld\examples\ispXPLD\verilog

True Dual-Port Random Access Memory (LPM_RAM_DP)

module tramdp8kx2x2 (
oA,
0B,
DataInAi,
AddressaA,
DataInB,
AddressB,
Clocka,
ClockEnA,
ClockB,
ClockEnB,
WrA,
WrB,
ResetAl,
ResetB);
output [1:0] OQA;
output [1:0] OB;
input [1:0] DataInA;
input [12:0] AddressA;
input [1:0] DataInB;
input [12:0] AddressB;
input ClockA,ClockEnA,ClockB,ClockEnB,WrA,WrB,ResetA,ResetB;

L RAMDP

UO(.QA(QA), .0OB(0OB), .DataInA(DataInA), .AddressA(AddressA), .DataInB(DataInB),.A
ddressB(AddressB), .ClockA(ClockA), .ClockEnA(ClockEnA), .ClockB(ClockB), .ClockE
nB(ClockEnB), .WrA(WrA), .WrB(WrB), .ResetA(ResetA), .ResetB(ResetB));

defparam UO.lpm widtha=2;

defparam UO.lpm widthada=13;

defparam UO.lpm numwordsa=8192;

defparam UO.lpm widthb=2;

defparam UO.lpm widthadb=13;

defparam UO0.lpm numwordsb=8192;

defparam UO.lpm outdata = “REGISTERED”;
defparam UO.lpm addressa_control = “REGISTERED”;
defparam UO.lpm addressb_control = “REGISTERED”;
defparam UO.lpm init file = “RAM init”;

endmodule

module L_RAMDP (
0A,
0B,
DataInA,
AddressA,

24

Using Memory in

Lattice Semiconductor ispXPLD 5000MX Devices
DataInB,
AddressB,
Clocka,
ClockEnA,
ClockB,
ClockEnB,
WrA,
WrB,
ResetA,
ResetB);
parameter lpm type = “LPM _RAM DP”;
parameter lpm widtha =1;
parameter lpm widthada = 1;
parameter lpm numwordsa = 1;
parameter lpm widthb =1;
parameter lpm widthadb = 1;
parameter lpm numwordsb = 1;
parameter lpm indata = “REGISTERED”;
parameter lpm outdata = “UNREGISTERED”;
parameter lpm addressa control = “REGISTERED”;
parameter lpm addressb control = “REGISTERED”;
parameter lpm hint = “UNUSED”;
parameter lpm init file = “dummy”;

output [lpm widtha-1:0] QA;

output [lpm widthb-1:0] OB;

input [lpm widtha-1:0] DatalInA;

input [lpm widthada-1:0] AddressA;

input [lpm widthb-1:0] DataInB;

input [lpm widthadb-1:0] AddressB;

input ClockA,ClockEnA,ClockB,ClockEnB,WrA,WrB,ResetA,ResetB;

endmodule //lpm ramdp

25

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)

module tramdpsl6ékwx2rx2(
Q,
Data,
WrAddress,
RdAddress,
WrClock,
WrClockEn,
RdClock,
RdClockEn,
WE,
Reset);
output [1:0] Q;
input [1:0] Data;
input [13:0] WrAddress;
input [13:0] RdAddress;
input WrClock,WrClockEn,RdClock,RdClockEn,WE,Reset;

L RAMDPS

U0(.9(Q), .Data(Data), .WrAddress (WrAddress), .RdAddress (RdAddress), .WrClock (WrC
lock), .WrClockEn(WrClockEn), .RdClock(RdClock), .RdClockEn(RdClockEn), .WE(WE), .
Reset (Reset));

defparam UO.lpm widthw=2;

defparam UO.lpm widthadw=14;

defparam UO.lpm numwordsw=16384;

defparam UO.lpm widthr=2;

defparam UO.lpm widthadr=14;

defparam UO.lpm numwordsr=16384;

defparam UO.lpm outdata = “REGISTERED”;
defparam UO.lpm addressr control = “REGISTERED”;
defparam UO.lpm init file=”"RAM init”;

endmodule

module L RAMDPS (
Q,
Data,
WrAddress,
RdAddress,
WrClock,
WrClockEn,
RdClock,
RdClockEn,
WE,
Reset);

parameter lpm type = “LPM RAM DP PSEUDO";
parameter lpm widthw =1;
parameter lpm widthr 1;
parameter lpm numwordsw 1;
parameter lpm widthadw 1;

26

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

parameter lpm widthadr
parameter lpm numwordsr
parameter lpm indata
parameter lpm outdata

