

www.latticesemi.com

1

tn1030_05.1

Using Memory in
ispXPLD

5000MX Devices

March 2005 Technical Note TN1030

™

Introduction

This document describes memory usage and flow in the Lattice ispXPLD™ family of devices. A brief overview of
the ispXPLD’s memory resources are presented along with the parameterizable memory elements supported by
Lattice’s ispLEVER™ design tool.

The ispXPLD architecture is built around the Multifunction Block (MFB), which can be configured either as tradi-
tional logic or as memory. When it is configured as memory it can function as dual-port SRAM, pseudo-dual port
SRAM, single-port SRAM, FIFO, or CAM memory.

Multifunction Blocks

The ispXPLD architecture allows the MFB to be configured as a variety of memory blocks as detailed in Table 1.

Table 1. MFB Memory Configurations

Once the MFB has been configured as memory, no other logic can be implemented in that block. The one excep-
tion is a FIFO block that requires 32 data outputs, as it will need an additional MFB for flag generation. To generate
the control circuitry for the four FIFO flags, four macrocells and six inputs are required. This leaves 28 macrocells
and 62 logic inputs for generic logic implementation in the additional MFB.

Initializing Memory

In each of the memory modes it is possible to specify the power-on state of each bit in the memory array. This
allows the memory to be used as ROM if desired. Each bit in the memory array can have one of four values: 0, 1, X
(always match) or U (never match). Note that X (always match) and U (never match) values only apply for CAM. For
all other memory modes, use ones and zeroes.

Increased Depth And Width

Memory that requires a depth or width that is greater than that supported by a single MFB, can be supported by
cascading multiple blocks. For dual port, single port, and pseudo-dual port memory blocks, additional width is eas-
ily provided by sharing address lines. Additional depth is supported, by multiplexing the RAM output. For FIFO and
CAM modes additional width is supported through the cascading of MFBs. For FIFOs up to four MFBs can be cas-
caded for additional width ranging to 128 bits. The CAM can also cascade up to four MFBs to provide additional
width, allowing the implementation of a CAM to a maximum of 128x192.

Lattice’s ispLEVER design tool automatically combines blocks to support the memory size specified in the user’s
design.

Memory Mode Configurations

Dual-port 8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 8
512 x 16

Single-port,
Pseudo Dual Port,
FIFO

16,384 x1
8,192 x 2
4,096 x 4
2048 x 8

1024 x 16
512 x 32

CAM 128 x 48

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

2

Bus Size Matching

All of the memory modes apart from the CAM mode support different widths on each of the ports. The RAM bits are
mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of
words for each port varies this mapping scheme applies to each port.

With CAM memory the port size is 48 bits for a single MFB. Cascading up to three additional MFBs can expand the
width of the CAM to 192 bits. Use of the mask register allows for comparisons of less than 48 bits but the port width
will still be 48 bits. This is more fully explained in the CAM description later in this document.

Different Data Bus Widths on Two Ports

True Dual Port and Pseudo Dual Port modes support different data bus widths. The two ports in the memory can
have different data bus widths. In True Dual Port Mode different widths for read/write port A and read/write port B is
supported. In Pseudo Dual Port mode, different widths for the read and write ports can also be specified.

While the two ports are operating with different data bus widths, the addressing scheme ensures that the RAM
location addressed with each address follow a certain order. Each word written on a wider side can be read as suc-
cessive multiple words on a narrower port. For example if port A writes 32-bit words, and port B reads 8-bit words,
one word written on port A is read as four consecutive words from port B.

Supported Memory Modes

True Dual-Port SRAM Mode

In Dual-Port SRAM mode, the Read/Write address lines share two independent read/write ports, and can access
up to 8,192-bits of memory. Data widths of 1, 2, 4, 8, and 16 are supported by the MFB. Figure 1 shows the block
diagram of the dual port SRAM.

Write data, address, chip select and read/write signals are always synchronous (registered). The output data sig-
nals can be synchronous or asynchronous. Resets are asynchronous. All inputs on the same port share the same
clock, clock enable, and reset selections. All outputs on the same port share the same clock, clock enable, and
reset selections. Port A and Port B are completely independent from a data width and from a control standpoint.
There may be instances when both data ports attempt to write to the memory. This should be avoided as there is
no arbitration logic to control which port controls the writing of data into the memory. Table 2 shows the possible
sources for the clock, clock enable and initialization signals for the various registers.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

3

Figure 1. Dual-Port SRAM Block Diagram

Table 2. Register Clock, Clock Enable and Reset in Dual-Port SRAM Mode

Register Input Source

Address, Write Data,
Read Data, Read/Write,
and Chip Select

Clock Selected from CLKA (CLKB) or one of the global clocks (CLK0 - CLK3).
The selected signal can be inverted if desired.

Clock Enable Selected from CENA (CENB) or two of the global clocks (CLK1 - CLK 2).
The selected signal can be inverted if required.

Reset Created by the logical OR of the global reset signal and RSTA (RSTB).
RSTA (RSTB) can be inverted if desired.

‘‘

Read/Write Address
(ADA[0:8-12])

Clock A (CLKA)

Write/Read A (WRA)

Reset A (RSTA)

68 Inputs
From

Routing

Dual
Port

SRAM
Array

PORT A

PORT B
Similar signals
as PORT A:

ADB[0:8-12], RSTB,
CLKB, CENB, WRB,

CSB[0,1], DIB[0:0,1,3,7,15]

Write Data
(DIA[0:0,1,3,7,15])

Chip Sel A (CSA [0:1])

Clk En A (CENA)

RESET

CLK0

CLK3

CLK1
CLK2 RD Data A

(DOA[0:0-15])

RD Data B
(DOB[0:0-15])

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

4

Pseudo Dual-Port SRAM Mode

In Pseudo Dual-Port SRAM mode the MFB is configured as an SRAM memory with independent read and write
ports that access the same 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB.
Figure 2 shows the block diagram of the Pseudo Dual-Port SRAM

Write data, write address, chip select and write enable signals are always synchronous (registered.) The read data
and read address signals can be synchronous or asynchronous. Reset is asynchronous. All write signals share the
same clock, and clock enable. All read signals share the same clock and clock enable. Reset is shared by both the
read and write signals. Table 3 shows the possible sources for the clock, clock enable and initialization signals for
the various registers.

Figure 2. Pseudo Dual-Port SRAM Block Diagram

Table 3. Register Clock, Clock Enable, and Reset in Pseudo Dual-Port SRAM Mode

Register Input Source

Write Address, Write
Data, Write Enable,
and Write Chip Select

Clock Chosen from WCLK or one of the global clocks (CLK0 -CLK3).
The selected signal can be inverted if desired.

Clock Enable Chosen from WCEN or two of the global clocks (CLK0 - CLK3).
The selected signal can be inverted if desired.

Reset Created by the logical OR of the global reset signal and RST.
RST may have inversion if desired.

Read Data and Read
Address

Clock Chosen from RCLK or one of the global clocks (CLK0 - CLK3).
The selected signal can be inverted if desired.

Clock Enable Chosen from RCEN or two of the global clocks (CLK1 - CLK2).
The selected signal can be inverted if desired.

Reset Created by the logical OR of the global reset signal and RST.
RST may have inversion if desired.

‘‘
68 Inputs

From
Routing

16,384 bit
Pseudo

Dual
Port

SRAM
Array

Write Address
(WAD[0:8-13])

Write Clk Enable (WCEN)

Write Clock (WCLK)

Read Address
(RAD[0:8-13])

Write Enable (WE)

Write Chip Sel (WCS[0,1])

Reset (RST)

Read Clk Enable (RCEN)

Read Clock (RCLK)

Write Data
(WD[0:0,1,3,7,15,31])

RESET

CLK0

CLK3

CLK1
CLK2 Read Data

(RD[0:0-15])

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

5

Single-Port SRAM Mode

In Single-Port SRAM mode, one port is shared by the Read/Write address lines, and can access up to 16,384-bits
of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure 3 shows the block diagram of the
single-port SRAM.

Write data, write address, chip select and write enable signals are always synchronous (registered). The read data
and read address signals can be synchronous or asynchronous. Reset is asynchronous. All signals share a com-
mon clock, clock enable, and reset. Table 4 shows the possible sources for the clock, clock enable and reset sig-
nals.

Figure 3. Single-Port SRAM Block Diagram

Table 4. Register Clock, Clock Enable, and Reset in Single-Port SRAM Mode

Register Input Source

Address, Write
Data, Read
Data,
Read/Write, and
Chip Select

Clock CLK or one of the global clocks (CLK0 - CLK3).
Each of these signals can be inverted if required.