1;
“REGISTERED” ;
“UNREGISTERED" ;

parameter lpm addressw_control = “REGISTERED”;
parameter lpm addressr control = “REGISTERED”;
parameter lpm hint = “UNUSED”;

parameter lpm init file = “dummy”;

output [lpm widthr-
input [lpm widthw-1

1:0] Q;
:0] Data;

input [lpm widthadw-1:0] WrAddress;

input [lpm widthadr
input WrClock,WrClo

endmodule // lpm ram dp pseudo

-1:0] RdAddress;
ckEn,RdClock,RdClockEn,WE, Reset;

27

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Random Access Memory (LPM_RAM_DQ)

module tramdqgl6kx2 (
Q,
Data,
Address,
Clock,
ClockEn,
WE,
Reset);

output [1:0] Q3

input [1:0] Data;

input [13:0] Address;

input Clock,ClockEn,WE,Reset;

L _RAMDQ
U0(.9(Q), .Data(Data), .Address(Address), .Clock(Clock), .ClockEn(ClockEn), .WE(WE
), -Reset (Reset));

defparam UO.lpm width=2;

defparam UO.lpm widthad=14;

defparam UO.lpm numwords=16384;

defparam UO.lpm outdata="REGISTERED”;
defparam UO.lpm address control="REGISTERED”;
defparam UO.lpm init file=”"RAM init”;

endmodule

module L RAMDOQ(
Q,
Data,
Address,
Clock,
ClockEn,
WE,
Reset);

parameter lpm type = “LPM RAM DQ”;

parameter lpm width =1;

parameter lpm numwords = 1;

parameter lpm widthad 1;

parameter lpm indata = “REGISTERED”;
parameter lpm outdata = “UNREGISTERED”;
parameter lpm address _control = “REGISTERED”;
parameter lpm hint = “UNUSED”;

parameter lpm init file = “dummy”;

output [lpm width-1:0] O;

input [lpm width-1:0] Data;
input [lpm widthad-1:0] Address;
input Clock,ClockEn,WE,Reset;

endmodule // lpm ram dgq

28

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

First-In-First-Out Memory (LPM_FIFO_DC)

module test fifol6kx2
(Q,Full,Empty,Almost-

Full,AlmostEmpty,Data,WrClock,WrEn,RdClock,RdEn,Reset,RPReset);

output [1:0] Q3
output Full,Empty,AlmostFull,AlmostEmpty;
input [1:0] Data;

input WrClock,WrEn,RdClock,RdEn,Reset,RPReset;

L FIFO U0(.Q(Q),
.Full(Full),
.Empty (Empty),
.AlmostFull (AlmostFull),
.AlmostEmpty (AlmostEmpty),
.Data(Data),
.WrClock(WrClock),
.WrEn(WrEn),
.RdClock(RdClock),
.RAEn(RdEn),
.Reset (Reset),
.RPReset (RPReset)

)i

defparam UO.lpm width=2;
defparam UO.lpm widthu=14;
defparam UO.lpm numwords=16384;
defparam UO.lpm amfull flag=11;
defparam UO.lpm amempty flag=11;

endmodule

module

L FIFO(Q,Full,Empty,Almost-

Full,AlmostEmpty,Data,WrClock,WrEn,RdClock,RdEn,Reset,RPReset) ;

parameter lpm type = “LPM_FIFO DC”;
parameter lpm width = 1;
parameter lpm widthu =1

4
parameter lpm numwords = 2
parameter lpm amfull flag=1;
parameter lpm amempty flag=1l;
parameter lpm hint = “UNUSED”;

| = o~

output [lpm width-1:0] O;
output Full;

output Empty;

output AlmostFull;

output AlmostEmpty;

input [lpm width-1:0] Data;
input WrClock;

input WrEn;

input RdClock;

input RdEn;

29

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

input Reset;
input RPReset;

endmodule // lpm fifo

30

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Content Addressable Memory (LPM_CAM)

module
tcaml28x48 (Address,Match,Mul-
Match,Wad,Data,Clock,ClockEn,We,EnMask,WrMask,WrDc,Reset);

output [6:0] Address;

output Match,MulMatch;

input [47:0] Data;

input [6:0] Wad;

input Clock,ClockEn,We,EnMask,WrMask,WrDc,Reset;