Clock Enable CEN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.

Reset Created by the logical OR of the global reset signal
and RST. RST is routed by the multifunction array
from GRP, with inversion if desired.

‘‘
68 Inputs

from
Routing

RESET

CLK0

CLK3

CLK1
CLK2

16,384-Bit
SRAM
Array

Clock (CLK)

Read/Write Address
(AD[0:8-13])

Write/Read (WR)

Chip Select (CS[0,1])

Reset (RST)

Clk Enable (CEN)

Write Data
(DI[0:0,1,3,7,15,31])

Read Data
(DO[0:0-31])

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

6

FIFO Mode

In FIFO mode the multifunction array is configured as a FIFO (First In First Out) buffer with built in control. The read
and write clocks are independent of each other but can be tied together if the application requires it. Four flags
show the status of the FIFO: Full, Almost Full, /Empty and /Almost Empty. /Empty and /Almost Empty are negative
true signals. The thresholds for almost full and almost empty are programmable by the user. It is possible to reset
the read pointer, allowing support of frame retransmit in communications applications.

The Almost Full and /Almost Empty flags indicate the status of the stack pointer with respect to Full and /Empty.
Almost Full is an offset subtracted from the highest memory address, and /Almost Empty is an offset added to the
lowest memory address. These flags are defined in the instantiation template via the lpm_amempty_flag and
lpm_amfull_flag parameters. Values for both can range from 1 to the maximum number of address locations.

In this mode one port accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the
MFB. Figure 4 shows the block diagram of the FIFO. These MFB blocks are cascaded to create FIFO sizes larger
than 16K. Cascading sometimes requires extra logic elements like counters that occupy additional macrocells. For
width cascading, no external logic is required if the depth can fit into the maximum depth of a single block. How-
ever, for depth cascading, external counters are needed. For example, in a 16K x 16 (depth x width) FIFO configu-
ration, no extra counters are needed. This is width cascading. For 32K X 1 FIFO, counters will be needed since the
depth (32K) is larger than the depth available in a single MFB (16K). When the configuration needs both width and
depth cascading, the software optimizes it to the maximum depth with width cascading.

Write data, write enable, flag outputs and read enable are synchronous. The Write Data, Almost Full flag and Full
flag share the same clock and clock enables. Read outputs are synchronous. The Read Data, /Empty flag and
/Almost Empty flag share the same clock and clock enables. Reset is shared by all signals. Table 5 shows the pos-
sible sources for the clock, clock enable and reset signals for the various registers.

The Full and Almost Full flags are based on the write port. The Full and Almost Full flags change state only on write
clock rising edges. The Empty and Almost Empty flags are based on the read port. The /Empty and /Almost Empty
flags change state only on read clock rising edges. FIFO flag latency is reduced when both read/write clocks are
left running. If the read/write clocks are free running, data is inserted/retrieved by synchronously controlling the
Read/Write Enable strobes.

Once the Full or Empty flag goes active, the internal FIFO pointer is frozen at the last active value, and no opera-
tion is performed on the memory. In other words, Writes to the FIFO after the full flag goes active or Reads after the
Empty flag goes active are ignored.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

7

Figure 4. FIFO Block Diagram

Table 5. Register Clocks, Clock Enables, and Initialization in FIFO Mode

CAM Mode

In CAM mode the multifunction array is configured as a ternary Content Addressable Memory (CAM.) CAM
behaves like a reverse memory where the input to the memory is data and the output is an address at which the
input data is located. It can be used to perform a variety of high-performance look-up functions. As such CAM has
two modes of operation. In write or update mode the CAM behaves as a RAM, and the data is written to the sup-
plied address. When reading or comparing, data is supplied to the CAM. If that data matches any of the entries in
the CAM array the Match or Multi-Match (if there is more than one match) flag is set to true, and the lowest address
with matching data is the output. The MFB can be configured as a CAM that contains 128 entries of 48 bits.
Figure 5 shows the block diagram of the CAM

Register Input Source

Write Data,
Write Enable

Clock WCLK or one of the global clocks (CLK0 - CLK3).
Each of these signals can be inverted if required.

Clock Enable WEN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.

Reset N/A

Full and Almost
Full Flags

Clock WCLK or one of the global clocks (CLK0 - CLK3).
Each of these signals can be inverted if required.

Clock Enable WEN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.

Reset Created by the logical OR of the global reset signal and
RST. RST is routed by the multifunction array from GRP,
with inversion if desired

Read Data,
Empty and
Almost Empty
Flags

Clock RCLK or one of the global clocks (CLK0 - CLK3).
Each of these signals can be inverted if required.

Clock Enable REN or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.

Reset Created by the logical OR of the global reset signal and
RST. RST is routed by the multifunction array from GRP,
with inversion if desired

‘‘
68 Inputs

From
Routing

Write Clock (WCLK)

Write Enable (WE)

Reset (RST)

Read Enable (RE)

Read Clock (RCLK)

Reset_RP (RSTRP)

Write Data
(DI[0:0-31])

16,384-bit
SRAM
Array

FIFO
Control
Logic

*Control logic can be
duplicated in adjacent MFB
in 32-bit mode

RESET

CLK0

CLK3

CLK1
CLK2

Read Data
(DO[0:0-31])

FIFO
Flags*
Full, Empty,
Almost Full,

Almost Empty

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

8

To further enhance the flexibility of the CAM a mask register is available for both update and compare operations. If
the mask register is enabled during updates, bits corresponding to those set to a ‘1’ in the mask register are not
updated. If it is enabled during compare operations, bits corresponding to those set to a ‘1’ in the mask register are
not included in the compare. A Write Don’t Care signal allows don’t cares to be programmed into the CAM if
desired. As with other write operations, the mask register controls this.

Data is written into the Mask Register by enabling the WrMask (Write Mask) bit. When WrMask is enabled during
write mode, the data written into the CAM array is also automatically stored in the Mask Register. Once the mask is
configured, it can be used during Update and Compare modes by enabling the EnMask (Enable Mask) bit.

The WrDC (Write Don’t Care) bit functions much like the EnMask and WrMask inputs. When in write mode and
WrDC is set to a 1, the data written to the CAM array during the next write operation is stored in the Write Don’t
Care register.

The Write/Comp Data, Write Address, Write Enable, Write Chip Select, and Write Don’t Care signals are synchro-
nous. The CAM Output signals, Match flag, and Multi-Match flag signals can be either synchronous or asynchro-
nous. The Enable mask register input is not latched but must meet setup and hold times relative to the Write Clock.
All inputs must use the same clock and clock enable signals. All outputs must use the same clock, and clock enable
signals. Reset is common for both inputs and outputs. Table 6 shows the allowable sources for clock, clock enable,
and reset for the various CAM registers.

For additional information on the CAM memory in the ispXPLD family of devices please refer to application note
AN8071,

Content Addressable Memory Applications for ispXPLD Devices.

Figure 5. CAM Mode

Table 6. Register Clocks, Clock Enables, and Initialization in CAM Mode

Register Input Source

Write data, Write address,
Enable mask register, Write
enable, write chip select, and
write don’t care, CAM Output,
Match, and Multimatch

Clock CLK or one of the global clocks (CLK0 - CLK3).
Each of these signals can be inverted if required.

Clock Enable WE or two of the global clocks (CLK1 - CLK 2).
Each of these signals can be inverted if required.

Reset Created by the logical OR of the global reset signal
and RST. RST is routed by the multifunction array
from GRP, with inversion if desired

‘‘
68 Inputs

From
Routing

Write Enable (WE)

En Mask Reg (EN_MASK)

Reset (RST)

Write Chip Sel (WCS[0:1])

CLK (CLK)

Clock Enable (CE)

Write/Comp Data
(WD[0:31])

128X48
CAM

Write Address
(WAD[0:6])

WR Mask Reg (WR_MASK)

WR don’t care (WR_DC)

RESET

CLK0

CLK3

CLK1
CLK2

CAM
Output

CO[0:6]

Match
Out

MATCH

Multi-
match

Out
MUL_MATCH

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

9

Including Memory in ispXPLD 5000MX Designs

To use memory in ispXPLD 5000MX designs the desired memory function must be instantiated into the HDL
source code describing the design. This is done in the form of LPM primitives, which are passed through the syn-
thesis tool to Lattice backend design tools. These backend tools then work to implement the memory requested in
the source code. The remainder of this document details the LPM primitives and example templates.

Configurable Memory Primitives

Configurable memory primitives are provided to allow easy configuration of the MFBs. These primitives are added
to your design source. With the addition of parameters these memory primitives can be easily configured to match
your design needs.