L CAM

UO(.Address (Address), .Match(Match), .MulMatch(MulMatch), .WrAddress(Wad), .Data(
Data), .Clock(Clock), .ClockEn(ClockEn), .WE(We), .EnMask (EnMask) , .WrMask (WrMask)
;, +WrDC(WrDc), .Reset (Reset));

defparam UO.lpm width=48;

defparam UO.lpm widthad=7;

defparam UO.lpm numwords=128;

defparam UO.lpm init file= “CAM init”;

endmodule

module L CAM(Address,Match,MulMatch,WrAd-
dress,Data,Clock,ClockEn,WE, EnMask,WrMask,WrDC,Reset);

parameter lpm type = “LPM_CAM”";
parameter lpm width = 1;
parameter lpm widthad = 1;
parameter lpm numwords = 1;
parameter lpm hint = “UNUSED”;
parameter lpm init file = “dummy”;

output [lpm widthad-1:0] Address;
output Match;

output MulMatch;

input [lpm widthad-1:0] WrAddress;
input [lpm width-1:0] Data;
input Clock;

input ClockEn;

input WE;

input EnMask;

input WrMask;

input WrDC;

input Reset;

endmodule // lpm cam

31

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Read-Only Memory (LPM_ROM)

module test roml6kx2(
Q,
Address,
OutClock,
OutClockEn,
Reset);
output [1:0] Q3
input [13:0] Address;
input OutClock,OutClockEn,Reset;

L ROM
U0(.Q(Q), -Address(Address), .OutClock (OutClock), .OutClockEn(Out-
ClockEn), .Reset(Reset));

defparam UO.lpm width=2;

defparam UO.lpm widthad=14;

defparam UO.lpm numwords=16384;

defparam UO.lpm outdata="REGISTERED”;

defparam UO.lpm address control="UNREGISTERED”;
defparam UO.lpm init file ="ROM init”;

endmodule

module L_ROM(

Q,

Address,

OutClock,

OutClockEn,

Reset);
parameter lpm type = “LPM_ROM”;
parameter lpm width =1;
parameter lpm numwords = 1;
parameter lpm widthad = 1;
parameter lpm outdata = “REGISTERED”;
parameter lpm address _control = “UNREGISTERED”;
parameter lpm hint = “UNUSED”;

parameter lpm init file = “dummy”;

output [lpm width-1:0] O;
input [lpm widthad-1:0] Address;
input OutClock,OutClockEn,Reset;

endmodule // lpm rom

32

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Appendix B. Memory Primitive Source Examples (VHDL)

Note: The VHDL templates shown here can also be found in the software examples directory:

\<isptools_instalation_directory>\ispcpld\examples\ispXPLD\VHDL
True Dual-Port Random Access Memory (LPM_RAM_DP)

library IEEE;

use IEEE.std logic_1164.all;

LIBRARY lc5kmx;

USE lc5kmx.components.all;

entity tramdp8kx2x2 is

port (

DataInA
AddressA
DataInB
AddressB
Clocka
ClockEnA
ClockB
ClockEnB
WrA
WrB
ResetA
ResetB
QA
OB

end tramdp8kx2x2 ;

in
in
in
in
in
in
in
in
in
in
in
in

std _logic _vector(1 downto 0);
std logic_vector(12 downto 0);
std _logic _vector(1 downto 0);
std logic_vector(12 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

out std logic_vector(l downto 0);
out std logic_vector(l downto 0));

architecture behave of tramdp8kx2x2 is

component L RAMDP
generic(
LPM TYPE
LPM WIDTHA
LPM WIDTHADA

LPM NUMWORDSA :

LPM WIDTHB
LPM WIDTHADB
LPM NUMWORDSB
LPM_ INDATA
LPM OUTDATA

LPM ADDRESSA CONTROL
LPM ADDRESSB_CONTROL

LPM_INIT FILE
LPM_HINT

port(

string := “LPM RAM DP";

positive := 1;

positive := 1;

positive := 2;

positive := 1;

positive := 1;

positive := 2;

string :="REGISTERED”;

string :="UNREGISTERED”;
string :="REGISTERED”;
string :="REGISTERED”;

string := “dummy”;

string :="UNUSED”);

DataInA : in std logic_vector(LPM WIDTHA-1 downto 0);
AddressA:in std logic_vector (LPM WIDTHADA-1 downto 0);
DataInB : in std logic_vector(LPM WIDTHB-1 downto 0);

33

Using Memory in

Lattice Semiconductor ispXPLD 5000MX Devices

AddressB:in std_logic_vector(

LPM WIDTHADB-1 downto 0);
ClockA : in std _logic := ‘0’;
ClockEnA : in std _logic := ‘0’;
ClockB : in std _logic := ‘0’;
ClockEnB : in std _logic := ‘0’;
WrA : in std _logic;
WrB : in std _logic;
ResetA : in std _logic;
ResetB : in std _logic;
0A : out std logic vector (LPM WIDTHA-1 downto 0);
OB : out std logic vector(LPM WIDTHB-1 downto 0));

end component ;

begin
UO: L RAMDP
generic map

LPM WIDTHA > 2,
LPM WIDTHADA => 13,
LPM_NUMWORDSA => 8192,
LPM WIDTHB = 2,
LPM WIDTHADB => 13,
LPM_NUMWORDSB => 8192,

LPM INDATA => “REGISTERED”,

LPM OUTDATA

=>

“UNREGISTERED"”,

LPM ADDRESSA CONTROL => “REGISTERED”,
LPM ADDRESSB_CONTROL => “REGISTERED”,

LPM INIT FILE => “RAM init")
port map (
DataInA => DataInA,
AddressA => AddressA,
DataInB => DataInB,
AddressB => AddressB,
ClockA => ClockAa,
ClockEnA => ClockEnA,
ClockB => ClockB,
ClockEnB => ClockEnB,
WrA => WrA,
WrB => WrB,
ResetA => ResetA,
ResetB => ResetB,
0A => OB,
0B => 0B);

end behave;

34

Using Memory in

Lattice Semiconductor

ispXPLD 5000MX Devices

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)

library IEEE;

use IEEE.std logic_1164.all;
LIBRARY lc5kmx;

USE lc5kmx.components.all;

entity tramdpslékwx2rx2 is

port (

Data : in std _logic_vector(l downto 0);
WrAddress : in std logic_vector (13 downto 0);
RdAddress : in std logic_vector (13 downto 0);
WrClock : in std_logic;

WrClockEn : in std_logic;

RdClock : in std_logic;

RdClockEn : in std_logic;

WE : in std_logic;

Reset : in std_logic;

0] : out std logic vector(l downto 0));

end tramdpsl6kwx2rx2

~e

architecture struct of tramdpsl6kwx2rx2 is

component L_ RAMDPS

generic(
lpm_ type : string := “LPM_RAM DP PSEUDO”;
lpm widthw : integer := 1;
lpm widthr : integer := 1;
lpm numwordsw : integer := 1;
lpm widthadw : integer := 1;
lpm widthadr : integer := 1;
lpm numwordsr : integer := 1;
lpm indata : string := “REGISTERED”;
lpm outdata : string := “UNREGISTERED”;
lpm addressw_control : string := “REGISTERED”;
lpm addressr control : string := “REGISTERED”;
lpm init file : string := “dummy”;
lpm hint : string := “UNUSED”);
port (
Data : in std logic_vector(lpm widthw-1 downto 0);

WrAddress:in std logic_ vector(lpm widthadw-1 downto 0);
RdAddress:in std logic_vector(lpm widthadr-1 downto 0);

WrClock
WrClockEn
RdClock
RdClockEn
WE

Reset

Q :

end component ;

out

in
in
in
in

std_logic : ;
std_logic
std_logic
std_logic
in std logic;
in std logic;
std _logic vector(lpm widthr-1 downto 0));

35

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

begin

lpm gen: L RAMDPS
generic map (

lpm widthw

lpm widthadw
lpm numwordsw

lpm widthr

lpm widthadr

lpm numwordsr => 16384,

lpm indata

lpm indata

port map (

end struct;

)

Data
WrAddress
RdAddress
WrClock
WrClockEn
RdClock
RdClockEn
WE

Reset

Q

nnnu
vV V.V V

2,

14,
16384,
2,

14,

=> “REGISTERED”,

lpm addressr control => “REGISTERED”,
lpm init file => “RAM init”,

=> “UNREGISTERED”,

Data,
WrAddress,
RdAddress,
WrClock,
WrClockEn,
RdClock,
RdClockEn,
WE,

Reset,

Q);

36

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Random Access Memory (LPM_RAM_DQ)

library IEEE;

use IEEE.std logic_1164.all;

LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tramdql6kx2 is

port (

Data
Address
Clock
ClockEn
WE
Reset
0

end tramdqlékx2 ;

in std logic vector(1 downto 0);

in std logic_vector(13 downto 0);
in std logic;

in std logic;

in std logic;

in std logic;

out std logic_vector(l downto 0));

architecture behave of tramdglé6kx2 is

component IL_RAMDQ
generic (

LPM TYPE
LPM WIDTH
LPM WIDTHAD
LPM NUMWORDS
LPM INDATA
LPM OUTDATA

: string := “LPM RAM DQ”;
: positive := 1;

: positive := 1;

: positive := 2;

: string :="REGISTERED”;

: string :="UNREGISTERED”;

LPM_ADDRESS CONTROL : string :="REGISTERED”;
LPM_INIT FILE : string := “dummy”;