This section describes the six types of configurable memory primitives that are supported.

• LPM_RAM_DP – Dual-Port RAM
• LPM_RAM_DP_PSEUDO – Pseudo Dual Port RAM
• LPM_RAM_DQ – Single-port RAM
• LPM_FIFO_DC – FIFO
• LPM_CAM – CAM
• LPM_ROM – ROM

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

10

True Dual-Port Random Access Memory (LPM_RAM_DP)

Ports

Port Type Description Comments

QA Out Data out, port A Port width is user defined

DataInA In Data in, port A Port width is user defined

AddressA In Address, port A Address depth is user defined

ClockA In Clock, port A

ClockEnA In Clock Enable, port A

WrA In Write Enable, Port A

ResetA In Reset, port A Asynchronous Reset

QB Out Data out, port B Port width is user defined

DataInB In Data in, port B Port width is user defined

AddressB In Address, port B Address depth is user defined

ClockB In Clock, port B

ClockEnB In Clock Enable, port B

WrB In Write Enable, Port B

ResetB In Reset, port B Asynchronous Reset

LP
LPM_RAM_DP

DataInA

AddressA

ClockA

ClockEnA

WrA

ResetA

DataInB

AddressB

ClockB

ClockEnB

WrB

ResetB

QA

QB

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

11

Properties

True Dual Port RAM with Asynchronous Read

Parameter Description Comments Value

lpm_widtha Defines data width for port A User-defined Number of data bits

lpm_widthada Defines address width for port A User-defined Number of address lines

lpm_numwordsa Defines memory depth for port A User-defined Number of address locations

lpm_widthb Defines data width for port B User-defined Number of data bits

lpm_widthadb Defines address width for port B User-defined Number of address lines

lpm_numwordsb Defines memory depth for port B User-defined Number of address locations

lpm_outdata Defines read data to be synchronous or asyn-
chronous

User-defined Registered or Unregistered

lpm_indata Defines write data to be synchronous Synchronous Registered

lpm_addressa_control Defines that port A address lines will be synchro-
nous

Synchronous Registered

lpm_addressb_control Defines that port B address lines will be synchro-
nous

Synchronous Registered

lpm_init_file Defines initialization file File for initializing
data in the RAM

Name of the initialization file

Write/ Read A (WRA)

Write/ Read B (WRB)

Clk En A (CENA)

Clock A (CLKA)

Clk En B (CENB)

Clock B (CLKB)

Read/ Write Address A (ADA[0:8-12])

Read/ Write Address B (ADB[0:8-12])

Write Data A (DIA[0:0,1,3,7,15])

Write Data B (DIB[0:0,1,3,7,15])

RD Data A (DOA[0:0-15])

RD Data B (DOB[0:0-15])

tDPRWAS tDPRWAH

tDPCLKSKEW

tDPMSAH

tDPDATABHtDPDATABS

tDPADDBH

tDPDATAAS tDPDATAAHtDPADDBS

tDPRCLKAO

tDPADDAS

tDPMSAS

tDPMSBS

tDPCEBS

tDPCEAS

tDPADDAH

tDPRCLKBO

tDPCEAH

tDPRWBHtDPRWBS

Data_0_A

Chip Sel A (CSA[0:1])

Chip Sel B (CSB[0:1])

Note: While one port is writing and the other port tries to read or write at the same memory location, there must be a minimum tDPCLKSKEW
between the two clocks.

Data_0_BInvalid/ Previous Data

Invalid/ Previous Data Data_2_A

Data_1_A

Data_1_A

Data_1_BData_2_A

Add_0_A Add_1_A

Data_1_A

Add_0_B Add_1_A

Add_1_A

Data_2_A

Data_1_B

Add_1_B

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

12

True Dual Port RAM with Synchronous Read

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

tDPRWAS tDPRWAH

tDPCEAH

tDPCLKSKEW

tDPMSAH

tDPDATAAS

tDPRCLKBO

tDPRCLKAO

tDPADDBHtDPADDBS

tDPADDAS tDPADDAH

tDPMSAS

tDPMSBS

tDPCEBS

tDPCEAS

tDPDATAAH

Write/ Read A (WRA)

Write/ Read B (WRB)

Clk En A (CENA)

Clock A (CLKA)

Clk En B (CENB)

Clock B (CLKB)

Read/ Write Address A (ADA[0:8-12])

Read/ Write Address B (ADB[0:8-12])

Write Data A (DIA[0:0,1,3,7,15])

Write Data B (DIB[0:0,1,3,7,15])

RD Data A (DOA[0:0-15])

RD Data B (DOB[0:0-15])

Data_0_A

Chip Sel A (CSA[0:1])

Chip Sel B (CSB[0:1])

Note: While one port is writing and the other port tries to read or write at the same memory location, there must be a minimum tDPCLKSKEW
between the two clocks.

Data_0_BInvalid/ Previous Data

Invalid/ Previous Data Data_2_AData_1_A

Data_1_A Data_2_A

Add_0_A Add_1_A Add_1_A

Data_1_A

Add_0_B Add_1_A

Data_2_A

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

13

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)

Ports

Properties

Port Type Description Comments

Q Out Data out Port width is user defined

Data In Data in Port width is user defined

WrAddress In Write Address Address Depth is user defined

WrClock In Write Clock

WrClockEN In Write Clock Enable

RdAddress In Read Address Address Depth is user defined

RdClock In Read Clock

RdClockEN In Read Clock Enable

WE In Write Enable

Reset In Reset Asynchronous Reset

Parameter Description Comments Value

lpm_widthw Defines data width for write port User-defined Number of data bits to write

lpm_widthadw Defines address width for write port User-defined Number of write address lines

lpm_numwordsw Defines memory depth for write User-defined Number of address locations

lpm_widthr Defines data width for read port User-defined Number of data bits to read

lpm_widthadr Defines address width for read port User-defined Number of read address lines

lpm_numwordsr Defines memory depth for read User-defined Number of read address locations

lpm_outdata Defines read data to be synchronous or
asynchronous

User-defined Registered or unregistered

lpm_addressr_control Defines that read address lines will be
synchronous

Synchronous Registered

lpm_addressw_control Defines that write address lines will be
synchronous

Synchronous Registered

lpm_init_file Defines initialization file File for initializing
data in the RAM

Name of the initialization file

LPM_RAM_DP
PSEUDO

Data

WrAddress
WrClock

WrClockEN

Reset

Q

RdAddress
RdClock

RdClockEN

WE

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

14

Pseudo Dual Port RAM with Asynchronous Read

Write Chip Select (WCS[0,1])

Write Enable (WE)

Write Clock (WCLK)

Write Clk Enable (WCEN)

Read Clock (RCLK)

Read Clk Enable (RCEN)

Write Address (WAD[0:0,1,3,7,15,31])

Read Address (RAD[0:8-13])

Write Data (WD[0:0,1,3,7,15,31])

Read Data (RD[0:0-15])

tPDPMSS

tPDPWCEH
tPDPWCES

tPDPWADDHtPDPWADDS

tPDPRADDHtPDPRADDS

tPDPDATAHtPDPDATAS

tPDPRCLKO

Add_0

Data_0

Add_1

Data_1

tPDPCLKSKEW

Notes:
While Write port is writing and the Read port tries to read at the same memory location, there must be a minimum tPDPCLKSKEW
between the two clocks. As shown above, if Add_1 is where the the read and write is occurring then there should be a minimum clock
skew of tPDPCLKSKEW between the RCLK and WCLK.

Further, when we read from an address and in the next Write clock cycle, we start writing to that address, then the Read Data gets
updated tSPADDDATA after the address is stable. This is shown, when we are reading Add_2 and the Read Data is Data_2. In the next
write clock cycle, Add_2 is witten with Data_3. The Read Data gets updated tSPADDDATA after the Add_2 is stable. Both Data_2 and
Data_3 are from the same location Add_2.

tPDPRWS tPDPRWH

tPDPRCEHtPDPRCES

Add_2
Add_2

Data_3

Data_2 Data_3Invalid / Previous Data

tSPADDDATA

Add_1

Data_1

tPDPMSH

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

15

Pseudo Dual Port RAM with Synchronous Read

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Notes:
While the Write port is writing and the Read port tries to read at the same memory location, there must be a minimum tPDPCLKSKEW
between the two clocks. As shown above, if Add_1 is where the the read and write is occurring then there should be a minimum clock
skew of tPDPCLKSKEW between the RCLK and WCLK.

Further, when we read from an address and in the next Write clock cycle, we start writing to that address, then the Read Data gets
updated tSPADDDATA after the address is stable. This is shown when we are reading Add_2 and the Read Data is Data_2. In the next
write clock cycle, Add_2 is witten with Data_3. The Read Data gets updated tSPADDDATA after the Add_2 is stable. Both Data_2 and
Data_3 are from the same location, Add_2.

Write Chip Select (WCS[0,1])

Write Enable (WE)

Write Clock (WCLK)

Write Clk Enable (WCEN)

Read Clock (RCLK)

Read Clk Enable (RCEN)

Write Address (WAD[0:0,1,3,7,15,31])

Read Address (RAD[0:8-13])

Write Data (WD[0:0,1,3,7,15,31])

Read Data (RD[0:0-15])

tPDPMSS

tPDPMSH

tPDPRWS tPDPRWH

tPDPWCEHtPDPWCES

tPDPWADDHtPDPWADDS

tPDPRADDHtPDPRADDS

tPDPDATAHtPDPDATAS

tPDPRCLKO

Add_0

Data_0

Add_1

Data_1

tPDPCLKSKEW

tPDPRCEHtPDPRCES

Add_2

Add_2

Data_3

Data_2 Data_3Invalid / Previous Data

Add_1

Data_1

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

16

Single-Port RAM (LPM_RAM_DQ)

Ports

Properties

Port Type Description Comments

Q Out Data Out Port width is user defined

Data In Data In Port width is user defined

Address In Read/Write Address Port width is user defined

Clock In Clock

ClockEn In Clock Enable

WE In Write Enable

Reset In Reset Asynchronous Reset

Parameter Description Comments Value

lpm_width Defines Data width User-defined Number of data bits

lpm_widthad Defines address width User-defined Number of address lines

lpm_numwords Defines memory depth User-defined Number of address locations

lpm_outdata Defines read data to be synchronous or
asynchronous

User-defined Registered or unregistered

lpm_address_control Defines the value of the read address
lines. In unregistered mode, the output
toggles at each address change. In regis-
tered mode, Q is toggled by the clock.

User-defined Registered or unregistered

lpm_init_file Defines initialization file File for initializing data in
the RAM

Name of the initialization file

LPM_RAM_DQ

Data

Address

Clock
ClockEN

Reset

Q

WE

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

17

Single Port RAM with Asynchronous Read

Single Port RAM with Synchronous Read

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Write/ Read (WR)

Clk Enable (CEN)

Clock (CLK)

Read / Write Address (AD[0:8-13])

Write Data (DI[0:0,1,3,7,15,31])

Read Data (DO[0:0-31])

tSPRWS tSPRWH

tSPCES

tSPADDS tSPADDH

tSPDATAS tSPDATAH

tSPADDDATA

Add_0 Add_1

Data_1

Data_1Data_0Invalid/ Previous Data

Write/ Read (WR)

Clk Enable (CEN)

Clock (CLK)

Read / Write Address (AD[0:8-13])

Write Data (DI[0:0,1,3,7,15,31])

Read Data (DO[0:0-31])

tSPRWS tSPRWH

tSPCES

tSPADDS tSPADDH

tSPDATAS tSPDATAH
tSPCLKO

Add_0 Add_1

Data_1

Data_1Data_0Invalid/ Previous Data

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

18

First-In-First-Out Memory (LPM_FIFO)

Ports

Properties

Port Type Description Comments

Q Out Data Out Port width is user defined

Full Out Flag Set when FIFO is Full, user defined

Empty Out Flag Clear (logic “0”) when FIFO is empty

AmFull Out Flag Set at user defined value

AmEmpty Out Flag Clear (logic “0”) at user defined value

Data In Data In Port width is user defined

WrClock In Write Clock

WrEn In Write Enable

RdClock In Read Clock

RdEn In Read Enable

RPReset In Read Control Pointer

Reset In Reset Asynchronous Reset

Parameter Description Comments Value

lpm_width Defines data width User-defined Number of data bits

lpm_widthu Defines address width User-defined Number of address lines required to access
lpm_numwords FIFO entries

lpm_numwords Defines memory depth User-defined Number of data entries the FIFO can store

lpm_amfull_flag Almost full flag User-defined offset Offset subtracted from lpm_numwords

lpm_amempty_flag Almost empty flag User-defined offset Offset added to address 0

LPM_FIFO

Data

WrClock

WrEn

RdClock

RdEN

Q

RPReset

Reset

Full

Empty

AmEmpty

AmFull

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

19

FIFO

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Write Enable (WE)

Write Clock (WCLK)

Read Enable (RE)

Read Clock (RCLK)

Write Data (DI[0:0-31])

Read Data (DO[0:0-31])

Full

Almost Full

Empty

Almost Empty

tFIFOWES tFIFOWEH

tFIFORES tFIFOREH

tFIFOWCLKH

tFIFOCLKSKEW

tFIFORCLKO

tFIFOAFULL

tFIFOFULL

tFIFOAEMPTY
tFIFOEMPTY

Data_0 Data_1 Data_2

Data_0 Data_1 Data_2Invalid Data

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

20

Content Addressable Memory (LPM_CAM)

Ports

Properties

Port Type Description Comments

Address Out Write Address Port width is user defined

Match Out Flag Set when match

MulMatch Out Flag Set when Multiple matches

Data In Data In Port width is user defined

Wad In Write Address Port width is user defined

Clock In Clock

ClockEn In Clock Enable

We In Write Enable

EnMask In Enable Mask Register Enables use of global mask register

WrMask In Write Mask Register Enables writing to the Mask Register

WrDC In Write Don’t Care Don’t Cares can be written to the CAM

Reset In Reset Asynchronous Reset

Parameter Description Comments Value

lpm_width Defines data width User-defined Number of data bits

lpm_widthad Defines address width User-defined Number of address lines

lpm_numwords Defines memory depth User-defined Number of address locations

lpm_init_file Defines initialization file File for initializing data in the CAM Name of the initialization file

LPM_CAM

Data

Clock
WAD

ClockEn
WE

EnMask

Address

WrMask
WrDc

Match
MulMatch

Reset

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

21

CAM with Asynchronous Read

CAM with Synchronous Read

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Write Enable (WE)

En Mask Reg (EN_MASK)

WR Mask Reg (WR_MASK)

WR don't care (WR_DC)

Clock Enable (CE)

CLK (CLK)

Write / Comp Data (WD[0:31])

Write Address (WAD[0:6])

Match Out (MATCH)

Multi-Match Out (MUL_MATCH)

CAM Output (CO[0:6])

tCAMRWS tCAMRWH

tCAMENMSKS tCAMENMSKH

tCAMWMSKS tCAMWMSKH

tCAMDCS tCAMDCH

tCAMCES

tCAMDATAS tCAMDATAH

tCAMADDS tCAMADDHtCAMMATCH

tCAMMMATCH

tCAMCO

Data_0

Address_0

Data_1 Data_2

Address_2

Data_3

Address_4

Data_3

Address_4

Data_4

Address_5

Invalid Address

Write Enable (WE)

En Mask Reg (EN_MASK)

WR Mask Reg (WR_MASK)

WR don’t care (WR_DC)

Clock Enable (CE)

CLK (CLK)

Write / Comp Data (WD[0:31])

Write Address (WAD[0:6])

Match Out (MATCH)

Multi-Match Out (MUL_MATCH)

CAM Output (CO[0:6])

tCAMRWS tCAMRWH

tCAMENMSKS tCAMENMSKH

tCAMWMSKS tCAMWMSKH

tCAMDCS tCAMDCH

tCAMCES

Data_0 Data_1 Data_2 Data_3

Address_4

Data_3 Data_4

Address_5tCAMDATAS tCAMDATAH

tCAMADDS
tCAMADDH

tCAMMATCH

tCAMMMATCH

Address_0 Address_2 Address_4Invalid Address

tCAMCO

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

22

Read-Only Memory (LPM_ROM)

Ports

Properties

ROM with Asynchronous Read

Port Type Description Comments

Q Out Data Out Port width is user defined

Address In Read Address Port width is user defined

OutClock In Clock

OutClockEn In Clock Enable

Reset In Reset Asynchronous Reset

Parameter Description Comments Value

lpm_width Defines data width User-defined Number of data bits

lpm_widthad Defines address width User-defined Number of address lines

lpm_numwords Defines memory depth User-defined Number of address locations

lpm_outdata Defines read data to be synchronous or
asynchronous

User-defined Registered or unregistered

lpm_address_control Defines the value of the read address
lines. In unregistered mode, the output
toggles at each address change. In regis-
tered mode, Q is toggled by the clock.