LPM HINT
port (
Data : in s

: string :="UNUSED”);

td logic vector (LPM WIDTH-1 downto 0);

Address : in std logic_vector (LPM WIDTHAD-1 downto 0);
Clock : in std_logic := ‘0’;

ClockEn

WE

Reset

Q : out
end component ;

begin
UO: L_RAMDQ
generic map (

: in std _logic := ‘0’;

: in std_logic;

: in std_logic;

std logic vector(LPM WIDTH-1 downto 0));

LPM_WIDTH = 2,

LPM WIDTHAD => 14,

LPM_NUMWORDS => 16384,

LPM_ADDRESS CONTROL => “UNREGISTERED”,
LPM_INIT FILE => “RAM init”,
LPM_OUTDATA => “UNREGISTERED”)

port map (

Data => Data,

37

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

end behave;

Address
Clock
ClockEn
WE
Reset

0

Address,
Clock,
ClockEn,
WE,
Reset,

Q);

38

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

First-In-First-Out Memory (LPM_FIFO_DC)

LIBRARY IEEE;

USE IEEE.std logic 1164.all;
LIBRARY lc5kmx;

USE lc5kmx.components.all;

entity tfifodkx4 is

port (

Data : in std _logic_vector(3 downto 0);
WrClock : in std_logic;

WrEn : in std_logic;

RdClock : in std_logic;

RAEn : in std_logic;

Reset : in std_logic;

RPReset : in std_logic;

0] : out std logic vector (3 downto 0);
Full : Out std logic;

Empty : Out std logic;

AlmostFull : Out std logic;

AlmostEmpty : Out std logic);

end tfifol6kxl ;

architecture struct of tfifod4kx4 is

component L_FIFO
generic (

lpm type : string := “LPM FIFO DC”;
lpm width : integer := 1;

lpm widthu : integer := 1;

lpm numwords : integer := 2;

lpm amfull flag: integer :=1;

lpm amempty flag: integer :=1;

lpm hint : string := “UNUSED”);
port (

Data : in std logic_vector (lpm width-1 downto 0);

WrClock : in std logic;

WrEn : in std logic;

RdClock : in std logic;

RAEn : in std logic;

Reset : in std logic;

RPReset : in std logic;

Q : out std logic_vector (lpm width-1 downto 0);

Full : out std logic;
Empty : out std logic;
AlmostFull : out std logic;
AlmostEmpty : out std logic);

end component ;

begin
U0: L FIFO

39

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

generic map (LPM WIDTH => 4,
LPM WIDTHU = 12,
LPM_AMFULL _FLAG => 1,
LPM AMEMPTY FLAG => 1,
LPM_NUMWORDS => 4096)

port map (Data => Data,
WrClock => WrClock,
WrEn => WrEn,
RdClock => RdClock,
RdAEn => RdEn,
Reset => Reset,
RPReset => RPReset,
Q => Q,
Full => FULL,
Empty => EMPTY,

AlmostFull => AlmostFull,
AlmostEmpty => AlmostEmpty);
end struct;

40

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Content Addressable Memory (LPM_CAM)

library IEEE;

use IEEE.std logic_1164.all;
LIBRARY lc5kmx;

USE lc5kmx.components.all;

entity tcaml28x48 is

port (

Data : in std logic_vector (47 downto 0);
WrAddress : in std _logic_vector(6 downto 0);
ClockEn : in std_logic;

Clock : in std_logic;

We : in std_logic;

EnMask : in std_logic;

WrMask : in std_logic;

WrDc : in std_logic;

Reset : in std_logic;

Address : out std logic vector (6 downto 0);
Match : Out std logic;

MulMatch : Out std logic);

end tcaml28x48 ;

architecture struct of tcaml28x48 is

component L_CAM
generic (

lpm type : string := “LPM _CAM";

lpm width : integer := 1;

lpm numwords : integer := 1;

lpm widthad : integer := 1;

lpm init file : string := “dummy”;

lpm init flag : integer := 0;

lpm hint : string := “UNUSED”);

port (

Data : in std logic vector(lpm width-1 downto 0);
WrAddress : in std logic vector (6 downto 0);
ClockEn : in std logic;
Clock : in std logic;
WE : in std logic;
EnMask : in std logic;
WrMask : in std logic;
WrDC : in std logic;
Reset : in std logic;
Address : out std logic vector (6 downto 0);
Match : Out std logic;
MulMatch : Out std logic);

end component ;

begin
UO: L _CAM
generic map (LPM WIDTH => 48,

41

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

LPM WIDTHAD => 7,
LPM_NUMWORDS => 128,
LPM_INIT FILE => “CAM init”,
LPM_INIT FLAG => 1)

port map (Data => Data,
WrAddress => WrAddress,
ClockEn => ClockEn,
Clock => Clock,
WE => We,
EnMask => EnMask,
WrMask => Wrmask,
WrDC => WrDc,
Reset => Reset,
Address => Address,
Match => Match,
MulMatch => MulMatch);

end struct;