User-defined Registered or unregistered

lpm_init_file Defines initialization file File for initializing
data in the ROM

Name of the initialization file

LPM_ROM

Address

OutClock
OutClockEn

Q

Reset

Clk Enable (CEN)

Clock (CLK)

Read Address (AD[0:8-13])

Read Data (DO[0:0-31])

Add_0 Add_1

Data_1Data_0Invalid/ Previous Data

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

23

ROM with Synchronous Read

For timing numbers, please refer to the ispXPLD 5000MX Data Sheet.

Clk Enable (CEN)

Clock (CLK)

Read Address (AD[0:8-13])

Read Data (DO[0:0-31])

Add_0 Add_1

Data_1Data_0Invalid/ Previous Data

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

24

Appendix A. Memory Primitive Source Examples (Verilog)
Note: The Verilog templates shown here can also be found in the software examples directory:

\<isptools_instalation_directory>\ispcpld\examples\ispXPLD\verilog

True Dual-Port Random Access Memory (LPM_RAM_DP)
module tramdp8kx2x2(
 QA,
 QB,
 DataInA,
 AddressA,
 DataInB,
 AddressB,
 ClockA,
 ClockEnA,
 ClockB,
 ClockEnB,
 WrA,
 WrB,
 ResetA,
 ResetB);
output [1:0] QA;
output [1:0] QB;
input [1:0] DataInA;
input [12:0] AddressA;
input [1:0] DataInB;
input [12:0] AddressB;
input ClockA,ClockEnA,ClockB,ClockEnB,WrA,WrB,ResetA,ResetB;

L_RAMDP
U0(.QA(QA),.QB(QB),.DataInA(DataInA),.AddressA(AddressA),.DataInB(DataInB),.A
ddressB(AddressB),.ClockA(ClockA),.ClockEnA(ClockEnA),.ClockB(ClockB),.ClockE
nB(ClockEnB),.WrA(WrA),.WrB(WrB),.ResetA(ResetA),.ResetB(ResetB));

defparam U0.lpm_widtha=2;
defparam U0.lpm_widthada=13;
defparam U0.lpm_numwordsa=8192;
defparam U0.lpm_widthb=2;
defparam U0.lpm_widthadb=13;
defparam U0.lpm_numwordsb=8192;
defparam U0.lpm_outdata = “REGISTERED”;
defparam U0.lpm_addressa_control = “REGISTERED”;
defparam U0.lpm_addressb_control = “REGISTERED”;
defparam U0.lpm_init_file = “RAM_init”;

endmodule

module L_RAMDP(
 QA,
 QB,
 DataInA,
 AddressA,

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

25

 DataInB,
 AddressB,
 ClockA,
 ClockEnA,
 ClockB,
 ClockEnB,
 WrA,
 WrB,
 ResetA,
 ResetB);

 parameter lpm_type = “LPM_RAM_DP”;
 parameter lpm_widtha = 1;
 parameter lpm_widthada = 1;
 parameter lpm_numwordsa = 1;
 parameter lpm_widthb = 1;
 parameter lpm_widthadb = 1;
 parameter lpm_numwordsb = 1;
 parameter lpm_indata = “REGISTERED”;
 parameter lpm_outdata = “UNREGISTERED”;
 parameter lpm_addressa_control = “REGISTERED”;
 parameter lpm_addressb_control = “REGISTERED”;
 parameter lpm_hint = “UNUSED”;
 parameter lpm_init_file = “dummy”;

 output [lpm_widtha-1:0] QA;
 output [lpm_widthb-1:0] QB;
 input [lpm_widtha-1:0] DataInA;
 input [lpm_widthada-1:0] AddressA;
 input [lpm_widthb-1:0] DataInB;
 input [lpm_widthadb-1:0] AddressB;
 input ClockA,ClockEnA,ClockB,ClockEnB,WrA,WrB,ResetA,ResetB;

endmodule //lpm_ramdp

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

26

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
module tramdps16kwx2rx2(
 Q,
 Data,
 WrAddress,
 RdAddress,
 WrClock,
 WrClockEn,
 RdClock,
 RdClockEn,
 WE,
 Reset);
output [1:0] Q;
input [1:0] Data;
input [13:0] WrAddress;
input [13:0] RdAddress;
input WrClock,WrClockEn,RdClock,RdClockEn,WE,Reset;

L_RAMDPS
U0(.Q(Q),.Data(Data),.WrAddress(WrAddress),.RdAddress(RdAddress),.WrClock(WrC
lock),.WrClockEn(WrClockEn),.RdClock(RdClock),.RdClockEn(RdClockEn),.WE(WE),.
Reset(Reset));

defparam U0.lpm_widthw=2;
defparam U0.lpm_widthadw=14;
defparam U0.lpm_numwordsw=16384;
defparam U0.lpm_widthr=2;
defparam U0.lpm_widthadr=14;
defparam U0.lpm_numwordsr=16384;
defparam U0.lpm_outdata = “REGISTERED”;
defparam U0.lpm_addressr_control = “REGISTERED”;
defparam U0.lpm_init_file=”RAM_init”;

endmodule

module L_RAMDPS(
 Q,
 Data,
 WrAddress,
 RdAddress,
 WrClock,
 WrClockEn,
 RdClock,
 RdClockEn,
 WE,
 Reset);

 parameter lpm_type = “LPM_RAM_DP_PSEUDO”;
 parameter lpm_widthw = 1;
 parameter lpm_widthr = 1;
 parameter lpm_numwordsw = 1;
 parameter lpm_widthadw = 1;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

27

 parameter lpm_widthadr = 1;
 parameter lpm_numwordsr = 1;
 parameter lpm_indata = “REGISTERED”;
 parameter lpm_outdata = “UNREGISTERED”;
 parameter lpm_addressw_control = “REGISTERED”;
 parameter lpm_addressr_control = “REGISTERED”;
 parameter lpm_hint = “UNUSED”;
 parameter lpm_init_file = “dummy”;

 output [lpm_widthr-1:0] Q;
 input [lpm_widthw-1:0] Data;
 input [lpm_widthadw-1:0] WrAddress;
 input [lpm_widthadr-1:0] RdAddress;
 input WrClock,WrClockEn,RdClock,RdClockEn,WE,Reset;

endmodule // lpm_ram_dp_pseudo

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

28

Random Access Memory (LPM_RAM_DQ)
module tramdq16kx2(
 Q,
 Data,
 Address,
 Clock,
 ClockEn,
 WE,
 Reset);
output [1:0] Q;
input [1:0] Data;
input [13:0] Address;
input Clock,ClockEn,WE,Reset;

L_RAMDQ
U0(.Q(Q),.Data(Data),.Address(Address),.Clock(Clock),.ClockEn(ClockEn),.WE(WE
),.Reset(Reset));

defparam U0.lpm_width=2;
defparam U0.lpm_widthad=14;
defparam U0.lpm_numwords=16384;
defparam U0.lpm_outdata=”REGISTERED”;
defparam U0.lpm_address_control=”REGISTERED”;
defparam U0.lpm_init_file=”RAM_init”;

endmodule

module L_RAMDQ(
 Q,
 Data,
 Address,
 Clock,
 ClockEn,
 WE,
 Reset);

 parameter lpm_type = “LPM_RAM_DQ”;
 parameter lpm_width = 1;
 parameter lpm_numwords = 1;
 parameter lpm_widthad = 1;
 parameter lpm_indata = “REGISTERED”;
 parameter lpm_outdata = “UNREGISTERED”;
 parameter lpm_address_control = “REGISTERED”;
 parameter lpm_hint = “UNUSED”;
 parameter lpm_init_file = “dummy”;

 output [lpm_width-1:0] Q;
 input [lpm_width-1:0] Data;
 input [lpm_widthad-1:0] Address;
 input Clock,ClockEn,WE,Reset;

endmodule // lpm_ram_dq

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

29

First-In-First-Out Memory (LPM_FIFO_DC)
module test_fifo16kx2
(Q,Full,Empty,Almost-
Full,AlmostEmpty,Data,WrClock,WrEn,RdClock,RdEn,Reset,RPReset);

output [1:0] Q;
output Full,Empty,AlmostFull,AlmostEmpty;
input [1:0] Data;
input WrClock,WrEn,RdClock,RdEn,Reset,RPReset;

L_FIFO U0(.Q(Q),
 .Full(Full),
 .Empty(Empty),
 .AlmostFull(AlmostFull),
 .AlmostEmpty(AlmostEmpty),
 .Data(Data),
 .WrClock(WrClock),
 .WrEn(WrEn),
 .RdClock(RdClock),
 .RdEn(RdEn),
 .Reset(Reset),
 .RPReset(RPReset)
);

defparam U0.lpm_width=2;
defparam U0.lpm_widthu=14;
defparam U0.lpm_numwords=16384;
defparam U0.lpm_amfull_flag=11;
defparam U0.lpm_amempty_flag=11;

endmodule

module L_FIFO(Q,Full,Empty,Almost-
Full,AlmostEmpty,Data,WrClock,WrEn,RdClock,RdEn,Reset,RPReset) ;

parameter lpm_type = “LPM_FIFO_DC”;
parameter lpm_width = 1;
parameter lpm_widthu = 1;
parameter lpm_numwords = 2;
parameter lpm_amfull_flag=1;
parameter lpm_amempty_flag=1;
parameter lpm_hint = “UNUSED”;

output [lpm_width-1:0] Q;
output Full;
output Empty;
output AlmostFull;
output AlmostEmpty;
input [lpm_width-1:0] Data;
input WrClock;
input WrEn;
input RdClock;
input RdEn;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

30

input Reset;
input RPReset;

endmodule // lpm_fifo

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

31

Content Addressable Memory (LPM_CAM)
module
tcam128x48 (Address,Match,Mul-
Match,Wad,Data,Clock,ClockEn,We,EnMask,WrMask,WrDc,Reset);

output [6:0] Address;
output Match,MulMatch;
input [47:0] Data;
input [6:0] Wad;
input Clock,ClockEn,We,EnMask,WrMask,WrDc,Reset;

L_CAM
U0(.Address(Address),.Match(Match),.MulMatch(MulMatch),.WrAddress(Wad),.Data(
Data),.Clock(Clock),.ClockEn(ClockEn),.WE(We),.EnMask(EnMask),.WrMask(WrMask)
,.WrDC(WrDc),.Reset(Reset));

defparam U0.lpm_width=48;
defparam U0.lpm_widthad=7;
defparam U0.lpm_numwords=128;
defparam U0.lpm_init_file= “CAM_init”;

endmodule

module L_CAM(Address,Match,MulMatch,WrAd-
dress,Data,Clock,ClockEn,WE,EnMask,WrMask,WrDC,Reset);

parameter lpm_type = “LPM_CAM”;
parameter lpm_width = 1;
parameter lpm_widthad = 1;
parameter lpm_numwords = 1;
parameter lpm_hint = “UNUSED”;
parameter lpm_init_file = “dummy”;

output [lpm_widthad-1:0] Address;
output Match;
output MulMatch;
input [lpm_widthad-1:0] WrAddress;
input [lpm_width-1:0] Data;
input Clock;
input ClockEn;
input WE;
input EnMask;
input WrMask;
input WrDC;
input Reset;

endmodule // lpm_cam

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

32

Read-Only Memory (LPM_ROM)
module test_rom16kx2(
 Q,
 Address,
 OutClock,
 OutClockEn,
 Reset);
output [1:0] Q;
input [13:0] Address;
input OutClock,OutClockEn,Reset;

L_ROM
U0(.Q(Q),.Address(Address),.OutClock(OutClock),.OutClockEn(Out-
ClockEn),.Reset(Reset));

defparam U0.lpm_width=2;
defparam U0.lpm_widthad=14;
defparam U0.lpm_numwords=16384;
defparam U0.lpm_outdata=”REGISTERED”;
defparam U0.lpm_address_control=”UNREGISTERED”;
defparam U0.lpm_init_file =”ROM_init”;

endmodule

module L_ROM(
 Q,
 Address,
 OutClock,
 OutClockEn,
 Reset);

 parameter lpm_type = “LPM_ROM”;
 parameter lpm_width = 1;
 parameter lpm_numwords = 1;
 parameter lpm_widthad = 1;
 parameter lpm_outdata = “REGISTERED”;
 parameter lpm_address_control = “UNREGISTERED”;
 parameter lpm_hint = “UNUSED”;
 parameter lpm_init_file = “dummy”;

 output [lpm_width-1:0] Q;
 input [lpm_widthad-1:0] Address;
 input OutClock,OutClockEn,Reset;

endmodule // lpm_rom

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

33

Appendix B. Memory Primitive Source Examples (VHDL)
Note: The VHDL templates shown here can also be found in the software examples directory:

\<isptools_instalation_directory>\ispcpld\examples\ispXPLD\VHDL

True Dual-Port Random Access Memory (LPM_RAM_DP)
library IEEE;
use IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tramdp8kx2x2 is

 port (
 DataInA : in std_logic_vector(1 downto 0);
 AddressA : in std_logic_vector(12 downto 0);
 DataInB : in std_logic_vector(1 downto 0);
 AddressB : in std_logic_vector(12 downto 0);
 ClockA : in std_logic;
 ClockEnA : in std_logic;
 ClockB : in std_logic;
 ClockEnB : in std_logic;
 WrA : in std_logic;
 WrB : in std_logic;
 ResetA : in std_logic;
 ResetB : in std_logic;
 QA : out std_logic_vector(1 downto 0);
 QB : out std_logic_vector(1 downto 0));
end tramdp8kx2x2 ;

architecture behave of tramdp8kx2x2 is

component L_RAMDP
 generic(
 LPM_TYPE : string := “LPM_RAM_DP”;
 LPM_WIDTHA : positive := 1;
 LPM_WIDTHADA : positive := 1;
 LPM_NUMWORDSA : positive := 2;
 LPM_WIDTHB : positive := 1;
 LPM_WIDTHADB : positive := 1;
 LPM_NUMWORDSB : positive := 2;
 LPM_INDATA : string :=”REGISTERED”;
 LPM_OUTDATA : string :=”UNREGISTERED”;
 LPM_ADDRESSA_CONTROL : string :=”REGISTERED”;
 LPM_ADDRESSB_CONTROL : string :=”REGISTERED”;
 LPM_INIT_FILE : string := “dummy”;
 LPM_HINT : string :=”UNUSED”);

 port(
 DataInA : in std_logic_vector(LPM_WIDTHA-1 downto 0);
 AddressA:in std_logic_vector(LPM_WIDTHADA-1 downto 0);
 DataInB : in std_logic_vector(LPM_WIDTHB-1 downto 0);

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

34

 AddressB:in std_logic_vector(LPM_WIDTHADB-1 downto 0);
 ClockA : in std_logic := ‘0’;
 ClockEnA : in std_logic := ‘0’;
 ClockB : in std_logic := ‘0’;
 ClockEnB : in std_logic := ‘0’;
 WrA : in std_logic;
 WrB : in std_logic;
 ResetA : in std_logic;
 ResetB : in std_logic;
 QA : out std_logic_vector(LPM_WIDTHA-1 downto 0);
 QB : out std_logic_vector(LPM_WIDTHB-1 downto 0));
end component ;

begin
U0: L_RAMDP
 generic map (
 LPM_WIDTHA => 2,
 LPM_WIDTHADA => 13,
 LPM_NUMWORDSA => 8192,
 LPM_WIDTHB => 2,
 LPM_WIDTHADB => 13,
 LPM_NUMWORDSB => 8192,
 LPM_INDATA => “REGISTERED”,
 LPM_OUTDATA => “UNREGISTERED”,
 LPM_ADDRESSA_CONTROL => “REGISTERED”,
 LPM_ADDRESSB_CONTROL => “REGISTERED”,
 LPM_INIT_FILE => “RAM_init”)
 port map (
 DataInA => DataInA,
 AddressA => AddressA,
 DataInB => DataInB,
 AddressB => AddressB,
 ClockA => ClockA,
 ClockEnA => ClockEnA,
 ClockB => ClockB,
 ClockEnB => ClockEnB,
 WrA => WrA,
 WrB => WrB,
 ResetA => ResetA,
 ResetB => ResetB,
 QA => QA,
 QB => QB);
end behave;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

35

Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
library IEEE;
use IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tramdps16kwx2rx2 is

 port (
 Data : in std_logic_vector(1 downto 0);
 WrAddress : in std_logic_vector(13 downto 0);
 RdAddress : in std_logic_vector(13 downto 0);
 WrClock : in std_logic;
 WrClockEn : in std_logic;
 RdClock : in std_logic;
 RdClockEn : in std_logic;
 WE : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(1 downto 0));
end tramdps16kwx2rx2 ;

architecture struct of tramdps16kwx2rx2 is

component L_RAMDPS
 generic(
 lpm_type : string := “LPM_RAM_DP_PSEUDO”;
 lpm_widthw : integer := 1;
 lpm_widthr : integer := 1;
 lpm_numwordsw : integer := 1;
 lpm_widthadw : integer := 1;
 lpm_widthadr : integer := 1;
 lpm_numwordsr : integer := 1;
 lpm_indata : string := “REGISTERED”;
 lpm_outdata : string := “UNREGISTERED”;
 lpm_addressw_control : string := “REGISTERED”;
 lpm_addressr_control : string := “REGISTERED”;
 lpm_init_file : string := “dummy”;
 lpm_hint : string := “UNUSED”);

 port(
 Data : in std_logic_vector(lpm_widthw-1 downto 0);
 WrAddress:in std_logic_vector(lpm_widthadw-1 downto 0);
 RdAddress:in std_logic_vector(lpm_widthadr-1 downto 0);
 WrClock : in std_logic := 0;
 WrClockEn : in std_logic := 0;
 RdClock : in std_logic := 0;
 RdClockEn : in std_logic := 0;
 WE : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(lpm_widthr-1 downto 0));
end component ;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