42

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Read-Only Memory (LPM_ROM)

library IEEE;

use IEEE.std logic_1164.all;
LIBRARY lc5kmx;

USE lc5kmx.components.all;

entity tromlé6kx2 is

port (
Address
OutClock
OutClockEn
Reset

Q
end tromlé6kx2 ;

architecture struct of tromlé6kx2 i

component L_ROM
generic (

S

in std logic_vector(13 downto 0);
in std logic;
in std logic;
in std logic;
out std logic_vector(l downto 0));

lpm type : string := “LPM ROM";

lpm width : integer := 1;

lpm numwords : integer := 2;

lpm widthad : integer := 1;

lpm outdata : string := “UNREGISTERED”;

lpm address_control : string := “REGISTERED”;
lpm init file : string := “dummy”;

lpm hint : string := “UNUSED”);

port (

Address : in std logic_vector (lpm widthad-1 downto 0);

OutClock : in std logic;
OutClockEn : in std logic;
Reset : in std logic;
Q : out std logic vector (lpm width-1 downto 0));

end component ;

attribute syn black box: boolean;
attribute syn black box of L_ROM:

begin
U0: L_ROM
generic map (
LPM WIDTH
LPM WIDTHAD
LPM NUMWORDS
LPM OUTDATA

component is true;

=>
=>
>
=>

2,

14,

16384,
“REGISTERED”,

LPM ADDRESS CONTROL => “REGISTERED”,
E => “ROM_init”)

LPM INIT FIL
port map (

Address

OutClock

=> Address,
=> OutClock,

43

Using Memory in

Lattice Semiconductor ispXPLD 5000MX Devices
OutClockEn => OutClockEn,
Reset => Reset,
Q => Q);

end struct;

44

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Appendix C. Initialization File Usage Guide

Introduction

The initialization file is a text file primarily used for preloading user-specified data into the memory array. This file is
mainly used for configuring ROM, but is optional for dual-port, pseudo dual port and single port SRAM, FIFO and
CAM modes.

Figure 6 is an example of an initialization file.

Figure 6. Sample Initialization File (20x32)

11111111111111110000000000010001
11111111111111100000000000010000
11111111111111011111111111111111
11111111111110111111111111111111
11111111111110101111111111111111
11111111111110011111111111111111
11111111111110001111111111111111
11111111111101111111111111110001
11111111111101101111111111110001
11111111111101001111111111110001
11111111111100110000000000100100
11111111111100100000000000100100
11111111111100010000000000100100
11111111111100000000000000100100
11111111111011110000000000100100
11111111111011010000000000000110
00000000000100010000000000000110
00000000000100000000000000000110
00000000000011110000000000000110
00000000000011100000000000000110

Address locations are numbered sequentially from 0 to Ipm_numwords -1. The first or topmost entry corresponds
to the initialization data at address 0, and the last entry to address LPM_NUMWORDS-1. Bits are read right to left,
starting from the LSB to MSB. In the initialization file shown above for example, the top right-most bit correlates to
bit 0 of Address 0, while the bottom left-most bit correlates to bit 31 of Address 19. Initialization data can only be
entered in binary format.

Data depth and width are defined by the size of the user instantiated memory. The number of rows corresponds to
the number of address locations in the array (depth), and the number of columns matches the data width. Inputs
are specified in binary format, and each bit can either be a 1, 0, X (don’t care) or a U (undefined). Note that X’ and
‘U’ inputs only apply for CAM. Excess bits and/or undefined characters in the initialization file are flagged as errors
during compilation.

An initialization file can have any name, but it should match the filename specified in the HDL source file. The file
cannot have a trailing three-character extension or file type. Initialization filenames with trailing extensions are not
valid, and therefore flagged as errors during compilation.

To preload memory using an initialization file, simply define the ‘lpm_init_file’ parameter in your top-level HDL
source file and specify the initialization file name. Figure 7 shows an example of a VHDL ROM module using an ini-
tialization file. In this case, the ‘lpm_init_file: string: = “ROM_init";’ declaration was added into the component
instantiation. The same concept applies for Verilog designs. The example shown in Figure 8 has been modified to
include the ‘defparam UO.I[pm_init_file="init1”;’ declaration.