36

begin
lpm_gen: L_RAMDPS
 generic map (
 lpm_widthw => 2,
 lpm_widthadw => 14,
 lpm_numwordsw => 16384,
 lpm_widthr => 2,
 lpm_widthadr => 14,
 lpm_numwordsr => 16384,
 lpm_indata => “REGISTERED”,
 lpm_addressr_control => “REGISTERED”,
 lpm_init_file => “RAM_init”,
 lpm_indata => “UNREGISTERED”,
)

 port map (Data => Data,
 WrAddress => WrAddress,
 RdAddress => RdAddress,
 WrClock => WrClock,
 WrClockEn => WrClockEn,
 RdClock => RdClock,
 RdClockEn => RdClockEn,
 WE => WE,
 Reset => Reset,
 Q => Q);
end struct;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

37

Random Access Memory (LPM_RAM_DQ)
library IEEE;
use IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tramdq16kx2 is

 port (
 Data : in std_logic_vector(1 downto 0);
 Address : in std_logic_vector(13 downto 0);
 Clock : in std_logic;
 ClockEn : in std_logic;
 WE : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(1 downto 0));
end tramdq16kx2 ;

architecture behave of tramdq16kx2 is

component L_RAMDQ
 generic (
 LPM_TYPE : string := “LPM_RAM_DQ”;
 LPM_WIDTH : positive := 1;
 LPM_WIDTHAD : positive := 1;
 LPM_NUMWORDS : positive := 2;
 LPM_INDATA : string :=”REGISTERED”;
 LPM_OUTDATA : string :=”UNREGISTERED”;
 LPM_ADDRESS_CONTROL : string :=”REGISTERED”;
 LPM_INIT_FILE : string := “dummy”;
 LPM_HINT : string :=”UNUSED”);
 port (
 Data : in std_logic_vector(LPM_WIDTH-1 downto 0);
 Address : in std_logic_vector(LPM_WIDTHAD-1 downto 0);
Clock : in std_logic := ‘0’;
 ClockEn : in std_logic := ‘0’;
 WE : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(LPM_WIDTH-1 downto 0));
end component ;

begin
U0: L_RAMDQ
 generic map (
 LPM_WIDTH => 2,
 LPM_WIDTHAD => 14,
 LPM_NUMWORDS => 16384,
 LPM_ADDRESS_CONTROL => “UNREGISTERED”,
 LPM_INIT_FILE => “RAM_init”,
 LPM_OUTDATA => “UNREGISTERED”)
 port map (
 Data => Data,

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

38

 Address => Address,
 Clock => Clock,
 ClockEn => ClockEn,
 WE => WE,
 Reset => Reset,
 Q => Q);
end behave;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

39

First-In-First-Out Memory (LPM_FIFO_DC)
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tfifo4kx4 is

 port (
 Data : in std_logic_vector(3 downto 0);
 WrClock : in std_logic;
 WrEn : in std_logic;
 RdClock : in std_logic;
 RdEn : in std_logic;
 Reset : in std_logic;
 RPReset : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 Full : Out std_logic;
 Empty : Out std_logic;
 AlmostFull : Out std_logic;
 AlmostEmpty : Out std_logic);
end tfifo16kx1 ;

architecture struct of tfifo4kx4 is

component L_FIFO
 generic (
 lpm_type : string := “LPM_FIFO_DC”;
 lpm_width : integer := 1;
 lpm_widthu : integer := 1;
 lpm_numwords : integer := 2;
 lpm_amfull_flag: integer :=1;
 lpm_amempty_flag: integer :=1;
 lpm_hint : string := “UNUSED”);

 port (
 Data : in std_logic_vector (lpm_width-1 downto 0);
 WrClock : in std_logic;
 WrEn : in std_logic;
 RdClock : in std_logic;
 RdEn : in std_logic;
 Reset : in std_logic;
 RPReset : in std_logic;
 Q : out std_logic_vector (lpm_width-1 downto 0);
 Full : out std_logic;
 Empty : out std_logic;
 AlmostFull : out std_logic;
 AlmostEmpty : out std_logic);
end component ;

begin
U0: L_FIFO

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

40

 generic map (LPM_WIDTH => 4,
 LPM_WIDTHU => 12,
 LPM_AMFULL_FLAG => 1,
 LPM_AMEMPTY_FLAG => 1,
 LPM_NUMWORDS => 4096)

 port map (Data => Data,
 WrClock => WrClock,
 WrEn => WrEn,
 RdClock => RdClock,
 RdEn => RdEn,
 Reset => Reset,
 RPReset => RPReset,
 Q => Q,
 Full => FULL,
 Empty => EMPTY,
 AlmostFull => AlmostFull,
 AlmostEmpty => AlmostEmpty);
end struct;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

41

Content Addressable Memory (LPM_CAM)
library IEEE;
use IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity tcam128x48 is

 port (
 Data : in std_logic_vector(47 downto 0);
 WrAddress : in std_logic_vector(6 downto 0);
 ClockEn : in std_logic;
 Clock : in std_logic;
 We : in std_logic;
 EnMask : in std_logic;
 WrMask : in std_logic;
 WrDc : in std_logic;
 Reset : in std_logic;
 Address : out std_logic_vector(6 downto 0);
 Match : Out std_logic;
 MulMatch : Out std_logic);
end tcam128x48 ;

architecture struct of tcam128x48 is

component L_CAM
 generic (
 lpm_type : string := “LPM_CAM”;
 lpm_width : integer := 1;
 lpm_numwords : integer := 1;
 lpm_widthad : integer := 1;
 lpm_init_file : string := “dummy”;
 lpm_init_flag : integer := 0;
 lpm_hint : string := “UNUSED”);
 port(
 Data : in std_logic_vector(lpm_width-1 downto 0);
 WrAddress : in std_logic_vector(6 downto 0);
 ClockEn : in std_logic;
 Clock : in std_logic;
 WE : in std_logic;
 EnMask : in std_logic;
 WrMask : in std_logic;
 WrDC : in std_logic;
 Reset : in std_logic;
 Address : out std_logic_vector(6 downto 0);
 Match : Out std_logic;
 MulMatch : Out std_logic);
end component ;

begin
U0: L_CAM
 generic map (LPM_WIDTH => 48,

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

42

 LPM_WIDTHAD => 7,
 LPM_NUMWORDS => 128,
 LPM_INIT_FILE => “CAM_init”,
 LPM_INIT_FLAG => 1)

 port map (Data => Data,
 WrAddress => WrAddress,
 ClockEn => ClockEn,
 Clock => Clock,
 WE => We,
 EnMask => EnMask,
 WrMask => Wrmask,
 WrDC => WrDc,
 Reset => Reset,
 Address => Address,
 Match => Match,
 MulMatch => MulMatch);
end struct;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

43

Read-Only Memory (LPM_ROM)
library IEEE;
use IEEE.std_logic_1164.all;
LIBRARY lc5kmx;
USE lc5kmx.components.all;

entity trom16kx2 is

 port (
 Address : in std_logic_vector(13 downto 0);
 OutClock : in std_logic;
 OutClockEn : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(1 downto 0));
end trom16kx2 ;

architecture struct of trom16kx2 is

component L_ROM
 generic (
 lpm_type : string := “LPM_ROM”;
 lpm_width : integer := 1;
 lpm_numwords : integer := 2;
 lpm_widthad : integer := 1;
 lpm_outdata : string := “UNREGISTERED”;
 lpm_address_control : string := “REGISTERED”;
 lpm_init_file : string := “dummy”;
 lpm_hint : string := “UNUSED”);

 port (
 Address : in std_logic_vector (lpm_widthad-1 downto 0);
 OutClock : in std_logic;
 OutClockEn : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector (lpm_width-1 downto 0));
end component ;

attribute syn_black_box: boolean;
attribute syn_black_box of L_ROM: component is true;

begin
U0: L_ROM
 generic map (
 LPM_WIDTH => 2,
 LPM_WIDTHAD => 14,
 LPM_NUMWORDS => 16384,
 LPM_OUTDATA => “REGISTERED”,
 LPM_ADDRESS_CONTROL => “REGISTERED”,
 LPM_INIT_FILE => “ROM_init”)
 port map (
 Address => Address,
 OutClock => OutClock,

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

44

 OutClockEn => OutClockEn,
 Reset => Reset,
 Q => Q);
end struct;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

45

Appendix C. Initialization File Usage Guide
Introduction
The initialization file is a text file primarily used for preloading user-specified data into the memory array. This file is
mainly used for configuring ROM, but is optional for dual-port, pseudo dual port and single port SRAM, FIFO and
CAM modes.