45

Lattice Semiconductor

Using Memory in
ispXPLD 5000MX Devices

Figure 7. VHDL ROM instantiation with Ipm_init_file defined

entity trom512x121 is

port (
Address
OutClock
OutClockEn
Reset
o
end trom512x121 ;

architecture struct of trom512x121

component I ROM
generic (

lpm type : string
lpm width : intege
lpm numwords : intege
lpm widthad : intege
lpm outdata : string
lpm address_ control : string
lpm init file : string
lpm hint : string
port (
Address :
OutClock :
OutClockEn :
Reset :
(0] :
end component ;
begin
U0: L _ROM
generic map (
LPM WIDTH

LPM WIDTHAD
LPM NUMWORDS
LPM OUTDATA

is

r
r
r

=>

in std logic vector(8 downto 0);

in std logic;

in std logic;

in std logic;

out std logic_vector (120 downto 0));

“LPM _ROM” ;
1;

1;

1;
“UNREGISTERED" ;
“REGISTERED” ;
“ROM_init”;
“UNUSED") ;

in std _logic_vector (lpm widthad-1 downto 0);
in std_logic;
in std_logic;
in std_logic;
out std logic_vector (lpm width-1 downto 0));

121,

9,

512,
“REGISTERED”,

LPM ADDRESS CONTROL => “REGISTERED”,

LPM INIT FILE
port map (

Address
OutClock
OutClockEn
Reset
o

end struct;

=>

“ROM_init")

Address,
OutClock,
OutClockEn,
Reset,

Q);

46

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Figure 8. Verilog ROM instantiation with Ipm_init_file defined

module test rom512x121(
Q,
Address,
OutClock,
OutClockEn,
Reset);
output [120:0] Q;
input [8:0] Address;
input OutClock,OutClockEn,Reset;

L ROM U0(.Q(Q), .Address(Address), .OutClock(OutClock), .OutClockEn(Out-
ClockEn), .Reset(Reset));

defparam UO.lpm width=121;

defparam UO.lpm widthad=9;

defparam UO.lpm numwords=512;

defparam UO.lpm outdata="UNREGISTERED”;
defparam UO.lpm init file="initl”;

endmodule

module L ROM(

Q,
Address,
OutClock,
OutClockEn,
Reset);
parameter lpm type = “LPM_ROM”;
parameter lpm width = 1;
parameter lpm numwords = 1;
parameter lpm widthad = 1;
parameter lpm outdata = “UNREGISTERED”;
parameter lpm address control = “REGISTERED”;
parameter lpm hint = “UNUSED”;

parameter lpm init file="dummy”;
output [lpm width-1:0] O;
input [lpm widthad-1:0] Address;
input OutClock,OutClockEn,Reset;

endmodule // lpm rom

For additional examples, refer to Appendices A and B.

47

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Common Mistakes and Error Messages

Most initialization file issues are related to the memory file size or the filename format. The most common errors in
generating initialization files are:

1. Specifying an incorrect depth (number of rows) or width (number of columns)
2. Using invalid filenames (i.e. CAM_init.dat)
3. Using invalid characters (i.e. Use of any other character aside from a ‘1’, ‘0’ or °X’)

Below are some sample error messages that can help diagnose an initialization file problem. For reference, the fol-
lowing example uses a 96X128 CAM.

Figure 9 shows the error generated when the initialization file data width exceeds the predefined CAM width.
Because the CAM configuration width is set at 96, and the initialization file data has 98 bits, an error is generated
by the compiler.

Figure 9. Error: Data width is greater than the defined memory width

SuperCool Module Compiler

Copyright <(c? 2801 by Lattice Semiconductor Corporation
All Rights Reserved

Input Command Information
FULL_FILE_PATH: .~
MC_ARCHITECT : eLPM_SUPERCOOL
MC_STRATEGY : eLPM_DELAY_ROW
DEVICE_HAME: S5C512
DESIGH_PATH: .~
DESIGH_FILE_MAME: 1_cam_lpm_cam_%6_7_128_unused_.1dhb
DESIGH_MAME: 1_cam_lpm_cam_96_7_128_unused_
LPM_CODE: BxBBB7fff 32767
LPM_TYPFE: MC_LPM_CAM Z6&
MODEL_GEM: eLPM_EDIF 2

CAM Configuration: 1832 CAM128H48C
Start logic expansion on design l_cam_lpm_cam_%26_7_128_unused_

ERROR: Format Error<line B> - Length (28> iz greater than ?6.
Hit 'Enter’' or 'Return’ key to guit.

Figure 10 shows an error generated by the compiler when the initialization file data exceeds the total word count in
the CAM array. By definition, the CAM can only hold 128 words. Since the initialization file has 129 words (rows),
the compiler automatically errors out.

48

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Figure 10. Error: Data depth is greater than the defined number of words

SuperCool Module Compiler

Copyright <(c? 2801 by Lattice Semiconductor Corporation
All Rights Reserved

Input Command Information
FULL_FILE_PATH: .~
MC_ARCHITECT : eLPM_SUPERCOOQL
MC_STRATEGY : eLPM_DELAY_ROW
DEVICE_HAME: 5C512
DESIGH_PATH: .~
DESIGH_FILE_MAME: 1_cam_lpm_cam_%6_7_128_unused_.1dhb
DESIGH_MAME: 1_cam_lpm_cam_96_Y_128_unused_
LPM_CODE: BxBBB7fff 32767
LPM_TYPFE: MC_LPHM_CAM Z&
MODEL_GEM: eLPM_EDIF 2

CAM Configuration: 1832 CAM128H48C
Start logic expansion on design l_cam_lpm_cam_%26_7_128_unused_

ERROR: Cannot find word at addressz 129.
Hit 'Enter’' or 'Return’ key to guit.

Figure 11 illustrates the error generated when invalid characters are detected in the initialization file. In this case,
invalid ASCII characters are inserted into the file (not shown) to show the error message.

Figure 11. Error: Invalid characters are used in the initialization file

SuperCool Module Compiler

Copyright <(c? 2801 by Lattice Semiconductor Corporation
All Rights Reserved

Input Command Information
FULL_FILE_PATH: .~
MC_ARCHITECT : eLPM_SUPERCOOQL
MC_STRATEGY : eLPM_DELAY_ROW
DEVICE_HAME: S5C512
DESIGH_PATH: .~
DESIGH_FILE_MAME: 1_cam_lpm_cam_%6_7_128_unused_. 1ldh
DESIGH_MAME: 1_cam_lpm_cam_926_7Y_128_unused_
LPM_CODE: BxBBB7fff 32767
LPM_TYPFE: MC_LPHM_CAM Z&
MODEL_GEM: eLPM_EDIF 2

CAM Configuration: 1832 CAM128H48C
Start logic expansion on design l_cam_lpm_cam_%26_7_128_unused_

ERROR: Invalid memory initialization file format.
Hit 'Enter’' or 'Return’ key to guit.

The compiler also flags incorrectly named initialization files. Figure 12 shows an example where the initialization
file is associated with a three-character file extension. In this case the Ipm_init_file = “CAM_init.dat” definition is
included in the source file. Upon compilation, the compiler is unable to resolve the .DAT’ file extension and errors
out.

49

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

Figure 12. Error: Initialization file is associated with a three-character extension or file

SuperCool Module Compiler

Copyright (c? 20801 by Lattice Semiconductor Corporation
All Rights Reserved

Input Command Information
FULL_FILE_PATH: .~
MC_ARCHITECT : eLPM_SUPERCOOL
MC_STRATEGY : eLPM_DELAY_ROW
DEVICE_HAME: 5C512
DESIGH_PATH: .~
DESIGH_FILE_MAME: 1_cam_lpm_cam_%6_7_128_unused_. 1ldh
DESIGHN_MAME: 1_cam_lpm_cam_926_7_128_unused_
LPM_CODE: 8xBBB7fff 32767
LPM_TYPFE: MC_LPHM_CAM Z6&
MODEL_GEM: eLPM_EDIF 2

CAM Configuration: 1832 CAM1Z28H48C
Start logic expansion on design l_cam_lpm_cam_%26_7_128_unused_

ERROR: Cannot open Memory initialization file CAM_init
Hit 'Enter’' or 'Return’ key to guit.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-408-826-6002 (Outside North America)

e-mail: techsupport@]|atticesemi.com

Internet: www.latticesemi.com

50

	Introduction
	Multifunction Blocks
	Initializing Memory
	Increased Depth And Width
	Bus Size Matching
	Different Data Bus Widths on Two Ports

	Supported Memory Modes
	True Dual-Port SRAM Mode
	Pseudo Dual-Port SRAM Mode
	Single-Port SRAM Mode
	FIFO Mode
	CAM Mode

	Including Memory in ispXPLD 5000MX Designs
	Configurable Memory Primitives
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Single-Port RAM (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix A. Memory Primitive Source Examples (Verilog)
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Random Access Memory (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO_DC)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix B. Memory Primitive Source Examples (VHDL)
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Random Access Memory (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO_DC)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix C. Initialization File Usage Guide
	Introduction

	Common Mistakes and Error Messages
	Technical Support Assistance