Figure 6 is an example of an initialization file.

Figure 6. Sample Initialization File (20x32)

11111111111111110000000000010001
11111111111111100000000000010000
11111111111111011111111111111111
11111111111110111111111111111111
11111111111110101111111111111111
11111111111110011111111111111111
11111111111110001111111111111111
11111111111101111111111111110001
11111111111101101111111111110001
11111111111101001111111111110001
11111111111100110000000000100100
11111111111100100000000000100100
11111111111100010000000000100100
11111111111100000000000000100100
11111111111011110000000000100100
11111111111011010000000000000110
00000000000100010000000000000110
00000000000100000000000000000110
00000000000011110000000000000110
00000000000011100000000000000110

Address locations are numbered sequentially from 0 to lpm_numwords -1. The first or topmost entry corresponds
to the initialization data at address 0, and the last entry to address LPM_NUMWORDS-1. Bits are read right to left,
starting from the LSB to MSB. In the initialization file shown above for example, the top right-most bit correlates to
bit 0 of Address 0, while the bottom left-most bit correlates to bit 31 of Address 19. Initialization data can only be
entered in binary format.

Data depth and width are defined by the size of the user instantiated memory. The number of rows corresponds to
the number of address locations in the array (depth), and the number of columns matches the data width. Inputs
are specified in binary format, and each bit can either be a 1, 0, X (don’t care) or a U (undefined). Note that ‘X’ and
‘U’ inputs only apply for CAM. Excess bits and/or undefined characters in the initialization file are flagged as errors
during compilation.

An initialization file can have any name, but it should match the filename specified in the HDL source file. The file
cannot have a trailing three-character extension or file type. Initialization filenames with trailing extensions are not
valid, and therefore flagged as errors during compilation.

To preload memory using an initialization file, simply define the ‘lpm_init_file’ parameter in your top-level HDL
source file and specify the initialization file name. Figure 7 shows an example of a VHDL ROM module using an ini-
tialization file. In this case, the ‘lpm_init_file: string: = “ROM_init”;’ declaration was added into the component
instantiation. The same concept applies for Verilog designs. The example shown in Figure 8 has been modified to
include the ‘defparam U0.lpm_init_file=”init1”;’ declaration.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

46

Figure 7. VHDL ROM instantiation with lpm_init_file defined

entity trom512x121 is

 port (
 Address : in std_logic_vector(8 downto 0);
 OutClock : in std_logic;
 OutClockEn : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector(120 downto 0));
end trom512x121 ;

architecture struct of trom512x121 is

component L_ROM
 generic (
 lpm_type : string := “LPM_ROM”;
 lpm_width : integer := 1;
 lpm_numwords : integer := 1;
 lpm_widthad : integer := 1;
 lpm_outdata : string := “UNREGISTERED”;
 lpm_address_control : string := “REGISTERED”;

lpm_init_file : string := “ROM_init”;
 lpm_hint : string := “UNUSED”);
 port (
 Address : in std_logic_vector (lpm_widthad-1 downto 0);
 OutClock : in std_logic;
 OutClockEn : in std_logic;
 Reset : in std_logic;
 Q : out std_logic_vector (lpm_width-1 downto 0));
end component ;

begin
U0: L_ROM
 generic map (
 LPM_WIDTH => 121,
 LPM_WIDTHAD => 9,
 LPM_NUMWORDS => 512,
 LPM_OUTDATA => “REGISTERED”,
 LPM_ADDRESS_CONTROL => “REGISTERED”,
 LPM_INIT_FILE => “ROM_init”)
 port map (
 Address => Address,
 OutClock => OutClock,
 OutClockEn => OutClockEn,
 Reset => Reset,
 Q => Q);
end struct;

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

47

Figure 8. Verilog ROM instantiation with lpm_init_file defined

module test_rom512x121(
 Q,
 Address,
 OutClock,
 OutClockEn,
 Reset);
output [120:0] Q;
input [8:0] Address;
input OutClock,OutClockEn,Reset;

L_ROM U0(.Q(Q),.Address(Address),.OutClock(OutClock),.OutClockEn(Out-
ClockEn),.Reset(Reset));

defparam U0.lpm_width=121;
defparam U0.lpm_widthad=9;
defparam U0.lpm_numwords=512;
defparam U0.lpm_outdata=”UNREGISTERED”;
defparam U0.lpm_init_file=”init1”;

endmodule

module L_ROM(
 Q,
 Address,
 OutClock,
 OutClockEn,
 Reset);

 parameter lpm_type = “LPM_ROM”;
 parameter lpm_width = 1;
 parameter lpm_numwords = 1;
 parameter lpm_widthad = 1;
 parameter lpm_outdata = “UNREGISTERED”;
 parameter lpm_address_control = “REGISTERED”;
 parameter lpm_hint = “UNUSED”;
 parameter lpm_init_file=”dummy”;

 output [lpm_width-1:0] Q;
 input [lpm_widthad-1:0] Address;
 input OutClock,OutClockEn,Reset;

endmodule // lpm_rom

For additional examples, refer to Appendices A and B.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

48

Common Mistakes and Error Messages
Most initialization file issues are related to the memory file size or the filename format. The most common errors in
generating initialization files are:

1. Specifying an incorrect depth (number of rows) or width (number of columns)
2. Using invalid filenames (i.e. CAM_init.dat)
3. Using invalid characters (i.e. Use of any other character aside from a ‘1’, ‘0’ or ‘X’)

Below are some sample error messages that can help diagnose an initialization file problem. For reference, the fol-
lowing example uses a 96X128 CAM.

Figure 9 shows the error generated when the initialization file data width exceeds the predefined CAM width.
Because the CAM configuration width is set at 96, and the initialization file data has 98 bits, an error is generated
by the compiler.

Figure 9. Error: Data width is greater than the defined memory width

Figure 10 shows an error generated by the compiler when the initialization file data exceeds the total word count in
the CAM array. By definition, the CAM can only hold 128 words. Since the initialization file has 129 words (rows),
the compiler automatically errors out.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

49

Figure 10. Error: Data depth is greater than the defined number of words

Figure 11 illustrates the error generated when invalid characters are detected in the initialization file. In this case,
invalid ASCII characters are inserted into the file (not shown) to show the error message.

Figure 11. Error: Invalid characters are used in the initialization file

The compiler also flags incorrectly named initialization files. Figure 12 shows an example where the initialization
file is associated with a three-character file extension. In this case the lpm_init_file = “CAM_init.dat” definition is
included in the source file. Upon compilation, the compiler is unable to resolve the ‘.DAT’ file extension and errors
out.

Using Memory in
Lattice Semiconductor ispXPLD 5000MX Devices

50

Figure 12. Error: Initialization file is associated with a three-character extension or file

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-408-826-6002 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

	Introduction
	Multifunction Blocks
	Initializing Memory
	Increased Depth And Width
	Bus Size Matching
	Different Data Bus Widths on Two Ports

	Supported Memory Modes
	True Dual-Port SRAM Mode
	Pseudo Dual-Port SRAM Mode
	Single-Port SRAM Mode
	FIFO Mode
	CAM Mode

	Including Memory in ispXPLD 5000MX Designs
	Configurable Memory Primitives
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Single-Port RAM (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix A. Memory Primitive Source Examples (Verilog)
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Random Access Memory (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO_DC)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix B. Memory Primitive Source Examples (VHDL)
	True Dual-Port Random Access Memory (LPM_RAM_DP)
	Pseudo Dual-Port Random Access Memory (LPM_RAM_PSEUDO)
	Random Access Memory (LPM_RAM_DQ)
	First-In-First-Out Memory (LPM_FIFO_DC)
	Content Addressable Memory (LPM_CAM)
	Read-Only Memory (LPM_ROM)

	Appendix C. Initialization File Usage Guide
	Introduction

	Common Mistakes and Error Messages
	Technical Support Assistance

